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Abstract We present Multilevel Finite Element computations for twodimen-
sional reaction-diffusion systems modelling laminar flames. These systems are
prototypes for extreme stiffness in time and space. The first of these two rather
general features is accounted for by an improved control mechanism for the time
step. The second one is reflected through very thin travelling reaction fronts for
which we propose an anisotropic discretization by local directional refinement.

1 Introduction

Adaptive hierarchical finite element methods have been proposed to solve PDEs
with highly non-uniform solution [4]. They employ a hierarchy of nested finite
element spaces constructed from coarse to fine levels. By repeated application of
solving, error estimation, and local refinement the final grid is well adapted to the
required solution. Furthermore, computing the solution on grids of different scale
speeds up the iterations on each level due to the related multilevel decomposition.
The method has shown to be satisfactory in terms of flexibility with respect to
the equations to be solved, the boundary conditions and the geometry.

The basic MLFEM (Multilevel Finite Element Method) concept for elliptic
PDEs has been applied to linear parabolic PDEs using a time-space (TS) discreti-
zation sequence [3]. It proceeds in reversed order with respect to the Method of
Lines, the classical space-time (ST) discretization sequence, and also allows addi-
tional adaptivity in time. This has further been extended to systems of nonlinear
one- and twodimensional problems using linearly implicit Runge-Kutta methods
[11], [10]. An adaptive time discretization involves an algorithm proposing a time
increment for the next step. In the present paper we apply a method from [8] and
show that an improved control mechanism of the time step yields nonnegligible
savings with almost no extra cost.

Another and more difficult topic for MLFEM is the refinement strategy in the
presence of an unsteady anisotropic solution. Current strategies for triangular
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grids (“red” refinement, longest edge bisection etc.) aim at reducing the step
size of the grid in all directions simultaneously. In this way it is relatively easy
to fulfil the maximum angle condition [1] required for satisfactory approximation
properties of the FEM. (Bad conditioning due to decreasing minimal angle is
generally remedied by appropriate preconditioning.) The resulting discretizations
are versatile and robust, however, they are sub-optimal in cases where refinement
is not required in all directions. A prototype example for such a situation is
constituted by propagating reaction fronts which we shall consider in the present
paper. They exhibit extreme steepness in normal direction, i.e. the direction
of propagation, whereas the solution is almost constant in tangential direction.
In such a case one would like to use a refinement technique reducing the mesh
width only normal and not tangential to the front. Several strategies can be
employed, but up to now this problem does not seem to be satisfactorily solved.
We will briefly discuss the encountered difficulties and propose a compromise
between improved discretization with a reduced number of degrees of freedom
and increased computational overhead.

2 Basic algorithm

Let us shortly recall the main features of the method referring to [10], [7] and the
references therein for further information. It has been developed and implemented
in the code KARDOS for second order parabolic problems of the form

P (x)∂tu+ A(∂x, x)u = F (u),
u(0, x) = u0(x),

(1)

where u is the d−dimensional vector of dependent variables and x ∈ Ω ⊂ R
2. P

is an x-dependent d × d-matrix and A is a linear elliptic differential operator of
second order with respect to the spatial variable x. The computational domain
Ω is bounded and appropriate boundary conditions on ∂Ω are assumed to be
incorporated into the operator A. In the present applications the functions u, u0

and F are vectors of two real functions. We consider the so-called thermodiffu-
sive equations, see e.g. [15], describing the propagation of a laminar flame in a
premixed atmosphere neglecting the gas expansion

∂tθ − ∇2θ = ω (2)

∂tY − 1

Le
∇2Y = −ω (3)

where the Lewis number Le is the ratio of diffusivity of heat and diffusivity of
mass. We use a simple one-species reaction mechanism governed by an Arrhenius
law

ω =
β2

2Le
Y e

� β(1�θ)
1+α(1�θ) . (4)
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With an appropriate choice of the parameters and the boundary conditions these
equations constitute severe test cases for numerical solution schemes [13]. Below
we use β = 10, α = 0.8.

Employing a MLFEM to an unsteady problem it is convenient to discretize
first in time then in space. This takes account of the fact that the main complexity
of the problem appears in space. The latter can be dealt with more easily since
the grids are independently adapted in each time step as opposed to the ST-
discretization sequence. (A thorough comparison of both approaches can be
found in [5].) In [11] a singly diagonally linearly implicit Runge-Kutta method
of order three performed best. It reads(

1

γ τn
P − ∂uf(un�1)

)
lj =

f(un�1 +
∑j�1

i=1 aji li ) +
1
τn

P
∑j�1

i=1 cji li

(5)

un = un�1 +
3∑

j=1

bj lj . (6)

with
f(u) = F (u)− A(∂x, x)u (7)

and suitably chosen values for the coefficients γ, aji, cji and bj [14]. Replacing

the coefficients bj in (6) by different coefficients b̂j a second order solution ûn

can be obtained. Employing an appropriate norm [7] the difference between both
solutions εn = ‖un − ûn‖Ω satisfactorily estimates the error introduced by the
temporal discretization. If εn is larger than some tolerance TOLt, the solution
un is rejected and the step is repeated with a reduced time step τn.

For each stage value lj in (6) an elliptic problem (5) has to be solved with
appropriate boundary conditions. For reasons of efficiency the same grid is used
for all stages j = 1, 2, 3. The MLFEM in space then starts from an initial tri-
angulation T0 resolving the geometry of the problem. In the basic algorithm the
successively finer grids Tk, k = 1, 2, 3, . . . are then constructed by local “red”
refinement, i.e. by dividing a triangle into four congruent smaller ones. We use
a conformal discretization with linear trial functions and apply “green” refine-
ment (bisection) to avoid slave nodes. “Red” refinement yields nested FE spaces.
In order to avoid grid degeneration “green” closures are removed before further
refinement. Of course, the nesting does no longer hold for such elements, but
it causes no practical problems. On each level the solution is obtained itera-
tively employing BICGSTAB with SSOR preconditioning. Since an estimation
procedure for the spatial error involving all stage values would be too costly,
a first order solution uk

Euler is constructed from lk1 on the grid Tk and used for
this purpose. The employed error estimation is then based on the solution of
local subproblems determining an approximate local residual [2]. Fig. 1 gives an
overview of the basic algorithm, by means of a flow diagram.
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Figure 1: Flow chart for the time-space adaptive solver KARDOS.
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3 Time control

From a global tolerance TOL suitable tolerances for the error in space and the
error in time are deduced through TOLt = TOL/2, TOLx = TOL/3 [7]. Based
on the error in time εn�1 of the previous time step a value for the new time
increment is classically chosen according to

τn := ρ

(
TOLt

εn�1

)1/3

τn�1 , (8)

where ρ denotes a safety factor. The exponent in (8) results from the cubic model
for the local error in time. Unfortunately, this mechanism often leads to a nons-
mooth behavior of the time integration process. For instance, after a drastic step
size reduction the corresponding error εn�1 becomes very small. Consequently,
the proposed new time step will be too optimistic leading to repeated rejections.
A possible remedy is to smooth the step size selection using a PI-controller as
introduced in [8] for implicit methods. It takes the form

τn := ρ
τn�1
τn�2

(
TOLt

εn�1

εn�2
εn�1

)1/3

τn�1 (9)

and is used in cases of more than two successively accepted time steps. If time
steps are rejected, relation (8) is used with several modifications.

To illustrate the above remarks we solve equations (2), (3) in the onedimen-
sional case with Le = 2. This Lewis number generates an unregularly oscillating
propagation of the flame [13]. The adaptive selection of the time step in our
method takes this into account and reduces or increases the step size accordingly.
Fig. 2 shows the employed values over several oscillations with TOL = 10�3.
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Figure 2: Selected time step τn versus n for the onedimensional oscillating flame
and t = 0, . . . , 100

The time step varies over more than two orders of magnitude. Fig. 3 depicts a
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zoom of this plot during acceleration of the flame. It reveals that computational
effort is wasted since many computed solutions have to be rejected for reasons of
precision. Employing (9) instead of (8) yields a figure which is almost identical to
Fig. 3, since the accepted time steps reflect the physics of the problem, but where
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Figure 3: Selected time step τn versus n for a critical phase of acceleration
t = 6.83, . . . , 9.03 employing the P-controller (8). The squares indicate soluti-
ons computed with the related time step which had to be rejected. The time
increment was too large and thus generated an error in time larger than the
prescribed tolerance.

no computed solutions have been rejected. The resulting reduction in CPU time
was about 20% for the entire run. For smaller TOLt the effect is less pronounced.
Although the observed saving is not extremely large it should be recalled that
it has been obtained with merely no cost and that it makes the algorithm more
robust in situations with sudden changes in time.

4 Anisotropic refinement

Classical MLFEM algorithms start from a solution-independent coarse grid. It
has to capture the geometry and has to yield a solution which permits to adequa-
tely determine the required refinement. The classical strategy furthermore does
not remove or shift points or edges since aiming at nested FE function spaces.
Considering an anisotropic solution in form of a front we observe the following
fact. In order to respect the maximum angle condition mentioned in the intro-
duction with narrow spacing normal to the front and wide spacing in tangential
direction an optimal grid would have the points aligned in the direction of the
gradient with large distances normal to the gradient. By construction such an
optimal grid can not be achieved through classical subdivision of coarse triangles
not containing this directional information.
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Different strategies can be devised to cope with the dilemma. One is to gene-
rate a solution dependent coarse grid. For unsteady problems the solution un�1

of the previous time level can be used for this task. The coarse grid is then
doted with directional information on the solution. This anisotropy is subse-
quently inherited by the finer grids generated through subdivision in the induced
nonuniform metric. Since the coarse grid contains only relatively few points its
generation is possible with very low cost, e.g. by the method described in [12].

Even if this strategy seems appealing we choose a different approach here for
the following reason. During the solution of (5) the result of the previous time
level un�1 has to be interpolated permanently from the old grid to the grid of the
new time level (recall that it is not only required for the r.h.s. in (5) but also for
the Jacobian etc.). If both grids are generated from the same coarse grid and if
they use the same tree structure, just with a locally different depth, search and
interpolation between both solutions can be implemented very efficiently. This
is ensured by the classical refinement procedure described above. As soon as the
coarse grid or the tree structure are not longer the same this task becomes much
more intricated. We therefore apply a special treatment only in regions where
the higher computational overhead is justified by the improved discretization. In
[9] an anisotropic discretization method has been proposed and applied to the
FE approximation of a discontinuous function. It consists of two parts: a) a
multilevel shock fitting procedure which optimizes the location of newly inserted
points in the vicinity of a shock by shifting them along the edges, b) a directional
or “blue” refinement. Due to the high complexity of the shock fitting part we
retain here only the directional refinement which is defined as follows (see Fig.
4). Two neighboring triangles generating a convex quadrangle are divided into
four triangles by 1) removing the common diagonal, 2) selecting a direction of
refinement, 3) dividing the two opposite edges pointing (approximately) in this
direction and joining them by a new edge, 4) dividing the resulting quadrangles
into two triangles. This is done by connecting the newly inserted points with their
opposite node in order to conserve the orientation of the edges in each triangle
(slave nodes are avoided by “green” or “red” closures). Note that this procedure
is exactly equivalent to bisection of the original triangles with subsequent swap
of the diagonal, a classical technique for grid enhancement. Furthermore, we
observe that the FE spaces are not nested with this refinement rule.

In order to efficiently decide where to apply “blue” refinement we define a
line along which the maximum gradient is supposed to appear (see Fig. 4) [9].
In many applications such a criterion can be furnished from physical reasoning.

In the computations (see Fig. 5) we choose a level line of the temperature
T = Tblue = 0.8 as this quantity is normalized to [0, 1] and the maximum slope
for a onedimensional plane front is known to appear around this value for the
employed parameters. Instead of determining the gradient of the solution all over
the domain and then deciding where and how to apply directional refinement we
first limit the region for such candidates to the triangles intersecting with the
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Figure 4: “Blue” refinement along a level line. Top: initial grid with a level line
crossing a set of triangles that are “blue” candidates. Bottom: resulting grid
after “blue” refinement.

chosen level line (if the reaction rate is not vanishing at these locations). Several
criteria are then used to determine which common edge is to be removed and
which edges should be refined. The whole algorithm combining isotropic (“red”)
and anisotropic (“blue”) refinement from Tk to Tk+1 reads as follows: 1) remove
all “green” closures, 2) according to the estimated error mark a certain set of
triangles Rk ⊂ Tk for refinement, 3) search for candidates to “blue” refinement
in Rk according to the above criterion, 4) determine the direction of the gradient
and apply the anisotropic refinement, 5) apply “red”refinement to all remaining
triangles in Rk, 6) and avoid slave nodes by further “red” or “green” refinement.

In Fig. 5 the above refinement procedure has been applied to the computation
of a twodimensional flame with Le = 1 traversing a cooled obstacle modelled
through the boundary condition ∂nθ = kθ, k = 0.1 [7]. The right-travelling
flame is shown after leaving the obstacle. The upper part of the figure has been
computed with the standard refinement procedure, the lower part with local
directional refinement. The resulting number of grid points is N = 3124 with
only the “red” refinement and N = 2367 with partial “blue” refinement while the
achieved accuracy of the solution is similar (TOL = 5·10�3 in both cases). Fig. 6
depicts a zoom of the grid with directional refinement. The employed temperature
level line is included for illustration. The CPU time for both computations can
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Figure 5: Flame computation with partial directional refinement. Top to bottom:
a) grid with isotropic refinement at t = 60 with N = 3124, b) temperature level
lines obtained with grid in a), c) grid with local “blue” refinement at t = 60 with
N = 2367, d) temperature level lines obtained with grid in c).

not be compared on a fair basis since the more involved data management for the
directional refinement has not yet been implemented with the same sophistication
as the classical method.

In summary, the need for anisotropic discretization is obvious from the pre-
sented computations. The proposed method constitutes a step in this direction
within the framework of a MLFEM. However, it still deserves improvement with
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Figure 6: Zoom of Figure 5c around the flame surface in the middle of the channel.

respect to coding and to the criterion for “blue” refinement.
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