Konrad-Zuse-Zentrum fiir Informationstechnik Berlin

Heilbronner Str. 10, D-10711 Berlin-Wilmersdorf, Germany

Robert E. Bixby
Alexander Martin

Parallelizing the Dual Simplex Method

Preprint SC-95-45 (December 1995)

Parallelizing the Dual Simplex Method

Robert E. Bixby!
Rice University and
CPLEX Optimization, Inc.
Houston, Texas, USA

Alexander Martin?

Konrad-Zuse-Zentrum
Berlin, Germany

martin@zib-berlin.de
bixby@rice.edu

Abstract

We study the parallelization of the steepest-edge version of the dual sim-
plex algorithm. Three different parallel implementations are examined, each of
which is derived from the CPLEX dual simplex implementation. One alterna-
tive uses PVM, one general-purpose System V shared-memory constructs, and
one the PowerC extension of C on a Silicon Graphics multi-processor. These
versions were tested on different parallel platforms, including heterogeneous
workstation clusters, Sun S20-502, Silicon Graphics multi-processors, and an
IBM SP2. We report on our computational experience.

1. Introduction

We investigate parallelizing the CPLEX?3 implementation of the dual simplex algo-
rithm. We have chosen the dual over the primal for two reasons. First, the default
primal algorithm typically uses some form of “partial pricing,” thus removing a sig-
nificant opportunity for parallelism. Second, we envision the primary application of
this work to “reoptimization” in integer programming applications. There the dual
is the natural algorithm, even for many very large, difficult models where, say, bar-
rier algorithms [LuRo095] potentially provide better performance when solving from
scratch. In addition, integer programming applications, particularly those that em-
ploy “column-generation,” sometimes offer the opportunity to improve the underlying
formulation by increasing the number of variables, thus improving the potential for
parallelism.

2. Dual Simplex Algorithms

Consider a linear program (LP) in the following standard form:

min c’z
(1) st. Ar =50
x>0

*Work partially supported by NSF grant CCR-9407142 to Rice University
>Work partially supported by the Center for Research in Parallel Computing, Rice University
3CPLEX is a registered trademark of CPLEX Optimization, Inc.

where c € R", b € R"™ and A € R"™*™. Note that most practical LPs have nontrivial
bounds on at least some variables; however, for purposes of this discussion it will
suffice to consider problems in the form (1).

The dual of (1) is

max bTw
(2) st. A'r<c¢

Adding slacks yields

max bTw
(3) st. A'r4+d=c

A basis for (1) is an ordered subset B = (By, ..., By,) of {1,...,n} such that |B| =m
and B = Ap is nonsingular. B is dual feasible if cy — AyB™"cp > 0, where N =

{1,...,n\B.

Algorithm A generic iteration of the standard dual simplex algo-
rithm for (1).

Input: A dual feasible basis B, dy = ey — AYB"cp and Tp = B-'b.

Step 1. If zp > 0, B is optimal-Stop; otherwise, let i = argmin{Zp, :
k=1,...,m}. dp, is the entering variable.

Step 2. Solve B”z = ¢;, were e¢; € R™ is the i** unit vector. Compute
ay = —Ajz.

Step 3. (Ratio Test) If ay < 0, (1) is infeasible-Stop; otherwise, let
J = argmin{dy /oy : oy, > 0,k € N}. d; is the leaving variable.

Step 4. Solve By = A;.
Step 5. Set B; = j. Update Zp (using y) and dy (using z).

Remarks:

1. For all dual simplex algorithms, the efficient computation of z” Ay is crucial.
This computation is implemented by storing A y row-wise so that zero elements
in z need be examined only once.

2. To improve stability, the ratio test (Step 3) is applied in several passes, using
an idea of Harris [Ha73]. First, the ratios

dp/a if g, > 0 and
T = .
+o00 otherwise,

are computed for each k& € N. Using these ratios, we compute

t =min{ry +¢/ay : k€ N}

where € > 0 is the optimality tolerance, by default 105, Finally, we compute
the actual leaving variable using the formula

J = argmax{ay : 1, < t}.

Note that since € > 0, it is possible for some of the dj; to be negative, and hence
that r; is negative. In that case, depending upon the magnitude of r;, we may
shift ¢; to some value at least ¢; + |d;|, and then repeat the calculation of ¢ and
j employing the new ;. (See [GiMuSaWr89] for a discussion of the approach
that suggested this shifting. The details of how these shifts are removed are
beyond the scope of this discussion.)

3. In order to solve the two linear systems in the above algorithm (see Steps 2
and 4), we keep an updated LU-factorization of B, using the so-called Forrest-
Tomlin update [FoTo72]. For most models, a new factorization is computed
once every 100 iterations. These computations may be considered part of step
D.

Steepest Edge

There are three different dual algorithms implemented in CPLEX: The standard
algorithm, described above, and two steepest-edge variants. The default algorithm is
steepest-edge.

Several steepest-edge alternatives are proposed in [FoGo72]. These algorithms replace
the rule for selecting the index of the entering variable dp, by

i =argmin{Zp, /nx: k=1,...,m},

where the 7, are the steepest-edge morms. The two alternatives implemented in
CPLEX correspond to the choices

(SEL) = /(efB~1)(¢fB~)", and

(SE2) 1 = \/(egB—l)(egB—l)T + (eIB-1Ay)(elB-1Ay)" + 1.

While it is too expensive to explicitly compute all 7, at each iteration, there are
efficient update formulas. Letting {71, ..., 7} be the values of the norms at the start
of an iteration, the values at the start of the next iteration for (SE1), 7, are given
by the formula

(SE1 norm update) 77 = n; — 2(%)(2;]3_12 + <%)2ZTZ (k #1),
i Yi

where y and z are as in the statement of the standard dual simplex algorithm. Note
that the implementation of this formula requires the solution of one extra linear
system per iteration, the one used to compute B~1z. As suggested in [FoGo72], this

second “FTRAN” can be solved simultaneously with the linear system in Step 4,
thus requiring only a single traversal of the updated LU-factorization of B. Similar
remarks apply to (SE2), for which the corresponding update formula is:

(SE2 norm update) %7 =77 — 2(%)6£B_1w + (%)2(ZTZ +ayan) (k#1),

Yi Yi
where w = z+ Ayayn. Note that whereas the (SE1) update requires solving only one
additional linear system with right-hand side z, updating the (SE2) norms requires

the computation of w, and the additional linear system corresponding to computing
B-lw.

The default dual in CPLEX uses the (SE1) norms with the approximate starting
values 7 = 1 for all k. This choice corresponds to the assumption that most variables
in the initial basis will be slacks or artificials.

Summary

In the sections that follow we discuss three different parallel implementations of the
(SE1) variant of the standard dual simplex method: One using PVM, one using
general-purpose System V shared-memory constructs, and one using the PowerC ex-
tension of C on an Silicon Graphics multi-processor. In section 3, we begin by outlin-
ing the basic plan for the PVM and “System V” approaches. Each of these requires
some explicit form of data distribution. The PowerC version requires no such data
distribution.

To illustrate where the primary opportunities for parallelism exist, and set the stage
for the ensuing sections, we close this section with three profiles for runs on an SGI
Power Challenge using the sequential version of CPLEX. The problem characteristics
for the problems selected here are given in Table 12. In giving these profiles, we make
use of the following designations, classifying the various parts of the algorithm:

Designation Description

Enter Step 1.

BTRAN Solution of B"z = e; (Step 2).

Pricing Computation of ay = —A}z (Step 2).

Ratio Computation of the r; and initial ¢ (Step 3).

Pivot Computation of j, shifting, subsequent t’s (Step 3).
FTRAN Solutions of By = A; and Bw = z.

Factor Factorization and factorization update (Step 5).

Update-d Update of dy.
Update-x Update of Zp and 7.
Misc All other work.

Thus 15.3 + 5.3 + 2.3 + 1.1 = 24.0% of the work can be parallelized for pilots and
97.3% of the work for aa300000 (see the first paragraph of the next section).

Algorithmic % of total computation time
step pilots | cre_b | roadnet | aa300000
Enter 2.1 5.5 0.2 0.1
BTRAN 15.0| 11.5 1.5 0.5
Pricing 153 | 33.1 57.2 65.4
Ratio 53| 15.6 22.7 20.4
Pivot 2.3 3.9 6.9 4.4
FTRAN 31.2 | 20.5 3.3 1.1
Factor 20.3 3.7 1.2 0.4
Update-d 1.1 3.1 5.2 7.4
Update-x 2.5 0.6 0.6 0.2
Misc 4.9 2.5 1.2 0.1
Total 100.0 | 100.0 100.0 100.0

Table 1: CPLEX profiles.

3. Outline of the Data Distributed Implementation

In this section we discuss our data distributed implementations of the (SE1) version
of the standard dual simplex method. The parallel model we use is master/slave
with one master and (potentially) several slaves. We call the master the boss and
the slaves workers. The boss keeps the basis, and each processor, including the boss,
gets a subset of columns. Each column must belong to exactly one processor. All
computations directly related to the basis are done sequentially, by the boss. The
other steps can be executed in parallel: Pricing, Ratio, Pivot, and Update-d.

Table 2 outlines a typical dual simplex iteration. The steps that do not appear in bold
face were described in the previous section. The first new step is the communication
of the z vector, Com(z), from the boss to the workers. For the infeasibility test (see
Step 3 of the dual simplex algorithm) the workers inform the boss in Com(«a)) whether
their part of ayx satisfies ay < 0. The steps Com(t), Pivot, and Com(j) must
then be performed iteratively until the pivot has been accepted. Com(j) consists of
several parts. After each worker has sent its pivot element, the boss makes a choice
and informs the “winning” worker that the entering column should be sent. The
information in Com(update) includes the leaving variable and data for updating
the reduced costs. This information is collected at several different points within the
sequential code.

In view of the profile statistics given in the previous section, and the fact that Enter,
BTRAN, FTRAN and Factor will all be executed on a single processor (the boss), it
is plain that we cannot expect significant performance improvements unless the ratio
of variables to constraints in a given LP is large. Indeed, our first thought was not
only to enforce this requirement, but to concentrate on problems for which the total
memory requirements were so large that they exceeded the memory available on a

‘ ‘ Boss ‘Worker‘

Enter *
BTRAN *
Com(z) e
Pricing
Ratio
Com(a) 2
Com(?) +—t—
Pivot * *
Com(y) +—L—
FTRAN
Factor
Com (update) SR
Update-d * *
Update-x

Table 2: The arrows in this table indicate where communication between
the boss and the workers must occur, with directions indicating the direc-
tion of data flow. An asterisk marks where a task is performed.

single processor. Thus, we began by considering possibly heterogeneous networks of

workstations connected by a local area network. As communication software we used
PVM.

4. PVM

PVM (Parallel Virtual Machine) is a general purpose software package that permits a
network of heterogeneous Unix computers to be used as a single distributed-memory
parallel computer, called a virtual machine. PVM provides tools to automatically

initiate tasks on a virtual machine and allows tasks to communicate and synchronize *.

Our first implementation was in one-to-one correspondence with the sequential code.
Thus, the boss immediately sent a request to the workers whenever some particular in-
formation was needed. Where possible, the boss then performed the same operations
on its set of columns, thereafter gathering the answers from the workers. Assuming
that the first selected pivot was accepted, this approach led to from 6 to 10 communi-
cation steps per iteration, depending on whether the entering and/or leaving column
belonged to the workers. The data was partitioned in our initial implementation by
distributing the columns equally among the processors.

4PVM is public domain and accessible over anonymous ftp via netlib2.cs.utk.edu. For details on
PVM, see the PVM man pages. In our implementation we used PVM Version 3.3.7.

Table 3 shows the results of our initial tests, carried out on the NETLIB problems.?
Results for larger problems are presented later. The boss was run on a SUN S20-TX61
and the one worker on a SUN 4/10-41. The two workstations were connected by a
10 Mb/s (megabits per second) Ethernet. The sequential code was run on the SUN
S20-TX61. The times, measured in wallclock seconds, do not include reading and
presolving.

Model Sequential 2 processors
Time | Iterations | Time | Iterations

‘ NETLIB ‘ 3877.8 ‘ 130962 ‘ 12784.8 ‘ 137435 ‘

Table 3: First results on local area network.

Note that the parallel version was approximately 3.3 times slower than the sequential
version! Most, but not all of this excess time was due to communication costs, which
suggested the following improvements.

1. In Com(j) each worker sends not only the pivot element but simultaneously the
corresponding column. This modification saves one communication step, since
the boss no longer needs to inform the “winning” worker to send a column.

2. The information for the infeasibility test Com(a)) can be sent in Com(j). In
case infeasibility is detected, the pivot computation is wasted work, but such
occurrences are rare.

3. The pivot selection strategy was changed to reduce the number of communica-
tion steps. Each processor determines its own ¢ and performs the Ratio Test
independently of the other processors. The workers then send their selected
pivots and t values to the boss, which makes the final selection. This proce-
dure reduces the number of communication steps in Com(¢) and Com(j) from
3 - (number of rejected pivots +1) to 3. The further application of 1. reduces
the number to 2.

SNETLIB problems: afiro, sc50b, scb0a, scl05 , kb2, adlittle, scagr7, stocforl, blend, sc205,
recipe, share2b, vtpbase, lotfi, sharelb, boeing2, scorpion, bore3d, scagr25, sctapl, capri, brandy,
israel, finnis, gfrdpnc, scsd1, etamacro, agg, bandm, €226, scfxm1, grow7, standata, scrs8, beaconfd,
boeingl, shell, standmps, stair, degen2, agg2, agg3, scsd6, ship04s, seba, tuff, forplan, bnll, pilot4,
scfxm2, growl), perold, fffff800, ship04l, sctap2, ganges, ship08s, sierra, scfxm3, shipl2s, grow22,
stocfor2, scsd8, sctap3, pilotwe, maros, fitlp, 25fv47, czprob, ship08l, pilotnov, nesm, fitld, bnl2,
pilotja, ship12l, cycle, 80bau3b, degen3, truss, greenbea, greenbeb, d2q06c, woodw, pilots, fit2p,
stocfor3, woodlp, pilot87, fit2d, dfl001. Size statistics for non-NETLIB problems employed in our
testing are given in Table 12, ordered by the sequential solution times given in Table 11. For the
most part these models were collected from proprietary models available to the first author through
CPLEX Optimization, Inc.. With the exception of aa6, all models with names of the form ’aaK’,
where K is an integer, are K-variable initial segments of the 12,753,312 variable “American Airlines
Challenge Model” described in [BiGrLuMaSh92]. All solution times given in this paper are real
(wallclock) times in seconds, unless otherwise noted, and are for the reduced models obtained by
applying the default CPLEX presolve procedures.

7

4. All relevant information for the workers’ update is already available before
FTRAN. Note that the workers need only know the entering and leaving col-
umn and the result from the Ratio Test in order to update the reduced costs.
Thus, only one communication step after Pivot is needed for the update.

5. PVM offers different settings to accelerate message passing for homogeneous
networks. We make use of these options where applicable.

6. Load balancing was (potentially) improved as follows: Instead of distributing
columns based simply upon the number of columns, we distributed the matrix
nonzeros in as nearly equal numbers as possible over all processors.

Table 4 shows the results on the NETLIB problems after implementing the above im-
provements. For a typical simplex iteration, the number of communication steps was
reduced to three: the boss sends z, the workers send their pivots and corresponding
columns, and the boss sends information for the update.

Example 2 processors

Time | Iterations
| NETLIB | 7736.5 | 142447 |

Table 4: Improved results on local area network.

Based upon Table 4, the implementation of 1.-6. improves computational times by a
factor of 1.6, even though increasing the number of iterations slightly. However, the
performance of the parallel code is still significantly worse than that of the sequential
code. One reason is certainly the nature of the NETLIB problems. Most are either
very small or have a small number of columns relative to the number of rows. Table
5 gives corresponding results for a test set where the ratio of columns to rows was
more favorable.

Example Sequential 2 processors
Time | Iterations | Time | Iterations
0321.4 9170.1 21481 | 7192.0 20178
cre_b 614.5 11121 | 836.1 13219
nwl6 120.7 313 83.1 313
0sa030 645.8 2927 | 5154 3231
roadnet 864.7 4578 | 609.6 4644

Table 5: Larger models on a local area network.

The results are significantly better. With the exception of cre_b, the parallel times
are between 20% (for 0sa030) and 37% (for nw16) faster, though, again largely due

to communication costs, still not close to equaling linear speedup. Our measurements
indicated that communication costs amounted to between 30% (for 0sa030) and 40%
(for cre_b) of the total time. Since communication was taking place over Ethernet, we
decided to test our code on two additional parallel machines where communication
did not use Ethernet, a SUN S20-502 with 160 MB of RAM memory and an IBM SP2
with eight processors (each a 66 MHz thin-node with 128 MB of RAM). The nodes
of the SP2 were interconnected by a high speed network running in TCP/IP mode.

Example Sequential 2 processors

Time | Iterations | Time | Iterations
NETLIB | 4621.2 130962 | 6931.1 142447
0321.4 9518.3 21481 | 8261.1 20178

cre_b 650.5 11121 | 769.4 13219
nwl6 99.6 313 78.4 313
0sa030 556.3 2927 | 502.1 3231
roadnet 801.0 4578 | 652.5 4644

Table 6: Larger models on SUN S20-502.

The results on the SUN S20-502 were unexpectedly bad, worse than those using
Ethernet. We will come to possible reasons for this behavior later. The results on
the SP2 were much better (with the exception of cre_b) and seem to confirm our
conclusions concerning the limitations of Ethernet.

Example Sequential 2 processors 4 processors
Time | Iterations | Time | Iterations | Time | Iterations

NETLIB | 2140.9 130054 | 5026.9 143348 | not run not run
0321.4 5153.7 24474 | 3624.6 26094 | 2379.7 21954

cre_b 390.2 11669 | 399.8 11669 458.9 10915
nwl6 94.0 412 50.4 412 30.4 412
0sa030 321.3 2804 | 191.8 2804 152.7 2836
roadnet 407.3 4354 | 235.5 4335 182.4 4349

Table 7: Larger models on SP2.

To summarize, there seems little hope of achieving good parallel performance on a
general set of test problems using a distributed-memory model. That result is not
unexpected. However, the distributed memory code is not without applications. as
illustrated by the final table of this section.

The two examples in Table 8 did not fit onto a single node of the machine being used,
so we could not compare the numbers to sequential times. However, the CPU-time
spent on the boss was 9332.9 sec. (90.5% of the real time) for aa6000000 and 52.5

‘Example ‘ Time ‘Iterations‘

226000000 | 10315.8 10588
us01 59.4 249

Table 8: Large airline models on SP2 using all 8 nodes.

sec. (= 88.5% of the real time) for us01. Time measurements for the smaller examples
in Table 7 confirm that about 10% went for communication.

In closing this section, we note that one of the biggest limitations of PVM is directly
related to its portability. The generality of PVM means that transmitted data usu-
ally must be passed through different interfaces and thereby often packed, unpacked,
encoded, decoded, etc. For multiprocessors like the SUN S20-502 or the Power Chal-
lenge (see section 5), this work is unnecessary.

4. Shared Memory/Semaphores

Based upon our results using PVM we decided to investigate the use of general-
purpose, UNIX System V shared-memory constructs. We restricted our choice to
System V mainly because it provides high portability. Possible candidates for inter-
process communication (IPC) on a single computer system are pipes, FIFOs, message
queues, and shared memory in conjunction with semaphores (for an excellent descrip-
tion of these methods see [St90]). We looked at the performance of these four types of
IPC by sending data of different sizes between two processors. It turned out that the
shared memory/semaphore version was the fastest (see also [St90], page 683). Shared
Memory allows two or more processes to share a certain memory segment. The ac-
cess to such a shared memory segment is synchronized and controlled by semaphores.
There are different system calls available that create, open, give access, modify or re-
move shared memory segments and semaphores. For a description of these functions,
see the man pages of Unix System V or [St90].

We implemented our shared memory version in the following way: We have one shared
memory segment for sending data from the boss to the workers. This segment can be
viewed as a buffer of appropriate size. All the data to be sent to the workers is copied
into this buffer by the boss and read by the workers. The workers use the first four
bytes to determine the type of the message. The access to the buffer is controlled
by semaphores. In addition, we have one shared memory segment for each worker
to send messages to the boss. These segments are used in the same manner as the
“sending buffer” of the boss.

The shared memory version differs from the PVM version in the following respects:

1. The workers do not send the pivot column immediately together with the pivot
element, i.e., improvement 1. on page 7 is removed: There might be several
pivot elements sent (and thus columns) per iteration, depending upon numerical

10

considerations. This behavior could result in overflow in the shared memory
buffer. On the other hand, informing a worker to send a column is relatively
inexpensive using semaphores.

2. We changed the pivot selection strategy (see 3. on page 7) back to that of
the sequential code, mainly because we wanted to have the same pivot selection
strategy for an easier comparison of the results and because the additional com-
munication steps are not time-consuming using shared memory and semaphores.

3. We saved some data copies by creating another shared memory segment for the
vector z. Thus, in Com(z) the workers are notified of the availability of the new
vector by a change of the appropriate semaphore value.

Table 9 shows the results of the shared memory version on the SUN S20-502.

Example 2 processors
Time | Iterations

NETLIB | 5593.3 141486
0321.4 7958.2 20465

cre_b 604.9 13219
nwl6 82.2 313
0sa030 545.1 3231
roadnet 711.2 4644

Table 9: Shared memory version on SUN S20-502.

The results on the SUN S20-502 are again not satisfactory. For the NETLIB problems
the times are better than those using PVM, but are still far inferior to the CPLEX
sequential times. For the larger models the numbers are even worse. Two contributors
to these negative results are the following:

1. The semaphore approach is probably not the right way to exploit shared memory
for the fine-grained parallelization necessary in the dual simplex method. It is
true that there are other communication primitives available that might be
faster. However, as this work was being done, there did not seem to be any
better approach available that was portable. We will come to this point again
in the next section.

2. There is a serious memory bottleneck in the SUN S20-502 architecture. Because
the data bus is rather small, processes running in parallel interfere with each
other when accessing memory. Looking at the SPEC results for the single
processor and 2-processor models (see [Sun|) we have

SUN S20-50 SUN S20-502
SPECrate_int92 1708 3029
SPECrate_fp92 1879 3159

11

This means that up to about 19% is lost even under ideal circumstances. For

memory intensive codes like CPLEX, the numbers are even worse. For the
NETLIB problems, we ran CPLEX alone and twice in parallel on the SUN

S20-502:
CPLEX (alone) CPLEX (twice in parallel)
4621.2 sec. 6584.4 sec.
6624.7 sec.

This degradation was about 40%! Clearly the SUN S20-502 has serious limita-
tions in parallel applications®.

The Silicon Graphics Power Challenge multi-processors are examples of machines
that do not suffer from this limitation. Table 10 summarizes our tests running the
System V semaphore implementation on a two-processor, 75 Mhz Silicon Graphs
R8000 multi-processor.

We note that the five larger models (0321.4, cre_b, nw16, 0sa030, and roadnet) achieve
reasonable, though with one exception not linear speedups, ranging from 22% for cre_b
to 105% for nw16. One reason that better speedups are not obtained is that a sig-
nificant fraction of the communication costs is independent of problem size — indeed,
all steps to the point that the worker sends an entering column. As a consequence,
examples with low-cost iterations cannot be expected to achieve significant speedups.
This phenomenon is illustrated by aa25000, sfsu4, nopert, cre_b, mctaq, usfs2, food,
aab, ral, pilots, and especially the NETLIB problems (including fit2d), where on av-
erage at most 0.03 seconds are needed per iteration, running sequentially. All other
examples where, in addition, the number of iterations of the sequential and parallel
codes are roughly equal, give approximately the desired speedup. The “aa” examples
behave particularly well: The numbers of iterations are constant, individual iterations
are expensive, the fraction of work that can be parallelized is near 100% (see Table
1).

Finally, note that (mctaq, sfsu2, sfsu3, finland, and imp1), fail to follow any particular
trend, primarily because the number of iterations for the parallel and sequential codes
differ drastically. That such differences arise was unexpected, since the pivot selection
strategy in both codes is the same, as is the starting point. However, since the basis
is managed by the boss we distribute only the initial nonbasic columns among the
processors, resulting in a possible column reordering. With this reordering, different
columns can be chosen in the Pricing step, leading to different solution paths. Note,
however, that in terms of time per iteration, the five listed models do achieve close
to linear speedups.

5Sun Microsystems gave us the opportunity to test some of these examples under an optimal
environment on their machines. On the SUN S20-502 we got the same results as on our machine,
whereas on a SUN S20-712 the degradation was at most 20%. These better results are mainly due
to the 1 MB external cache each of the two processors of a SUN S20-712 has. The extra cache helps
in avoiding bottlenecks on the data bus.

12

Example Sequential 2 processors Speedup
Time | Iterations | Time | Iterations
NETLIB 2004.4 133299 | 2361.7 138837 0.8
aa25000 7.9 546 7.1 546 1.1
aab 22.7 2679 26.2 2679 0.9
wl.dual 27.2 67 13.5 67 2.0
aab0000 34.1 916 23.2 916 1.5
nwl6 109.2 403 53.3 403 2.0
ral 51.1 3091 46.2 3091 1.1
pilots 71.2 4211 82.2 4437 0.9
aa75000 105.1 1419 60.8 1419 1.7
fit2d 131.7 6366 97.0 6959 1.4
sfsu4 71.5 2256 66.4 2414 1.1
us01 782.5 278 | 350.8 278 2.2
usfs2 241.0 8356 | 268.5 7614 0.9
aa100000 257.2 2133 | 128.8 2133 2.0
0sa030 354.8 2943 | 192.2 2833 1.8
roadnet 378.9 4405 | 213.9 4608 1.8
cre_b 337.8 10654 | 275.3 10654 1.2
nopert 424.1 26648 | 249.9 24185 1.7
continent 771.6 16586 | 558.8 16570 1.4
food 653.5 21433 | 598.4 21328 1.1
mctaq 531.4 28714 | 683.1 41460 0.8
0341.4 564.8 8225 | 394.8 8225 1.4
sfsu3 779.2 4055 | 804.0 9436 1.0
aa200000 1262.4 4090 | 632.2 4090 2.0
finland 1654.1 24356 | 1560.7 31416 1.0
0sa060 2182.7 5787 | 1074.5 5801 2.0
sfsu2 1818.2 12025 | 1828.0 23200 1.0
aa300000 2724.0 5513 | 1339.5 5513 2.0
amax 3122.5 8276 | 1923.9 9780 1.6
aa400000 4068.9 5931 | 1964.7 5931 2.1
0321.4 4406.2 20677 | 2681.2 20662 1.6
aab500000 6081.8 6747 | 2878.1 6747 2.1
impl 8252.9 38421 | 3231.4 30036 2.6
aa600000 7619.0 6890 | 3599.5 6890 2.1
tm 8154.3 74857 | 5478.7 71657 1.5
aa700000 9746.5 7440 | 4536.4 7440 2.1
aa800000 | 11216.1 7456 | 5172.8 7456 2.2
aa900000 | 13130.8 7590 | 6028.9 7590 2.2
aal1000000 | 15266.6 7902 | 7030.5 7902 2.2

Table 10: Run times using semaphores on 75 Mhz Silicon Graphics R8000.

13

5. PowerC

We describe a thread-based parallel implementation of the dual steepest-edge algo-
rithm on an SGI Power Challenge using the SGI PowerC extension of the C program-
ming language [SGI]. We note that the work described in this section was carried out
at a somewhat later date than that in previous sections, and hence that the initial
sequential version of CPLEX was somewhat different. As the tables will show, this
version not exhibited improved performance when parallelized, but was significantly
faster running sequentially.

In our work we use only a small subset of the compiler directives provided by the
PowerC extension: #pragma parallel, #pragma byvalue, #pragma local, #pragma
shared, #pragma pfor, and #pragma synchronize. The parallel pragma is used
to define a parallel region. The remaining pragmas are employed inside such a region.

Defining a parallel region is analogous to defining a C function. The byvalue, local,
and shared directives specify the argument list for that function, with each directive
specifying the obvious types — for example, shared specifies pointers that will be
shared by all threads. Exactly one #pragma synchronize is used in our implemen-
tation (it could be easily avoided by introducing another parallel region). All of the
actual parallelism is invoked by the loop-level directive pfor.

The key parallel computation is the Pricing step. If this step were carried out in the
straightforward way, it’s parallelization would also be straightforward, employing the
following sort of loop (inside a parallel region):

#pragma pfor iterate (i = 0; nrows; 1)
for (j = 0; j < ncols; j++) {
compute a sparse inner product for column j;

}

where ncols denotes the number of columns and nrows the number of rows. However,
as noted earlier, CPLEX does not carry out the Pricing step column-wise. In order
to exploit sparsity in z (see Step 2), the part of the constraint matrix corresponding
to the nonbasic variables at any iteration is stored in a sparse data structure by row,
and this data structure is updated at each iteration by deleting the entering variable
(which is “leaving” the nonbasic set) and inserting the leaving variable.

Given that Ay is stored by row, the computation of z” Ay could be parallelized as
follows:

#pragma pfor iterate (i = 0; nrows; 1)
for (i = 0; i < nrows; i++) {

d_N += z[i] * (ith row of A_N);
}

where the inner computation itself is a loop computation. The difficulty with this
approach is that it creates false sharing. In particular, the individual entries in dy

14

will be written to by all threads, causing this data to be constantly moved among
the processor caches. One obvious way to avoid this difficulty is to create separate
target arrays dy,, one for each thread, with the actual update of dy carried out as a
sequential computation following the computation of the dy,. However, a much better
approach is to directly partition IV into subsets, one for each thread. To do so required
restructuring a basic CPLEX data structure and the routines that accessed it. Once
that was done, the implementation of the parallel pricing was straightforward.

Where K is a multiple of the number of processors, let
0=mn9<n; <ns <...<ng =ncols,

and let P, = {ng,...,ng1 — 1} for k =0,..., K — 1. The ny are chosen so that the
numbers of nonzeros in Ap, are as nearly equal as possible. For a given set of nonbasic
indices N, the corresponding partition is then defined by N, = N N P;. Using this
partition, the parallel pricing loop takes the form

#pragma pfor iterate (k = 0; K; 1)
for (k = 0; k < K; k++) {
for (i = 0; i < nrows; i++) {
d_N_k += z[i] * (ith row of A_N_k);
}

In initial testing of the above partitioning, an interesting phenomenon was discovered,
related at least in part to the cache behavior of the R8000. Consider the model
aa400000. Running the sequential code with no partitioning yielded a timing of
2864.1 seconds while the initial PowerC version on two processors using K = 2 ran
in 1300.4 seconds, a speedup considerably greater than 2.0. Setting K = 2 in the
sequential code yielded a run time of 2549.4, much closer to what one would expect.
After considerable testing, we thus chose to set K — in both the sequential and
parallel instances — to be the smallest multiple of the number of processors that
satisfies K' > ncols/(50 nrows). Thus, for aa400000 and two processors, K was 8,
the smallest multiple of 2 greater than 259924 /(50 - 837). We note that this change
also seems to have benefitted other platforms. The dual solution time for fit2d on a
133 Mhz Pentium PC was 204.5 seconds with K = 1 and 183.7 with the new setting
of K=09."

We now comment on the remaining steps that were parallelized in the dual algorithm:
Enter, Ratio, Pivot, Update-d, and the update of the row-wise representation of Ay.
Update-x could also have been parallelized, but was not after initial testing indicated
that doing so was at best of marginal value, and in some cases actually degraded
performance. The total effort consumed by this step was simply too small to justify
the overhead for executing a parallel region.

7"Dual is not the way to solve fit2d, especially not on a PC. The solution time using simplex
primal was 18.6 seconds and using the barrier algorithm 15.4 seconds.

15

Ratio and Pivot: For these computations we use the same partition of /N used in
the Pricing step. Note that the dual algorithm allows these two steps to be per-
formed without any intervening computations. As it turned out, in the CPLEX
sequential implementation, before the current work was carried out, there were
several relatively inexpensive, minor computations that were interspersed be-
tween the two major steps. Since entering and leaving parallel regions does
incur some fixed costs, it seemed important to be able to do the Pricing and
Ratio steps inside a single region; moreover, with some reorganization within
each of these computations, it was possible to carry out the “major part” of
each step without introducing synchronization points. Thus, the essential form
of the computation as implemented was the following:

#pragma pfor iterate (k = 0; K; 1)
for (k = 0; k < K; k++) {
for (i = 0; i < nrows; i++) {
d_N_k += z[i] * (ith rows of A_N_k);
}
ratio test int N_k;

The reorganization of computations for these two steps, as well as other reorga-
nizations to facilitate the parallel computation were carried out so that they also
applied when the dual was executed sequentially, thus preserving code unity.

Enter: Since this computation is easy to describe in essentially complete detail, we
use it as an illustration of the precise syntax for the PowerC directives:

#pragma parallel

#pragma byvalue (nrows)

#pragma local (i_min, min, i)

#pragma shared (x_B, norm, i_min_array)

{
i_min = -1;
min = 0.0;
#pragma pfor iterate (i = 0; nrows; 1)
for (i = 0; i < nrows; i++) {
if (x_B[i] < min * norm[i]) {
min = x_B[i] / norm[i];
i_min = i;
}
}
i_min_array[mpc_my_threadnum ()] = i_min;
}
i_min = -1;
min = 0.0;
for (i = 0; i < mpc_numthreads (); i++) {
if (i_min_array[i] !'= -1) {

16

if (x_B[i_min_array[il] < min * norm[i_min_array[i]]) {
min = x_Bli_min_array[il] / norm[i_min_array[il];
i_min = i_min_array[i];

The PowerC function mpc_my_threadnum() returns the index of the thread being
executed, an integer from 0 to K — 1, where K is the total number of threads.
The function mpc_numthreads () returns K.

Apn update: The insertion of new columns is a constant-time operation. However,
the deletion operation can be quite expensive. It was parallelized in a straight-
forward manner.

Finally we remark on one important computation that was not parallelized. As dis-
cussed earlier, the dual steepest-edge algorithms all require the solution of one addi-
tional FTRAN per iteration. The result is that two ostensibly “independent” solves
are performed using the same basis factorization. These solves are typically quite
expensive, and it would seem clear that they should be carried out in parallel (on two
processors). However, in the sequential code these two solves have been combined
into a single traversal of the factorization structures. That combination, when care-
fully implemented, results in some reduction in the actual number of computations
as well as a very effective use of cache. As a result, all our attempts to separate the
computations and perform them in parallel resulted in a degradation in performance.

Computational Results

The computational results for the PowerC parallel dual are given in Table 11. Tests
were carried out on a 4-processor 75 Mhz R8000. (There was insufficient memory to
run aa6000000.)

Comparing the results in Table 11 to the profiles in Table 1, we see that pilots —
as expected, because of the large fraction of intervening non-parallel work — did not
achieve ideal performance; on the other hand, cre_b came very close to the ideal
speedup and aa300000 exceeded ideal speedup by a considerable margin.

There are unfortunately several, as yet unexplained anomalies in our results. These
mainly show up on larger models. In several instances superlinear speedups are
achieved. Examples are aa200000 and impl, with 4-processor speedups exceeding
factors of 5. On the other hand, other models that would seem even more amenable
to parallelism, principally the four largest “aa” models, achieve speedups considerably
smaller than 4 on 4 processors. At this writing, the authors can offer no better expla-
nation than that these anomalies are do to R8000 cache and memory bus properties.

17

Example | Iterations Run time (no. of processors) Speedups
1] 2 | 3] 4] 2] 3] 4
NETLIB 136369 | 1310.2 | 1216.2 | 1151.3 | 1123.6 || 1.1 | 1.1 | 1.2
2225000 552 3.7 2.9 24 21131518
aab 2509 12.1 10.4 9.5 911 12]13] 13
wl.dual 67 16.5 9.7 7.2 59| 1.7 | 2.3 | 2.8
2a50000 1038 20.0 11.5 8.5 711724 28
nwl6 256 21.9 10.6 6.7 5.2 21|33 |42
ral 3018 26.4 20.4 17.9 166 || 1.3 | 1.5 | 1.6
pilots 4196 44.2 42.2 40.9 405 | 1.0 | 1.1 | 1.1
aa75000 1360 45.8 21.2 15.3 126 || 22 | 3.0 | 3.6
fit2d 5724 49.2 29.3 21.5 173 || 1.7 123] 2.9
sfsud 3071 56.7 35.8 27.6 236 || 1.6 | 2.1 | 2.4
us01 245 | 108.9 57.2 39.2 300 | 1.9]| 28] 3.6
usfs2 7962 | 114.4 83.9 72.2 65.5 | 1.4 | 1.6 | 1.8
22100000 2280 | 153.1 64.3 43.3 329 || 24 | 35| 47
0sa030 2831 | 154.4 67.8 46.3 3731 23|33 41
roadnet 3921 | 164.5 75.5 51.5 423 2.2 32|39
cre_b 11136 | 168.5 | 1249 | 107.9 | 100.5 || 1.3 | 1.6 | 1.7
nopert 27315 | 1974 | 1359 | 113.9 99.6 || 1.5 | 1.7 | 2.0
continent 12499 | 236.7 | 1639 | 141.5| 1289 | 14|16 | 1.8
food 21257 | 311.3 | 259.5 | 2385 | 2239 12|13 |14
mctaq 30525 | 317.0 | 219.2 | 1779 | 153.0| 1.4 | 1.8 | 2.1
0341.4 9190 | 341.5 | 205.7| 1683 | 146.9 || 1.7 | 2.0 | 2.3
sfsu3 3692 | 413.4 | 201.5| 130.8 99.3 || 2.1 | 3.2 | 4.2
22200000 3732 | 6754 | 3184 | 189.8 | 1281 | 2.1 | 3.6 | 5.3
finland 29497 | 1086.8 | 691.4 | 580.3 | 526.4 | 1.6 | 1.9 | 2.1
0sa060 5753 | 1197.8 | 548.1 | 328.0 | 241.0 || 2.2 | 3.7 | 5.0
sfsu2 16286 | 1724.5 | 1060.3 | 761.9 | 609.3 || 1.6 | 2.3 | 2.8
22300000 5865 | 1743.1 | 876.4 | 557.7 | 381.7 | 2.0 | 3.1 | 4.6
amax 9784 | 2093.8 | 1151.7 | 795.2 | 625.3 || 1.8 | 2.6 | 3.4
2a400000 6271 | 2473.0 | 1286.5 | 855.4 | 629.0 || 1.9 | 2.9 | 3.9
0321.4 19602 | 2703.6 | 1599.4 | 1218.5 | 1034.7 || 1.7 | 2.2 | 2.6
2a500000 6765 | 3349.5 | 1713.6 | 1165.4 | 879.9 || 2.0 | 2.9 | 3.8
impl 29297 | 3424.5 | 1423.0 | 868.0 | 651.5 || 2.4 | 3.9 | 5.3
22600000 6668 | 3904.9 | 2019.1 | 1393.0 | 1054.9 || 1.9 | 2.8 | 3.7
tm 70260 | 4230.5 | 2633.7 | 2232.8 | 1997.5 || 1.6 | 1.9 | 2.1
2a700000 7162 | 4951.4 | 2542.8 | 1760.0 | 1361.5 || 1.9 | 2.8 | 3.6
2a800000 7473 | 5763.1 | 3000.6 | 2084.1 | 1616.1 || 1.9 | 2.8 | 3.6
22900000 8166 | 7242.4 | 3738.3 | 2606.4 | 2020.2 || 1.9 | 2.8 | 3.6
2al000000 7703 | 7413.5 | 3851.2 | 2687.5 | 2089.4 || 1.9 | 2.8 | 3.6

Table 11: PowerC run times on 1 to 4 processors.

18

Example Original Presolved

Rows | Columns | Nonzeros | Rows | Columns | Nonzeros
aa25000 837 25000 192313 837 17937 140044
aab 541 4486 25445 532 4316 24553
wl.dual 42 415953 | 3526288 22 140433 1223824
aab0000 837 50000 380535 837 35331 276038
nwl6 139 148633 1501820 139 138951 1397070
ral 823 8904 72965 780 8902 70181
pilots 1441 3652 43167 1275 3243 40467
aa75000 837 75000 576229 837 52544 415820
fit2d 25 10500 129018 25 10450 128564
sfsu4 2217 33148 437095 1368 24457 180067
us01 145 | 1053137 | 13636541 87 370626 | 3333071
usfs2 1484 13822 158612 1166 12260 132531
aa100000 837 100000 770645 837 68428 544654
0sa030 4350 100024 600144 | 4279 96119 262872
roadnet 463 42183 394187 462 41178 383857
cre_b 9648 72447 256095 | 5229 31723 107169
nopert 1119 16336 50749 1119 16336 50749
continent 10377 57253 198214 | 6841 45771 158025
food 27349 97710 288421 | 10544 69004 216325
mctaq 1129 16336 52692 1129 16336 52692
0341.4 658 46508 384286 658 27267 264239
sfsu3 1973 60859 | 2111658 1873 60716 2056445
aa200000 837 200000 1535412 837 134556 1075761
finland 56794 139121 658616 | 5372 61505 249100
0sa060 10280 232966 1397796 | 10209 224125 584253
sfsu2 4246 55293 984777 | 3196 53428 783198
aa300000 837 300000 | 2314117 837 197764 1595300
amax 5160 150000 | 6735560 | 5084 150000 | 3237088
aa400000 837 400000 | 3115729 837 259924 | 2126937
0321.4 1202 71201 818258 1202 50559 656073
aab00000 837 500000 | 3889641 837 320228 | 2624731
impl 4089 121871 602491 1587 112201 577607
aa600000 837 600000 | 4707661 837 378983 | 3138105
tm 28420 164024 505253 | 17379 139529 354697
aa700000 837 700000 | 5525946 837 434352 | 3620867
aa800000 837 800000 | 6309846 837 493476 | 4112683
aa900000 837 900000 | 7089709 837 548681 | 4575788
aa1000000 837 | 1000000 | 7887318 837 604371 5051196
aa6000000 837 | 6000000 | 46972327 837 | 2806468 | 23966705

Table 12: Problem statistics.

19

Conclusions

We described three different approaches to implementing parallel dual simplex al-
gorithms. The first of these, using distributed memory and PVM, gave acceptable
speedups only for models where the ratio of rows to columns was very large. It seemed
most applicable to situations involving very large models with memory requirements
too large for available single processors.

We examined two shared memory implementations. The first of these used System
V' constructs, and, not surprisingly, produced better results than the PVM imple-
mentation, but, in many ways, not significantly better. Finally, we constructed a
thread-based, shared-memory implementation using the Silicon Graphics PowerC ex-
tension of the C programming language. This implementation was far simpler than
the previous two, and produced quite good results for a wide range of models. It
seems likely that this thread-based approach can also be used to produced equally
simple and useful parallel dual simplex implementation on other multi-processors with
memory buses having adequate bandwidth.

Finally, we note that primal steepest-edge as well as other “full-pricing” alternatives
in the primal simplex algorithm, are also good candidates for parallelization.

20

References

[BiGrLuMaSh92] R. E. Bixby, J. W. Gregory, 1. J. Lustig, R. E. Marsten, and
D. F. Shanno, 1992. Very Large-Scale Linear Programming: A Case Study in
Combining Interior Point and Simplex Methods. Operations Research 40, 885—
897.

[FoGo72] J. J. Forrest and D. Goldfarb, 1992. Steepest-Edge Simplex Algorithms for
Linear Programming. Mathematical Programming 57, 341-374.

[FoTo72] J. J. H. Forrest and J. A. Tomlin, 1972. Updating Triangular Factors of the
Basis to Maintain Sparsity in the Product-Form Simplex Method. Mathematical
Programming 2, 263-278.

[GiMuSaWr89] P. E. Gill, W. Mwrray, M. A. Saunders and M. H. Wright, 1989. A
Practical Anti-Cycling Procedure for Linearly Constrained Optimization, Math-
ematical Programming 45, 437-474.

[Ha73] P. M. J. Harris, 1973. Pivot Selection Methods of the Devex LP Code. Math-
ematical Programming 5, 1-28.

[LuMaSh94] 1. J. Lustig, R. E. Marsten, and D. F. Shanno, 1994. Interior Point Meth-
ods for Linear Programming: Computational State of the Art. ORSA Journal
on Computing 6, 1-14.

[LuR095] I. J. Lustig, E. Rothberg, 1995. Gigaflops in Linear Programming. To ap-
pear in OR Letters.

[SGI] Power C User’s Guide, Silicon Graphics, Inc.

[St90] W. R. STEVENS, Unix Network Programming, PTR Prentice-Hall, New Jer-
sey, 1990.

[Sun] SUN MICROSYSTEMS, WWW Page:
http://www.sun.com/smi/bang/ss20.spec.html.

21

