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Abstract

Many interesting phenomena in molecular systems like interactions between macro-
molecules, protein-substrate docking, or channeling processes in membranes are
gouverned to a high degree by classical Coulomb or van-der-Waals forces. The
visualization of these force fields is important for verifying numerical simulations.
Moreover, by inspecting the forces visually we can gain deeper insight into the
molecular processes. Up to now the visualization of vector fields is quite unusual
in computational chemistry. In fact many commercial software packages do not
support this topic at all. The reason is not that vector fields are considered unim-
portant, but mainly because of the lack of adequate visualization methods. In this
paper we survey a number of methods for vector field visualization, ranging from
well-known concepts like arrow or streamline plots to more advanced techniques
like line integral convolution, and show how these can be applied to computational
chemistry. A combination of the most meaningful methods in an interactive 3D vi-
sualization environment can provide a powerful tool box for analysing simulations
in molecular dynamics.
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1 Introduction

In general, molecular interactions are governed by the interaction between
various charge distributions in space. Today, the most sophisticated theory
for explaining these interactions is non-relativistic quantum theory. However,
for large macromolecules methods based on classical pair potentials can be
used, too. In particular the mutual interactions in molecular systems (es-
pecially in biological macromolecules) are dominated by electrostatic effects.
The importance of the molecular electrostatic potential (MEP) is widly rec-
ognized, and it is therefore not surprising that the MEP can be computed
easily using today’s standard molecular modeling programs. To interprete
the MEP in molecular context 3D visualization methods are available in most
commercial and academic software tools.

Whereas the energetics are determined by the (electrostatic) potentials,
favoured mutual orientations and the direction of attachment processes can
be better understood by looking directly at the local molecular electrostatic
field (MEF), which in contrast to the potential is a vector quantity. One ex-
ample is the interaction between plastocyanin and cytochrome c as described
in [1]. It was shown that in this case electrostatic steering, i.e. the forcing
of specific orientations prior short range interactions, plays an essential role.
Further phenomena such as preferred hydrations sites in DNA, hydropho-
bicity, or properties of hydrogen bonds can be explained by analysing the
electrostatic field pattern (see [2] and references therein). There is also some
evidence that the inclusion of MEF into QSAR and similarity analysis im-
proves correlation with experimental results [2].

In contrast to MEP, the visualization of the MEF is not widly used in
current studies of biomolecular interactions. Whereas the scalar property
MEP can be easly displayed by color coding or other mapping techniques,
it is much more difficult to visualize both magnitude and direction of the
electric field vectors simultaneously in a human acceptable form. In the past
common approaches were either to color-code vector magnitude and to map
it onto the molecular surface, or to display simple 2D slices of the molecular
situation combined with projected field vectors, i.e. arrow plots. On the other
hand, a number of novel visualization methods for depicting vector fields
have been developed in the computer graphics and visualization community
in recent years. These methods comprise of icon based techniques, generation
of directional textures, or utilization of special hardware features of modern
graphics computers. Mainly developed in the field of computational fluid
dynamics, these methods have not yet been applied thoroughly to vector
fields arising in chemical simulations.

This paper is intended to show the application of modern methods for



vector field visualization in the area of molecular modeling and quantum
chemistry. In particular the MEF of different molecules is shown and some
characteristics are discussed. In section 2 we shortly outline how the data
for the examples shown in this paper has been computed, namely by use of
a semi-empirical NDDO method. In section 3 we give a survey of different
methods for vector field visualization. These methods are applied to different
molecular fields in section 4. Results and concluding remarks are given in
section 5.

2 Electrostatic Fields from Wavefunctions

MEF data can be computed by any method dealing either with static and/or
parametrized atomic charges (classical force field methods) or electronic charge
distributions (quantum chemical methods). We have used the semi—empirical
NDDO approach [3] enhanced with the NAO/PC [5] technique to reduce the
electronic charge distribution to a discrete set of point charges. The basic
theory is shown below. We have implemented the computation of the MEP
and MEF on a regular 3D grid into our local VAMP code [4].

NDDO based methods solve the stationary non-relativistic Schrodinger
equation within the Born—Oppenheimer approximation

H{7}:{RY) U({7}) = By Uy, (1)

where H is the spin free Hamilton operator which depends on the coordinates
of all electrons {7} and parametrically on the positions of the nucleii { R},
;. is the wavefunction of a given state k£ (usually the ground state of the
system, k = 0), and E}, the electronic energy (the expectation value of Hin
state k). Within the Hartree-Fock model the wavefunction VU is represented
by a Slater determinant consisting of one-particle functions, i.e. canonical
molecular orbitals (MO). The MOs {¢} are built by a linear combination of
atomic orbitals {x} (LCAO formalism)

$i = Y Cui Xu- (2)
I

The coefficients {c} are determined by means of a variational principle which
leads to the Roothaan—Hall type equation

FC=ESC, (3)

where F' is the Fock matrix, C' is the matrix of eigenvectors (the coefficients
in the atomic orbital expansion), E is a diagonal matrix of the eigenvalues
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€;, and S is the overlap matrix resulting from the non-orthogonality of the
atomic orbitals.

Within semi-empirical methods a minimal set of Slater orbitals are used
as atomic orbitals throughout. Only the valence electrons are taken into ac-
count. The computational cost is reduced by applying approximate schemes
during the computation of integrals over the atomic orbitals or by using fitted
parameters based on experimental results for integrals itself. Additionally,
within the Roothaan-Hall equation the overlap matrix is replaced by the
identity matrix 1, i.e. the general eigen problem is reduced to the special
eigen problem

FC=EC. (4)

After finishing the SCF iterations a set of point charges representing the
electronic charge distribution is build based on pre natural atomic orbitals
(NAO) [5]. The pre NAOs for a non-hydrogen atom are computed by diago-
nalizing each one-center block of the density matrix P,

occ

P,=2 Z CuiCvi  (closed shell case) (5)

and a subsequent estimation of magnitudes and positions in space of charge
centers for each lobe of a sp® NAQO. Therefore, for each heavy atom 8 point
charges and for each hydrogen 1 point charge is obtained. Using these point
charges and the remaining core charges of the atomic nucleii the MEP and
MEF can be easily calculated applying Coulomb’s law. Both the MEP and
the MEF are calculated on a 3D regular grid having a reasonable resolution
in space. The set of point charges can be clearly identified in some of the
images presented in section 4.

3 Visualization Methods

In this section we will review some visualization techniques, which can be
used to gain insight into the structure of the electrostatic field within a
molecular arrangement. The discussion mainly focuses on technical issues.
In section 4 the different methods are applied to real examples and pros and
cons are discussed in comparison.

3.1 Iso-Potential Surfaces

The molecular electrostatic field £ is related to the molecular electrostatic
potential ¢ by E = —V®. This means that field vectors and surfaces of equal



potential value are always oriented perpendicular to each other. Therefore
the structure of an electrostatic field can be reconstructed from pictures of
iso-potential surfaces. Although this reconstruction process sometimes is dif-
ficult to perform mentally, in many molecular modeling software packages this
is the only way to get at least an indirect understanding of the MEF structure.
Nevertheless, visualization of iso-potential surfaces has some advantages. It
allows one to quickly get an overview about the molecular situation and it
clearly reveals possible symmetries.

In addition to iso-potential surfaces there are a number of other methods
which are commonly used for visualizing the electrostatic potential. In par-
ticular these are color coding applied to cutting planes or molecular surfaces,
as well as different kinds of direct volume rendering. With these methods it
is much harder to imagine how the gradient field, i.e. the MEF, looks like.
Therefore we will not discuss them further here.

Isosurface algorithms can be divided into two general classes. The one
are methods which generate an intermediate polygonal representation of the
surface, the other are methods which directly render images for a given point
of view. Modern graphics computers are optimized for rendering large num-
bers of triangles. Therefore polygonal methods have become the favoured
choice in many applications. Once a polygonal model has been created the
surface can be zoomed and rotated interactively. However, depending on the
rendering performance of the graphics hardware this approach is limited to
model sizes somewhere between 50 000 and 500 000 triangles. If the model
size exceeds these limits it is often preferable to generate an isosurface image
directly without having to store a huge intermediate representation.

Let us first take a look at polygonal methods for generating isosurfaces.
Almost any method used today is derived from the famous marching cubes
algorithm proposed by Lorensen and Cline in 1987 [10]. This algorithm
works for a scalar function, e.g. the molecular electrostatic potential, which
is defined at the vertices of a regular cartesian grid. Other grid types can
be handled as well using simple modifications. Assuming trilinear interpo-
lation within a cubic grid cell, it is easy to check whether a particular cell
is intersected by an isosurface or not. Intersected cells have corners with
data values both below and above the isosurface threshold. For these cells a
local triangular approximation of the isosurface is constructed. If the trian-
gulations of neighbouring cells exactly fit together all cells can be processed
independently and the final polygonal model is simply the sum of the local
approximations. For performance reasons the cell triangulations are read
from a lookup table. Since each of the 8 corners of a cell may lie above or
below the isosurface threshold, there are 256 different cases in total. These
can be divided into 14 groups of different topology.
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Figure 1: Example of an inconsistent triangulation in the original marching cubes
algorithm.

For most configurations it is quite clear how to construct a valid trian-
gulation. However, ambiguities arise for example if opposite vertices of a
rectangular face have equal sign. In this case the correct topology cannot be
determined from a binary classification alone. The original marching cubes
algorithm did not take into account these ambiguities. As a result, some-
times incorrect surfaces were produced, i.e. surfaces with holes in it. An
example of such a configuration is shown in Figure 1. These holes are caused
by triangulating neighbouring cells in an inconsistent way. Such inconsis-
tencies can be avoided by using a modified lookup table [13]. However, in
this case not the same isosurface would be obtained anymore after changing
the sign of all data values. An alternative method which preserves this kind
of symmetry is to generate special patches to fill the holes [15]. While this
approach produces a consistent triangulation, it may not represent the shape
of the exact isosurface correctly. Assuming trilinear interpolation, an addi-
tional scalar value at the center of a cell has to be evaluated to determine
the correct shape [14]. However, in many applications still the more simple
original algorithm is used, often equipped with a modified lookup table. The
reason might be that ambigious configurations do not occur very often if the
data has been sampled at a sufficiently high resolution.

As mentioned above, a more serious problem with polygonal isosurface
algorithms is the huge number of triangles they produce. To reduce this
number standard methods for polygon reduction may be applied in a post-



processing step. The obvious disadvantages are that still a huge intermediate
representation has to be computed and that information inherent to the iso-
surface problem cannot enter anymore. Therefore ploygon reduction should
be integrated into the isosurface algorithm. An example of such a method is
the so-called compact cubes algorithm proposed by Warren and Moore [12].
Starting with a marching cubes like lookup table, it works by coalescing tiny
triangles into points, and long thin ones into edges. Using this simple tech-
nique the number of polygons can be reduced to up to 50% compared to
traditional marching cubes. We used this method to generate the examples
in section 4.

For very high resolution data sets it becomes favourable to render images
of an isosurface directly without generating an intermediate polygonal repre-
sentation. One particular technique is so-called dividing cubes, also proposed
by Lorensen [11]. Again, all cells of a regular cartesian grid are checked for
intersection with the isosurface. Intersected cells then are subdivided into
smaller cubes. The smaller cubes are checked for intersection again and are
subdivided recursively until the projection of a subcube into screen space
is smaller than a pixel. In this case a single pixel is drawn with ordinary
shading and z-buffering applied. After all cells have been processed an image
of the isosurface from a given point of view is obtained. For other viewing
directions the algorithm has to be rerun.

Direct iso-surfacing can also be implemented via ray casting. Instead of
iterating in object space, in ray casting the main loop is in image space. For
each image pixel a ray is sent into the volume and the first intersection with
the isosurface is computed. The gradient vector at this location determines
how the pixel is shaded. In direct methods usually the shading calculations
are performed in software. Therefore one has greater flexibility in choosing
a proper illumination model. However, it is more difficult to combine di-
rect methods with the display of other objects, e.g. text, line primitives, or
polygons.

3.2 Arrows and Icons

Probably the most simple method for depicting a vector field is to draw an
arrow plot. An arrow can be used to indicate field direction at a unique
point. Proper scaling and coloring allows one to encode a scalar quantity,
e.g. vector magnitude, as well. Arrow plots are easy to implement and easy
to interprete. These are their main advantages. On the other hand, they are
restricted to a rather coarse spatial resolution. If individual symbols overlap
each other, the image rapidly becomes cluttered. Therefore in general arrows
are not well suited to resolve small details of a field.
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Figure 2: Different graphical representations of an arrow.

While it is quite obvious how to draw arrows in a plane, some care has
to be taken in 3D graphics. Definitely the nicest results are obtained by rep-
resenting arrows polygonally. This makes proper illumination and shading
of individual symbols possible. However, in many cases a polygonal repre-
sentation is far too expensive. A single 3D arrow can easily contain 30 or
more triangles. In this case even a single slice sampled rather coarsely at 502
points gets too big to be manipulated interactively on a standard graphics
workstation. Some alternative representations are shown in Figure 2. The
simpler symbols are built of simple line and point primitives only. Usually
these primitives are colored, but no shading is applied.

A straight-forward extensions of a simple arrow has been proposed by de
Leeuw and van Wijk [8]. Their vector field probe or icon not only indicates
field magnitude and direction, but also properties obtained from a first order
field expansion. At a particular point all first order derivatives are computed,
yielding the field’s Jacobian matrix. This matrix is decomposed into char-
acteristic components like curvature and torsion, which are then represented
by a set of geometric symbols. An example of the de Lueew—van Wijk—icon
is shown in Figure 3. Because of its size and geometric complexity only few
icons can be displayed in a single image. However, by interactively moving a
single probe in space valueable insight into the field’s local structure can be
obtained. The method has received considerable attention in the past. Orig-
inally it has been developed for visualizing fields from computaional fluid
dynamics. While in such fields velocity usually varies only within a small
range, in the vicinity of a point charge field strength may become arbitrary
high. Therefore it is not a good idea to visualize field strength by geometric
scaling. This argument is true for ordinary arrows as well. As a workaround,
a logarithmic scale might be used or field strength might be encoded by color.
Also, since a Coulomb field has vanishing rotation, the encoding of torsion
in the original icon is superfluous in our application.
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Figure 3: Vector field probe of de Lueew and van Wijk.

3.3 Field Lines

Field lines or integral curves have been used to depict the directional struc-
ture of a vector field since the introduction of the field concept to science
more than 150 years ago. While arrows or icons only reveal local structure
of a field, integral curves encode global information. This makes them a
powerful method in visualization and, more generally, an important concept
in mathematical analysis. For a stationary vector field v an integral curve o
is defined by an autonomous ordinary differential equation

do(u)
du

— f(o(u)), with o(0) = @, (6)

Note, that for time-dependent fields these curves do not correspond to par-
ticle trajectories. In contrast to field lines, trajectories of a time dependent
vector field may intersect. Trajectories show at once the integral effect of the
field variation over time, while field lines represent a snapshot of the field at
one instance. In the following we will concentrate on stationary fields, since
these are most relevant in the context of quantum chemistry.

It can be proved that there is a unique solution of Equation 6 for all  if
the field is differentiable, or more general, if it fullfills Lipshitz’s condition.
For the case of an electrostatic field defined by a set of point charges this
condition holds everywhere, except for the point charges itself. At these
singularities an infinite number of field lines begin or end.

For field line integration a number of methods can be used. Any numerical
integrator has to approximate the continuous curve o by a set of discrete
samples. In order to guarantee the accuracy of this discrete approximation
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in areas of high curvature, the step-size should not remain fixed, but should
be adapted to the local characteristics of the field by means of some error
estimation scheme. For most of our examples we used a rather simple and
robust embedded adaptive Runge-Kutta integrator of 4th order [7]. While
an adaptive integrator usually returns sparse discrete samples with varying
distances, in visualization often many regularly spaced samples are needed.
To achieve this so-called dense output the field line has to be interpolated
within a sparse interval. Usually the accuracy of the interpolation is one
order less than the order of the integrator. For a 4th order integrator a cubic
interpolation polynomial is obtained, which corresponds to straight-forward
Hermite interpolation. To evaluate the interpolation polynomial very quickly,
a forward differencing scheme should be used.

After the field lines have been computed they have to be displayed on a
graphics computer. To get high quality images, individual lines are often rep-
resented using small cylindrical tubes. The tubes may be colored to visualize
an additional scalar quantity, e.g. field strength or the electrostatic potential.
Cylindrical tubes have the advantage that standard illumination models can
be applied during rendering. Diffuse and specular light reflections very much
improve the spatial impression of the resulting images. However, representing
field lines polygonally is computationally quite expensive. Therefore only a
very limited number of lines can be displayed and manipulated interactively.
This means, that the seed points for the individual lines have to be selected
very carefully to reveal the important features of a vector field.

This limitation has been relaxed somewhat by the introduction of a new
rendering method which exploits the texture mapping features available on
modern graphics computers [17]. Instead of drawing tubes made up of many
little polygons, field lines are rendered as ordinary line primitives using stan-
dard scan-conversion algorithms. Unfortunately, proper illumination of such
line primitives is not supported in standard graphics libraries like OpenGL.
However, it turns out that a Phong-type reflection model for lines can be
implemented using ordinary texture mapping combined with clever initial-
ization of the so-called texture transformation matrix 7. At each vertex of a
field line the current tangent vector is specified as a 3D texture coordinate.
During rendering this coordinate is multiplied by 7". Via this matrix multi-
plication all necessary dot products contained in the illumination model are
computed. The transformed texture coordinates are used to read the correct
light intensity from a texture map. An example of such a texture map is
shown in Figure 4. One can clearly identify the specular reflection on top of
a diffuse background.

With the ability to render a huge number of field lines at interactive
rates, new methods for distributing field lines become feasible. In particular
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Figure 4: Texture map used for illuminating a line segment with tangent vector
T. V denotes the viewing direction, L the light vector.

we propose statistical methods. The user may select an interesting region of
the field interactively. Within this region seed points may be distributed ei-
ther homogeously or with a probability proportional to some scalar quantity,
e.g. vector magnitude. This quantity loosely defines some degree of interest
at a particular point. Other strategies are also possible, e.g. a combination of
multiple interest functions or a non-linar transformation of a given interest
function. In particular, if the original function varies over several orders of
magnitude — like vector magnitude in electrostatic fields — transformations
similar to histogram equalization in image processing turned out to be useful.

3.4 Surface Texturing

A common problem with standard methods for vector field visualization is
limited spatial resolution. If arrows or icons or even field lines are placed
too densely, the image rapidly gets cluttered and no information at all can
be encoded anymore. Recently a number of so-called texture based methods
have been proposed to tackle this problem. The idea is to synthesize a texture
or a textured surface, which faithfully represents the directional information
contained in a vector field. In principle texture resolution is only limited by
the size of a single pixel. The most successful texture-based methods used in
vector field visualization are spot noise [18, 9] and line integral convolution
(LIC) [6, 16]. In both methods a random input texture or white noise is
blurred along local vector field direction. While in spot noise often 2D filter
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Figure 5: In line integral convolution a random input noise is blurred along the
field lines of a vector field.

kernels of elliptical cross-section are used, in line integral convolution 1D filter
kernels are applied, which follow exactly the field line pattern of a vector field.
In addition, spot noise is an iterative process, while in LIC all pixels of an
image are processed step by step. In the following we will concentrate on
LIC, since this is a somewhat more accurate method. In particular we will
outline an algorithm for computing the convolution very efficiently for the
whole image.

In line integral convolution a noise function 7 is blurred along the field
lines or integral curves of a vector field v. Blurring results in highly correlated
pixel values along the field lines, whereas perpendicular to them almost no
correlation appears. Therefore LIC images provide a clear visual impression
of the directional structure of v. This is illustrated in Figure 5. Mathemati-
cally the blurring is described by the convolution integral

I(z) = / k(s—s0) T(o(s)) ds, (7)

so—Ly

with & = o(sp). In this equation k denotes a one-dimensional filter kernel of
length 2L, and o (s) denotes a field line parametrized by arc-length s.

The convolution integral has to be calculated for every pixel at least once
— a prohibitively expensive task if no coherences can be exploited. In case
of a constant filter kernel k a fast evaluation strategy can be established
by calculating only the change of the integral while stepping along a field
line. This exploits the coherence between neighbouring points on a single
field line, while not affecting visual appearance. The convolution integral is
approximated by 2N,+1 equidistant discrete samples

N
I@o) = —— 3 T(@)), @ = o(se+isL). (8)
2Nf+1i:—Nf Nf



Typical values of L comprise 10 to 40 pixel lengths. Samples should be
taken with an increment of half a pixel. Again we use Runge-Kutta methods
with adaptive step-size control and error monitoring for field line integration.
After having computed I(xg) it is easy to update intensity along a field line
via

T(xign,) T(Tizv,+1))
ON;+1 ON;+1

I(@is1) = I(x;) — (9)
This fast intensity update is the main idea of the so-called fast LIC algorithm.
The equation is evaluated for N, samples in both directions. Usually a single
pixel will be covered by multiple field lines. Therefore all samples falling
into that pixel have to be averaged. At the end accumulated intensities
have to be normalized against the actual number of hits per pixel. There
are several strategies which can be applied to obtain an favourable field line
distribution, i.e. a distribution where every pixel is covered by as little field
lines as possible. Obviously this is an important criterium for the overall
performance of the algorithm.

4 Applications

We will now apply the visualization methods discussed in the previous sec-
tion for analysing electrostatic fields obtained from quantum chemical simula-
tions. The fields have been computed using the NAO/PC technique described
in section 2. This method approximates the electronic charge distribution of
a molecule by a set of non-fractional point charges. The electrostatic field
defined by these point charges has been resampled on a uniform cartesian
grid of sufficiently high resolution (101 nodes). Within the grid cells we in-
terpolate all vector components trilinearly. Resampling is much faster than
evaluating Coulomb’s law directly for a huge number of point charges, al-
though it means some loss of accuracy. All visualization methods have been
implemented within the framework of an highly interactive modular software
system originally designed for medical applications. The system makes use
of the OpenGL and Open Inventor graphics libraries. For all examples truely
interactive frame rates can be obtained of a fast desktop graphics workstation
supporting hardware texture mapping, e.g. SGI Indigo 2 High Impact.

4.1 Benzene

The benzene molecule is a highly symmetric cyclic carbon compound. Its six
carbon atoms and six hydrogens lie in a plane. Below and above the plane
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the charge centers representing the m—orbitals are located. In Figure 6a the
zero potential surface is shown in white. This surface separates the areas
of negative potential from the areas of positive potential. Electrostatic field
lines connect positive hydrogens and positive carbon cores with the negative
electronic charges. In Figure 6 the electrostatic field in the symmetry plane
is depicted using small arrows, which are scaled and colored according to
field strength. While the structure of the field is hard to understand from
this image, line integral convolution (Figure 6d) provides much more detail
information. Again color denotes field strength. However, the information
contained in the LIC image is only two-dimensional. The spatial structure
of the field becomes somewhat more obvious by rendering three-dimensional
field lines using proper illumination, cf. Figure 6¢. The spatial understanding
can be improved very much by investigating the field lines interactively from
different points of view. Compared to illuminated field lines or line integral
convolution the use of the vector field probe has been reported quite poor by
most users. Since this method gives no global view of the field, it should only
be used to highlight certain features in combination with other methods.

4.2 Thymine Nucleosid

The nucleic acid thymine is contained in DNA molecules. Beside adenine,
guanine, and cytosine, it is one of the four base compounds used to encode
genetic information in a cell. In Figure 7 the thymine is visible as the six
ring in the lower left part of the image. It is coupled to a D-ribose molecule,
which is the five ring structure in the upper right. Together both components
form a so-called nucleosid.

Since the molecule does not have a simple planar symmetry like the ben-
zene, the structure of the electrostatic field is much more difficult to under-
stand. In a single image only parts of the whole field can be visualized. In
particular in Figure 7 the interaction between two OH-groups of D-ribose
and a free oxygene of thymine is highlighted. While the potential around the
single oxygene is negative, the potential around two hydrogens of the OH-
groups is positive. Electrostatic field lines directly connect these areas. The
projection of the field lines into a plane is depicted in Figure 7a using line
integral convolution. Again the spatial structure of the field becomes more
clear if three-dimensional field lines are drawn using proper illumination. In
Figure 7b the field lines are colored according to electrostatic potential. To
get a better understanding of the location of positive and negative areas,
in Figure 7c transparent iso-potential surfaces are shown in addition to the
field lines. From this image it is obvious that the field lines are oriented
perpendicular to the iso-potential surfaces.
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5 Conclusions

In this paper we surveyed a number of methods designed for vector field
visualization in general and for visualization of molecular electrostatic fields
(MEF) in particular. Because the MEF is always oriented perpendicular
to the electrostatic potential (MEP), the display of iso-potential surfaces
can help to get a better understanding of the field structure, too. Standard
methods like arrow plots or more advanced variants like the vector field probe
are not well suited for visualizing the complex vector fields occuring in a
molecular situation. Texture based methods like line integral convolution are
able to encode directional information at a much higher resolution. However,
these methods are inherently two-dimensional. Applying them to simple
cutting planes only reveals the structure of the projected field. In principle
it would be possible to apply textures to non-planar surfaces too, although
it is not quite clear what surfaces should be selected. A better method for
understanding the three-dimensional structure of a MEF is to draw a large
number of field lines, taking into account diffuse and specular light reflection.
The ability to investigate the resulting scenes interactively from different view
points is very helpful. In some sense the iso-potential surface, illuminated
field lines, and line integral convolution visualize different aspects of the field.
Therefore we propose to use these methods simultaneously in an integrated
visualization environment. In future, means for highlighting certain features
of molecular electrostatic fields would be desireable. In additon, since these
fields tend to be very complex, methods for visual data reduction are needed.
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Figure 6: (page 18) Benzene molecule. In the upper left the surface of zero po-
tential is shown in white. The red surface encloses areas of high positive potential.
In the other images the molecular electrostatic field is shown directly by means of
an arrow plot, illuminated field lines, and line integral convolution.

Figure 7: (page 19) Thymine nucleosid. The images highlight parts of the molec-
ular electrostatic field. In the upper image line integral convolution is applied to a
planar cutting plane through the molecule. In the middle image illuminated field
lines are shown. Red color means positive electrostatic potential, green negative
potential. In the lower image transparent iso-potential surfaces have been blended
in.
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