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1. Introduction 

Rimey [5] asked for all solutions (x,y,z) of the system of equations 

Arc + eyz — x(x2 + ay2 + ßz2) = 0, 

Ay + ezx - y(y2 + az2 + ßx2) = 0, (1.1) 

\z + exy - z(z2 + ax2 + ßy2) - 0. 

Since the solutions depend on the parameters a,ß,\,e, no numerical method can 
be used for showing the dependency of the solutions on the parameters. Rimey 
derived by nonstandard methods the 27 solutions explicitly and remarked that he 
could not find them using packages from Computer Algebra Systems (CAS). The 
components of the solutions can be described by rational functions in the four 
parameters. And during the performance of the algorithm in the CAS polynomials 
occur with coefficients which are complicated rational functions in the parameters. 
This lead in all considered CAS to a break down by storage problems. 

Therefore, Melenk [4] proposed to specify the parameters to fixed (integer) values 
and solve then the system (1.1). When sufficiently many values of the solutions 
are known, the rational functions in a, ß, A, e on which the 27 solutions depend can 
hopefully be reconstructed. 

This rises the more general problem on how to reconstruct a multivariate rational 
function, which is only known to exist and for which at arbitrary points the value 
can be computed. No a-priori informations on numerator and denominator degrees 
are given. Obviously, in order to solve this problem, good methods for computing 
interpolating rational functions must be available. 

In the univariate case, the linearized rational interpolation problem is as follows: 

Find polynomials p, q €lK[x],IK a field, with deg(p) < r, deg(q) < 5, 

such that p(ti) — yiq(U) = 0, i = 1 , . . . , r + s + 1 holds, 

where t\,..., tT+3+i G IK are given distinct points and 

y i , . . . , yr+s+i G K are given data. 

This problem is solvable by a polynomial pair p, q, where not the pair but the 
rational function pjq is uniquely determined. Therefore, we also say in abuse of 
notation that pjq solves (1.2), if it is solved by the pair p, q. For a survey and for 
construction methods see for instance [6]. 

If the data j / i , . . . , yr+»+i are known to be the values of a rational function P/Q 
at distinct points t\,... ,* r+a+1 , then the solution of (1.2) with y^ := P(ti)/Q(ti) 
reconstructs the rational function in question, provided the degrees of P and Q are 
not too great, in other words, r and s are sufficiently great numbers. 

(1.2) 
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The situation is more difficult in the multivariate case. Here (1.2) reads as 
follows: 

Find polynomials p,q € K[x a , . . . , xn], with deg(p) < r, deg(<?) < s, 

such that p(ti) — yiq(U) = 0, i = 1 , . . . , M, holds, 

where tx,..., t\[ G Kn are given distinct points and 

2/i i • • • i VM € IK are given data. 

Again, we call p/q a solution, if the pair p, q solves (1.3). The dependence of 
M on r and s is not as canonical as in the univariate case, and for the notion of 
degree we may choose between the total degree (sum of exponents) or the degree 
by components, i.e. deg(/) < r means r = ( r i , . . . , r n ) and deg(/,Xi) < r,-, i = 
1, . . . , n. Some methods are known for the construction of a p/q solving (1-3), see 
[2, 3]. Due to the lack of uniqueness, most of the methods do not reproduce the 
rational function P/Q as solution of (1.3), when y,- = P(ti)/Q(ti),i — 1 , . . . ,M, 
even if (the components of) r and s are sufficiently great. When such method is 
applied to solve problems with increasing degree bounds, in most cases only rational 
functions with increasing numerator and denominator degrees are produced. 

The multivariate reconstruction of a rational function P/Q consists ideally in 
the construction of a series of rational functions p\f/qM solving (1.3) where r and 
s increase with M, such that pu/qM = P/Q for all M > M*, M* a fixed constant. 
For practical reasons, only a finite number of Pht/qM^s c a n D e computed and P/Q 
is not known. The verification that the guess made for P/Q is in fact equal to P/Q 
can not be done with the methods presented here. This check can be eventually 
made in the area, where the reconstruction problem came from. 

Therefore, we must be content with the following procedure. First of all, let us 
assume that we are always able to find the value of a rational function P/Q for all 
points in question. We select an isotone sequence of finite sets T\ C T2 C . . . C IKn 

Let Tk := (£i,fc, • • • ,imk,k)- Then we select for each k = 1,2,... a rational interpo­
lation operator Vk, which maps every (j / i , . . . ,ym k) € Km* to a rational function 
Pk/qk-, such that p and q satisfy 

Pk(U,k) ~ yiqk(U,k) = 0 for i - 1 , . . . , mk. 

(If Vk is the restriction of Vk+i to Tk, then Tk and Vk are redundant. We exclude 
in the following such situations.) Now let P/Q be a rational function and let pk/qk 
be the result of Vk applied on 

{P(tl,k)/Q(h,k), • • .^(trn^/Qitm^)). 

If there are an M and an M* > 1, such that Pbt/qM = ... = PM+M*/qM+\f*, then 
we accept p\f/qM a s guess for P/Q and terminate the procedure. 
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Definition 1. We say the described procedure given by the point sets 
Ti C T2 C . . . , and the corresponding interpolation operators Vk, k = 1,2,... has 
the reproducing property, if it terminates for every rational function P/Q with a 
guess for P/Q. 

In §3, the author was able to show, that a procedure using bivariate rational inter­
polation operators investigated by Siemaszko [7] has the reproducing property. A 
new bivariate method based on univariate rational and polynomial interpolation is 
proposed. It has no reproducing property, but only in degenerate cases, it does not 
reproduce the rational function in question. This procedure requires the solution 
of a lesser number of rational interpolation subproblems by employing polynomial 
interpolation. Hence, as the examples in §3 confirm, it is faster than Siemaszko's 
already for moderate sized functions and recovers the function when Siemaszko's 
fails because of storage problems. The multivariate analogy of the two methods 
are presented in §4. 
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2. Univariate Rational Interpolation 

In the univariate case, rational interpolation methods with reproducing property 
are easily found. Take Tm := {ti,...,tm} with distinct points i,-. And take as 
rational interpolation operator Vm the operator which maps m—tuples j / i , . . . ,ym 

to the rational function Pm/qm uniquely determined by the interpolation conditions 

Pm(U) - yiqm(U) = 0 for i = 1 , . . . , m, 

with deg(pm) < rm and deg(qm) < sm, rm + sm + 1 = m. 

Let P/Q be a rational function with t/,- = P(ti)/Q(ti) for all i > 1. If both rm and 
sm tend to infinity, when m —• oo, then for sufficiently great m both degree bounds 
deg(P) < rm and deg(Q) < sm are satisfied, i.e. for sufficiently great m all rational 
functions pm/qm are identical with P/Q. In order to guarantee that both rm and 
sm tend to infinity for m —»• oo, we make the standard assumption 

rm := [m/2], sm := [(m - l) /2] , (2.2) 

where [a] means the integer part of a. 

Practical algorithms which calculate the pm/qm satisfying (2.1) and (2.2) take ad­
vantage from the fact that the rational functions pm/qm can be defined recursively. 
So many quantities computed in previous calculations can be used for abbreviat­
ing the calculations for pm/qm. The method of Stoer, cf. [2], calculates rational 
functions Pik/qik interpolating at £,,... ,U+k and satisfying the degree bounds cor­
responding to (2.2), 

deg(p,-*) < [(* + 1 - t) /2], deg(9ifc) < [(* - 0 /2 ] . 

It initializes with pu/qu = P(ti)/Q(ti) and calculates then iteratively 

pik(x) := A,* • (a: - t{) • Pi+i,k(x) + Pik • {h ~ x) • pitk-i(x), , . 

qik(x) := A.jt • (* - U) • qi+ij,{x) + fiik • (tk - x) • ^,fc_i(x), 

where the constants A,> and /z,-* are chosen such that the degree restrictions also 
hold for pik and qik. Then pm/qm := p\m/qim solves (2.1) and (2.2). 

Stoer's method requires for the computation of Pm+i/qm+i = Pi,m+i/qi,m+i the 
additional computation of the m rational functions Pi,m+i/<7t',m+i f° r * = m + 1? 
m , . . . , 2. An alternative method which avoids the computation of polynomials as 
long as the final guess is not found can be derived from a method which is at­
tributed to Thiele, cf. [2]. 
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Theorem 1. Let inverted divided differences of length 1 be given by 

*[ti]:=P(ti)/Q(ti),i = l,...,m, 

and inverted divided differences of length k -f 1 by those of length k, 

'"•--th<j!-*[«„-,^-*fe.-,i>]-t<iSro- (24) 

Then the continued fraction 

Pm_ _ P(h) x-ti \ x-t2 | x - tm-! 

9m Q(h) \*[tut2] I *[tUt2,i3] " " I * [ * ! , . . . , tm] 
(2.5) 

is a rational function satisfying (2.1) ararf (2.2), provided the denominator of no 
$[<i , . . . , tk] vanishes. 

If the denominators of $[£ a , . . . , $,•], t = 1 , . . . , m—1 don't vanish, but $ [^ i , . . . , tm] 
has a vanishing denominator, then by the definition of continued fractions, 
Pm-i/<Zm-i = Pm/qm and pm_i/<7m-i interpolates also in tm. It could mean that we 
did already reconstruct P/Q by this pm-\/qm-\, but it could mean a degeneration 
as well. In order to overcome such degeneration, we may replace tm by a better 
suited tk,k > m, i.e. we look for a $[ti,... ,tm-i,tk] with nonvanishing denomi­
nator and then replace tk by tm and vice versa. If no such tk exists, we have by 
theorem 1 independent of the selection of tm always pm-i/qm-i as rational func­
tion which interpolates at * i , . . . ,<m-i and at all possible forthcoming tk, k > m. 
In this case pm-i/qm-x is the guess for P/Q. Using this modification for avoiding 
degenerate situations, the author together with H. Melenk and W. Neun (both 
from Konrad-Zuse-Zentrum für Informationstechnik Berlin) implemented Thiele's 
algorithm in the Computer Algebra system REDUCE. 

The following complexity analysis explains why we implemented Thiele's and 
not Stoer's method. These two methods require exact arithmetic. Therefore, we 
apply the results of [1] for the comparison. In most applications we have in mind 
(cf. the example in the beginning) the points can be assumed to be integers of 
moderate length, and the polynomials have integer coefficients. Then, denoting 
by L(a) the length of an integer a, and assuming that integer multiplication is 
performed by Karatsuba's method, we get from [1] for integers a, h 

Operation 

a + b 

a • b 

quot(a, b) 

gcd(a, b) 

Complexity 

min{L(a),L(6)} 

maxj L(a),L(b)\ 

L(b) (L(a) - L(b) - l ) (for L(a) > L(b)) 

L(a)L(b) 
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And for univariate polynomials p, q with integer coefficients using 
L(Sa,x*) := maxZ(a,) simple calculations give for great L(p),L(q), and L{a) 

Operation 

P + Q 

a • p 

(x — a)p 

a{x — Xi)p 

Complexity 

1 + min{deg(p),deg(g)}] imn{L(p),L(q)} 

1 + deg(p) maxJL(a), L(p)j 

1 + deg(p) 

1 + deg(p) 

max{L(a), L(p)}l°°3 + L(a) + L(p)] 

m&x{L(a),L(p)y°°3 + L(Py°°3} 

(if £(*, - )< £(P),£(«)) 

If we denote by L0 the maximum of all numbers L(P(xi)j,L(Q(xi)J, then we 
get in Stoer's method that L(pik)iL(qik) are both approximately 2k~,L0. And 
the complexity for computing pm /gm by Stoer's method is then approximatey 
|m4mLg + m3mIo0ff3. The first summand came from gcd computations for reducing 
previous pi/qi, whereas the second summand could be replaced by a lesser number, 
if we knew that some of the gcd's were non-trivial. 

Similarly, in Thiele's method we have that numerator and denominator of any 
inverted divided difference of length k is approximately 2k~1L0. And the complexity 
for computing all inverted divided differences in question and the combination to 
obtain the guess pm/qm is approximately Y4mLo + y3mL0

oa3- This is approximately 
by a factor m less than the computational amount in Stoer's method. 
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3. Bivariate Rational Interpolation 

Some bivariate rational interpolation operators are presented in [2, 3]. With re­
spect to the better performance of Thiele's method in comparison with Stoer's, 
we concentrate on interpolation methods which use branched continued fractions, 
a generalization of continued fractions. However, we got by several examples the 
impression that most of these methods are not suited for being used in procedures 
with the reproducing property, because even for rational functions P/Q with low 
deg(P) and deg(Q) the branched continued fraction representation of P/Q seemed 
not to be finite. And finiteness is an essential tool for proving the reproducing 
property, as we will see in the following. 

Theorem 2. Let P/Q be a rational function with 

deg(P,x) < K / ^ d e g ^ y ) < [m2/2], 

deg(Q,x) < [(mx - l)/2],deg(Q,j/) < [(m2 - 1)/2J, 

and let j / 1 } . . . , ym2 be different points in IK. Then there are an s < m2 and polyno­
mials Pk, Qk € K[x], k = 0 , . . . , s, such that deg(Pfc) < 2k~xmx, deg(Qk) < 2k~lmx, 
and 

P(x,y) = Pp(x) y-Vl | V ~ V, | , 3 1 x 
Q(x,y) Qo(z) | Px{x)/Q,{x) + - - " + | P,(x)/Q,(x) ' K'} 

Ifyi,...,ym2 are fixed, then s and the Pk/Qk are uniquely determined. 

Remark. The theorem is stated and proved in [7] without the degree bounds for 
the Pk and Qk. 

Proof. Only the degree bounds for Pk,Qk must be shown. Let ps := Pt/Qs and 
then recursively for k := s — 1,...,0 pk := Pk/Qk + (y — yk+i)/Pk+i- It follows that 
p0 = P/Q. Denoting numerator and denominator of pk by Ak and Bk resp., then 
by definition of pk 

deg(Pjt) < deg(y4it(.,yfc+i)) < deg(Ak,x) 

deg(Qfc) < deg(£fc(.,j/fc+i)) < deg(Bk,x). 

Beginning with the estimates 

deg(Po) < deg{Ao,x) < \mx/2) < rm/2, 

deg(Qo) < deg(5o,a;) < \{mx - l)/2] < mx/2, 
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the recursion 

Ak+1/Bk+1 = l/(y - yk+1) • BkQk/(AkQk - BkPk) 

gives by induction 

deg(P*) < deg(Ak,x) < 2k~lmx and deg(g*) < deg^* ,* ) < 2fc"1m1. 

The bounds for deg(Pjt) and deg(<3fc) are in general too pessimistic, since no 
cancellation of common factors has been assumed. So we have for instance if 
j/,- := i — 1 for i = 1,2,... 

P/Q 

3x2 -f xy — 7y 
y2 + x + 3 

(x - yf - 2xy 

(x -y)2 + l 

(x - y)4 - 2xy3 

(x -y)4 + l 

(deg(Pk),deg(Qk)) k = 0,...,s 

(2,1), (2,2), (4,4), (6,6), (4,3) 

(2,2), (4,3), (6,6), (8,7), (4,4) 

(4,4), (8,5), (10,13), (18,15), (20,23), (28,25), 

(30,30),(32,31),(16,16) 

The rational interpolation operator described in [7] uses a rectangular grid of 
interpolation points T(jfci,jfc2) := {(xi,yj) | 1 < i < A;l, 1 < j < k2}. If dij is the 
interpolation date at (xt-, j/j), then for every fixed x,- the inverted divided differences 
$,[yi, . . . ,yk] for the continued fraction of the univariate rational function pi/qi in 
y are calculated, which interpolates d^ at yj,j = 1,...,&2. This gives continued 
fraction representations 

^=w+,jr y iJ+-.+ *-*«-* ' 
Hyuvi] $ibtu---,y»i] 

(3.2) 

Using for fixed k the quantities $ i [y i , . . . , yk] as interpolation data for the points 
X{,i = l , . . . , fc l , then Thiele's method calculates rational functions uk/vk in x. 
This gives then the bivariate rational function 

^ l | 3/-2/1 | , , y-yk2-i\ 
vi | u2/v2 | uk2/vk2 

which interpolates d^ at (x;,*/,) for all (x,-,yj) £ T(ki<k2). 

(3.3) 



Now let P/Q be a given bivariate rational function and let rf,j be the value of 
P/Q at (x{, yj). If k2 > 2 -max{deg(P, y), deg(Q, y)}, then by the uniqueness of the 
univariate rational interpolation Pi(y)/qi{y) = P(xi,y)/Q(xi,y). Comparing with 
the continued fraction of P/Q given by theorem 2, we state $,[t/i, • • •, J/jt] = -Pjt(sj)/ 
Qk{xi). If kl is at least two times greater than the maximal degree of all deg(Pjt), 
deg(Qk), then ujt/ujt = Pk/Qk again by uniqueness of the univariate problem. 
Hence for sufficiently great kl, k2, P/Q is reproduced, i.e. the procedure of using 
this bivariate rational interpolation operator on grids increasing in both directions 
has the reproducing property. 

An alternative to this procedure is the following. We interpolate again on a 
rectangular grid T(ki,k2) = {(xi,yj) | 1 < ' < kl, 1 < j < £2} given data rf,j. First, 
we construct for every j/j by Thiele's method the rational function Pj/qj solving 

Pj(xi) - dijqj(xi) = 0, i = 1 , . . . , kl. 

Let Pj(x) = E^.0a,jx', and qj(x) = E"_06ija;,, where m < [H/2] is the maximal 
degree of all pj and n < [(kl — l)/2] that one of all qj. Cancel all Pj/qj with 
(amj,bnj) = (0,0) and renumber the remaining pi/qi and renumber the points in 
T(ki,k2) after removing those with second component = t/j for such j . For simplicity, 
let us assume (amj,bnj) ^ (0,0) for j = l,...,k2. Then compute by (an easy 
modification of) Thiele's method a rational function am/bn in y solving 

Kjam(yj) - amibn(yj) = 0, j = 1 , . . . , k2. 

Let CJ := am(yj)/amj if amj ^ 0 and Cj := bn(yj)/bnj if amj = 0. Then find by 
polynomial interpolation for every i € { 1 , . . . , kl} the lowest degree polynomial un­
satisfying 

ai(Vi) = cjQijJ = 1,...,*2 

and the lowest degree polynomial b{ satisfying 

HVj) = cibij'J = l,.--,fc2. 

Then the rational function P*/Q* defined by 

P*(x,y) := E£oa,(iO*', Q*(*,y) := EP-oMy)** 

satisfies 

P*(x» Vj) ~ dijQ*(xi, yj) = E/a^y,-)«!- ~ dij^MyjWi (3 ^ 

= CjZMjx'i - CjdijZthjx'i = Cj [pj(xi) - dijqj(xij\ = 0 

If the data dij are the values of a rational function P/Q evaluated at (a;,-, yj) for 
i = l,...,kl,j — l,...,k2, then P(x,yj)/Q(x,yj) = Pj(x)/qj(x) for sufficiently 
great fcl and j = 1 , . . . , k2 by construction Pj/^j and P /Q are reduced. Therefore, 
only for degenerate cases P(-,yj)/Q(;yj) is not reduced. Hence only in these 
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cases P(x,yj) = CjPj(x) and Q(x,yj) = Cjqj(x) holds, where Cj is not a constant 
polynomial. Apart of these degenerations, we have by comparing the coefficients 
of the powers of x, 

a»(j/j) = WH, bi(yj) = Cjbih j = 1 , . . . , k2, (3.5) 

when P(x,y) = Ha,i(y)x\Q(x,y) = E&,•(y)a;, and Pj(x) = Ea^a:',qj(x) = E6,jX*. 
By (3.5) the univariate polynomials a,- and 6, are uniquely determined if there 
are. sufficiently many interpolation points j / , - , i.e. if Jfc2 is sufficiently great, and if 
Cj is known in advance. But this can be reconstructed by a univariate rational 
interpolation as described above. 

Therefore, this new method reconstructs a rational function P/Q, if only for 
a restricted number of second components j/j of points in all T^ i^ ) the rational 
function P(.,yj)/Q(.,yj) is reducible or both deg(P(.,y_,)J and deg\Q(.,yj)j are 
simultaneously less than deg(P, x) and deg($, x) resp. 

H. Melenk and the author compared the method described by Siemaszko and 
the new one by some examples. We run the procedures on a CRAY X-MP using 
REDUCE 3.3 and obtained the following, where x means, that the result was 
different from the function to be reconstructed. 

P/Q 

xy + l 
x + y + 2 

xy - 1 
x + y + 2 

y' 
l + x + 3 

( * - -y? -2xy 

(x -yf + 1 

(x- y)A- - 4xy3 

(x -y)4 + 1 

(x- y)6- -6xy5 

Siemaszko 

10 x 10 points 

1.2 sec 

0.8 sec 

x 

X 

X 

X 

Siemaszko 

20 x 20 points 

New method 

10 x 10 points 

0.8 sec 

0.9 sec 

1.2 sec 

1.5 sec 

2.2 sec 

x 

New method 

20 x 20 points 

3.2 sec 

3.2 sec 

5.0 sec 

5.5 sec 

11.0 sec 

20.1 sec 

1.1 sec 

1.2 sec 

6.0 sec 

7.9 sec 

x 

x 
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The examples show that the method investigated by Siemaszko is only for ratio­
nal functions of very low numerator and denominator degree ( 0 or 1 ) comparable 
or better than the new method. For moderate degrees the new method gives bet­
ter results. The reason is that the functions Pk/Qk depending on P/Q as in (3.1) 
have unproportionally high (numerator and denominator) degrees. Hence, their re­
construction by univariate rational interpolation is very time consuming. And we 
observed in these Pk/Qk coefficients of remarkable length (more than 100 digits). 
So there are also storage problems. On the other hand, the new method interpo­
lates only rational functions or polynomials, where the degrees never surpass the 
degrees of the rational function P/Q. 
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4. n—variate Rational Interpolation 

The method described by Siemaszko can be generalized to the rc-variate case in 
the following way. Consider the grid 

T(kl,...,kn) := {(^l,«!» ••> xn,in) | 1 < i l < H , . . . , 1 < Ml < fal}. 

For every fixed (i2,..., in) calculate by Thiele's method the univariate rational 
function in x\ 

-Pf2,...,m _ Pi2,...,in » 1 ~ ^11 | ^1 ~ *1« I (A I X 
"T" i ~(i\ , ~ m f . . . -I- , / » / » {*•*•) 

interpolating da,...,,-,» at Xi,,!, 1 < i l < H . s can be assumed to be a global variable, 
because continued fractions like (4.1) can be extended by adding arbitrary terms 
of similar type provided the first of them has a denominator Pi2,..Jn/ Q%2,...,in with 
Qrt.T.ljn = 0- The rational function P/Q which we will reconstruct has a continued 
fraction 

L = — + Xl ~ Xu I + + Xl ~ Xl* 1 (A 0) 
Q Qio) | PW/QW ''' | P W / g W ' V " ; 

where pW/QW depends on X2, . . . ,xn . Then the (n — l)-variate variant of the 

method calculates pW/QW from the value Pi2,...,in/Qi2,...,in a* point (x2,;2, • • • >Xn,in)-

The degrees of (numerator and denominator) of the rational functions in the 
intermediate steps of this method will certainly surpass the degrees of the rational 
function P/Q, as we already detected in the bivariate case. In addition, one n -
variate reconstruction requires roughly deg(P, xi) + deg(Q, £i) + 1 (n — l)-variate 
reconstructions of rational functions with higher degrees. Therefore, we expect an 
efficient reconstruction by this method only for rational functions with extremely 
low numerator and denominator degree. On the other hand, it is a robust method. 
It always reconstructs the function, if enough time and enough storage is available. 

The n-variate generalization of our new method also interpolates on a grid 
T(ki,...,kn)' F° r every fixed ( i2 , . . . ,in) calculate the univariate rational function in 
xi Pi2,...,inlQi2,...,in which interpolates <?,•!,...,,•„ at xi,,i,l < i\ < k\. Let m resp. 
m' be the maximal degree of all P,-2,...,m resp. Qi2,...,in and a}™J in resp. fr,-™... ,„ 
the coefficient of x™ in P,-2,...,m resp. of x™' in Qi2,...,in- Reduce now the grid 
T(ki,...,kn) to a new grid by cancelling prints, such that in the new grid always 

(aSwn>*£.!,in) i1 (0,0) holds. Let w.l.o.g. T{ki,...,kn)
 b e t h i s S r i d a S a i n - T h e n 

solve the (n — l)-variate rational interpolation problem 

Pm(x2,i2, • • • , «n. in) ~ .('m')1'" Qm'(x2,i2, • • • , «n, tn) = 0 , 
bi2 in ( 4 . 3 ) 

1 < i2 < Ic2,..., 1 < in < kn. 

12 



Let 

and 

Pa m(xi) = sr=0«,?,...,,„^i, 

(m) -f (m) 
_ I Pm(x2ti2,..., x»,,-«)/««,:..,« if a\2^in ^ 0 

C ' 2 «n '~ \ r\ t \ liim>) -t (m) n 
[ Qm'{x2,i2, -.-, Xn,in)/b)2,.:.,in " ««. . . . . in = ° -

Then the rational function P /Q which we want to reconstruct is given by 

r = S 0 -««(^2) • • • j ^ n j ^ u 

Q = E™ V « ( x 2 ) • • • i %n)x\-> 
(4.4) 

where P{ and Qi are determined (in case the grid contains enough points) by the 
interpolation conditions 

Pi\x2,i2i • • • i xn,in) ~ c»"2,...,«n " ai2 in' 

Qi{x2,i2, • • • t xn,in) = Ct'2 in ' <>i2,...,in-

The advantage of this method is that no intermediate rational function has unnec­
essary great degrees, and that only one (n — l)-variate variant of this method is 
needed for the n-variate method. On the other hand, there are degenerate cases, 
where the rational function reconstruction fails. 

13 



Acknowledgement 

The author wants to express his thanks for the fruitful discussions with 
H. Melenk and for the help of the Abteilung Symbolik of the Konrad-Zuse-Zentrum 
für Informationstechnik Berlin for implementations and tests of the algorithms. 

The author has been supported by a Konrad-Zuse-Fellowship. 

14 



References 

[1] G. E. Collins, M. Mignotte, F. Winkler: Arithmetic in basic algebraic do­
mains. Published in: Computer Algebra — Symbolic and Algebraic Compu­
tation (eds.: B. Buchberger, G. E. Collins, R. Loos ), Computing Suppl., 4 
pp. 189-220 (1982). 

[2] A. A. M. Cuyt and B. M. Verdonk: Multivariate rational interpolation. Com­
puting 34, PP. 41-61 (1985). 

[3] Kh. I. Kuchminskaya and W. Siemaszko: Rational approximation and inter­
polation of functions by branched continued fractions. Published in: Ratio­
nal Approximation and its Application in Mathematics and Physics (ed.: J. 
Gilewicz, M. Pindor, W. Siemaszko), Lecture Notes in Mathematics Vol. 1237 
Springer-Verlag, Berlin-Heidelberg-New York, pp. 24-40 (1987). 

[4] H. Melenk: Private communication (1988). 

[5] K. Rimey: A system of polynomial equations and a solution by an unusual 
method. ACM SIGSAM Bull. 18, Nr.l (1984). 

[6] C. Schneider and W. Werner: Some new aspects of rational interpolation. 
Math, of Comp. 47, Nr. 175, pp. 285-299 (1986). 

[7] W. Siemaszko: Thiele-type branched continued fractions for two-variable func­
tions. J. Comp, and Appl. Math. 9, pp. 137-153 (1983). 

15 



Veröffentlichungen des Konrad-Zuse-Zentrum für Informationstechnik Berlin 
Preprints Juli 1989 

SC 86-2. H. Melenk; W. Neun. Portable Standard LISP for CRAY X-MP Computers. 

SC 87-1. J. Anderson; W. Galway; R. Kessler; H. Melenk; W. Neun. The Implementation and Optimization 
of Portable Standard LISP for the CRAY. 

SC 87-3. Peter Deuflhard. Uniqueness Theorems for Stiff ODE Initial Value Problems. 

SC 87-4. Rainer Buhtz. CGM-Concepts and their Realization. 

SC 87-5. P. Deuflhard. A Note on Extrapolation Methods for Second Order ODE Systems. 

SC 87-6. Harry Yserentant. Preconditioning Indefinite Discretization Matrices. 

SC 88-1. Winfried Neun; Herbert Melenk. Implementation of the LISP-Arbitrary Precision Arithmetic for 
a Vector Processor. 

SC 88-2. H. Melenk; H. M. Möller; W. Neun. On Gröbner Bases Computation on a Supercomputer Using 
REDUCE, (vergriffen) 

SC 88-3. J. C. Alexander; B. Fiedler. Global Decoupling of Coupled Symmetric Oscillators. 

SC 88-4. Herbert Melenk; Winfried Neun. Parallel Polynomial Operations in the Buchberger Algorithm. 

SC 88-5. P. Deuflhard; P. Leinen; H. Yserentant. Concepts of an Adaptive Hierarchical Finite Element 
Code. 

SC 88-6. P. Deuflhard; M. Wulkow. Computational Treatment of Polyreaction Kinetics by Orthogonal 
Polynomials of a Discrete Variable, (vergriffen) 

SC 88-7. H. Melenk; H. M. Möller; W. Neun. Symbolic Solution of Large Stationary Chemical Kinetics 
Problems. 

SC 88-8. Ronald H. W. Hoppe; Ralf Kornhuber. Multi-Grid Solution of Two Coupled Stefan Equations 
Arising in Induction Heating of Large Steel Slabs. 

SC 88-9. Ralf Kornhuber; Rainer Roitzsch. Adaptive Finite-Element-Methoden für konvektions-
dominierte Randwertprobleme bei partiellen Differentialgleichungen. 

SC 88-10. C. -N. Chow; B. Deng; B. Fiedler. Homoclinic Bifurcation at Resonant Eigenvalues. 

SC 89-1. Hongyuan Zha. A Numerical Algorithm for Computing the Restricted Singular Value 
Decomposition of Matrix Triplets. 

SC 89-2. Hongyuan Zha. Restricted Singular Value Decomposition of Matrix Triplets. 

SC 89-3. Wu Huamo. On the possible Accuracy of TVD Schemes. 

SC 89-4. H. Michael Möller. Multivariate Rational Interpolation Reconstruction of Rational Functions. 

SC 89-5. Ralf Kornhuber. On Adaptive Grid Refinement Close to Internal or Boundary Layers. 


