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ABSTRACT

We present an integrated time—space adaptive finite element method for solving
systems of twodimensional nonlinear parabolic systems in complex geometry. The
partial differential system is first discretized in time using a singly linearly implicit
Runge-Kutta method of order three. Local time errors for the step size control
are defined by an embedding strategy. These errors are used to propose a new
time step by a PI controller algorithm. A multilevel finite element method with
piecewise linear functions on unstructured triangular meshes is subsequently ap-
plied for the discretization in space. The local error estimate of the finite element
solution steering the adaptive mesh refinement is obtained solving local problems
with quadratic trial functions located essentially at the edges of the triangulation.
This two—fold adaptivity successfully ensures an a priori prescribed tolerance of
the solution. The devised method is applied to laminar gaseous combustion and to
solid—solid alloying reactions. We demonstrate that for such demanding applica-
tions the employed error estimation and adaption strategies generate an efficient
and versatile algorithm.
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1 INTRODUCTION

Even with the dramatical increase of available computing power observed today a lot
of physically relevant problems still remain inaccessible to a numerical solution. This
is mostly due to the large complexity that realistic mathematical models involve. In
most cases the information is highly nonuniformly distributed in space and time. This
can be due to different reasons such as complex geometry, sudden changes in boundary
conditions or coefficients and in particular stiff operators. In such a situation it is crucial
to dispose of an adaptive discretization method. Not only it brings the solution within
reach by drastically reducing the number of degrees of freedom, but also furnishes error
bounds and thus permits to estimate its reliability which may be as important as the
solution itself. The present paper is concerned with an adaptive method in both, space
and time.

Combustion problems are known to range among the most demanding for spatial adap-
tivity when the thin flame front is to be resolved numerically. This is often required as
the inner structure of the flame determines global properties such as the flame speed,
the formation of cellular patterns or even more important the mass fraction of reaction
products (e.g. NO, formation). A large part of numerical studies in this field is devoted
to the different instabilities of such flames exhibiting cellular, pulsating, spiraling, etc.
to name but a few, and often transition to chaotic behaviour [PW82], [DLP89], [FP91],
[DH92]. Apart from spatial adaptivity these problems can generally be solved with a
constant time step. A reliable error control as available with the present method, ho-
wever, is of great advantage. When dealing with ignition and extinction processes or
complicated geometries and non—uniform material the relevant time scales can change
by orders of magnitude. The proposed method then automatically adjusts the time
step in accordance with the spatial tolerance so that the invested computational effort
results in an optimal advancement of the calculation in time. A crucial point is that,
apart from the choice of the overall precision, the algorithm does not require the adjust-
ment of tuning parameters when changing from one problem to another. This is a major
advantage with respect to many other methods and thereby simplifies its applicability
to new problems.

The literature on adaptive space discretization and adaptive time discretization is ab-
undant. For a survey on these topics the reader is refered to [HW91], [BS90], [Ver94],
[DLN96]. A successfull approach to many problems requiring adaptive discretization
in space is constituted by the Multilevel Finite Element (MLFE) method proposed in
[DLY89]. Time dependent parabolic problems are then adequately handled by the TS
discretization sequence (first time then space) as it reduces the problem to the solution
of elliptic sub-problems. In opposite to the widely used Method Of Lines (MOL) ap-
proach [BB82|, [AF88], [M0094| the adaptation in space is thus placed in the interiour
of the time steps. This so—called Rothe method was first developed and analyzed in
[Bor92] for linear problems and later extended to the nonlinear case in [LW92] using
linearly implicit Runge-Kutta schemes. The resulting algorithm has demonstrated its
reliability for a variety of unsteady reaction—diffusion problems [Lan95], [Lan96]. In par-



ticular for problems where the main complexity is generated by spatial nonuniformity
the applied discretization sequence can be advantageous. We finally note that a new
adaptive multilevel discretization in space by means of orthogonal wavelets has been
obtained recently and applied to the equations solved in Section 3 [FS95].

In the present paper we focuss on the adaptive MLFE computation of twodimensional
combustion processes. These include many challenging practically relevant problems
that request several improvements with respect to our earlier work mentioned above.
Dealing with large problems these may become crucial for the efficient application of
the developed methodology. The equations which are solved are of reaction—diffusion
type. It should be noted that a large number of phenomena in biology, ecology, physics
and engineering are governed by equations of this type. The current implementation
permits to handle systems of an arbitrary number of such equations. It furthermore
allows to impose additional algebraic or differential-algebraic constraints, a feature not
required in the present study. Finally, the extension to account for mild convection does
not pose problems and is available as well. Hence, the developed algorithm indeed has
a wide range of applications.

The paper is laied out as follows. In section 2 we present the MLFE algorithm and
the adaption strategy in time. In particular, an improved prediction formula yields a
smooth and satisfactory behaviour of the time step. We then present results for laminar
thermodiffusive flames impinging on an obstacle. The second class of applications is
constituted by solid—solid alloying reactions. We define an illustrative setup for which
detailed results are presented.

2 TIME AND SPACE DISCRETIZATION

The equations considered here are special cases of the following class of semilinear dif-
fusion problems:

P(z)0iu + A(Op,x)u = F(u), reQ, t>0

u(0,2) = wg(z), x €N, 21)

where u is the d—dimensional vector of dependent variables. P is an x—dependent d x d—
matrix and A is a linear elliptic differential operator of second order with respect to the
spatial variable z. In the present applications the functions u, uy and F' are vectors of
two real functions. The computational domain Q C R? is bounded, and appropriate
boundary conditions on 0€) are assumed to be incorporated into the operator A. In
[Lan95] a time-space adaptive method for (2.1) has been described in a general setting.
In the sequel we recall some essential features and focus on new aspects for our case.

Combustion problems are generally characterized by the presence of different time scales.
They originate from ignition processes, travelling flame fronts or fast and slow reactions
of the chemical species. This makes the whole system temporally very stiff so that
such problems are best treated with an implicit or semi—implicit time discretization.
Due to rich spatial dynamics frequent adaptation of the spatial grid is necessary as



well. Consequently, time integrators using a wide stencil of different time levels to
construct higher order solutions such as multistep or extrapolation methods seem not
to be favorable here as the spatial discretization is permanently changing. In such a
situation one-step Runge-Kutta methods requiring only two different meshes, one to
construct the new solution and one to hold the initial values on the old time level, have a
structural advantage. Additionally, they are able to avoid nonlinear systems employing
a fixed sequence of linear problems. These algorithms are often called linearly implicit
Runge-Kutta methods. We employ a singly diagonally implicit method which has shown
to give very satisfactory results for stiff equations. Setting

f(u) == F(u) — A(0y, x)u (2.2)

the semi-discretization of (2.1) in time is based on the stage values [}, j = 1,2, 3 deter-
mined by

1 i1 11!
( P — 8uf(un_1)> lj = f(un_l -+ Z Qj; lz) + — P Z Cji lz (23)
7 Tn i=1 Tn =1

The time scheme then relates the approximate solution u.,, at time ¢,, to the known value
U,_; With a time step 7, =t,—1,_; through

3
Uy = Up—71 + Z bj lj . (24)

j=t1

Observe that the sums in the right-hand side extend to j—1 only which results in a
successive solution process. The coefficients v, aj;, ¢j; and b; are choosen such that
uy, is of third order in time, and furthermore to give good stability properties [Roc88].
As outlined above the adaptive choice of the time step is an important feature for an
efficient solution process. It is thus necessary to incorporate an estimate of the local
error in time. The special structure of the employed Runge-Kutta scheme allows the
definition of a lower order solution by an embedding strategy. We simply employ a
different set of coefficients in (2.4) to yield a solution of second order

3 ~
= Z bj 1 (2.5)
The difference between the solutions of different order is then used to estimate the local
error in time
€n = |tun — Unlle - (2.6)

In practical applications it is often decisive to carefully choose the norm. It should
accurately reflect the scale of the problem in order to furnish meaningful input for the
error control. We employ here the weighted L, norm

wz

H 12\
A~ unz unz
[tn = tnllo = ( Z —0> (2.7)



where u,,; denotes the i—th component of u,. Extensive practical experience leads us
to employ the reference quantities

/4135% : Hunng <:/4l3£%
|unillo : REL; < ||ungllo

with
REL; = RTOL; * maxy|tn|o,

ABS; = ATOL; |02, (2.9)

and |Q| the size of the considered domain. Given a tolerance TOL, for the time dis-
cretization a standard strategy is to choose the step size of the time step according

to
ToL\"’
Tp = p( t) To—1 (2.10)

€n—1

where p denotes a safety factor, presently set to be 0.95. The exponent in (2.10) results
from the cubic model for the local error in time which is supposed to underly. The step
is then executed and the error €, from (2.6) is checked to be smaller than T'OL;. If this is
not the case the solution u, is rejected and the time step is repeated with a reduced value
of 7,,. Unfortunately, this mechanism often leads to a nonsmooth behavior of the time
integration process. For instance, after a drastic step size reduction the corresponding
error € becomes very small. Consequently, the proposed new time step will be too
optimistic leading to repeated rejections. One possible remedy is to smooth out the
step size selection using a PI controller as introduced in [Gus92] for implicit methods.

It takes the form 1/3
n—1 [ TOLy €,
Tn =P In-t ( te 2) Tn—1 - (2.11)

Tn—2 €En—1 €n—1

and is used in case of more than two successively accepted time steps. If time steps
are rejected relation (2.10) is used with several modifications. The error information
resulting from the rejected steps can e.g. be used to modify the exponent in (2.10)
which in that case apparently does not correspond to what really happens.

Let us now consider the spatial discretization. In (2.3) it is obvious that for the three
stage values [; three linear elliptic boundary value problems have to be solved. This is
being done by a multilevel finite element method (MFEM). In the spirit of full adaptivity,
a self-adaptive spatial discretization method is an appropriate choice for this task. It has
proven to be a useful tool for drastically reducing the size of the arrising linear systems
and to achieve high and controlled accuracy. The general principle of the multilevel
technique consists of replacing the solution space by a sequence of discrete spaces with
successively increasing dimensions to improve the approximation property [DLY89]. At
the same time this speeds up the iterative solution of linear systems through the possible



use of nested iterations. An MFEM requires the specification of four modules: the finite
element assembly, the estimation technique for the error in space, the mesh refinement
strategy, and last but not least the solver for the linear equations. These steps are now
described in detail.

The starting point for any FEM is the weak formulation of the corresponding boundary
value problem. The stage problems (2.3) are equivalent to the variational formulation

B (lj,v) = rj(v) forallv eV, j=1,2,3, (2.12)

where B, denotes the time-dependent bilinear form associated with the operator on the
left-hand side of (2.3), r; stands for the corresponding right-hand side operator of the
j—th stage, and V is a subspace of the Sobolev space [H*(€2)]¢, containing the solution
u € IRY. We presently use a conforming FE-discretization without slave nodes based
on piecewise linear polynomials and triangular grids. Let T be the initial triangulation
of the domain €2. Then a sequence of nested triangulations T, T, ..., T} is constructed
by successive local refinement. Clearly, new grid points should be placed only in those
regions where the current precision is insufficient. For this procedure it is required that
the spatial discretization error can be estimated for each triangle of Tj. It is then used
to select a set Ry of triangles which have to be refined. Refining all triangles of Ry into
four congruent triangles ("red” refinement) has proven to be a robust strategy in many
applications. To ensure that the new triangulation T} ,; does not possess slave nodes,
triangles with one refined edge are subdivided into two triangles (”green” refinement),
those with two or three refined edges are refined "red”. Recall that the finite element
discretization error grows when the maximal angle tends to m [BA76]. Moreover, since
the condition number of the stiffness matrix increases like 1/sin(«), where « is the
minimal angle, it is important to bound the angles away from 0 and 7. Pure "red”
refinement guarantees this immediately as the triangles in each T} are congruent to
those in Ty. In order to avoid degeneration due to repeated ”green” refinement the
“green” closures of each triangulation are removed before refining. This refinement
strategy is standard and used e.g. in the KASKADE code [ELR93].

Each triangulation T}, corresponds to a finite element subspace V; of V' consisting of
all continuous functions which are linear on each triangle T" € Ty. The finite element
solutions l;‘f' € Vi, 7=1,2,3, on T}, have now to satisfy the equation (2.12) restricted to
the related subspace Vi

B(lf,v) = r(v) VYveW,j=123,k=12.... (2.13)

Once the approximate solutions have been computed, a posteriori error estimators can
be utilized to give specific assessment of the error distribution. With the above time
integrator, the new solution u® on the triangulation 7T}, is obtained by solving three
different stage problems for l;‘f' in Vi, (2.13). An estimation process for the discretization
error in space which includes all these problems would become too expensive. A natural

way therefore is to use the first stage only, justified by the fact that

u%uler = Up—1+ lllg/ﬁ)/ (214)



is exactly the semi-implicit Euler solution of (2.1) at ¢ = t,, on the triangulation Tj.
Hence, it can be assumed that a spatial mesh well-fitted to u%,,.,. is appropriate for [,
lg, 3 and u, in (2.3), (2.4). Observe that there are two contributions to the spatial error
of u¥, ;.- One results from I%, the other from the fact that fine grid components of u,_;
can not be represented on those parts of the grid T} where the latter is coarser than the
grid of the previous time step. They are respectively termed 9; and 9, in the sequel.

The current error estimation techniques can roughly be devided into two categories.
The first ones are interpolation methods which play an important role in the traditional
finite element approximation theory. In [Lan95] such a technique has been studied for
the above problem class. The computed quantities can be very useful and relatively
cheap error indicators for adaptive grid improvement in many cases. Unfortunately,
the involved error constants to be specified a priori for a general class of solutions may
or may not yield too pessimistic estimations for the actual error. Although this can be
compensated for simple problems by appropriate adjustments it is a severe drawback un-
der more complex conditions characterized, e.g., by non—constant properties and highly
unsteady solutions as encountered in the examples below.

We therefore employ a second type of error estimator based on the computation of
approximate local residuals. This requires higher order approximations of local solutions
and thus strongly depends upon the governing operators. In general these estimators are
much more expensive than the first ones. On the other hand they produce quite accurate
and robust estimates of the discretization error. For further information we refer e.g. to
the survey of Noor and Babuska [NB87]. With such an approach an estimate of the local
spatial discretization error of a stage value [* (on the grid Tj) is obtained by solving a
set of local problems on small subdomains w; C 2. For clarity we first consider a single
subproblem and drop the index i. In the spirit of Babuska and Rheinboldt [BR78]| the
local error §; =1,—1% € [H}(w)]? is determined imposing homogenous Dirichlet boundary
conditions so that d; is solution of

B, (6,v) = 74(v) — B.(I% v) Vo € [HE(w)]?,

(2.15)
(z) = 0, z€dw, ifowNoQ=0,

If dw N Of2 is non—empty the boundary conditions have in general to be modified ac-
cording to the boundary conditions on 0€2. In the computations below an edge—based
error estimator is employed choosing w to be the union of the adjacent triangles to an
edge E of Ti. The subproblem (2.15) is then discretized by restricting v to Q(w), the
space of quadratic polynomials on w. The local spatial error can thus be represented
by only one degree of freedom for each component of the solution vector situated at the
midpoint of the corresponding edge E. Hence, the local solution is determined through
a small d x d system only. Similarly, the local error of the old solution u,,_; restricted
to T}, is approximated as

0y = (un_l(xm) - uf‘l_l(xm)) Vg (2.16)

where vp € Q(w) is the quadratic finite element function with respect to the midpoint



T, of the edge E. Finally, the local error of uf, . in (2.14) is estimated as
= (0w + d/7e (2.17)

employing the norm defined in (2.7). This expression is an asymptotically upper bound
for the norm of the true local error. Note that different error estimators of the above
type can be devised either by increasing the size of the domain w [Mit89] or by choosing
a different discretization of the local error §; [BW85|. The extensive comparison in
[Mit89] showes however that the increased effort for better estimation through a local
problem with more degrees of freedom often does not pay off.

In the estimation step of the algorithm the above local procedure is applied all over
the computational domain, in our case to all w; defined by the edges of Tj. In order
to produce a nearly optimal finite element mesh, edges having an error 77 larger than
the mean square value are refined. This technique equilibrates the local error over the
whole mesh in several iterations and improves the finite element solution locally until a
fixed spatial tolerance

1/2
(Z 77?) < TOL, (2.18)

is achieved. The relationship between spatial and temporal accuracy in the fully nonli-
near approach is studied in [LW92]. Given a prescribed global tolerance TOL we use

TOL, =TOL/3.0 and TOL,=TOL/2.0.

The linear system arising from each of the refined grids T} is set up and solved by the
BICGSTAB algorithm preconditioned with an SSOR method. Its convergence behaviour
is very smooth and in most cases it converges considerably faster than other methods.
This iterative procedure is speeded up at every refinement level k using the solution of
the previous (coarser) level k—1 as initial value. To summarize this section, Fig. 1 gives
a flow diagram of the whole adaptive iteration process.

3 LAMINAR FLAMES THROUGH AN OBSTACLE

The major part of gaseous combustion processes can adequately be described under
the low Mach number hypothesis. This essentially amounts to eliminating the pressure
dependence of the fluid density while retaining its temperature dependence. When the
latter is not accounted for neither, the motion of the fluid becomes independent from
temperature and species concentration. What remains is that the velocity field influences
these quatities via a convection term. Hence, one can solve the temperature and species
equations alone specifying any solenoidal velocity field u(z,t). In particular, u = 0, u =
ug = const., and u = —uy with us(¢) being the velocity of the flame front are important
cases. Introducing the dimensionless temperature 0 = (T — Tynpurnt )/ (Tournt — Tunburnt ),



Start
ni=1
Choose Ty, 7

Compute
lj.i= 123
iteratively onT,
Refine T, l
k:= k+1 -
Check spatial
error for uléul o

Repeat time step Choose  Tp4q
Y with smaller ni=n+l
N

Compute

A
u,and u,

Fi1G. 1. Flow chart for the time-space adaptive solver KARDOS.

denoting by Y the species concentration, and assuming constant diffusion coefficients
yields [Pet82]

1 2
— V — .2
8tY Te Y w (3 )

where the Lewis number Le is the ratio of diffusivity of heat and diffusivity of mass.
The time has been nondimensionalized with the heat conduction time scale, and the
heat release parameter has entered in the reaction term through the definition of 6. We
use a simple one-species reaction mechanism governed by an Arrhenius law

2 ~B(1-6)
2% Y eTe=9 (3.3)

w =
in which an approximation for large activation energy has been employed [BE70]. The
temperature ratio & = (Thurnt — Lunburnt)/Tournt is the quantity that determines the
gas expansion in non-constant density flows so that the above thermo-diffusive modell



is exact for @ = 0. The extension of (3.1), (3.2) to a complex reaction scheme is
straightforward by adding similar equations for additional species and modifying the
reaction terms. We have also performed computations with an additional convection
term. This can either describe the response of a thermodiffusive flame to a given velocity
field under fixed boundary conditions or it can be used to furnish a moving reference
frame (equivalent to dynamic regridding) in which a propagating flame front may become
stationary. In the latter case the spatially uniform velocity is chosen proportional to the
instantaneous integral of the reaction rate.

In this section we consider a freely propagating laminar flame described by eqs. (3.1),
(3.2) and its response to a heat absorbing obstacle, e.g. a cooled grid. It covers half
the chanel width and is one diameter long. The absorbtion of heat is modelled by the
boundary condition

00 = — k(0 — O,ep) (3.4)

where k is a heat loss parameter and where the reference temperature is chosen as
Orer = Ounburnt = 0. On the left boundary of the domain (cf. Fig. 2) Dirichlet conditions
corresponding to the burnt state are prescribed while the remaining boundary conditions
are of homogeneous Neuman type. The initial condition is the analytical solution of a
onedimensional right-travelling flame in the limit 5 — oo located left of the obstacle.

Two different situations may occur in this experiment according to the value of k. For
small k£ the flame becomes curved and is slowed down in the interiour of the chanel but
manages to pass through. For stronger heat loss the flame is extinguished. Computations
of this phenomenon in a simple chanel geometry have been done in [BDL89]. In the
present setting the extinction limit is a function of many parameters: length and width
of the obstacle, its geometry, the Lewis number, the type of boundary condition and the
amount of heat loss. We therefore do not aim here at determining precise thresholds
but rather show a sample computation for each of the two regimes choosing Le = 1,
B =10, v = 0.8. Appart from information on the physical mechanism these illustrate
the performance and the robustness of the employed numerical method.

Fig. 2 reports a computation with heat loss below the critical value. Part a)-d) show
the propagation of the reaction front. To our experience the reaction rate is by far the
best quantity to judge on adequate spatial resolution of such a computation, as it is
related to the smallest spatial scales of the problem. The present results show (backed
by additional verifications) that w is indeed well-resolved although being controlled only
indirectly through the adaption process based on 6 and Y. Fig. 3 displays grid and lines
of constant temperature for t = 20 to give an impression of these as well. The former
contains about 2000 nodes resulting from a tolerance TOL = 107?. Fig. 4 depicts
reaction rate and time step during the propagation. When the flame passes through the
chanel the total reaction rate diminishes not only due to the smaller width of the front
but also due to heat loss. The peak near the endof the graph results from increased
flame area after the front leaves the obstacle. According to the temporally reduced flame
velocity the time step automatically increases about one order of magnitude. This results
in essential savings of computation time with respect to a constant time step. The latter

10
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Fia. 2. Flame through cooled grid, Le = 1, k = 0.1. Reaction rate at
t =1, 20, 40, 60.

1

—



Fia. 3. Flame through cooled grid, Le = 1, kK = 0.1. Grid and lines of constant

temperature at t = 20 (corresponding to the second picture from above in Fig. 2).

would furthermore have to be adjusted by hand savely below the limit for stability and
precision. The peaks in this diagram pointing to small values are related to the fact
that a plot at a prescribed time ¢ has been requested. This generally imposes one very
small time step to exactly reach this point. Handling this is not straightforward with the
estimation procedure for the timestep described in section 3. We therefore restarted with
a given time step surely below the required one (a modified estimation scheme might be
used as well). The figure thus permits to appreciate the rapidity and robustness of the
temporal adaption which returns to the optimal value in about two steps.

In contrast to the computation with £ = 0.1 the flame is extinguished in the obstacle
for k = 0.2 (Fig. 5). The final state exhibits a broad region of non-vanishing reaction
rate but with maximal value three orders of magnitude below the one at ¢t = 1. It is
controlled by the diffusion of species towards the reaction zone and highly depends on
the boundary condition on the left hand side. Observe the phase of extinction between
t =7 and t = 27 being monitored by a linear decay of the overall reaction rate in Fig. 6.
When approaching the final state the large distance between the symbols (representing
one time step each) reveals that indeed a very large time step is being chosen in this
phase.

4 REACTION FRONT IN A SOLID

The second class of problems that we will deal with refers to solid-solid combustion. The
particularity of such a process is that convection is impossible and that the macroscopic

12
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Fia. 4. Flame through cooled grid, Le = 1, k = 0.1. Evolution of total reaction

rate and time step.

diffusion for the species in solids is in general negligible with respect to heat conductivity.
With the heat diffusion time scale as reference the equations for a one step chemical
alloying reaction read

OT — kVT = Qu (4.1)
8tY = —Ww (42)

where T' is the temperature divided by a reference temperature, Y the concentration
of the deficient reactant and QQ a heat release parameter. Concerning the reaction
term quite a number of different modells are employed in the literature. They generally
contain an Arrhenius term for the temperature dependence and use a first order reaction
ie.

ol (o5}

w = KOY€_ (43)

where F is a dimensionless activation energy. Since this expression is difficult to treat
with analytical approaches it is often replaced by a zero—order mechanism substituting
Y in (4.3) by x(Y) = H(Y), the Heaviside function [MV94]. Although simpler, this
expression involves an additional modelling and furthermore might generate difficulties
in the numerical solution due to the discontinuity of x.

Realistic processes involve apart from the reaction other physical mechanisms such as
melting which leads to additional heat release (e.g. [BM8T7]) or microscopic diffusion of

the reactant into the fine grains constituting the material. Smooke and Koszykowski
[SK86] employ

13



Fia. 5. Flame through cooled grid, Le = 1, k = 0.2. Reaction rate at
t =1, 20, 40, 100 (scale adapted to instantaneous range of values).
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Fia. 6. Flame through cooled grid, Le = 1, £ = 0.2. Evolution of total

reaction rate.

Y1/3
[ —vs

w(T,Y):%F(Y)e‘ . F(Y) =

ol (o5}

(4.4)

which has been developed by Booth [Boob3] considering a material made up of densly
packed spheres subject to melting and microscopic diffusion of the reactant. Here, R is
the radius of the spheres and D a microscopic diffusion coefficient. Due to the absence of
macroscopic species diffusion and the related smoothing property the system (4.1), (4.2)
is more difficult to treat numerically than the thermodiffusive equations. Nevertheless
the same algorithm could be employed.

In our computations we experienced the need to adjust the term F' in (4.4) to finite
precision numerical treatment. This is justified, since, after all, (4.4) can just be a
model of limited validity. First, the maximal range for Y is by definition the interval
[0,1]. However, F'(1) can not be evaluated. For global conservation the physical range
in fact is [0, Y;] where Y7 is the maximum value of the initial condition. Hence, choosing
Y (z,0) = 0.999 instead of 1 [SK86] removes this difficulty. Second, the employed spatial
approximation does not guarantee that Y remains within a certain interval. Therefore
F(Y) has been replaced by the tangent at Y = 0.999 and Y = 0.001 to the right and
to the left of these values, respectively. This prolongation of w(7,Y’) to arguments Y
outside the original range of definition [0, 1] results in a value of w which brings the
solution back to the physically meaningful range in case of overshooting due to finite
precision. Such minor adjustments although much smaller than the accuracy of the
model may decide on the failure or the success of a computation. In different practical
computations both authors have experienced this strategy to be much more robust
than e.g. replacing overshoots by the physically limiting values. This is particularly
important when adaptive discretization is used which has less tendency to attenuate
fine scale oscillations.

In the following we report on the solution of (4.1), (4.2), (4.4) for a non-uniformly
packed solid in cylindrical geometry. We consider the value of D/R? being equal to
5800 within a circle of radius r; = 0.0018 and to increase linearly up to 16 times this

15



Fic. 7. Non—uniformly packed solid. Concentration of the reactant at ti-
mes t = 0.05, 0.065, 0.07, 0.072. In these pictures dark black corresponds to

the unburnt state, light color to intermediate states, and gray to completed

reaction.
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Fic. 8. Non—uniformly packed solid. Temperature and grid at ¢ = 0.07.

value at r, = 0.0024. This yields a strongly increased flame velocity close to this radius
which constitutes the outer border. The reactor is ignited by a Dirichlet condition
T, = 300 4+ 24000¢t, t < 0.05, for the wall temperature on a 45 degrees section of the
boundary on the left hand side. For ¢ > 0.05 and all other locations the boundary
conditions are homogeneous Neuman conditions. Further parameters are £ = 11000,
rk = 0.0001, @ = 2700. Fig. 7 nicely illustrates how the reaction front first propagates
along the outer wall before entering the core. The graphs should be related to those
of Fig. 9 revealing that the reaction phase is rather short compared to the ignition.
The small time steps at t = 0.05 result from the requirement of exactly attaining this
instant where the boundary conditions are modified. Even in this simple geometry the
interaction of different fronts can generate a rather complicated pattern in space and
time. The reaction rate for example exhibits a peak where both peripherical fronts
have merged and propagate into the interior whereas the maximum of the temperature
appears at a later time.

Having mainly concentrated on the temporal adaptivity in the previous section we like to
focus more on the spatial adaptivity for this second example. Fig. 8 shows temperature
and grid at ¢ = 0.07 to complement Fig. 7. Due to heat conduction the temperature is
distributed much smoother than Y. Here it becomes obvious that an appropriate norm
for the solution vector is an important ingredient in an adaptive refinement procedure for
a system of PDEs. The norm defined by (2.8),(2.9) is able to account for very disparate
length scales and scaling of the different components. In the present case it is mainly the
steepness of Y requiring the observed refinement whereas temperature and reaction rate
(not depicted here) have a completly different behaviour. Of course, being smoother,
they are duely represented on this grid as well. From Fig. 9 it is finally obvious that
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Fi1a. 9. Non—uniformly packed solid. Temporal evolution of the total reaction
rate [wd(Q, the time step At, and the number of nodes N for TOL = 1.5 1073.
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practically relevant problems of the present type can adequately be resolved with the
proposed method using not more than about 15000 nodes.
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