Konrad-Zuse-Zentrum fiir Informationstechnik Berlin
Takustrafle 7, D-14195 Berlin-Dahlem, Germany

Andreas Lobel

Solving Large-Scale Real-World
Minimum-Cost Flow Problems by
a Network Simplex Method

Preprint SC 96-7 (Februar 1996)

Solving Large-Scale Real-World Minimum-Cost Flow
Problems by a Network Simplex Method

Andreas Lobel*

Abstract

This paper presents a large-scale real-world application of the minimum-cost flow
problem, describes some details of a new implementation of the network simplex
algorithm, and reports on computational comparisons.

The real-world test sets include minimum-cost flow problems that are based
on single-depot vehicle scheduling problems and on a Lagrangean relaxation of
multiple-depot vehicle scheduling problems. Some of the problems are extremely
large with up to 42,000 nodes and 20,000,000 arcs. The standard test problems are
generated with NETGEN and include parts of the DIMACS standard problems.
Our network simplex code is compared with RELAX-1V, Cost Scaling 2 version 3.4,
and CPLEX’s network solver NETOPT.

1 Introduction

Minimume-cost flow algorithms and, in particular, the network simplex algorithm have
been investigated profoundly. Especially for the network simplex algorithm, there are
many excellent publications that explain all the theoretical and algorithmic details such
as basis characterization, data structures, computation of the dual and primal variables,
basis update, etc.

The main motivation for this article was to report about very large minimum-cost flow
problems arising in vehicle scheduling for public mass transportation and to demonstrate
how to solve these real-world problems. (An overview about problem definitions and
models in vehicle scheduling is given in Daduna and Paixao [1995] and Desrosiers, Dumas,
Solomon, and Soumis [1995].)

We are currently working on NP-hard Multiple-Depot Vehicle Scheduling Problems
(MDVSP) arising at large German public transportation companies. Our partners are the
HanseCom GmbH, Hamburg, which is a subsidiary of the Hamburger Hochbahn AG and
Siemens-Nixdorf Informationssysteme (SNI), and the world’CPLEX fourth largest pub-
lic transportation company Berliner Verkehrsbetriebe (BVQG) together with IVU GmbH,

*Konrad-Zuse-Zentrum fur Informationstechnik Berlin, Heilbronner Strafie 10, 10711 Berlin, Germany

Berlin. Our partners provided us with real-world data from the city of Berlin, the city of
Hamburg, and the region Hamburg-Holstein.

In the case of just one depot, the MDVSP reduces to a Single-Depot Vehicle Schedul-
ing Problem (SDVSP) that can be solved in polynomial time by minimum-cost flow algo-
rithms. SDVSPs occur in practice for geographic reasons and, in particular, if special lines
in a city are operated by a subsidiary company. We encountered single-depot subproblems
of MDVSPs having up to 8,000 nodes and 7,200,000 arcs. When we apply a Lagrangean
relaxation to a MDVSP and combine all depots into a single depot, we obtain “pure”
SDVSP of extremely large-scale. We employ our network simplex code as a subroutine
for the solution of this Lagrangean relaxation by a subgradient method. The instances
arising here have up to 42,000 nodes and 20,000,000 arcs.

In addition, we have also tested some standard NETGEN minimum-cost flow problems
proposed by a DIMACS algorithm challenge. The results of this implementation challenge
and the related workshop in 1991 were published in Johnson and McGeoch [1993]. One
of the workshop’ CPLEX observations for minimum-cost flow problems is that there is no
algorithm that performs best for all problems, see Bland, Cheriyan, Jensen, and Ladanyi
[1993]. A panel discussion at the DIMACS workshop about minimum-cost flow algorithms
summarized the findings as follows, see Johnson [1993]:

e The challenge has no dominant winning algorithm for minimum-cost flow problems.
Therefore, one should ask which code is the most robust implementation.

e Sometimes, the important question is not how fast an algorithm runs, but whether
a code can solve a problem instance at all (especially when the minimum-cost flow
code is used as a subroutine).

e There is only a small number of relatively small real-world instances.

Our paper has the following structure: First, we sketch the SDVSP, give a brief
formulation of the minimum-cost flow problem, and describe our real-world minimum-cost
flow problems. Second, we give a short outline of the primal network simplex algorithm
and some implementation details of our network simplex code. Third, we report about
our computational investigations of single-depot minimum-cost flow problems, which are
defined by real-world one-depot problems and by a Lagrangean relaxation for the MDVSP,
and of the NETGEN problems. Our implementation is compared with the two publically
available minimum-cost flow solvers Cost Scaling 2 (Goldberg), RELAX-IV (Bertsekas
and Tseng), and the network solver NETOPT from CPLEX [1995].

We assume the reader to be familiar with linear programming and network flow theory
and algorithms, especially with the network simplex algorithm.

2 The Single-Depot Vehicle Scheduling Problem

The Single-Depot Vehicle Scheduling Problem is defined as follows: Given is a depot that
represents a fleet of vehicles. The vehicles are all stationed at the same place and need not

be distinguished. Tt is possible to consider depot capacities, i.e., a maximum number of
vehicles. The depot has a start and an end point where the vehicles begin and terminate
their daily scheduled run.

A set of lines and a given timetable define a set of so-called timetabled trips to carry
passengers. Fach timetabled trip has a first and a last stop, a departure and an arrival
time, and must be serviced by exactly one vehicle from the first to the last stop.

There are further types of trips that all run without passengers: A pull-out trip con-
nects the start point of the depot with the first stop of a timetabled trip, a pull-in trip
connects the last stop of a timetabled trip with the end point of the depot, and a dead-
head or dead running trip connects the last stop of a timetabled trip with the first stop
of a succeeding timetabled trip. If it is possible to connect two timetabled trips in time,
the corresponding deadhead trip is called compatible. Pull-out trips and pull-in trips,
respectively, are used whenever a vehicle begins or terminates its daily scheduled run. A
(compatible) deadhead trip is used when two successive timetabled trips are serviced by
the same vehicle in sequence.

The use of a pull-out, pull-in, or deadhead trip causes some cost that depends on
operational interests. The main objective is to minimize the total number of vehicle runs
that are necessary to operate all timetabled trips and, secondary, to minimize the oper-
ating cost (given the minimum number of vehicles). We realize this two-stage objective
by defining the cost of a pull-out, pull-in, or deadhead trip as its operational cost and
increase the cost of each pull-out trip by a sufficiently large bigM. Another possible ob-
jective may be to find a cost minimal scheduling for a fixed or bounded fleet size. In this
case, all costs are set to the operational costs.

The task of the SDVSP is to find a set of cost minimal vehicle runs such that each
timetabled trip is contained in exactly one vehicle run and, for the fixed or capacitated
case, such that the number of vehicle runs does not violate the depot capacities.

Bertossi, Carraresi, and Gallo [1987] and Branco and Paixao (1987,1988) give similar
descriptions of the SDVSP; Branco, Costa, and Paixao [1995], Lamatsch (1988,1991),
Bertossi, Carraresi, and Gallo [1987], and Mesquita and Paixao [1992] discuss Lagrangean
relaxations of the MDVSP where SDVSPs appear.

3 The Minimum-Cost Flow Problem

Veldhorst [1993] compiled a bibliography containing 370 references to single-, multicom-
modity, and other classes of flow papers published by 1993. Two excellent books about
network flows are Ahuja, Magnanti, and Orlin [1993] and Bazaraa, Jarvis, and Sherali
[1990)].

Given a connected and directed graph D = (V, A), a linear cost function ¢ : A — Q,
upper bounds u : A +—— Z,, and node imbalances b : V' +—— Z such that) ., b; = 0.
A node 1 is called a supply node when b; > 0, a demand node when b; < 0, and a
transshipment node else. The minimum-cost flow problem is to find a vector z* : A —— Z

such that x* is an optimal solution of the linear program

min Z Cij Ty (1)

(1.4)€A
subject to
Z Ty — Tj; = b; for all 2 € V, (2)
7:(1,5)€A 7:(50)€A
0 < x5 < uyj for all (i,7) € A. (3)

The equations (2) are the so-called flow conservation constraints and the inequalities
(3) are the flow bounds on x. A flow z is called a feasible flow, if it satisfies the flow
conservation constraints and the flow bounds. In matrix notation, (1-3) reads

min{c'z| Ex = b, 0 < = < u}, (4)

where F is the node-arc incidence matrix of the digraph D.
Consider 7 : V —— Q (the so-called node potentials) and 6 : A — Q as the dual
multipliers for the flow conservation constraints (2) and the upper bounds (3), respectively.

The dual problem of (4) is

max{n'b—d0"u| 7" E — 6" <", § >0}, (5)
which is
max Z mib; — Z 0juij (6)
eV (7,5)€A
subject to
’/TZ'—’/TJ'—(SZ']' gcij for all (l,]) € A, (7)
9i; 2 0 for all (1,7) € A. (8)

Let ¢;; := ¢ij —m; + mj denote the reduced cost of an arc (i,7) € A. With this definition,
the well known optimality condition reads: A feasible flow x and feasible node potentials
m are optimal for (4) and (5) if

Cij > 0 = Ty = 0, (9)
Eij <0 = T = U4y, (10)
0< Tig < Uiy = Cij = 0. (1])

4 The Single-Depot Vehicle Scheduling Network

Let d* and d~ denote the start and the end point of the depot. Let 7 denote the set of
all timetabled trips. For each timetabled trip ¢ € T let ¢t~ denote its first stop and ¢+
denote its last stop,

T-:={t"|teT} and TT:={tt|teT}

The SDVSP defines the following directed network D = (V, A). The nodes V are the
depot’CPLEX start and end point and the first and last stops of all timetabled trips, i.e.,

Vi=T-UTHU{d* d}.

The arc set A contains one arc for each pull-out, pull-in, and compatible deadhead trip;
parallel arcs (if we allow parallel deadhead trips) are possible. In addition, A contains one
arc {(d~,d")} for the vehicle return from the end to the start point of the depot. Each
arc a € A 1s unbounded, 1.e., u;; = 0o, unless we consider depot capacities; in this case,
the upper bound u(4- 4+) is set to the depot capacity. If u(4- 4+) = oo, we shrink the two
depot nodes d~ and d* to one single node d.

The nodes for the first stops are demand nodes, the nodes for the last stops are supply
nodes, and the nodes for the start and end point (or the shrunk node d) of the depot are
transshipment nodes, i.e., by+ 1= 1, by— := —1, by+ := 0, and by- := 0. Figure 1 illustrates

a small SDVSP.

First stops are Last stops are
demand nodes supply nodes

Start point is a End point is a
transshipment transshipment
node

node

Vehicle return Pull-out/in trip Deadhead trip

A

—— =~

Figure 1: A network for the SDVSP.

5 The Primal Network Simplex Algorithm

The network simplex algorithm with upper bound technique is a specialized revised sim-
plex algorithm that exploits the structure of network flow problems (for a description of
the revised simplex algorithm see Dantzig [1963] or Chvatal [1980]). The linear algebra of
the simplex algorithm is replaced by simple network operations. Helgason and Kenning-
ton [1995] and Ahuja, Magnanti, and Orlin [1993] describe the primal network simplex
algorithm and give pseudocodes, implementation hints, etc.

To apply the simplex algorithm to (4), we need a full rank constraint matrix. For
a connected network D, the rank of the flow conservation constraints (2) is equal to
|V| — 1 and the flow conservation constraint for one node (called the root node) can be
eliminated. We will assume that we have chosen such a root node and have eliminated
its flow conservation constraint, i.e., the reduced node-arc incidence matrix, which we
also call F, has full rank. Tt is well known that every nonsingular basis matrix B of F
corresponds to a spanning tree of A in D and vice versa.

If T'C Ais aspanning tree (and thus the variables x;j, (1,7) € T, are the basic variables
corresponding to the basis B := E.7) and if L and U denote the arcs that correspond to
the nonbasic variables whose values are at the lower and upper bound, respectively, than
the triple (T, L,U) is called a basis structure. For given nonbasic arc sets L and U, the
right hand side b transforms to

Vi=b— Y Ejui.

(,4)eU

The associated basic solution is the solution of the system Bxzr = b, the values of the
node potentials are determined by the system 7™ B = ¢}, and the dual multipliers § of
the bounds = < u by

(12)

ij =

5 _{—Cij—ﬂj+7r2' lf(l,])EU,
0

otherwise.

A basis structure (T, L,U) is called primal feasible if x satisfies the flow bounds (3)
and is called dual feasible if for all (i,7) € A\ T

¢G; >0 = (1,7)€L, (13)
G; <0 = (i,5)€Ul. (14)

A basis structure is called optimal if it is both primal and dual feasible. For a detailed
description of the primal network simplex see Helgason and Kennington [1995].

6 Implementation Details

Many network flow textbooks contain (relatively similar) codes or pseudocodes of network
flow algorithms. We started our implementation with such a code and tried to improve

important algorithmic details to make the code more robust and efficient such that even
truely large-scale problems can be solved routinely. We describe the key ingredients of
our modifications of standard textbook codes. Most of our computational improvements
result, in fact, from very eflicient pricing strategies, which we describe at the end of this
section. The importance of pricing follows from our experimental observations that our
implementation still spends, on the average, more than 80 percent of the cpu time on
pricing.

Computer Language and Data Structures.

Lustig [1990] investigates the influence of computer languages on an implementation of a
primal network simplex code. His conclusions are that an addressed-based implementation
(linked lists and pointers) is more efficient than a cursor-based implementation (vectors
and indices) and that the performances of cursor-based implementations in C and For-
tran are essentially the same. OQur code is implemented in C with addressed-based data
structures.

Over the last three decades, the basis tree representation and data structures for
the network simplex algorithm have been investigated profoundly. Most of the network
simplex implementations use similar data structures. We describe our version: All node
and arc information, respectively, are stored in the following C structs:

struct node

{
/* node potential */
cost_t potential;
/* rooted tree structure of basis tree */
int subtreesize; /* number of nodes in the
subtree including this node */
struct node *pred; /* predecessor node */
struct node *child; /* first leave (or child) node */
struct node *right_sibling; /#* right sibling node */
struct node *left_sibling; /#* left sibling node */
struct arc *basic_arc; /* basic arc between this node
and the predecessor node */
int orientation; /* zero if the basic_arc enters
this node and one else */
flow_t flow; /* flow value of basic_arc */
}

struct arc
{
/* arc definitions */
struct node *tail;
struct node *head;
cost_t cost;
flow_t upper; /* the upper bounds of the arc */

/* assignment to T, L, or U
of the basis structure */
int ident;

The variable types cost_t and flow_t are defined as integer or double variable types
depending on the data input; integer types are default. Figure 2 shows a small example of
a rooted basis tree for our data structures (the underlying network is a copy from Ahuja,
Magnanti, and Orlin [1993]). The predecessor pred of a node is determined by its basic
arc. Fach node has at most one child node and the other children of a node can be
reached by traversing the right_sibling links.

Our technique to store the rooted basis tree results from personal discussions with
R. E. Bixby, whose CPLEX’CPLEX network simplex solver NETOPT has the same data
structure for the basis tree. Helgason and Kennington [1995] describe a very similar basis
structure, where the child, right sibling, and left_sibling variables are replaced by
a thread and last_successor index. Their representation is a little bit more compact,
but it is easy to show that the two representations are equivalent.

The subtreesize and pred variables are necessary for the ratio test. The child,
right sibling, and orientation variables are necessary for the computation of the
node potentials. The algorithm also works without the left_sibling variables, but they
allow a more efficient basis update. For a detailed description of all these single network
simplex steps, the reader is referred to Helgason and Kennington [1995].

Initial Basis Structure.

We assume that the considered network D is connected and that we have chosen a root
node r € V. The easiest way to find an initial primal feasible basis structure is as follows:
Consider some node i € V' \ {r}. Depending on the value of the node imbalance b;, we
add to the arc set A either an artificial arc (i,r) if b; > 0 or an artificial arc (r,:) if
b; < 0; we denote this larger network by D'. Each artificial arc has a lower bound of 0,
an upper bound of infinity, and a sufficiently large cost coefficient bigM. The initial basis
tree consist of all artificial arcs, all original arcs become nonbasic at their lower bound,
and no arc is nonbasic at its upper bound. Obviously, this initial basis structure is primal
feasible and the original network D is feasible if the network D’ has a feasible solution
where no artificial arc has a positive flow value. The use of an aritificial basis tree has

—— basic_arc _—_— child

left_sibling
right_sibling

node 1 213|415 |6 71 8
subtreesize 9 | 8|5 | 2 1 1 1 2 1
pred nil | 1 [213]4]4|3]2]8
child 2 03145 |nil|nil|nl| 9 |ni
right_sibling | nil | nil | 8 | 7 | 6 | nil | nil | nil | nil
left sibling | nil | nil | nil | nil fnil | 5 | 4 nil
orientation - 010 1 01070 1

Figure 2: Rooted basis tree.

several advantages. First, it has a simple structure and can be generated quickly. Second,

the ratio test and the basis update are quite fast for the first iterations. We have also tried

to generate an initial basis structure using a crash procedure. The performance, however,

was always slower than starting with an aritificial basis tree. The only exceptions occur

for special applications where particular problem knowledge can be exploited, which we
describe in the next paragraph.

Delayed Column Generation and Sensitivity Analysis.

For large-scale networks, the performance may benefit from a delayed column generation
approach. This means that, in a first step, only a subset A’ C A, containing at least a
feasible solution, is considered and that the flow value of each arc a € A\ A’ is fixed to
zero. When the smaller network (V, A’) has been solved to optimality, all fixings of the
ignored arcs are removed. Then, the reduced costs according to the last node potentials
are computed. As long as there exist arcs that violate the optimality conditions, we
add at least one and at most a (parameter controlled) maximum number of such arcs to
A’, reoptimize for the new arc set A’, and iterate until optimality can be proved for the
complete arc set A.

We have implemented delayed column generation only for our vehicle scheduling ap-
plication. For problems of this type, our special network simplex code starts with an
artificial basis structure as described above only for the first subnetwork. For all subse-
quent subnetworks, our network simplex code restarts with the optimal basis structure of
the previous subnetwork.

Pricing.

The pricing rule has a significant influence on the performance. Ahuja, Magnanti, and
Orlin [1993] describe some pricing rules such as Dantzig’ CPLEX rule, first eligible arc
rule, and a candidate list rule. We have implemented and tested these pricing rules in
slightly modified ways. It turned out that our by far fastest rules are special candidate
list rules, called multiple partial pricing (e. g., see Bixby(1992,1994)). Given two natural
numbers K and .J, the arc set A is divided into K candidate lists, each of size at least
_%j There is a “hot-list” of at most J + K arcs, which is initially empty. The candidate
lists are indexed from 1 to K. The candidate list number next, which defines the next
examined candidate list in a pricing call, is set to 1. Candidate lists are always examined
in a wraparound fashion. For one pricing call, the following steps are done: As long as
the hot-list includes less than .J arcs and not all candidate lists have been examined in
this pricing step, we price out all arcs of the next candidate list, add all nonbasic arcs
that violate the optimality condition to the hot-list, and increment the next variable by
1 (if next > K, we reset next to 1). If all candidate lists have been examined and if the
hot-list is still empty, the current basis structure is optimal. Otherwise, an arc of the
hot-list that violates the reduced cost criteria most is selected as the basis entering arc.
The last step of a pricing call is the preparation of the hot-list for the next pricing call:
The new hot-list for the next pricing call contains at most J — 1 arcs among those arcs
of the current hot-list that are not the basis entering arc and that have the most invalid
reduced cost.

Multiple partial pricing is very sensitive to the number of arcs; this makes a fine

10

tuning for every problem class necessary. We use the following default choices for K and
J depending on the number of arcs:

Number of arcs K | J

|A| < 10,000 30 | 5
10,000 < |A| < 100,000 | 50 | 10
|A| > 100,000 200 | 20

Compared to the multiple partial pricing with the default values of K and J as above,
pricing rules such as first eligible arc rule or Dantzig’” CPLEX rule need about 14 to 75
times more cpu time for the large-scale problems of our test set (e. g., the network problems

from Tab. 4).

7 Test Data

We evaluate our code on different classes of networks: some are obtained from Kling-
man, Napier, and Stutz [1974] and created with their network generator NETGEN, some
have been generated by ourselves with NETGEN, and some are real-world data from our
application.

NETGEN Networks.

To make computational studies of network flow implementations comparable, some prob-
lem generators were developed to generate standard test sets. The first DIMACS in-
ternational algorithm implementation challenge: Problem definitions and specifications
(DIMACS [1990]) presents standard problem definitions including input and output for-
mats. These formats are widely accepted and supported by almost all publicly available
problem generators such as NETGEN (Klingman, Napier, and Stutz [1974]), GRIDGEN
(Lee and Orlin), GRIDGRAPH (Goldberg), RMFGEN (Goldfarb and Grigoriadis), etc.
All these problem generators are available from DIMACS [1993]. Our random test set
was generated with NETGEN. The random number seed, which is an input parameter
of NETGEN, is for all networks 13502460.

First, we have generated the 40 benchmark networks, which Klingman et al. propose
in their article, and called them Klingman et al. networks. Second, we have generated
networks whose upper capacities of the arcs are relatively small compared to the total
supply such that an optimal basis contains many arcs at their upper bound. Third, we
have generated transportation networks. The tables in Appendix B, Appendix C, and
Appendix D show the NETGEN input parameter of our NETGEN problems.

Single-Depot Vehicle Scheduling Networks.

The second part of our test data are networks from our real-world application. These
networks are based on 31 single-depot problems (depl, dep2, etc.) and on Lagrangean

11

relaxations of three multiple-depot problems (lagrl, lagr2, and lagr3). The main objective
for these problems is to find a fleet minimal solution, this implies that the upper bound
of the vehicle return arc is set to infinity and that the two nodes for the depot are shrunk
to one node. The single-depot problems range from 1.291 nodes and 175.533 arcs to 8.193
nodes and arcs; the Lagrangean relaxation problems have nodes and arcs, nodes and arcs,
and nodes and arcs (see Tab. 1).

Sub- Sub-
Prob. | |V| | Al nets Prob. | |V] | Al nets
depl | 8193 | 7224283 6 depl19 | 1701 288994 4
dep2 | 4583 | 2238585 4 dep20 | 3827 | 1415590 5
dep3 | 1505 | 216483 3 dep21 | 3103 952824 6
depd | 4475 | 2008034 4 dep22 | 3841 | 1447401 5
dep5 | 1297 | 175533 4 dep23 | 1879 352459 3
dep6 | 6577 | 4634374 4 dep24 | 5237 | 2688675 5
dep7 | 1391 | 200757 3 dep25 | 3121 967201 4
dep8 | 1507 | 217058 3 dep26 | 3995 | 1640499 8
dep9 | 5021 | 2577951 4 dep27 | 1583 259148 4
depl0 | 2731 | 771481 4 dep28 | 1503 226089 3
depll | 1583 | 270603 3 dep29 | 2739 778733 6
depl2 | 2923 | 921440 4 dep30 | 1333 183727 3
depl3 | 4567 | 2209154 4 dep31 | 2183 468763 4
depl4 | 2139 | 467469 4
depl5 | 1503 | 227876 4
depl6 | 2955 | 865660 4 lagrl 3669 | 1186270 4
depl7 | 1559 | 252055 3 lagr2 | 17127 | 19116767 8
depl8 | 2667 | 694181 4 lagr3 | 42007 | 10434409 6

Table 1: Vehicle scheduling problems.

We apply the delayed column generation approach, as described in Sec. 6, to all our
vehicle scheduling problems. To guarantee a feasible solution for the first subnetwork,
we add at least all pull-out and pull-in trips to the arc set A’. We limit the column
generation between two subsequent subnetworks to at most 30,000 arcs. The numbers of
subnetworks that are generated by our delayed column generation rule are listed in the
columns “Subnets” of Tab. 1.

The minimum-cost flow problems, which we use to evaluate our code, are the com-
plete single-depot problems (depl, dep2, etc.), the first and the last subnetwork from
each single-depot problem (depi.a and depi.b, i = 1,...,31) and some subnetworks from
the subgradient method of each Lagrangean relaxation problem (lagri.a, lagri.b, etc.,
i = 1,2,3). The complete Lagrangean relaxation problems are only evaluated for our

12

delayed column generation approach because the problems need too much memory for
the other codes. The problems lagr2.e and lagr2.f (see Tab. 4) have the same number of
variables but diflerent objective functions because lagr2.f was generated after a change of
the Lagrangean multipliers without applying column generation. The same applies to the

problems lagr2.g and lagr2.h.

8 Computational Results

Our network simplex code, called MCF, is compared with RELAX-TV written by Bertsekas
and Tseng [1994], Cost Scaling 2 version 3.4 (CS2-3.4) written by Goldberg [1992], and
CPLEX’CPLEX network solver NETOPT.

The RELAX-IV code was compiled with the SUN Fortran compiler {77 SC3.0.1 using
the compiler optimization options “-fast -O4 -cg92 -dalign -libmil”. The C52-3.4 code was
compiled with the Gnu gce compiler 2.6.3 using the compiler optimization option “-O3”.
The MCF code was compiled with the SUN C compiler cc' SC3.0.1 using the compiler
optimization options “-fast -x04 -xcg89 -xlibmil”.

The reported running times are in cpu seconds on a SUN SPARCstation 20 with
a “Model 71 SuperSPARC-II SPARCmodule” CPU and 384 MByte main memory (1.8
GByte virtual memory). All running times are measured without any read time and
without the transformation time for the RELAX-TV input format?. For NETOPT, only
the “Network Time”, which CPLEX gives, is measured. Tables 5, 6, 7, 4, 9, 11, and 13
in the appendices show the cpu times of MCF, CS2-3.4, RELAX-IV (default and auction
version), and NETOPT for our different benchmark problems. A summary of all running
time tables is shown in Tab. 2.

Our MCF code is the fastest code for almost all test instances except for the capac-
itated NETGEN problems, which the auction version of RELAX-IV solves faster. The
most competitive algorithm for the NETGEN problems is RELAX-IV (both default and
auction version) and the most competitive algorithm for the vehicle scheduling problems
is CS2-3.4. In addition, MCF (default) has the lowest memory requirements; code and
data segment need at most 227 MByte memory (for the largest network depl). On the
average, RELAX-IV® requires a factor of 1.5, CS2-3.4 requires a factor of 2, and the
network solver NETOPT requires a factor of 3 to 5 times the memory needed by MCF.

The delayed column generation approach was only compared to the other codes for the
complete vehicle scheduling problems depl, dep2, etc. The default version of RELAX-TV
was not able to solve two of these problems, namely the largest problem instance depl and
the third largest problem instance dep24. We are not able to give the NETOPT running

!The gce compiler would create a 5 percent more efficient code on the average!

2For the problem depl, the program “dimacsconv”, which is part of the RELAX package, needs 45
minutes cpu time to transform the dimacs format into the RELAX.INP format and fills more than 865
MByte on the hard disk (280 MByte for the file RELAX.INP and 585 MByte for the file TEMP, both
together more than six times the dimacs input file).

3RELAX-IV is the only Fortran implementation and, thus, has an inflexible memory management.

13

Sums of Running Times in Seconds

MCF RELAX-IV
All problems | column CS2-3.4 CPLEX

gener. default default | auction | NETOPT
depl, dep2, etc. 746.2 | 4392.4 | 5778.6 — [12612.5 —
dep*.a, dep*.b 231.9 686.7 | 898.4 614.5 493.3
lagrl.* (9.0) 17.2 68.0 31.1 44.5 41.0
lagr2.* (325.3) 840.7 | 2293.4 | 3017.1 | 4560.3 1735.3
lagr3.* (391.5) | 1948.1 | 2031.1 | 7889.0 | 16418.3 3099.5
Klingman et al. 10.22 23.88 15.45 15.23 26.91
Capacitated 183.3 250.1 185.3 160.7 444.8
Transportation 10.0 29.9 12.5 14.3 27.7

Normalized Sums of Running Times

MCF RELAX-TV
All problems | column CS2-3.4) CPLEX

gener. default default | auction | NETOPT
depl, dep2, etc. 0.17 1.0 1.32 — 2.87 —
dep*.a, dep*.b 1.0 2.96 3.87 2.65 2.13
lagrl.* (0.52) 10| 395| 18| 259 2.38
lagr2.* (0.38) 1.0 2.73 3.59 5.42 2.06
lagr3.* (0.20) 1.0 1.04 4.05 8.43 1.59
Klingman et al. 1.0 2.34 1.51 1.49 2.63
Capacitated 1.0 1.36 1.01 0.88 2.43
Transportation 1.0 2.99 1.25 1.43 2.77

Table 2: Running times.

times for these problems because NETOPT* needs more than 400 MByte memory for
many of them (this is due to the generality of the LP-solver CPLEX). The cpu time
savings for the MCF delayed column generation are significant.

The column “column gener.” in Tab. 2 shows in the rows lagrl.*, lagr2.*, and lagr3.*
the running times for the complete Lagrangean relaxation problems lagrl, lagr2, and lagr3
from Tab. 3 without the times needed for the delayed column generation part. (i.e., we
give only the running times for the solution of all considered subnetworks).

4Before CPLEX calls NETOPT, the network is stored as a sparse row and as a sparse column matrix,
which explains the extremely large memory requirements.

14

9 Conclusions

We presented a minimum-cost flow application to a real-world vehicle scheduling problem
containing many real-world network flow instances, some of extremely large-scale. Al-
though the default RELAX-IV version could not solve two of our largest problems and,
for some problems, NETOPT needs too much main memory (due to the generality of
the LP-solver CPLEX), all evaluated codes (CS2-3.4, RELAX-IV, NETGEN, and our
MCF) are robust implementations and able to solve even large-scale minimum-cost flow
problems.

What does MCF distinguish from the other codes? First, at least for the real-world
and some NETGEN problems, MCF performs on the average always better than the other
codes and is always among the two fastest codes for each problem instance. Especially
for the extremely large real-world problems depl, dep2, etc., the MCF delayed column
generation approach outperforms by far all the other codes including the default version
of MCF'. Second, MCF has the lowest memory requirements, which may be advantageous
when the main memory is limited or when the code is only a module in a large program
package. Third, the most important advantage is the possibility of a delayed column gen-
eration and sensitivity analysis approach, which is indispensable for an efficient solution
of very large-scale problems.

Our robust and very efficient minimum-cost flow solver MCF (with delayed column
generation) is integrated in several subroutines within a large program package for the
solution of multiple-depot vehicle scheduling problems. This program package, in which
the CPLEX LP-solver is also an important part, enables us to solve real-world multiple-
depot vehicle scheduling problems — even from cities as large as Hamburg and Berlin - to
optimality.

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1989). Network Flows. In Nemhauser,
Rinnooy Kan, and Todd [1989], chapter IV, pages 211-369.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algo-
rithms, and Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Ball, M. O., Magnanti, T. L., Monma, C. L., and Nemhauser, G. L., editors (1995b).
Network Models, volume 7 of Handbooks in Operations Research and Management
Science. Elsevier Science B.V., Amsterdam.

Ball, M. O., Magnanti, T. L., Monma, C. L., and Nemhauser, G. L., editors (1995a).
Network Routing, volume 8 of Handbooks in Operations Research and Management
Science. Flsevier Science B.V., Amsterdam.

Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D. (1990). Linear programming and network
flows. John Wiley & Sons, Inc., 2nd edition.

15

Bertossi, A. A., Carraresi, P., and Gallo, G. (1987). On some matching problems arising
in vehicle scheduling models. Networks, 17:271-181.

Bertsekas, D. P. and Tseng, P. (1994). RELAX-IV: A faster version of the RELAX code

for solving minimum cost flow problems. Technical report.

Bixby, R. E. (1992). Implementing the simplex method: The initial basis. ORSA Journal
on Computing, 4(3):267-284.

Bixby, R. E. (1994). Progress in linear programming. ORSA Journal on Computing,
6(1):15-22.

Bland, R. G., Cheriyan, J., Jensen, D. L., and Ladanyi, L. (1993). An empirical study of
min cost flow algorithms. In Johnson and McGeoch [1993].

Branco, 1., Costa, A., and Paixao, J. M. P. (1995). Vehicle scheduling problem with
multiple type of vehicles and a single depot. In Daduna, Branco, and Paixao [1995].

Branco, I. M. and Paixao, J. P. (1987). A quasi-assignment algorithm for bus scheduling.
Networks, 17:249-269.

Branco, I. M. and Paixao, J. P. (1988). Bus scheduling with a fixed number of vehicles.
In Daduna and Wren [1988], pages 28-40.

Chvdtal, V. (1980). Linear programming. W. H. Freeman and Company, New York.

CPLEX (1995). Using the CPLEX Callable Library. CPLEX Optimization, Inc.,
Suite 279, 930 Tahoe Blvd., Bldg 802, Incline Village, NV 89451, USA. URI:
http://www.cplex.com/.

Daduna, J. R., Branco, L., and Paixao, J. M. P., editors (1995). Computer-Aided Transit

Scheduling, Lecture Notes in Economics and Mathematical Systems. Springer Verlag.

Daduna, J. R. and Paixao, J. M. P. (1995). Vehicle scheduling for public mass transit —

an overview. In Daduna, Branco, and Paixao [1995].
Daduna, J. R. and Wren, A., editors (1988). Computer-Aided Transit Scheduling, Lecture
Notes in Economics and Mathematical Systems. Springer Verlag.

Dantzig, G. B. (1963). Linear Programming and FExtensions. Princeton University Press,
Princeton.

Desrochers, M. and Rousseau, J.-M., editors (1992). Computer-Aided Transil Scheduling,

Lecture Notes in Economics and Mathematical Systems. Springer Verlag.

Desrosiers, J., Dumas, Y., Solomon, M. M., and Soumis, F. (1995). Time Constrained
Routing and Scheduling. In Ball, Magnanti, Monma, and Nemhauser [1995a], chap-
ter 2, pages 35-139.

DIMACS (1990). The first DIMACS international algorithm implementation challenge:
Problem definitions and specifications. Available from anonymous ftp from di-
macs.rutgers.edu, in the directory /pub/netflow/general-info.

16

DIMACS (1993). The first DIMACS international algorithm implementation challenge.

available from anonymous ftp from dimacs.rutgers.edu, in the directory /pub /netflow.

Du, D.-Z. and Pardalos, P. M., editors (1993). Network Optimization Problems: Algo-
rithms, Applications and Complexity, volume 2 of Series on Applied Mathematics,
Singapore, New York, London. World Scientific Publishing Co. Pte. Ltd.

Goldberg, A. V. (1992). An efficient implementation of a scaling minimum-cost flow algo-
rithm. Report No. STAN-CS-92-1439, Department of Computer Science, Standford
University, Stanford, California 94305.

Helgason, R. V. and Kennington, J. L. (1995). Primal Simplex Algorithms for Minimum
Cost Network Flows. In Ball, Magnanti, Monma, and Nemhauser [1995b], chapter 2,
pages 85-133.

Johnson, D. S. (1993). Appendix B: Panel discussion highlights. In Johnson and McGeoch
[1993].

Johnson, D. S. and McGeoch, C. C., editors (1993). Network Flows and Matching, vol-
ume 12 of DIMACS: Series in Discrete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society.

Klingman, D., Napier, A., and Stutz, J. (1974). NETGEN: A program for generating
large scale capacitated assignment, transportation, and minimum cost flow network
problems. Management Science, 20(5).

Lamatsch, A. (1988). Wagenumlaufplanung bei begrenzten Betriebshofkapazitdten. PhD
thesis, Universitat Fridericiana zu Karlsruhe (TH).

Lamatsch, A. (1991). An approach to vehicle scheduling with depot capacity constraints.
In Desrochers and Rousseau [1992].

Lustig, I. J. (1990). The influence of computer language on computational comparisons:
An example from network optimization. ORSA Journal on Computing, 2(2):152-161.

Mesquita, M. and Paixao, J. (1992). Multiple depot vehicle scheduling problem: A new
heuristic based on quasi-assignment algorithms. In Desrochers and Rousseau [1992].

Nembhauser, G. L., Rinnooy Kan, A. H. G., and Todd, M. J., editors (1989). Optimization,
volume 1 of Handbooks in Operations Research and Management Science. FElsevier
Science B.V., Amsterdam.

Veldhorst, M. (1993). A bibliography on network flow problems. In Du and Pardalos
[1993], pages 301-331.

17

Appendix A Vehicle Scheduling Networks

Sub- | Column
Prob. | |V |A] nets | generation
lagrl 3669 1186270 4 14.78
lagr2 | 17127 | 19116767 8 686.94
lagr3 | 42007 | 10434409 6 544.15

Table 3: MCF column generation cpu times (sec) for the Lagrangean relaxation problems.

18

MCF RELAX-TV CPLEX

Prob. V] Al default | ©8234 cfault ‘ auction | NETOPT
lagrl.a | 3669 | 94600 | 2.74 | 14.57 5.97 5.35 7.57
lagrl.b | 3669 | 122265 | 5.01 | 17.68 | 11.02| 16.56 9.83
lagrl.c | 3669 | 124733 | 4.84| 18.18 7.07 | 11.33 11.82
lagrl.d | 3669 | 124735 | 457 | 17.60 7.04 | 11.22 11.78
| All lagrl * | 172 680] 311 44.5 | 41.0 |
lagr2.a | 17127 | 1060154 | 94.82 | 202.43 | 321.86 | 384.11 169.53
lagr2.b | 17127 | 1278550 | 138.43 | 287.23 | 378.80 | 509.18 244.29
lagr2.c | 17127 | 1308213 | 119.38 | 289.43 | 258.37 | 574.24 225.50
lagr2.d | 17127 | 1310269 | 106.55 | 278.87 | 399.79 | 474.30 221.91
lagr2.e | 17127 | 1310400 | 111.17 | 305.25 | 318.62 | 512.91 218.29
lagr2.f | 17127 | 1310400 | 97.28 | 277.62 | 519.52 | 674.74 210.79
lagr2.g | 17127 | 1313161 | 84.42 | 291.95 | 472.09 | 868.97 218.43
lagr2.h | 17127 | 1313161 | 88.66 | 360.60 | 348.03 | 561.85 226.62
| All lagr2.* | 840.7 [2293.4 | 3017.1 [4560.3 | 17353 |
lagr3.a | 42007 | 254082 | 128.17 | 91.13 | 216.83 | 443.29 190.64
lagr3.b | 42007 | 1195791 | 314.99 | 315.87 | 2456.13 | 4923.19 556.42
lagr3.c | 42007 | 1469435 | 366.13 | 421.35 | 1674.40 | 2507.09 782.55
lagr3.d | 42007 | 1518992 | 429.43 | 458.43 | 1650.13 | 3613.42 541.93
lagr3.e | 42007 | 1359195 | 343.17 | 360.52 | 934.99 | 2394.21 518.84
lagr3.f | 42007 | 1359202 | 366.25 | 383.78 | 956.56 | 2537.08 509.09
| All Tagr3.* | 1948.1 [2031.1 [7889.0 [16418.3 [3099.5 |

Table 4: Cpu times (sec) for the Lagrangean relaxation subproblems.

19

MCF RELAX-IV

Prob. | |V| | Al column (S2-3.4 }

gener. default default | auction
depl | 8193 | 7224283 | 178.00 | 1301.51 | 1506.60 | > 17000 | 3027.38
dep2 | 4583 | 2238585 49.00 | 197.31 | 377.63 553.62 | 1045.57
dep3 1505 216483 3.27 10.50 22.45 13.34 32.06
dep4 | 4475 | 2008034 22.27 | 225.44 269.47 205.30 705.08
depb 1297 175533 3.72 4.77 16.92 6.84 10.25
depb | 6577 | 4634374 90.77 | 645.37 | 740.38 689.00 | 1685.02
dep? | 1391 | 200757 4.42 8.70 21.65 12.54 20.23
dep8 | 1507 | 217058 3.10 9.86 24.08 10.96 28.94
dep9 | 5021 | 2577951 46.17 | 315.76 | 381.35 571.58 | 1501.78
depl0 | 2731 | 771481 14.76 35.79 | 100.22 69.18 | 239.11
depll | 1583 | 270603 5.22 10.47 28.90 18.93 51.33
depl2 | 2923 | 921440 19.90 60.83 | 131.07 152.41 | 467.07
depl3 | 4567 | 2209154 42.27 | 340.89 321.13 268.67 | 894.81
depl4 | 2139 | 467469 7.65 18.07 53.03 34.02 78.65
depl5 | 1503 | 227876 5.99 9.34 29.53 11.12 37.29
depl6 | 2955 | 865660 10.47 60.60 | 113.47 126.63 | 114.92
depl7 | 1559 | 252055 3.63 11.55 31.37 23.49 30.05
depl18 | 2667 | 694181 13.84 37.81 100.12 158.74 | 221.14
depl19 | 1701 | 288994 3.83 13.32 29.10 8.55 10.01
dep20 | 3827 | 1415590 23.49 | 154.97 | 186.72 265.48 | 145.78
dep21 | 3103 952824 24.04 62.48 124.40 232.29 | 424.37
dep22 | 3841 | 1447401 17.46 | 126.88 | 206.15 304.96 | 121.56
dep23 | 1879 | 352459 5.35 13.10 40.32 12.86 9.29
dep24 | 5237 | 2688675 41.77 | 376.51 | 380.15 | > 200000 | 634.60
dep25 | 3121 967201 12.57 73.93 126.98 151.69 48.27
dep26 | 3995 | 1640499 50.92 | 159.35 | 206.28 145.63 | 584.44
dep27 | 1583 | 259148 3.96 11.19 26.65 10.51 39.69
dep28 | 1503 226089 3.71 9.89 25.80 17.35 14.62
dep29 | 2739 | 778733 21.76 51.62 85.38 57.97 | 255.27
dep30 | 1333 183727 3.42 6.95 20.02 6.08 24.77
dep31 | 2183 468763 9.51 27.62 51.20 52.49 109.12
| All depl, dep2, etc. | 746.24 | 4392.38 | 5778.52 | — [126125 |

Table 5: Cpu times (sec) for the complete single-depot vehicle scheduling problems.

20

NCF RELAXTV | CPLEX
Prob. | VI Al gefant | 5234 Fcfault | anction | NETOPT
depla | 8193 | 442381 | 37.55 | 60.73 | 13827 | 33.06 1473
depl.h | 8193 | 535088 | 21.20 | 101.42 | 344.68 | 50.87 82.81
depZa | 4583 | 133394 | 7.07 | 18.83 | 19.02| 6.80 10.50
dep2.b | 4583 | 187140 | 10.34 | 3240 | 1512 | 43.46 18.16
dep3a | 1505 | 10915 | 0.30| 0.3| 059] 037 0.32
dep3.b | 1505 | 36915 | 0.87| 3.23| 076| 267 1.59
depla | 4475 | 63442 | 389 | 7.23| S71| 336 6.53
depdb | 4475 [101816 | 458 | 13.32| 746 1661 8.02
depba | 1297 | 14136 | 0.21 090 | 0.16] 048 058
deps.b | 1207 | 41077 | 0.96 | 3.43| 081|105 3.03
depba | 6577 | 203812 | 15.70 | 41.63 | 68.07 | 1447 25.08
depb.b | 6577 | 374541 | 22.62 | 60.57 | 65.73 | 7651 55.44
depTa | 1391 | 17778 | 0.36 | 117 | 036] 051 0.67
dep7.h | 1391 | 47822 | 152 | 463| 208| 1.84 3.20
depSa | 1507 | 10967 | 0.24| 0.68| 059 0.19 0.53
dep8.b | 1507 | 36944 | 0.97 | 317| 136] 239 3.02
depa | 5021 | 100517 | 3.75 | 1258 | 2633 | 4.14 10.71
dep.b | 5021 | 150134 | 6.60 | 2320 | 24.87| 26.83 13.09
depl0.a | 2731 | 56988 | 2.27 | 647 236| 2.7 3.76
depl0b | 2731 | 88376 | 348 | 11.77| 453 | 5.6 7.40
deplla | 1583 | 22865 | 046 | 177| 124| 042 .04
depllb | 1583 | 51478 | 119 | 553| 085| 1.6 417
depl2.a | 2023 | 63693 | 217 | 7.02| 7.59| 358 138
depl2.b | 2023 | 98188 | 3.5 | 1278 | 7.65| 1048 10,08
depl3.a | 4567 | 125506 | 512 | 12.93 | 433 | 4.9 11.33
depl3.b | 4567 | 162640 | 9.07 | 2322 | 10.39 | 2653 14.29
deplda | 2139 | 8454 | 021 088| 035| 1.0 0.50
deplab | 2139 | 50086 | 152 | 570| 223| 2.4 3.66
deplha | 1503 | 4489 | 0.16 | 057| 052| 035 0.34
depl5.b | 1503 | 49035 | 1.49| 583 187 311 3.93
deplGa | 2955 | 10623 | 0.39 | 137 | 198| 044 0.85
depl6h | 2955 | 70831 | 2.85| 945| 654| 16.10 5.57

Table 6: Cpu times (sec) for the single-depot vehicle scheduling subproblems.

21

MCF RELAX-IV CPLEX
Prob. V] A default C52-3.4 default ‘ auction | NETOPT
depl7.a | 1559 5472 0.13 0.65 0.79 0.34 0.29
depl17.b | 1559 | 38344 1.24 4.22 2.47 2.33 2.61
depl8.a | 2667 | 15413 0.59 1.93 2.10 1.56 1.17
dep18.b | 2667 | 88903 5.27 12.65 9.85 10.91 9.48
depl9.a | 1701 4678 0.09 0.57 0.80 0.16 0.38
depl19.b | 1701 37312 1.05 3.65 0.53 1.96 2.41
dep20.a | 3827 17818 0.83 2.63 2.28 1.79 1.75
dep20.b | 3827 | 109890 5.73 16.45 7.76 10.24 10.50
dep2l.a | 3103 | 13187 0.39 1.93 2.17 1.72 0.98
dep21.b | 3103 | 112244 4.24 15.60 21.16 46.37 10.27
dep22.a | 3841 15219 0.85 2.15 3.21 1.83 1.47
dep22.b | 3841 | 85235 4.59 14.17 10.47 7.20 9.90
dep23.a | 1879 7958 0.15 1.03 1.58 0.86 0.35
dep23.b | 1879 52901 1.69 7.07 1.77 1.09 4.64
dep24.a | 5237 19553 1.30 3.17 2.74 2.98 2.72
dep24.b | 5237 | 110732 5.10 18.50 13.05 16.46 12.38
dep25.a | 3121 12515 0.48 1.52 2.07 1.05 1.01
dep25.b | 3121 72895 2.16 9.87 9.78 5.16 5.84
dep26.a | 3995 | 17556 0.83 2.42 3.11 1.50 1.79
dep26.b | 3995 | 173676 8.53 28.15 6.51 79.21 21.48
dep27.a | 1583 4073 0.14 0.52 0.54 0.38 0.22
dep27.b | 1583 | 36873 1.16 4.20 3.20 2.70 2.91
dep28.a | 1503 4935 0.14 0.58 0.64 0.34 0.34
dep28.b | 1503 38605 1.15 3.88 1.82 4.05 3.25
dep29.a | 2739 | 10688 0.37 1.28 0.63 0.56 0.70
dep29.b | 2739 | 131122 5.74 18.60 4.69 34.52 14.91
dep30.a | 1333 3274 0.07 0.43 0.24 0.17 0.18
dep30.b | 1333 | 48218 1.56 4.62 1.41 1.56 3.41
dep3l.a | 2183 6313 0.22 0.77 0.69 0.39 0.49
dep31.b | 2183 66468 3.31 8.42 2.84 11.06 6.21
| All dep*.a and dep*.b | 2319 | 686.7| 898.4 | 6145 | 493.3 |

Table 7: Cpu times (sec) for the single-depot vehicle scheduling subproblems.

Appendix B Klingman et al. Networks

’ . Percent Percent Upper Bound
No. | |V| | Sources | Sinks [A| Cost Range ST"“‘IIY Transshipments | cin | of Cap. Range
Min Max UPPLY Sources Sinks Cost Arcs Min Max

1 200 100 100 1300 1 10000 100000 0 0 0 0 0 0
2 200 100 100 1500 1 10000 100000 0 0 0 0 4] 0
3 200 100 100 2000 1 10000 100000 0 0 0 0 0 0
4 200 100 100 2200 1 10000 100000 0 0 0 0 0 0
5 200 100 100 2900 1 10000 100000 0 0 0 0 0 0
6 300 150 150 3150 1 10000 150000 0 0 0 0 0 0
7 300 150 150 4500 1 10000 150000 0 0 0 0 4] 0
8 300 150 150 5155 1 10000 150000 0 0 0 0 0 0
9 300 150 150 6075 1 10000 150000 0 0 0 0 4] 0
10 300 150 150 6300 1 10000 150000 0 0 0 0 0 0
11 400 200 200 1500 1 10000 200 0 0 0 0 4] 0
12 400 200 200 2250 1 10000 200 0 0 0 0 0 0
13 400 200 200 3000 1 10000 200 0 0 0 0 0 0
14 400 200 200 3750 1 10000 200 0 0 0 0 4] 0
15 400 200 200 4500 1 10000 200 0 0 0 0 0 0
16 400 8 60 1306 1 10000 400000 0 0 30 20 16000 30000
17 400 8 €60 2443 1 10000 400000 0 0 30 20 16000 30000
18 400 8 60 1306 1 10000 400000 0 0 30 20 20000 120000
19 400 8 60 2443 1 10000 150000 0 0 30 20 20000 120000
20 400 8 60 1416 1 10000 400000 5 50 30 40 16000 30000
21 400 8 60 2836 1 10000 400000 5 50 30 40 16000 30000
22 400 8 €60 1416 1 10000 400000 5 50 30 40 20000 120000
23 400 8 60 2836 1 10000 400000 5 50 30 40 20000 120000
24 400 4 12 1382 1 10000 400000 0 0 30 80 16000 30000
25 400 4 12 2676 1 10000 400000 0 0 30 80 16000 30000
26 400 4 12 1382 1 10000 400000 0 0 30 80 20000 120000
27 400 4 12 2676 1 10000 400000 0 0 30 80 20000 120000
28 1000 50 50 2900 1 10000 1000000 0 0 0 0 0 0
29 1000 50 50 3400 1 10000 1000000 0 0 0 0 4] 0
30 1000 50 50 4400 1 10000 1000000 0 0 0 0 0 0
31 1000 50 50 4800 1 10000 1000000 0 0 0 0 0 0
32 1500 75 75 4342 1 10000 1500000 0 0 0 0 0 0
33 1500 75 75 4385 1 10000 1500000 0 0 0 0 0 0
34 1500 75 75 5107 1 10000 1500000 0 0 0 0 4] 0
35 1500 75 75 5730 1 10000 1500000 0 0 0 0 0 0
36 8000 200 1000 15000 1 10000 4000000 100 300 0 0 30 30
37 5000 150 800 23000 1 10000 4000000 50 100 0 0 0 0
38 3000 125 500 35000 1 10000 2000000 25 50 0 0 4] 0
39 5000 180 700 15000 1 10000 4000000 100 300 0 1 3000 5000
40 3000 100 300 23000 1 10000 2000000 50 100 0 1 2000 4000

Table 8: NETGEN input parameters for the Klingman et al. networks.

23

‘ No. ‘ MCF ‘ Cs25.4 RELAX-IV CPLEX

default default anction NETOPT
1 0.01 0.08 0.03 0.03 0.04
2 0.02 0.12 0.03 0.03 0.06
3 0.02 0.12 0.05 0.04 0.06
4 0.02 0.13 0.04 0.06 0.08
5 0.02 0.12 0.05 0.08 0.08
6 0.04 0.23 0.08 0.08 0.15
7 0.05 0.25 0.10 0.09 0.18
8 0.07 0.30 0.10 0.11 0.20
9 0.07 0.37 0.12 0.16 0.24
10 0.09 0.35 0.16 0.12 0.25
11 0.04 0.07 0.02 0.03 0.08
12 0.03 0.13 0.05 0.06 0.15
13 0.05 0.13 0.04 0.06 0.16
14 0.06 0.13 0.02 0.07 0.20
15 0.06 0.17 0.13 0.10 0.23
16 0.02 0.10 0.03 0.03 0.06
17 0.03 0.13 0.03 0.03 0.09
18 0.03 0.08 0.04 0.04 0.05
19 0.02 0.12 0.06 0.05 0.10
20 0.02 0.10 0.04 0.04 0.07
21 0.03 0.13 0.07 0.09 0.12
22 0.03 0.10 0.03 0.03 0.06
23 0.03 0.13 0.06 0.04 0.09
28 0.06 0.23 0.11 0.10 0.15
29 0.07 0.23 0.13 0.15 0.21
30 0.08 0.30 0.08 0.24 0.27
31 0.09 0.32 0.11 0.17 0.22
32 0.12 0.35 0.17 0.14 0.29
33 0.12 0.37 0.38 0.23 0.36
34 0.13 0.37 0.14 0.20 0.38
35 0.14 0.42 0.18 0.44 0.48
36 2.16 4.43 2.94 4.08 5.84
37 1.75 4.08 3.05 2.52 5.03
38 2.13 3.92 1.52 2.00 4.69
39 1.45 2.73 2.90 1.77 3.21
40 0.98 2.18 2.23 1.65 2.66

[X] 1022] 2388 [1545 [1523] 26.91 |

Table 9: Cpu times (sec) for the Klingman et al. networks.

24

Appendix C Capacitated NETGEN Networks

SO s - Percent Percent Upper Bound
No. V] Sources Sinks |A] Cost Range STOtail Transshipments of High of Cap. Range
Min Max UPPLY Sources Sinks Cost Arcs Min Max

1 1000 15 15 10000 1 10000 500000 0 0 30 80 20000 120000
2 1000 15 15 30000 1 10000 500000 0 0 30 80 20000 1200000
3 1000 15 15 40000 1 10000 500000 0 0 30 80 200000 1200000
4 5000 40 60 30000 1 10000 600000 0 0 40 920 30000 150000
5 5000 40 €60 40000 1 10000 600000 0 0 40 90 30000 150000
6 5000 40 60 50000 1 10000 600000 0 0 40 90 30000 150000
7 5000 40 60 60000 1 10000 600000 0 0 40 920 30000 150000
8 10000 100 100 40000 1 10000 1000000 0 0 30 80 30000 150000
9 10000 100 100 50000 1 10000 1000000 0 0 30 80 30000 150000
10 10000 100 100 70000 1 10000 1000000 0 0 30 80 30000 150000
11 10000 100 100 80000 1 10000 1000000 0 0 30 80 30000 150000
12 10000 100 100 90000 1 10000 1000000 0 0 30 80 30000 150000
13 1000 15 15 10000 1 10000 500000 0 0 30 80 200 12000
14 1000 15 15 30000 1 10000 500000 0 0 30 80 200 12000
15 1000 15 15 40000 1 10000 500000 0 0 30 80 200 12000
16 5000 40 €60 30000 1 10000 600000 0 0 40 90 300 15000
17 5000 40 60 40000 1 10000 600000 0 0 40 90 300 15000
18 5000 40 60 50000 1 10000 600000 0 0 40 920 300 15000
19 5000 40 €60 60000 1 10000 600000 0 0 40 90 300 15000
20 10000 100 100 40000 1 10000 1000000 0 0 30 80 300 5000
21 10000 100 100 50000 1 10000 1000000 0 0 30 80 300 15000
22 10000 100 100 60000 1 10000 1000000 0 0 30 80 300 15000
23 10000 100 100 70000 1 10000 1000000 0 0 30 80 300 15000
24 10000 100 100 80000 1 10000 1000000 0 0 30 80 300 15000
25 10000 100 100 90000 1 10000 1000000 0 0 30 80 300 15000
26 1000 15 15 10000 1 10000 20000 0 0 30 80 20 1200
27 1000 15 15 30000 1 10000 20000 0 0 30 80 20 1200
28 1000 15 15 20000 1 10000 20000 0 0 30 80 20 1200
29 5000 40 €60 30000 1 10000 20000 0 0 40 90 30 1500
30 5000 40 60 40000 1 10000 20000 0 0 40 90 30 1500
31 5000 40 €60 50000 1 10000 20000 0 0 40 90 30 1500
32 5000 40 €60 60000 1 10000 20000 0 0 40 90 30 1500
33 10000 100 100 40000 1 10000 30000 0 0 30 80 30 1500
34 10000 100 100 50000 1 10000 30000 0 0 30 80 30 1300
35 10000 100 100 60000 1 10000 30000 0 0 30 80 30 1300
36 10000 100 100 70000 1 10000 30000 0 0 30 80 30 1500
37 10000 100 100 80000 1 10000 30000 0 0 30 80 30 1500
38 10000 100 100 90000 1 10000 30000 0 0 30 80 30 1500
39 10000 200 200 100000 1 10000 70000 0 0 30 80 500 10000
40 10000 200 200 120000 1 10000 70000 0 0 30 80 500 10000
41 10000 200 200 140000 1 10000 70000 0 0 30 80 500 10000

Table 10: NETGEN input parameters for the capacitated networks.

25

‘ o ‘ MCF ‘ Coona RELAX-TV CPLEX
default default auction NETOPT

1 0.14 0.45 0.14 0.27 0.47
2 0.37 1.45 0.39 1.15 1.22
3 0.70 2.10 0.55 0.85 2.08
4 1.35 2.25 1.24 2.54 3.45
5 1.64 3.40 2.35 1.83 4.26
6 2.27 3.97 2.01 6.15 5.44
7 2.71 4.72 4.79 3.04 6.33
8 3.21 4.95 2.96 3.55 6.88
9 4.15 5.85 2.94 4.43 8.56
10 5.03 7.37 6.17 4.01 12.93
11 6.22 8.23 11.23 5.09 11.99
12 5.88 9.28 4.55 3.93 13.78
13 0.26 0.68 0.46 0.36 0.84
14 0.80 2.02 1.01 1.63 2.50
15 1.23 2.98 1.50 0.98 3.69
16 2.44 3.35 1.49 2.19 6.12
17 2.91 4.40 2.11 2.72 7.77
18 3.68 5.43 2.14 3.00 10.35
19 4.78 6.08 3.19 5.45 13.82
20 5.23 7.13 14.05 3.87 14.06
21 6.57 7.58 21.53 4.80 16.02
22 7.65 8.33 3.61 8.25 17.55
23 9.93 9.52 5.58 6.59 23.16
24 10.04 11.08 5.50 9.38 25.33
25 11.07 12.87 6.58 6.93 30.28
26 0.22 0.53 0.15 0.17 0.64
27 0.73 1.87 0.51 0.68 2.06
28 1.11 2.70 0.87 1.13 3.03
29 1.53 2.58 4.36 1.56 3.89
30 2.14 3.75 2.73 2.15 5.30
31 2.86 4.45 2.53 2.41 7.16
32 3.33 5.20 4.47 2.08 9.12
33 3.74 5.68 2.72 2.72 8.99
34 4.56 7.07 2.81 3.43 10.92
35 5.01 6.98 4.47 3.10 13.82
36 6.71 8.87 3.53 4.07 15.35
37 7.83 10.52 3.80 4.27 19.72
38 7.59 10.25 5.68 5.32 21.15
39 9.73 12.67 7.90 6.51 21.64
40 11.83 15.00 20.03 14.52 24.42
41 14.11 16.55 10.66 13.32 28.72

[> | 1833 | 250.1 | 1853 | 160.7 | 1448 |

Table 11: Cpu times (sec) for the capacitated NETGEN networks.

26

Appendix D Transportation NETGEN Networks

Cost Range

Total Transshipments

Percent Percent

Upper Bound

No. \4 Sources Sinks |A| 3 1 of High of Cap. Range
- upply |— — h -

Min Max Sources Sinks Cost Arcs Min Max
1 800 400 400 10000 1 10000 200000 0 0 0 0 0 0
2 800 400 400 20000 1 10000 200000 0 0 0 0 0 0
3 800 400 400 30000 1 10000 200000 4] 4] 4] 4] 0 4]
4 800 400 400 40000 1 10000 200000 4] 4] 4] 4] 0 4]
5 1000 500 500 20000 1 10000 200000 4] 4] 4] 4] 0 4]
6 1000 500 500 30000 1 10000 200000 0 0 0 0 0 0
7 1000 500 500 40000 1 10000 200000 0 0 0 0 0 0
8 1000 500 500 50000 1 10000 200000 4] 4] 4] 4] 0 4]
9 400 200 200 10000 1 10000 200000 0 0 0 0 0 0
11 600 300 300 10000 1 10000 200000 0 0 0 0 0 0
12 600 300 300 20000 1 10000 200000 0 0 0 0 0 0
13 600 300 300 30000 1 10000 200000 0 0 0 0 0 0
14 600 300 300 30000 1 10000 200000 0 0 0 0 0 0

Table 12: NETGEN input parameters for the transportation networks.

MCF RELAX-IV | CPLEX

No- | default | ©52-3-4 "fefaull [auction | NETOPT
] 032] 05| 045| 037 0.77
2 0.59 | 150 | 048 | 0.86 1.54
3 0.60 | 247| 139| 1.3 2.62
4 0.90 | 3.72| 152|168 3.10
5 0.68| 152 07| 0.70 1.82
6 11| 290 | 140| 1.9 2.87
7 143 | 377 170| 1.86 3.64
8 171 500 200 210 4.69
9 05| 063 022] 022 0.41
T [027] o072 034] 036 0.63
12 | 044 127 046| 0.68 1.20
13 | 067] 252 089| 0.84 1.84
14 | 1.06] 310 087 1.8 2.58
[> 100] 299] 125 14.3 | 27.7 |

Table 13: Cpu times (sec) for the transportation NETGEN networks.

27

