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Abstract

We present a general technique for constructing nonlocal transparent bound-
ary conditions for one-dimensional Schrödinger-type equations. Our method
supplies boundary conditions for the �-family of implicit one-step discretizations
of Schrödinger’s equation in time. The use of Mikusiński’s operator approach in
time avoids direct and inverse transforms between time and frequency domains
and thus implements the boundary conditions in a direct manner.



1 Introduction

This paper is concerned with the construction of transparent boundary conditions
for evolution partial differential equations of the type

∂tu = − i

c

(
∂2
xu+ V (x, t)u

)
, x ∈ R, t > 0 (1)

u(x, 0) = u0 .

Here c is a real constant and V (x, t) denotes the potential to be specified later.
Prototypes of this equation are the Schrödinger equation for an electron with mass
m0

ih̄∂tΨ = − h̄2

2m0
∂2
xΨ+ V (x, t)Ψ

and Fresnel’s equation for the evolution of an paraxial electrical field E along the
z-direction in a Cartesian coordinate system

2in0k0∂zE = ∂2xE +
(
n2(x)− n20

)
k20E .

The evolution equation (1) is defined in the infinite domain Ω = {x, t ∈ R | t > 0},
where the physical boundary conditions are imposed. For example, if u0(x) has
support only in a finite interval and ‖u0(x)‖L2 is bounded, we expect that u(x, t)
must vanish if x → ±∞ at any time t > 0. For practical purposes, however,
the required computational effort is limited by the fact that we wish to compute
the solution of (1) only in a finite sub-domain of Ω in order to examine the time
evolution in the surrounding of a specified object. In our 1D-case, we accordingly
separate the infinite domain Ω into three slab-like parts: an interior domain of finite
thickness Ωi = {x, t ∈ R | xl ≤ x ≤ xr , t > 0} containing the physically relevant
part of the solution and two neighboring slabs of infinite thickness Ωl = {x, t ∈
R | x ≤ xl , t > 0} and Ωr = {x, t ∈ R | x ≥ xr , t > 0}. The general question
is then how to transform the zero-boundary conditions at infinity to the boundary
conditions at the boundaries of the interior domain.

There are a large number of methods for constructing such boundary conditions,
a few of which are discussed below. The methods can be grouped into two classes:

Artificially absorbing layers. One set of simple but powerful boundary con-
ditions continuously modify the potential functions in the exterior domain in order
to simulate a physical absorber. The parameters have to be adjusted such that
backward diffraction from the absorber is small over a prescribed spectral range
(e. g. Kosloff and Kosloff [6] or Yevick [9]. The main advantage of such an
approach, as has been remarked by a large number of authors, is its simplicity for
two and three-dimensional problems.

Approximate solutions in the entire physical domain. A second class of
methods is obtained by analytically constructing boundary conditions in such a man-
ner that the solutions in the interior domain approximate as accurately as possible
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the whole-space solution of the evolution equation. Following the pioneering work
of Engquist and Majda [3] on hyperbolic equations, a number of approximation
techniques have been proposed for mixed parabolic-hyperbolic systems (Halpern,
[4]) or parabolic equations (Hagstrom, [5]). In these papers, by Laplace transform-
ing in time the partial differential equation is converted to an second-order ordinary
differential equation, which is then solved allowing only for decaying modes in the
exterior domains. After transforming into the time-domain the resulting transpar-
ent boundary conditions in general become nonlocal in time but are local in space.
Computationally advantageous approximations that require little additional com-
putational effort are then obtained by applying a rational approximation to the
dispersion relation in the dual frequency domain.

However, for problems in which minimizing the magnitude of the reflected field is
more important than computational cost, nonlocal boundary conditions are gener-
ally advantageous. The twomain categories of nonlocal conditions are, first, methods
in which the continuous problem is solved first and then discretized with respect to
time, as suggested by Baskakov and Popov [2]. However, such approaches may
lead to numerical instabilities. Alternatively, the analytical problem can be consis-
tently formulated for discrete time. In this manner, Arnold[1] compose a boundary
condition which incorporates both a uniform space and a uniform time discretiza-
tion. In contrast, the approach by Schmidt and Deuflhard [8] supposes a given,
possibly nonuniform, time-discretization and solves the related exterior ordinary
differential equations in the spatial domain with the aid of the Laplace transform.
We will label this approach the semi-discrete method. The advantage of the latter
procedure is that the exterior space problem is solved exactly and independently
of the solution method for the inner problem. Accordingly, the formalism may be
easily extended to non-uniform interior discretizations and adaptive methods. On
the other hand, Arnold’s technique should generally be advantageous in simulations
of wave propagations on uniform grids since reflections due to space-discretization
effects are fully eliminated.

In this paper we demonstrate that the semi-discrete approach can encompass a
uniform time-discretization in a consistent fashion, generating a simple, yet highly-
accurate transparent boundary condition. Further we show that this approach may
similarly be extended to a uniform space-discretization of the exterior domain and
thus to the full discrete case. Our procedure employs both Laplace and Z-transforms
in the space variable (and not in time) and the Mikusínski representation [7] of the
time-discrete problem. We can accordingly construct the desired boundary condi-
tions directly without transforming from the dual to the original domain.

In our analysis, we assume the following two properties of the domain decompo-
sition and the potential function.

• u0 is supported in Ωi

• V (x, t) = const for (x, t) ∈ Ωl and for (x, t) ∈ Ωr,
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While the first of these conditions is not required, it significantly simplifies the
analysis by allowing us to assume the asymptotic behavior u(x, t) → 0 if x → ±∞
for any time t > 0. The second condition, which can in fact be replaced by the
weaker form V (x, t) = V (t) as in [8], is satisifed by many practical problems and
thus has similarly been chosen to permit a compact solution. Let us rewrite (1) as

∂tu = f(u, t) , (x, t) ∈ Ω

lim
x→±∞u(x, t) = 0 .

To solve this equation numerically, we apply the implicit one-step discretization
method

ui+1 − ui = τf (θui+1 + (1− θ)ui, ti + θτ)

τ = ti+1 − ti , i = 0, 1, . . .

0 < θ ≤ 1 .

Using the definition of f(u, t) from (1), we obtain

ui+1 − ui = −i
τ

c

(
(∂2

x + V )(θui+1 + (1− θ)ui)
)
. (2)

The notation above will be particularly useful in our later implementation and sta-
bility analysis of the transparent boundary conditions in § 3.3 and § 3.4. However,
for constructing transparent boundary conditions, the following sequence of ordinary
differential equations resulting from the time-discretization of the underlying partial
differential equation, is more convenient:

∂2
xui+1 − λ2ui+1 = −Θ∂2xui + κ2ui . (3)

Θ =
1− θ

θ

λ2(x, ti + θτ) =
ic

τθ
− V (x, ti + θτ)

κ2(x, ti + θτ) = − ic

τθ
−ΘV (x, ti + θτ) .

We now seek solutions ui, i ≥ 1 of (3) that vanish at infinity. While we will eventually
employ a discretization such as a finite-difference or finite-element representation to
solve the interior problem, we focus here on obtaining an exterior solution which
enables the boundary conditions to be constructed. For this purpose, we fix the
right boundary at xr = 0, t > 0 and search for solutions ui(x), i ≥ 1, x ≥ 0 in the
right exterior domain.

2 Preliminary consideration

We first consider the solution, u1(x), of Eq.(1) in the exterior domain, x ≥ 0, at the
initial time step. This solution is obtained by solving

∂2
xu1 − λ2u1 = 0 ,
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which yields

u1(x) = c1 exp(λx) + c2 exp(−λx)

where λ =
√
λ2, 	(λ) > 0 .

To satisfy the zero-boundary-condition at infinity, the values of u1(0) and ∂xu1|0
must insure that c1 = 0, leading to the desired form of the solution:

u1(x) = u1(0) exp(−λx) . (4)

This yields the required transformation of the boundary conditions at infinity to
the boundary condition at xr for the first time step. By induction, representing
each ui(x) by a convolution of the homogeneous part of the solution of (3) with the
right-hand side of (3) we derive that the general exterior solution can be written as

ui(x) =
i∑

j=1

Pj−1(x) exp(−λx) , (5)

where Pj−1(x) denotes a polynomial in x of degree j − 1. The correct asymptotic
behavior at large distances is now obtained if the boundary conditions at x = 0 are
chosen such that

	(λ) > 0 . (6)

The asymptotic form of ui may be conveniently analyzed by regarding the Laplace
transform

Ui(p) = Lui(x) =
∫ ∞

0
e−pxui(x) dx .

Since the Laplace transform of each term in (5) follows from

L
{
xn

n!
e−λx

}
=

1

(p+ λj)(n+1)
,

we can reformulate the condition (6) as

Ui(p) < ∞ for all p with 	(p) ≥ 0 , (7)

which insures that Ui(p) is bounded in the whole right half-plane. Thus, in or-
der to verify the condition (7) for any time-step, we must analyze the sequence
U1(p), . . . , Ui+1(p) (where the index here refers to the the propagation step number)
of Laplace-transformed solutions in the exterior domain. The recurrence relation for
this sequence is given directly by the Laplace transformation of (3); namely,

Ui+1 =
pui+1(0) + ∂xui+1|x=0 +Θ(pui(0) + ∂xui|x=0)− (Θp2 − κ2)Ui

p2 − λ2
. (8)
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To verify the condition (7), we investigate the poles of Ui+1(p) in the right half-plane.
We express each Ui(p) as quotient of two polynomials. Since U1(p), given according
to (4) by

U1(p) =
u1(0)

p+ λ
,

has the form U1(p) = P1(p)/Q1(p), we may assume that each Ui(p) possesses the
same structure, that is,

Ui(p) =
Pi(p)

Qi(p)
, Pi(p), Qi(p) - polynomials .

From (8) we then obtain

Ui+1(p) =
P̃i+1(p)

(p2 − λ2)Qi
, (9)

where P̃i+1(p) is an as yet undetermined polynomial. However, the above expression
is in general unbounded for p = λ and 	(λ) > 0. Thus the related solutions ui+1

will diverge for x → ±∞.
We therefore arrive at the central issue of the paper, namely the specification

of appropriate boundary conditions which insure the finiteness of Ui+1(p = λ) for
bounded Ui(p) in the right half-plane. That is, we wish to combine ui+1(0) and
∂xui+1|0 in P̃i+1(p), in such a manner that

P̃i+1(λ) = 0 . (10)

As can easily be verified, the two free coefficients associated with the boundary value
and the normal derivative) can be combined in such a manner that the result factors
as

P̃i+1(p) = (p− λ)Pi+1(p) .

This leads to a rational expression for Ui+1(p) given by

Ui+1(p) =
(p− λ)Pi+1(p)

(p− λ)(p+ λ)Qi(p)

=
Pi+1(p)

Qi+1(p)
,

and therefore to a polynomial Qi+1, which does not contain zeros in the right half-
plane if such zeros are absent in Qi. Hence the solution ui+1(x) corresponding to
Qi+1 possesses the required asymptotic behavior.

3 Operator Formulation

We now formalize the above approach in such a manner that the desired boundary
condition is automatically satisfied at each propagation step. As the method is
based on the recursive strategy discussed above, it leads to a compact numerical
procedure.
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3.1 Reformulation Using the Shift-Operator Technique

We first introduce the shift-operator s = exp(−pττ) with pτ = ∂
∂t . In our notation

this operator shifts the time index i by one unit

ui(x) = sui+1(x) .

Accordingly, by the linearity of the Laplace-transform,

Ui(p) = sUi+1(p) . (11)

The direct application of the shift-operator without transforming the underlying
equation into the dual, frequency, domain, is in accordance with the algebraic oper-
ator theory of Mikusińki [7]. We then rewrite (8) and (9) as

Ui+1(p) =
pui+1(0) + ∂xui+1|0 + Θ(pui(0) + ∂xui|0)

p2 − λ2 + s(Θp2 − κ2)
. (12)

Evidentially if the denominator of (12) approaches zero, i.e. if the semi-discrete
dispersion relation

p2 − λ2 + s(Θp2 − κ2) = 0

is fulfilled, the homogeneous solution diverges at infinity unless the numerator si-
multaneously vanishes. The zeros of p occur at the solutions, p = p±, of

p2 =
λ2 + κ2s

1 + Θs
,

which yields

p± = ±λ

√
1 + κ2/λ2s

1 + Θs
, 	(λ) > 0 .

Therefore, the necessary condition that guarantees the exact solution of (3) is

p+ui+1(0) + ∂xui+1|x=0 +Θ(p+ui(0) + ∂xui|x=0) = 0, i ≥ 0 . (13)

The recursive structure of (13) combined with the requirement that u0(x) = 0 for
x ≥ 0, yields finally the following compact form of the desired transparent boundary
condition

p+ui+1(0) + ∂xui+1|x=0 = 0 (14)

p+ = λ

√
1 + κ2/λ2s

1 + Θs
, 	(λ) > 0 . (15)

For future implementation it is convenient to split p into a s-independent part and
a second expression which has the property that each term in its Taylor series rep-
resentation is homogeneous with respect to s according to

p+ = pI + pH

pI = λ

pH(s) = λ

⎛
⎝−1 +

√
1 + κ2/λ2s

1 + Θs

⎞
⎠ .
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This representation enables us to seperate the term corresponding to multiplication
by a constant coefficient from terms that generate the index-shifts.

Special case I: implicit midpoint discretization. We now illustrate (14)
for potential functions that vanish outside the inner domain Ωi. Considering first a
implicit midpoint discretization for which θ = 0.5 and Θ = 1, we have

p+ = λ

√
1− s

1 + s

= λ

(
1− s+

1

2
s2 − 1

2
s3 +

3

8
s4 − 3

8
s5 + . . .

)
, (16)

yielding the following boundary condition

λui+1 + ∂xui+1|x=0 = λ

(
ui − 1

2
ui−1 +

1

2
ui−2 − 3

8
ui−3 +

3

8
ui−4 − . . .

)∣∣∣∣
x=0

. (17)

Special case II: implicit Euler discretization. Considering next the implicit
Euler scheme in the propagation direction, we apply instead θ = 1 and Θ = 0. We
then obtain in place of Eqs. (16) and (17)

p+ = λ
√
1− s

= λ

(
1− 1

2
s− 1

8
s2 − 1

16
s3 − 5

128
s4 − . . .

)
,

and

λui+1 + ∂xui+1|x=0 = λ

(
1

2
ui +

1

8
ui−1 +

1

16
ui−2 +

5

128
ui−3 + . . .

)∣∣∣∣
x=0

.

3.2 Finite-Difference Implementation

Having developed the continuous formulation of our transparent boundary condition,
we now examine finite-difference and finite-element implementations. Considering
first the finite-difference formalism, we wish to transform (3) into its corresponding
discrete approximation. That is, we must replace ∂2xu by its discrete analogue on
both the right and the left-hand side of (3). In the case of a uniform computational
grid with a step-width xi − xi−1 = h for all inner points we substitute in standard
fashion

∂2
xu
∣∣∣
x=xi

→ 1

h2

(
ui−1 − 2ui + ui+1

)
with a O(h2) discretization error. At the x = 0 boundary, however, we instead apply
the Taylor expansion of u(x) at x = 0,

u(h) = u(0) + u′(0) h+
1

2
u′′(0) h2 + O(h3) ,
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to rewrite ∂2xu as

∂2
xu
∣∣∣
x=0

=
2

h2
(u(−h)− u(0) + h ∂xu|x=0) + O(h).

Here we assume that u(0), u′(0) and the rightmost inner value u(−h) are given. Thus
we must rewrite the differential equation, (3), at the boundary in the finite-difference
implementation as

(
∂2
xu + constu

)
x=0

→ 2

h2
(u(−h)− u(0) + h ∂xu|x=0) + constu(0) .

The above boundary condition is now substituted for the normal derivative of u,
leading to the finite-difference representation of the transparent boundary condition.

3.3 Finite-Element Implementation

Next, we derive and discuss a transparent boundary condition analogous to that of
the previous section, but based on a finite-element discretization (14) of (2). The
finite-element method automatically satisifies the symmetry properties required for
numerical stability. However, many other discretization methods such as the finite-
difference approach can be shown to possess identical symmetries and are therefore
equally stable. The weak form of (2) is

(v, ui+1) + i
τ

c
θ
(
∂xui+1|x=xr

x=xl
+ a(v, ui+1)

)
=

(v, ui) + i
τ

c
(1− θ)

(
∂xui|x=xr

x=xl
− a(v, ui)

)
, (18)

with a(v, u) = −
∫

∂xv̄∂xu+

∫
v̄V (x)u (19)

(v, u) =

∫
v̄u (20)

for any v ∈ H1(Ωi). Discretizing the problem restricts the test-function space to
Vh ⊂ H1(Ωi). Accordingly, we obtain the matrices A and M from the bilinear forms
a(·, ·)→ A and m(·, ·)→ M. Hence the discrete version of (20) yields

(
M+ i

τ

c
θA

)
ui+1 + i

τ

c
θ

⎛
⎜⎝ − ∂xui+1|x=xl

0
∂xui+1|x=xr

⎞
⎟⎠ =

(
M− i

τ

c
(1− θ)A

)
ui − i

τ

c
(1− θ)

⎛
⎜⎝ − ∂xui|x=xl

0
∂xui|x=xr

⎞
⎟⎠ .

Together with the boundary condition (14), we arrive at the final form of the equa-
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tion system

(
M+ i

τ

c
θA

)
ui+1 − i

τ

c
θpI

⎛
⎜⎝ ui+1(xl)

0
ui+1(xr)

⎞
⎟⎠ =

(
M− i

τ

c
(1− θ)A

)
ui +

+ i
τ

c
(1− θ)(p+(s))

⎛
⎜⎝ ui(xl)

0
ui(xr)

⎞
⎟⎠ + i

τ

c
θpH(s)

⎛
⎜⎝ ui+1(xl)

0
ui+1(xr)

⎞
⎟⎠ . (21)

3.4 Stability Properties

We now introduce the notation

〈v,u〉= v̄Tu ,

for Euclidean inner product, while the discrete L2-product in terms of the symmetric
positive definite matrix M defined above is written as

〈v,u〉M = v̄TMu ,

and the related discrete L2-norm is

‖u‖ =
√
〈u,u〉M .

We now show that given matrix A which is self-adjoint with respect to the Euclidean
inner product, for 0.5 ≤ θ ≤ 1 the discrete L2(Ωi) norms of u1, . . . ,ui+1 obtained
using (21) remain bounded for any time step τ . Hence our numerical scheme is
unconditionally stable under these conditions. To prove our assertion, we again
invoke the weak form of (2) that forms the basis of (21). We now however rearrange
the expression as follows,

(v, ui+1 − ui) = −i
τ

c
a (v, uθ)− i

τ

c

(
(v̄ ∂xuθ)|x=xr

x=xl

)
(22)

with uθ = θui+1 + (1− θ)ui .

Restricting (22) again to its discrete form, setting v = uθ and taking the real part
yields

	〈uθ,ui+1 − ui〉M = −τ

c
	
(
i(ūθ ∂xuθ)|x=xr

x=xl

)
.

A rearrangment of the terms in the above expression leads to

〈ui+1,ui+1〉M − 〈ui,ui〉M =

−2(θ− 1

2
)〈ui+1 − ui,ui+1 − ui〉M − 2

τ

c
	
(
i(ūθ ∂xuθ)|x=xr

x=xl

)
.
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The same procedure can be applied to the exact solutions of (2) in the exterior
regions. For the right exterior domain x ≥ xr

(ui+1, ui+1)− (ui, ui) =

−2(θ − 1

2
) (ui+1 − ui, ui+1 − ui)− 2

τ

c
	
(
i (ūθ ∂xuθ)|x=∞

x=xr

)

with an analogous result for the left exterior domain. Our boundary conditions
however preserve the exponential decay of the exact solution of (2) in the exterior
domains as both exterior solutions are described by (5), with 	λ > 0. Hence, the
boundary terms vanish as x → ∞ and further cancel at x = xl,r so that

∑
j=l,r

(ui+1, ui+1)Ωj
+ 〈ui+1,ui+1〉M −

⎛
⎝∑

j=l,r

(ui, ui)Ωj
+ 〈ui,ui〉M

⎞
⎠

= −2

(
θ − 1

2

)⎛⎝∑
j=l,r

(ui+1 − ui, ui+1 − ui)Ωj + 〈ui+1 − ui,ui+1 − ui〉M
⎞
⎠ .

The right-hand side of the above expression is non-positive for θ ≥ 0.5, establishing
both the numerical stability of the algorithm and the uniqueness of the interior
solution. Furthermore, for the implicit midpoint rule, θ = 0.5, we find∑

j=l,r

(ui, ui)Ωj
+ 〈ui,ui〉M = const for all i ≥ 0 . (23)

Eq. (23) extends the conservation property of the implicit mid-point rule with ho-
mogeneous Dirichlet or Neumann boundary conditions to the entire real space.

4 Discrete Solution of the Exterior Problem

We now consider the case of uniform spatial discretization in the interior domain
Ωi. Under the assumption of a uniform grid point spacing in the exterior domain,
an identical finite-difference stencil can be applied in both the interior and exterior
domains, providing an approximate solution of the continuous problem. Hence in
this particular case, completely reflection-free boundary conditions can be realized
by sacrificing the quality of the approximation applied to the exterior domain. In
contrast, the semi-discrete approach discussed above supplies the exact solution of
(3) in the exterior domain, at the cost of a small residual reflection, which of course
vanishes as h → 0. The nature of the residual reflection is evident from a backward
analysis of the problem in which the discrete inner solution is considered as the exact
solution of a slightly modified equation. Unless the same discrete approximation
is employed in the exterior and interior domains, the difference in the underlying
equation in the two domains necessarily produces a small reflected field.
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4.1 Discrete Treatment of the Space Coordinate

To implement the above procedure, we associate the solution points at the ith prop-
agation step with physical locations according to the formula

u
(j)
i = ui(j · h), j ≥ −1, i ≥ 0 .

Here u−1
i is the rightmost inner value in Ωi while u0i is located on the boundary

between the internal and the right external region. The equation corresponding to
(12) is obtained by introducing the sequences

ui = {u(0)i , u
(1)
i , u

(2)
i , . . .}

u+i = {u(1)i , u
(2)
i , u

(3)
i , . . .}

u−i = {u(−1)
i , u

(0)
i , u

(1)
i , . . .} ,

with Z-transforms

Ui = Zui = u
(0)
i +

1

z
u
(1)
i +

1

z2
u
(2)
i + . . .

U+
i = Zu+i = u

(1)
i +

1

z
u
(2)
i +

1

z2
u
(3)
i , . . .

U−
i = Zu−i = u

(−1)
i +

1

z
u
(0)
i +

1

z2
u
(1)
i , . . . .

Suppressing the time-step subscript i in the following, we observe next that the
transforms U+ and U− are related to U by

U− =
1

z
U + u(−1) (24)

U+ = z
(
U − u(0)

)
. (25)

If we now Z transform the finite-difference form of (3) in Ωr,

1

h2

(
uj−1
i+1 − 2uji+1 + uj+1

i+1

)
− λ2uji+1 = −Θ

h2

(
uj−1
i − 2uji + uj+1

i

)
+ κ2uji

j ≥ −1, i ≥ 0

we obtain

1

h2

(
U−
i+1 − 2Ui+1 + U+

i+1

)
− λ2Ui+1 = −Θ

h2

(
U−
i − 2Ui + U+

i

)
+ κ2Ui

i ≥ 0 .

This equation yields, in view of (24) and the shift-operator definition (11),

Ui+1(z) = − u
(−1)
i+1 − zu

(0)
i+1 +Θ(u

(−1)
i − zu

(0)
i )

z − (2 + h2λ2) + 1
z + sΘ

(
z − (2 + h2κ2/Θ) + 1

z

) .
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Again in analogy to the continuous case, we now compute the zeros z± of the discrete
dispersion relation

z − (2 + h2λ2) +
1

z
+ sΘ

(
z −

(
2 + h2

κ2

Θ

)
+

1

z

)
= 0 , (26)

which are given by

z±(s) = 1 + q±(s) (27)

with q±(s) = c1
1 + β2s

1 + Θs
± c2

√
1 + β2s

1 + Θs

√
1 + γ2s

1 + Θs
(28)

c1 =
1

2
h2λ2

c2 =
1

2

√
h2λ2

√
4 + h2λ2

γ2 =
4Θ + h2κ2

4 + h2λ2

β2 =
κ2

λ2
.

Applying the root-theorem of Vieta to (26) we find z+z− = 1. If we define z+ and
z− such that |z−| < 1 and |z+| > 1. Then, choosing the square-roots such that
	(c2) > 0, the desired discrete counterpart to the transparent boundary condition
(14) is given by

u
(−1)
i+1 − z+u

(0)
i+1 = 0 ,

or equivalently,

u
(0)
i+1 − u

(−1)
i+1 + q+u

(0)
i+1 = 0 . (29)

4.2 Implementation

To incorporate (29) into a numerical code, we proceed exactly as in § 3.3. In par-
ticular, we first derive the equation system for homogeneous Neumann conditions.
We set formally q+ = 0 to obtain the equation system(

M+ i
τ

c
θA

)
ui+1 =

(
M− i

τ

c
(1− θ)A

)
ui, (30)

after applying the FD-stencil to all inner points and discretizing the second derivative
operator according to

∂2
xu|x=xr →

1

h2
(u−1 − u0)

13



for the right boundary with an analogous expression at the left boundary. Complet-
ing this system by imposing the boundary condition (29) yields

(
M+ i

τ

c
θA

)
ui+1 − i

τ

ch2
θq+(s)

⎛
⎜⎝ ui+1(xl)

0
ui+1(xr)

⎞
⎟⎠ =

(
M− i

τ

c
(1− θ)A

)
ui + i

τ

ch2
(1− θ)q+(s)

⎛
⎜⎝ ui(xl)

0
ui(xr)

⎞
⎟⎠ .

After the operator q is seperated into its homogeneous and inhomogeneous parts,
we finally arrive at

(
M+ i

τ

c
θA

)
ui+1 − i

τ

ch2
θqI

⎛
⎜⎝ ui+1(xl)

0
ui+1(xr)

⎞
⎟⎠ =

(
M− i

τ

c
(1− θ)A

)
ui +

+ i
τ

ch2
(1− θ)q+(s)

⎛
⎜⎝ ui(xl)

0
ui(xr)

⎞
⎟⎠ + i

τ

ch2
θqH(s)

⎛
⎜⎝ ui+1(xl)

0
ui+1(xr)

⎞
⎟⎠ .

Numerical Stability. As the arguments presented in Sec.3.4 are equally valid
for the discrete problem, our implicit one-step methods are unconditionally stable
for 0.5 ≤ θ ≤ 1, provided the discretization insures that matrix M is symmetric
positive definite and that the matrix A is self-adjoint with respect to the Euclidean
inner product.

5 Application to the Fresnel Equation

Having outlined both the theory and the implementation of the discrete transparent
boundary conditions we now investigate the two test cases of [9] associated with
optical beam propagation in the Fresnel approxiation. The first of these involves a
single beam with a Gaussian profile e−x2/(10μm)2 propagating in vacuum, n = 1, at
a wavelength of 0.832μm and describing an angle of α = 21.80 with respect to the
z-axis. The computational window has a width of 200μm while the propagation step
length Δz = 0.4μm and the reference refractive index n0 = n cosα. The propagation
distance of Z = 500μm is selected to yield a single reflection from the boundary. A
second set of comparisions involves a superposition of two 10μm Gaussians beams,
one displaced a distance −12.5μm from the coordinate origin and propagating at
an angle of 26.80 and the second displaced +12.5μm from the coordinate origin and
propagating at 16.80.

In all test cases a uniform finite-difference discretization in x-direction has been
utilized together with the implicit midpoint rule in the direction of propagation (z-
axis). In order to visualize the residual reflections the 10−10, 10−8, 10−6, 10−4, 10−2,

14



10−1 iso-lines of |u(x, z)|2, where u(x, z) is the numerically calculated electric field
profile normalized such that |u(x, 0)|= 1, are plotted.

Semidiscrete Approach: Fig. 1 displays the iso-line plot for the first test
case corresponding to the propagation of a single beam on an uniform N = 1024
point transverse grid. As expected from the above theory, some small reflections are
produced by the discretization error in the transverse, x, direction. Our simulation
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Figure 1: Iso-curves for the electric power for a single Gaussian beam and N = 1024
grid points

of the second test example in Fig. 2 supplies similar results. The magnitude of the
reflections are approximately the same as in the former case despite the far more
complicated shape of the field at the window boundaries.

In order to verify that the magnitude of the reflection depends on the accuracy
of the inner solution rather then on the shape of the propagating field, we have
repeated our numerical experiments for N = 8192 transverse discretization points,
generating the results given in Fig. 3 and Fig. 4. It is evident from these figures
that the spurious reflections are supressed as the the accuracy of the inner solution
increases.

In Fig. 5, we instead present the discrete L2-norm of the field, u(x, z), remaining
inside the computational window as a function of the number of transverse discretiza-
tion points. The plateaus in the figures indicate the power reflection coefficient after
an integer number of reflections. Clearly, these results confirm that magnitude of
the reflection coefficient varies with the x-discretization error of the problem in the
interior domain.
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Figure 2: Iso power curves for a two-beam test case with N = 1024

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

z
μm

x
μm

10�10

10�10

Figure 3: Iso power curves for the single-beam test case with N = 8192
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Figure 4: Iso power curves for the two-beam case with N = 8192
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Figure 5: The discrete L2-norm of the electric field remaining inside the computa-
tional window for N = 8192
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Figure 6: Iso power curves for the single-beam with N = 1024 in the full discrete
approach
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Figure 7: Iso-curves for the two-beam test case with N = 1024 in the full discrete
approach
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Figure 8: Discrete L2-norm of the electric field remaining inside the computational
window for N = 1024

We finally demonstrate that the spurious reflections of the previous examples
can be avoided with the aid of our full discrete approach, for uniformly spaced grid
points. Repeating our test examples with N = 1024 grid points, we thus obtain
the iso-lines of Fig.’s 6 and 7 which contain no observable reflected power. The
corresponding evolution of the discrete L2-norm is presented in Fig. 8. We infer
from these figures that the full discrete approach is preferable numerically in this
special case (uniform meshes) although, as noted above, the quality of the discrete
approximation on the exterior domain is reduced in this procedure.

Conclusions

We have constructed general transparent boundary conditions for uniformly dis-
cretized 1D Schrödinger-type equations based on a recursive semi-discrete formu-
lation presented in [8]. As our method is derived directly from the Mikusínski’
operator theory, Z-transforms in the time variable of the field at the boundary are
not present. Accordingly, our derivations and formulas are particularly simple in
nature, yielding additional insight into the structure and behavior of reflectionless
boundary conditions.
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