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Jochen Fröhlich 1 , Kai Schneider 2

Abstract

The paper presents computations of decaying two–dimensional turbulence in an adaptive
wavelet basis. At each time step the vorticity is represented by an adaptively selected
set of wavelet functions which adjusts to the instantaneous distribution of vorticity. The

results of this new algorithm are compared to a classical Fourier method and a Fourier
method supplemented with wavelet compression in each time step.
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� Introduction

Two–dimensional turbulent flows have been the subject of many theoretical and ex-
perimental investigations. Apart from their relevance for meteorology, flows in shallow
rivers, and other applications they also serve as a test belt for the different concepts

developed to understand the dynamics of turbulence. Although the precise mechanisms
in the two–dimensional case are somewhat different from the three–dimensional case,
main ideas may nevertheless be transfered.

A convenient means of investigation for two–dimensional flows is their direct numerical
simulation. When focussing on the intrinsic mechanisms of turbulence, homogeneous,

isotropic conditions are generally considered with the influence of boundaries being
removed by imposing periodicity of the solution in both coordinate directions.

One concept in turbulence is the statistical approach and the reasoning in terms of wave
numbers and cascading of energy and enstrophy as developed by Kolmogorov and others

(see e.g. the review of [20]). This approach has been applied to the two–dimensional
case by Kraichnan [27] and Batchelor [5] who predicted an energy spectrum proportional
to k−3. In [28] different numerical computations are reviewed part of which are in
accordance with this prediction, most of which are not, however. The disagreement

with respect to the statistical theory is attributed to the intermittency of the turbulent
flow in these cases [3], an aspect which is not accounted for by the statistical theory.

In fact, a second concept in turbulence research is based on reasoning in physical space
considering a vortex or coherent structure as the relevant entity. [2] and [43] proved

that coherent structures substantially modify the cascading of energy. Scrambling the
phase of the Fourier coefficients, which does not modify the spectrum but only destroys
the coherent structures, reinstalls the decay rate predicted by the theory. This type
of study suggested to consider the evolution of coherent vortices separately from a

surrounding background with statistical behaviour. In [2] [6] thresholding of the vorticity
was employed to accomplish such a separation and it was proved that the background
indeed has a k−3 spectrum. Other criteria for the characterization have been developed
in [44] and used for an automated census of vortices in order to obtain quantitative

results for their behaviour.

Considering coherent structures as the dynamically active elements in a turbulent flow
one could try to represent turbulent flow which is a continuous system with a reduced
number of these physically motivated degrees of freedom. At this point, and also for

later clarity, it is indicated to recall the difference of such an approach with respect
to the proper orthogonal decomposition (POD) developed by Lumley [31]. Based on
a statistical approach the POD aims, by means of the Karhunen–Loeve construction,
at representing the whole ensemble of statistical events with few degrees of freedom.

This yields optimality for the average. In contrast, extracting the coherent structures
yields an optimal representation for one particular realization of the turbulent flow.
The difference is also obvious by the fact that computing the coefficients of the POD
for given statistics is a linear process while determining a representation in terms of
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(approximate) coherent structures is non–linear.

The development of wavelets in the beginning of the 80ies had and still has a large

impact on research in turbulence. This theory gives a unified framework for similar
ideas which have been present long before such as shell models [45], [19] and wavepacket
eddies [40]. Wavelets are characterized by simultaneous localization in space (or time)

and frequency and by scale invariance. Hence, they may incorporate elements of both
concepts cited above, coherent structures in physical space and cascades in frequency
space.

Starting point for turbulence analysis by wavelets was the application to one–dimensional
experimental time signals [29] and the analysis of two– and three–dimensional exper-

imental and numerical flow fields [17], [15], [34]. Since then a lot of research in this
direction has been carried out. Local quantities have been defined like local wavelet
spectra [11] and local Reynolds number [15], [34], the fractal behaviour of turbulence
has been examined. Other papers use wavelets for the efficient generation of turbulent

signals with multiscale behaviour [12]. For an overview on existing wavelet techniques
for turbulence we refer to [13], [16] and [1]. Numerical experiments as e.g. in [14] have
shown that using the compression property of wavelets applied to the vorticity yields

an efficient technique for separating coherent parts of the flow field from passive compo-
nents. It thus improves the earlier approaches cited above and is the main motivation
to use wavelets bases for the computation of turbulent flows.

Since the beginning, the subject of wavelets has considerably broadened. We now
know redundant transforms, discrete wavelet bases, orthogonal, semi–orthogonal, non–

orthogonal ones, and many other related constructions. For each application, also in
turbulence, the appropriate variant has to be chosen. The above remarks were mainly
concerned with physical reasoning. Independently, rephrasing the ideas of hierarchy,
scale invariance, and localization in mathematical terms has also advanced the study of

the Navier–Stokes equations in theoretical direction, i.e. proofs of existence and unique-
ness [18], [8]. Another point of view relevant for the present work is the algorithmic
aspect. Hierarchies and recursions yield fast algorithms. Due to the dual localization,

differential and integral operators have a sparse representation in typical wavelet bases.
This is exploited in several wavelet algorithms for the solution of PDEs (see e.g. the
classification in [23]). Our objective therefore is to merge both aspects, the physical
and the algorithmic one by directly computing turbulence in an adaptive wavelet ba-

sis. To our knowledge the present method is one of the first to accomplish this. Here,
wavelets are employed rather close to the physical concepts mentioned above. This is
due to the explicit representation of the vorticity in terms of a sum of wavelet functions.
Preliminary results have been reported in [24]. Another approach coming more from

the algorithmic side is the method developed by Perrier and Charton [9]. Therein, the
starting point is a finite difference scheme on a regular cartesian grid, and wavelets are
used at several stages to speed up the solution procedure by wavelet compression.

In the present paper we consider three different algorithms and apply them to calculate

the same turbulent flow. The first is a classical pseudo–spectral Fourier method serving
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as a reference. Second, we investigate the effect of wavelet compression during the

evolution by supplementing the Fourier method with this feature. The third and main
part is constituted by the adaptive wavelet discretization and its application. The
numerical algorithm will be described only in its main elements here. Instead, we rather
focus on the results and their analysis in physical terms. The proposed approach extends

the use of wavelets from a posteriori analysis of computational results or experiments to
directly computing in such a basis. This constitutes an important step for the application
of wavelets to turbulence.

� Physical problem

Let us consider the two–dimensional Navier–Stokes equations in vorticity–velocity for-
mulation

∂tω + v · ∇ω − ν∇2ω = 0 (2.1)

∇× v = ω (2.2)

∇ · v = 0 (2.3)

supplementedwith initial and boundary conditions. Here, ω is the vorticity and v = (u, v)
is the velocity field. Throughout we use dimensionless units. The computational domain
is Ω = [0, 2π]2 with coordinate x = (x, y) and the flow is supposed to be periodic in

both dimensions. The above equations are not modified further e.g. by the introduction
of a hyperviscosity [4]. Since no external driving force is present an initially turbulent
flow field asymptotically decays. Small vortices of equal sign merge to larger and larger

vortices with filament–like structures between them (see e.g. [44] for a quantitative
study of this process). In [32] it has been shown that the final state of such a numeri-
cal simulation with periodic conditions consists of two counter–rotating vortices which
attenuate.

Using (2.2),(2.3) the velocity can, up to an additive constant, directly be expressed in

terms of the vorticity

v =

( −∂y
∂xx + ∂yy

ω ,
∂x

∂xx + ∂yy
ω

)
. (2.4)

The energy per unit mass of the system is

E(t) =
1

2

1

4π2

∫
Ω
v2(x, t) dx (2.5)

and the specific enstrophy is

Z(t) =
1

2

1

4π2

∫
Ω
ω2(x, t) dx . (2.6)

Some classical results for two–dimensional periodic flows are [20]

dtE = −2 ν Z , dtZ = −2 ν P (2.7)
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with the palinstrophy defined in this case by

P (t) =
1

2

1

4π2

∫
Ω
| ∇ω |2 dx (2.8)

The quantity W =
√
Z/E is the mean square wave number measuring the inverse

average vortex size in a flow. It is bounded from below by 1 corresponding to structures
of the size of the periodic domain. For two–dimensional flows one can show [33] that
dt(W

2) ≤ 0, i.e. the average vortex size is monotoneously increasing.

Under periodic conditions the unknowns can be expressed in terms of their Fourier
transform

ω(x) =
∑
k∈ZZ2

ω̂(k) eik·x , ω̂(k) =
1

4π2

∫
Ω
ω(x) e− ik·xdx (2.9)

where k = (kx, ky) is the wave vector. Defining k⊥ = (−ky, kx), equation (2.4) reads

v(x) =
∑

k∈ZZ2\{(0,0)}

k⊥

| k |2 ω̂(k) e
ik·x . (2.10)

Fourier transformation leads to the definition of an energy spectrum

E(k) =
1

2

∑
k− 1

2
<|k|≤k+ 1

2

| v̂(k) |2 , k ∈ IN (2.11)

and an enstrophy spectrum

Z(k) =
1

2

∑
k− 1

2
<|k|≤k+ 1

2

| ω̂(k) |2 , k ∈ IN (2.12)

which are related through Z(k) = k2E(k). The specific energy and enstrophy, E and
Z, are obtained by summation over all wave numbers k.

Theoretical results on two–dimensional turbulence are sumarized e.g. in [28]. We just
recall here that according to [27], [5] there exists an enstrophy cascade leading by dimen-
sional arguments to an energy spectrum E(k) ∼ k−3 while the energy is transfered from

large wave numbers towards small wave numbers (in contrast to three–dimensional tur-
bulence). However, it is not totally clear to what extent these results can be applied to
the case of decaying turbulence since such flows are not statistically stationary [39], [32].
In a numerical computation of a decaying flow field furthermore the encountered energy

spectrum depends on the initial condition. But even if the initial condition is chosen to
exhibit a k−3 spectrum, direct numerical simulations generally produce a steeper decay
[3],[42],[6]. This deviation is amply discussed in [7], [39], [43] where it is attributed to

the presence of coherent vortices.

Since in the present flow the characteristic velocity is not constant due to the decay of
the turbulence, the viscosity ν instead of a Reynolds number has been used to formulate
the equations (2.1). All computations were done with ν = 2 · 10−3. Another frequently
used quantity is the eddy turnover time te = 1/

√
2Z.
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Fig. 1. Pseudo–spectral reference method. Top: Vorticity field at t = 0, t = 4. Bottom:

Vorticity at t = 8, Energy spectra at t = 0, 4, 8.

� Pseudo�spectral method

We have implemented a classical pseudo–spectral Fourier method as described e.g. in
[37]. It firstly serves as a reference method and second is employed for the generation
of a suitable initial flow field as described below.

3.1 Time scheme and space discretization

The employed time discretization is a semi–implict scheme of second order made up
of a BDF formula for the viscous term and an Adams–Bashforth extrapolation for the
convection term. It reads

(γ − ν∇2)ωn+1 =
4

3
γωn − 1

3
γωn−1 − v∗ · ∇ω∗ (3.1)
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Fig. 2. Spectral Fourier computation. Evolution of energy E, enstrophy Z, and average

wavenumber W .

with γ = 3/(2Δt), v∗ = 2vn − vn−1 and ω∗ = 2ωn − ωn−1. For start up a similar first

order scheme is used. This scheme has been thoroughly tested in [41] and has found
wide application for spectral methods. The same discretization has also been used in
the algorithms presented below. In all computations the time step was Δt = 10−3.

The Fourier discretization is based on the development (2.9) truncated at k = −N/2
and k = N/2 − 1. The velocity v and the gradient of ω are computed in Fourier space
by means of (2.10) and by multiplication with ik, respectively. The convection term is
then evaluated by the pseudo–spectral technique in physical space without dealiasing.

3.2 Initial condition

For the computation of decaying turbulence it is classical to use an initial condition

which has a spectrum close to the statistically steady case. We generated such a flow
field as described in [36] using Gaussian random numbers which allows to impose an
arbitrary energy spectrum of the initial state. We used the broad band spectrum

E(k) = c
k2

k60 + k6
e−k2/k2ν (3.2)

for k ≤ kf and E(k) = 0 for k > kf with k0 = 10, kν = 40, kf = 42, and the

constant c chosen to give E = 1/2 [26]. The wave numbers k0 and kν would correspond
in a stationary case to the wave number at which energy is injected and dissipated,
respectively. A suitable vorticity field to start the later computations is obtained by
using this state as initial condition and computing its evolution during a certain laps of

time, here during Tinit = 2 equal to about 8 initial eddy turnover times. The resulting
solution is well resolved and exhibits a smooth spectrum with the desired decay (see
Fig.1). It is used as initial condition for all the subsequent computations and is therefore
assigned the time t = 0.
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3.3 Results of the pseudo–spectral computation

Starting from the solution at t = 0 generated as described above we calculated the
evolution of the flow up to t = 8. The vorticity field at t = 0, t = 4, and t = 8 is
reported in Fig.1. The colour scale has been adjusted to account for the decrease in

amplitude and is the same for all subsequent pictures at a certain time.

It is obvious that in the course of time small vortices of equal orientation merge to larger
and larger ones. Coherent structures consisting of counter–rotating vortex pairs form
and become more and more pronounced. We also observe the rolling up of sheet–like

filaments around centers of vorticity concentration which is typical for such flows.

The energy spectra corresponding to the vorticity fields are also reported in Fig.1. The
energy at large wave numbers decreases and at small wave numbers increases which is
in accordance to the inverse energy cascade mentioned above. The enstrophy spectrum
behaves similarly without such an increase according to the enstrophy cascade. As in

many references we also find a spectrum which is steeper than the one predicted by the
theory of Kraichnan and Batchelor. The perturbation at the tail of the spectra could
be avoided by de–aliasing. We decided not to use this feature here to allow for later
comparison since it employs a finer grid not present in the wavelet computations.

Finally, we report the evolution of E(t), Z(t), and W (t) in Fig.2. The decrease of Z is
stronger than the one of E which is in accordance to the fact that dt(W

2) is negative.
At t = 8 the energy is 68% of its value at t = 0 while the enstrophy has decreased
to 12%. Following [5] the decay of Z should be proportional to t−2. However, our

computations yield a rate between t−2 and t−1 which has also been observed in [33] and
therein attributed to the temporal intermittency of the flow.

In summary we can state that the results of the Fourier pseudo–spectral method show
the same behaviour as reported in recent literature. They can therefore be used as
reference for the wavelet methods investigated below.

� Pseudo�spectral method with wavelet compression

4.1 Wavelet basis and wavelet representation

4.1.1 Multiresolution

In this section we briefly recall some required notions and refer the reader to textbooks
such as [35] for an exhaustive treatment of the theory of wavelets.

For ease of presentation we consider the two–dimensional 1–periodic torus TT 2 with
TT = IR/ZZ which will for the applications be rescaled to Ω = [0, 2π]2. Let us start with

the space of square–integrable functions on this domain L2(TT 2) with scalar product
〈f, g〉 =

∫
TT f(x, y) g(x, y) dx dy and norm ‖f‖22 = 〈f, f〉. A multiresolution analysis

(MRA) of this space consists of a ladder of imbedded subspaces V0 ⊂ V1 ⊂ V2 ⊂ . . .
with limj→∞ Vj = L2(TT 2) and V0 containing only constant functions. Each of these
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spaces Vj is spanned by regular shifts of a refinable function bj,

Vj = span{ bj(x− ix
2j
, y − iy

2j
) }ix=0,...,2j−1,iy=0,...,2j−1 . (4.1)

If these translates are mutually orthonormal the function bj is classically termed scaling
function and denoted by φj. If bj is interpolating, this function is a cardinal function
and denoted by Sj with

Sj(
kx
2j
,
ky
2j
) = δkx,0 δky ,0 , kx, ky = 0, . . . , 2j − 1 . (4.2)

One way to construct a higher dimensional MRA is to employ the tensor product of the
equivalent functions in a one–dimensional MRA [35]. In the present two–dimensional
case this means

φj(x, y) = φ̃j(x) φ̃j(y) , Sj(x, y) = S̃j(x) S̃j(y) (4.3)

where φ̃j and S̃j are the scaling function and the cardinal function of a one–dimensional
MRA, respectively.

Due to the periodicity constraint the usual scale invariance only holds approximately,

i.e.

φj+1(x, y) ≈ 2φj(2x, 2y) , j >> 0 (4.4)

with equality obtained in the limit j → ∞. Instead, exact recursions hold in Fourier
space

φ̂j,nx,ny(kx, ky) = 2 e−2 π i (kxnx+kyny)/2jφ̂j+1,0,0(2kx, 2ky) , (kx, ky) ∈ ZZ2, j ≥ 0.
(4.5)

4.1.2 Wavelets

An essential feature of the wavelet representation is to work with the orthogonal com-
plement spaces Wj = Vj+1 � Vj . These spaces are generated by regular shifts of wavelet
functions. For the present tensor product construction (4.3) Vj has 22j degrees of free-
dom, henceWj has 3.2

2j. It can be shown [35] that three different wavelets are necessary

to span Wj by shifts of 2−j in x and y. They read

ψε
j,ix,iy(x, y) =

⎧⎪⎪⎨⎪⎪⎩
ψ̃j,ix(x) φ̃j,iy(y) ; ε = 1

φ̃j,ix(x) ψ̃j,iy(y) ; ε = 2

ψ̃j,ix(x) ψ̃j,iy(y) ; ε = 3

(4.6)

with j ≥ 0 and ix, iy = 0, . . . 2j − 1. Here, ψ̃j is the wavelet corresponding to the one–
dimensional MRA generated by the functions φ̃j. Similar to (4.4) scale invariance only
holds approximately in physical space but is replaced by recursions in Fourier space
resulting from (4.5).
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...

Fig. 3. Representation of the wavelet coefficients for a two–dimensional MRA and illus-

tration of the applied neigbouring relation. The crosses and the dot designate the set N(λ)

with the dot representing the index λ.

The above orthogonal decomposition L2(TT 2) = V0⊕j≥0Wj can be used to represent any
function f ∈ L2(TT 2) as

f(x, y) = c0,0,0 φ0,0,0(x, y) +
∑
j≥0

2j−1∑
ix=0

2j−1∑
iy=0

3∑
ε=1

dεj,ix,iy ψ
ε
j,ix,iy

(x, y) (4.7)

where φ0,0,0 = 1. Recall that in the classical case all elements of the employed basis

{1, ψj,ix,iy} are mutually orthonormal with respect to the L2 scalar product. Conse-
quently the coefficients in (4.7) are c0,0,0 =

∫
TT 2 f(x, y) dx dy and dεj,ix,iy = 〈u, ψε

j,ix,iy〉.
In all computations below we employ exponentially decaying cubic spline wavelets.
Hence, S̃j is the periodic two–dimensional cardinal spline function with knot spacing

1/2j . The functions ψ̃ and φ̃ are the Battle–Lemarié spline wavelet and the corre-
sponding scaling function periodized as described in [38], [35]. For detailed graphical
illustration we refer to [11].

4.1.3 Wavelet transform

The practical computation of the wavelet representation (4.7) has to be restricted to
some fJ ∈ VJ with the sum over j extending only up to J − 1. In general no restriction
is applied to the shift indices ix, iy (see Section 5 for this feature in an adaptive dis-
cretization). If all coefficients for j = 0, . . . , J − 1 are to be computed the usual way is

to start from given values fix,iy at the points (
ix
2J
, iy
2J
). The function fJ is then defined by

a collocation projection imposing fJ(
ix
2J
, iy
2J
) = fix,iy . Subsequently the classical Mallat

algorithm is employed to first determine the coefficients dεJ−1,ix,iy and the remainder
of fJ which is in VJ−1. The latter contribution is decomposed again to determine the
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Fig. 4. Pseudo–spectral Fourier method with wavelet compression in each time step.

Solution at t = 4 with ε = 10�5 (left) and ε = 10�4 (right). Top: Vorticity fields. Bottom:

Spectra of energy and enstrophy.

coefficients dεJ−2,ix,iy and so on down to j = 0. Due to the constant shifts of 1/2j on
each level j and the periodicity of fJ and all its components in (4.7) the computations
are most conveniently executed by FFT (cf. remarks in [21]). This is no longer the case

for an adaptive wavelet basis as used in Section 5. The inverse transform which consists
in determining the values fJ (

ix
2j
, iy
2j
) from the coefficients in (4.7) proceeds in reversed

order, again via fast convolutions by FFT.

4.1.4 Graphical representation of the coefficients

Let us finally recall a widely applied scheme for the representation of wavelet coefficients
in two dimensions. The amplitude of dεj,ix,iy is positioned at the point (x, y) with x =
2j(1 − δε,3) + ix and y = 2j(1 − δε,1) + iy. Fig.3 illustrates the resulting diagram. The
lines separate regions with different j and different ε. The square in the lower right
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corner contains the coefficients of the “diagonal wavelets” on the finest scale, d3J−1,ix,iy
.

The square above it contains the “horizontal coefficients” of the same scale, those with
ε = 1, and the square left of it the “vertical coefficients” of this scale with ε = 2. The
next smaller boxes contain the coefficients of scale J − 2 in a similar manner and so
forth.

4.2 Wavelet compression

The orthogonality of the wavelet basis introduces an intimate relation between the L2–
norm of a function f and its wavelet coefficients

‖f‖22 = (c0,0,0)
2 +

∑
j≥0

2j−1∑
ix=0

2j−1∑
iy=0

3∑
ε=1

(dεj,ix,iy)
2 (4.8)

Other equivalences relating a certain norm to the wavelet coefficients can be obtained by

weighting the latter in a different way [35]. Hence, modifying a coefficient in a wavelet
expansion, e.g. by setting it to zero, can directly be related to the resulting difference in
the norm. Leaving out small coefficients in (4.7) will therefore only introduce a minor
error of f with respect to the L2–norm. Wavelet compression of data or a function aims

at determining a good approximation with a small number of degrees of freedom: Start-
ing from a function f the projection onto fJ and wavelet decomposition are executed as
described above. Next, all coefficients with absolute value smaller than some prescribed

tolerance ε are eliminated. The resulting coefficients correspond to a function close to
f but generally with highly reduced storrage cost. Let us mention that there exists a
well–developed theory relating the linear and non–linear approximation of a function
in terms of wavelets to the global and local smoothness of this function [35],[10]. For

practical use these results can however only give qualitative hints as they are concerned
with the asymptotic behaviour for j → ∞.

An important property of the functions ψ is their simultaneous localization in space
and frequency. Consequently, the coefficient dεj,ix,iy monitors the oscillation of f with
frequency around ξ = 2j near the point (ix/2

j , iy/2
j) – horizontal, vertical or diagonal

according to ε (cf. the illustration in [11]). In terms of wavelet representation and com-
pression we can therefore retain that any action on a coefficient, e.g. its elimination,
has only local effect in space and frequency which is in contrast to the Fourier represen-

tation. It allows to distinguish between coherent structures and intermediate filaments
whereby accounting for intermittency of a flow is possible.

4.3 Computational approach

In [14] it has been conjectured that the dynamically active structures in a turbulent

flow correspond to the large wavelet packets coefficients while the passively advected
part of the flow is represented by the remaining small coefficients. The use of wavelet
packets instead of wavelets in this reference is of minor importance (recall that wavelets
are a subset of wavelet packets). The two parts have been separated in an initial
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Fig. 5. Wavelet compression in each time step. Evolutions obtained with ε = 10�4,

ε = 10�5, and ε = 0 (reference). Left: Energy. Right: Enstrophy.

turbulent flow field with different compression rates. Then the evolution with and
without the presence of active and passive components has been studied employing a
pseudo–spectral method similar to the one described in Section 3. By comparison it has
been shown that the wavelet packet representation is much more adapted to the physics

of turbulence than the Fourier basis because of its locality in space. It can account for
the concentration of vorticity in small parts of the domain which is characteristic for
the considered flows. However, the separation has been done only once, namely at the
beginning of the evolution. The role of active and passive components at later stages

could not be examined.

In Section 5 we shall present results obtained with an adaptive wavelet discretization
computing only the large wavelet coefficients of the vorticity field. As an intermediate
step we investigate the same flow with the Fourier method supplemented by a wavelet

compression in each step: the pseudo–spectral method is applied as above, in each
time step a wavelet transform is executed, coefficients smaller than the tolerance ε are
eliminated before the solution is transformed back to physical space to continue with
the next time step.

4.4 Results of wavelet–compressed pseudo–spectral method

The Fourier algorithm with wavelet compression has been applied to the initial condition
used in Section 3.3. The resulting vorticity fields for tolerances ε = 10−5 and ε = 10−4

at time t = 4 are depicted in Fig.4. Comparing these with the results of the original
Fourier method in Fig.1 (ε = 0) we find good qualitative agreement. As expected the

result is better for smaller ε. Let us also mention that with ε = 10−3 (not shown here)
the dynamics of the flow are lost. The spectra of energy and enstrophy are reported
as well in Fig.4. Although for larger k the difference with respect to the uncompressed
computation becomes visible the spectra do not exhibit substantial deviations from the

13



reference solution. As in each time step the wavelet coefficients of the vorticity below

the prescribed tolerance are set to zero it is not astonishing that enstrophy is lost in
the course of time. In Fig.5 we therefore also represent the evolution of energy and
enstrophy. At t = 4 a deviation from the Fourier computation of −2.1% and −2.7%
is observed with ε = 10−5 and ε = 10−4, respectively. Also for the energy E(t) the

behaviour is qualitatively the same yielding a relative difference of −2.1% and −2.9%
at t = 4 in these computations.

The above results constitute a further step with respect to [14] where only the initial
state of the turbulent flow field has been compressed. In the present study wavelet

compression is repeated in each time step. We show that the conclusion of [14] remains
valid and that the essential dynamics of the turbulent flow field are represented by the
strong wavelet coefficients of the vorticity.

4.5 Conservation properties

The elimination of enstrophy during the compression step – although it remains very

small – raises the question of a possible cure to this unphysical loss. This, however,
would require a means for “re–injecting” the enstrophy which is represented by the
neglected coefficients into the retained ones. It amounts to devising a model which

in some sense realizes a sort of forcing for the flow. Since there is a large variety of
possible choices which requires detailed investigation we did not attempt to implement
such a device here. Studies concerned with forcing in wavelet coefficients space to
obtain a statistically stationary turbulent flow are currently under way and seem to be

promissing, but this topic is beyond the scope of the present paper.

	 Adaptive wavelet discretization

5.1 Numerical Scheme

In Section 4 the wavelet representation has been described and wavelet compression
of a function has been employed to compress ωn+1 in each time step. In [21], [23]

we have developed an adaptive discretization scheme for the sollution of elliptic PDEs
and applied it to reaction–diffusion equations. With an appropriate semi–implicit time
scheme this algorithm can now be extended to solve (2.1)–(2.2) directly in a wavelet
basis. This amounts to restricting the full index range for λ = (j, ε, ix, iy), j < J ,

denoted ΛJ , to some subset Λ ⊂ ΛJ . If the number of indices in Λ is smaller than
2jmax+1, where jmax is the finest scale in Λ, the elements designated by Λ are termed
’lacunary basis’. In an adaptive method the set Λ generally is of this type and changes
in time. Hence, at each time step n the vorticity is represented as

ωn(x, y) =
∑
λ∈Λn

dnλ ψλ(x, y) (5.1)
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Fig. 8. Adaptive wavelet computations with ε = 10�4 and ε = 10�5. Left: Evolution of

energy. Right: Evolution of enstrophy.

with the appropriate adjustments to include the coefficient c0,0,0 in this sum. In fact for

the present application this contribution can be disregarded if initially zero.

From the algorithmic point of view an adaptive numerical discretization of a PDE has
to contain the following elements:

(i) error estimation.

(ii) adaption of the discretization according to (i).

(iii) assembly of the system to be solved.

(iv) solving for the unknowns.

Part (i) and (ii) are implemented in a way which has become classical for wavelets [30],
here extended to two dimensions. Starting from a representation with index set Λn (at

t = 0 this is the full set) those coefficients with | dλ |< ε are eliminated to generate a
set Λ∗ containing the remaining indices. The index set for the next time step Λn+1 is
then made up of the union of the set of neighbours N(λ) (also containing λ itself) with
λ ∈ Λ∗. The set N can be chosen in different ways. We used a definition obtained by

modifying each of the indices j, ε, ix, iy by one as illustrated in Fig.3. The coefficients
with indices in Λn+1 are then to be computed. This procedure ressembles blow up and
skeleting in image processing and allows to follow an unsteady solution. Furthermore,

assuming the usual (asymptotic) decay of the wavelet coefficients, as e.g. known for
differentiable functions, an estimate of the discretization error in space can be obtained
by means of the coefficients in Λn \ Λ∗.

Let us now consider the elements (iii) and (iv) of the algorithm. In each time step eq.
(3.1) has to be solved for ωn+1 represented according to (5.1). For simplicity we write
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L = γ − ν∇2 and designate the r.h.s. of (3.1) by f . A Petrov–Galerkin method with

trial functions ψλ and test functions θλ then yields∑
λ∈Λn+1

dn+1
λ 〈Lψλ, θλ′〉 = 〈f, θλ′〉 , ∀λ′ ∈ Λn+1 . (5.2)

Requiring a sufficient number of vanishing moments for the functions ψλ (recall that by

definition a wavelet has at least one vanishing moment) allows to define θλ = (L−1)∗ψλ

[30] and determine these in a stable way. With this choice of test and trial functions
the matrix on the l.h.s. of (5.2) reduces to the unit matrix due to the orthogonality of
the wavelet basis. Hence, step (iv) becomes trivial.

The remaining step (iii) with the computation of the scalar products 〈f, θλ′〉 is the

most difficult one due to the restriction of λ to Λn+1. A truely adaptive method is
characterized by the fact that the coefficients dλ are not computed for λ �∈ Λn+1 (and
subsequently canceled). This excludes the use of FFT as employed in Section 4 and

raises technical difficulties. In [22], [23] we have devised and analyzed a hierarchical
algorithm for the computation of the coefficients in a lacunary wavelet basis. It is based
on the bi–orthogonal operator–adapted functions θλ and μλ = Lψλ. The later generate a
MRA of which the cardinal function is used to accomplish the decomposition. It makes

use of hierarchical collocation on partial grids with spacing 1/2j successively coarsening
from j = J down to j = 0. The algorithm has linear operation count which results from
the truncation of the involved filters to finite length. This in turn is possible due to the
localization of the wavelets as well as the other deduced functions in physical space.

In summary one time step consists of the following operations (the required filters being

computed in pre–processing):

0. given coefficients dλ, λ ∈ Λn.

1. determine Λn+1 via Λ∗.

2. determine the quadrature points required for the later evaluation of 〈f, θλ′〉.
3. inverse adaptive wavelet transform to determine ωn at these points.

4. evaluation of the r.h.s. f at the quadrature points.

4. computation of dn+1
λ = 〈f, θλ′〉.

Further details and analysis can be found in the cited references. Let us mention that

at present the non–linear term in the r.h.s. of (3.1) is evaluated by FFT using (2.10)
and derivation in Fourier space. This will be modified in the near future.

5.2 Results of adaptive wavelet simulations

Starting from the same initial condition as used for the previous cases the evolution of
the flow field has been computed by the adaptive wavelet method up to t = 8. As before
we used tolerances ε = 10−4 and ε = 10−5 which were constant within each run.
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For the initial condition the compression rate is not very high since a large number

of coherent structures are present. The intermittency of this state is low. With both
values of ε almost all of the 16384 possible degrees of freedom are retained at t = 0. As
described and illustrated above the intermittency increases in the course of the evolution
of the flow field. Hence, at later stages the number of active coefficients decreases and

the impact of the adaptive wavelet representation becomes stronger.

Fig.6 shows the vorticity field obtained at t = 4 and t = 8 with ε = 10−5. The solution
does not exhibit a visible difference with respect to the reference solution in Fig.1. The
computed wavelet coefficients are depicted below the vorticity fields. At t = 4 their

number is 8115, i.e. 50%, and at t = 8 it is 4723, i.e. 29%, respectively. The spectra
E(k) and Z(k) which are represented as well do not show any significant difference
compared to the reference values. Hence, all scales are well resolved with a reduced
number of degrees of freedom.

In Fig.7 we represent the same graphics as in the previous figure, now obtained with

ε = 10−4. Consequently less degrees of freedom are used, namely 2277 at time t = 4
and 1362 at t = 8, respectively. At t = 4 we still observe a good agreement between
the computed solution and the reference run although only 11% of the full coefficient

set are used. However, at t = 8 with 8% of the coefficients the dynamics of the flow are
destroyed. The local structure of the vorticity exhibits differences, although the global
structure is conserved. These observations are supported by the related spectra. They
exhibit deviations in particular for high wave numbers, larger at t = 8 but still similar

to the reference solution at t = 4.

Let us mention that the maximal resolution of 1282 degrees of freedom in the present
computations is fairly low. This limits the mean square wavenumber W or in other
words the Reynolds number. Hence the turbulent fluctuations decay relatively fast
leaving little time for the generation of intermittency during this process. Consequently

the observed compression rates have to remain moderate. For larger Reynolds numbers,
i.e. higher resolution, the impact of adaptivity will become more pronounced as can be
infered from comparison of the reported vorticity fields to results obtained with higher

resolution and/or hyperviscosity showing stronger intermittency of the flow, e.g. [25].

5.3 Evolution of energy and enstrophy

Complementary information to the figures discussed so far is given by the evolution of
E(t) and Z(t) in Fig.8. The result of the Fourier computation is inserted for comparison.

Similarly to the computations with wavelet compression we observe a loss in E and Z
in the course of time. However, it is much smaller than for the pseudo–spectral method
with wavelet compression. Taking e.g. the case with ε = 10−5 we recognize that at t = 4
the difference is only 0.17% in energy and 0.93% in enstrophy. At t = 8 these values

are 0.28% and 0.45% for energy and enstrophy, respectively. A possible explanation of
these results is that in contrast to the spectral method with wavelet compression the
wavelet coefficients are now computed in an adaptive basis with locally refined grids for
quadrature. We conjecture that the slight aliasing error introduced by the truncation
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of the filters redistributes the enstrophy over the scales. On the other hand the initial

“cloud” of coefficients is followed during the evolution without setting any coefficient to
zero. If an index λ ∈ Λn is not retained in Λn+1 its coefficient is still present in the r.h.s.
of the time stepping in our algorithm. Hence it might as well be that this procedure is
responsible for the different behaviour. Another influence may stem from the difference

in the cascades for both quantities. Enstrophy is transfered from small wave numbers
to large wave numbers so that an error in representing the vorticity by the computed
wavelet coefficients is transfered to large wave numbers as well where it goes into small

coefficients and leaves the adaptive basis. On the contrary the cascade for energy is
inverse so that errors committed on fine scales propagate to small wavenumbers and
may accumulate. This point requires further investigation.


 Conclusion

The method presented in this paper exploits the properties of wavelets in different
ways. From the algorithmic point of view an adaptive wavelet discretization yields a
sparse and economic representation of the solution. The hierarchy of the basis yields
error estimations and hierarchical algorithms. Orthogonality and vanishing moments

are a prerequisite for the employed test functions in the Petrov–Galerkin method. Of
course, it would be convenient to have one single wavelet function instead of three, but
constructions with all the required properties are currently not available.

The physical motivation for representing turbulent flow fields with pronounced coherent

structures in terms of wavelets has been sketched in the introduction. The performed
computations show that the extraction of coherent vortices is quite reliable – deter-
mined by only one parameter, the tolerance ε. Here, one might in the case of decaying
turbulence also try to use a temporally varying value. The computations illustrate also

how the active wavelet basis functions representing the vorticity field accumulate in the
coherent structures, more precisely at locations where the spatial derivatives of ω are
large. This is due to the vanishing moments of these functions. On the other hand, local
gradients of the vorticity determine the local transfer of energy and enstrophy from scale

to scale which is essential for turbulence.

The computations with a pseudo–spectral method and wavelet compression support this
picture. Even when compressing the vorticity field in each single time step the turbulent
dynamics are well captured provided that this is not done excessively. Of course, we do

not advocate this approach for running large scale computations as it involves only losses
in terms of precision and CPU time with respect to the pure pseudo–spectral method.
Rather, its consideration is usefull in comparison to the adaptive wavelet method. In
this new algorithm, only the required wavelet amplitudes are computed. Obviously

their relative number reduces for increasing intermittency. Related studies with higher
resolution and lower viscosity are currently under way. Further perspectives are the
inclusion of new physical models such as forcing in wavelet space and the relation to
shell models.
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