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Abstract

This paper presents two Lagrangean relaxation approaches for the A/P-hard multiple-depot
vehicle scheduling problem in public mass transit and reports on computational investigations.
Our Lagrangean relaxation approaches can be applied to generate very tight lower bounds and to
compute feasible solutions efficiently. A further application is to use the Lagrangean relaxations
as new pricing strategies for a delayed column generation of a branch-and-cut approach.

The computational investigations are based on real-world test sets from the cities of Berlin
and Hamburg having up to 25 thousand timetabled trips and 70 million dead-head trips.

Mathematics Subject Classification (1991): 90B06, 90B10, 90C06, 49M29.

1 Introduction

Vehicle scheduling is an important part of the planning process in public transportation.
In a current project, see [8], we investigate the Multiple-Depot Vehicle Scheduling Problem
(MDVSP) arising at large German public transportation companies. It is known that the
MDVSP is N'P-hard, see [14, 2].

Besides requiring integrality of the solution, the MDVSP is described by two types of
constraints: The flow conditions ensuring that each timetabled trip has to be serviced
exactly once, and the flow conservations ensuring that each vehicle continues its duty
until it reaches its destination. Hence two Lagrangean relaxation approaches are self-
suggesting. First, a relaxation of the flow conditions resulting in a Lagrangean function
that decomposes into independently solvable minimum-cost flow subproblems, e.g., see
[8, 2]. Second, a relaxation of the flow conservations resulting in a Lagrangean function
that is simply a polynomially solvable single-depot instance, e.g., see [8, 3, 15, 11].

From our point of view, these two Lagrangean relaxation approaches have the following
interesting features: First, combined with a subgradient method, we can compute tight
lower bounds for real-world problems of any size efficiently. This is the topic of our article.

*This work has been supported by the German Federal Ministry of Education, Science, Research, and
Technology grant no. 03-GRT7ZIB -7. Responsibility for the contents lies with the authors.
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Second, a popular approach to generate feasible solutions of large-scale MDVSPs are
schedule first — cluster second heuristics, e. g., see [8, 6, 5]. Sometimes, a reschedule step
follows the clustering part where for each cluster (i.e., single depot) the timetabled trips
are optimally rearranged, see [8, 6]. The Lagrangean relaxation with respect to the flow
conservations together with some primal (interchange and/or greedy) heuristic can be
viewed as a schedule first — cluster second approach. For instance, [8, 3, 15, 11, 2] discuss
such approaches for the MDVSP. Similarly, the Lagrangean relaxation with respect to the
flow conditions together with some heuristic can be viewed as a cluster first — schedule
second approach, e.g., see [2].

Third, the Lagrangean relaxations described in this paper are utilized in [14, 13, §]
as new column generation techniques for a delayed column generation to solve the linear
programming (LP) relaxations of the MDVSP. With these new techniques, LP relaxations
of truely large-scale MDVSP instances can be solved to optimality. Combined with some
LP-based heuristics within a branch-and-cut algorithm, all our realistic problem instances
can be solved to optimality or, at least, can be approximated with a relatively small gap.

Our partners are the IVU GmbH and Berliner Verkehrsbetriebe (BVG), Berlin, and
the HanseCom GmbH and Hamburger Hochbahn AG, Hamburg. They provided us with
real-world data from the cities of Berlin and Hamburg.

In the following, we assume the reader to be familiar with network flow, integer linear
programming, Lagrangean relaxations, and subgradient methods, see [1, 16, 9].

2 The Multiple-Depot Vehicle Scheduling Problem

2.1 Problem Description

Details of the techniques to model vehicle scheduling problems in public transportation
can be found, e.g., in [14] or [8]. Here is a brief summary of our version of the MDVSP.
We assume that the lines and their frequencies of service are given, i.e., a timetable
has been already determined. According to its operational interests, the vehicles of a
public transportation company are divided into so-called depots, denoted by D, each
representing a set of vehicles that do not need to be distinguished. With each depot
d € D we associate a start point d* and an end point d~ where its vehicles start and
terminate their daily duty. Let Dt := {d*| d € D} and D~ := {d~| d € D}. The number
of available vehicles, called depot capacity, of each depot d is denoted by k4.

A given timetable defines a set of so-called timetabled trips, denoted by T, that are
used to carry passengers. We associate with each ¢ € T a first stop ¢7, a last stop ¢7,
a departure time s;, an arrival time e;, and a so-called depot-group G(t) C D. Each
G/(t) includes those depots whose vehicles are allowed and able to service trip ¢. Let
T-={t7|teT}, Tt ={teT} and Ty:={t € T|d e G(t)}.

There are further types of trips, all running without passengers: A pull-out trip
connecting some start point d* with some first stop ¢~, a pull-in trip connecting some
last stop {* with some end point d~, and a dead-head trip connecting some last stop



t*t with some succeeding first stop ¢~. For notational simplicity, we call these trips all
unloaded trips. Let A, denote the duration of the dead-head trip from ¢ to ¢'~ plus
some layover time. Whenever e; + A, » < sy, we call the corresponding dead-head trip to
be compatible.

Many MDVSP models use a definition of “compatible” restricting the possible dead-
head trips, e.g., [5] consider a dead-head trip to be compatible if its duration, called
turning time, does not exceed a maximal predefined value (of about 90 to 120 minutes).
However, such a model can provide only suboptimal solutions especially concerning the
minimal number of vehicles ([14] gives a small counterexample with two depots and four
timetabled trips). We do not use such a restriction, the duration of our dead-head trips
can be as large as possible. Actually, our partners provide us only with dead-head trips
having a maximal predefined turning time. However, we create depot-wise “long-time”
dead-head trips whenever it is possible to service two timetabled trips ¢ and ¢’ in sequence
by the same vehicle. This is always the case if it is possible to use the pull-in trip from
the last stop of ¢ back to the depot, staying in the depot for a certain time, and using
later the pull-out trip to the first stop of #'.

A vehicle schedule is a chain of trips such that the first trip is a pull-out trip, the
last trip is a pull-in trip, and the timetabled trips and unloaded trips occur alternately;
a vehicle schedule is called valid if all its trips belong to the same depot. If no dead-head
trip stands for both a pull-in and pull-out trip, the vehicle schedule is also called block.

The union operator U is considered as a disjoint union. We introduce the following
sets of trips for each depot d € D: ALY := {(t=,t%)| t € T3} and

A;_trip = {(d+’ t_>’ (t+’ d_)| t E 7;} U U compatible dead-head {(p+’ q_)}

trips of depot d
connecting p with ¢

With each unloaded trip a € Az'trip, we associate a weight ¢! € Q representing its op-
erational or capital costs or a mixture of both. Generally, the weight of each unloaded
trip stands always for its operational costs. If the main objective is a fleet size minimiza-
tion, however, the weight of each pull-out trip is increased by a sufficiently large big M
standing for the capital costs and being larger than the operational costs of any set of
vehicle schedules covering each timetabled trip exactly once. The minimization of this
“two-stage” objective function would first minimize the fleet size and secondary minimize
the operational costs (among all fleet minimal solutions). With this terminology, the MD-
VSP is to find a weight minimal set of feasible vehicle schedules such that each timetabled
trip is covered by exactly one vehicle schedule.

2.2 Mathematical Model

We will now state an integer programming model for the MDVSP that is based on an
integer multicommodity flow formulation. For each depot d € D, let (d~,d") denote an
additional backward arc (on which depot capacities can be controlled) and let A; :=

Agmp U A;’mp U {(d_, d"')}. We define a digraph D = (V, A) with node set V := Dt U



D-UT-UTT and arc set A := UdeDAd' Figure 1 gives an illustration of D for a small
example with D = {r,g}, T = {a,b,c,d,e}, Tr = {a,c,d}, and Tg = {a,b,c,e}.

Figure 1: Digraphs (V, A), (Vi, Ar), and (Vg, Ag).

Since A — as a disjoint union — includes parallel arcs, we have to handle them carefully.
For instance, addressing an arc (¢t7,¢%) without knowing its depot d € G(t) may lead to
confusion. If necessary, we distinguish explicitly such an arc by its corresponding depot.

We introduce an integer variable z? for each arc @ € A and each depot d € D. 2

denotes a decision variable indicating whether a vehicle of the depot d runs the trip a
d

a

or not, except a denotes the backward arc of some depot d. In this case, % counts
d

all employed vehicles of the depot d. The variables z? are combined to vectors z? :=
(2%)4ea, € RA, d € D, and x := (2%)ep € R?. Given nodes u and v € V, let

6~ (v):={a€ A|TdeDand 3 (u,v) € Ay such that a = (u,v) € Az}
denote all arcs having its head in v and
6*(u):={a € A|3d e Dand 3 (u,v) € A; such that a = (u,v) € Ay}
denote all arcs having its tail in u. For a given set A C A we define
xd(“i) = ZaeAnAﬂZ and x(;l) = Zdepxd(;g-

The integer linear programming (ILP) formulation reads:

(2.1a) minz Z gt

deD aeA;—trip
subject to



(2.1b) ZdeG(f)l'?t— wy = L VieT,

(2.1¢) xd(5+(v)) —xd(5_(v)) = 0, VveT,u{dt,d} VdeD,
(2.1d) vlgry < ke,  VdED,

(2.1€) >0, Vaec Ay VdeD,

(2.11) z integral.

Constraints (2.1b), the flow conditions, ensure that each timetabled trip is serviced exactly
once. Constraints (2.1¢), the flow conservations, guarantee that the total flow value of
each depot d entering some node v € V also leaves it, in particular, any vehicle leaving

the start point dt must reach the end point d~ and returns via the backward arc (d=, d*).
Note that ;v(5+(t+)) — :0(5_(15_)) =0.

3 Two Lagrangean Relaxations of the MDVSP

We describe in this section the two basic ideas how the Lagrangean relaxation approach
can be applied to the MDVSP such that the resulting Lagrangean functions become
efficiently solvable minimum-cost flow problems.

3.1 Relaxation of the Flow Conservation Constraints

We deliberately do not include the individual depot capacities in the ILP formulation for
this Lagrangean relaxation nor bring them into the objective function. The reasons are as
follows: For many of our test instances, no depot capacities are given, or depot capacities
are only weak constraints in the sense that it is allowed to shift vehicles from one garage
to the other. Hence the variables led—,d*) and flow conservations (2.1¢) for each node
v € DT U D~ can be eliminated for this approach.

For the first Lagrangean relaxation, we use a slightly different ILP formulation:

(3.1a) minz Z cdzd

-tri
dED ¢ gurip

subject to

(3.1b) z(6t(tt)) = 1, VieT,

(3.1¢) —z(6~(t7)) = -1, VieT,

(3.1d) 2(6Th)) =2 (67 (17)) = 0, VieT, VdeD,
(3.1¢) 2 >0, Vae A" vVdeD,
(3.11) x integral.

Obviously, the ILP formulations (2.1) and (3.1) are equivalent. It can be shown that
(3.1b) and (3.1c) are linear combinations of (2.1b) and (2.1c), and (3.1d) is a linear



combination of (2.1¢). If we add (3.1b)-(3.1d) to the ILP (2.1), the variables for the
timetabled trips, the original flow conditions (2.1b), and the original flow conservations
(2.1¢) become redundant and can be eliminated.

Let 7 := (7% € R7¢)4ep denote the Lagrangean multipliers according to the flow
conservations (3.1d). With respect to (3.1d), the Lagrangean function of (3.1) is the ILP

(3.2) Lies(m) := min Z{ Z ¢ .L — Z wf(wd<5+(t+)) — xd<5_(t_))>}

z 2 0 integral
satisfying deD EAu trip t€Ta

(3.1b) and (3.1 ¢)

and the Lagrangean relaxation LRycs of (3.1) reads
(3.3) max Les(T).

The subscript “fcs” of Lgs and LRgs stands for Flow-ConServation.

Lgs(m) corresponds to a large minimum-cost flow problem, and it is well known that for
such problems there always exists an integer optimal solution for each objective function
provided there exists any optimum. It is easy to show that Le(7) is equivalent to a large
single-depot instance whereby all depots are considered as one large depot.

Any optimal solution z := z(7) attaining the value of Les(7) describes a set of vehicle
schedules covering each timetabled trip exactly once. Some vehicle schedule, however,
violates some flow conservations (3.1d) if its trips belong to different depots.

3.2 Relaxation of the Flow Condition Constraints

For the second Lagrangean relaxation, We use the original ILP formulation (2.1a)-(2.1f)
plus additional redundant constraints :c(t ) S 1, for all (t=,4) € A*"P and all d € D.
The formulation reads

(3.4a) mlnz Z g g

deD aEAu trip

subject to

(34b) ZdEG t).r - t+) = 1, \V/t € T,

(2.1¢)  2%(6%( (6~ (v)) = 0, VoeTau{dt,d"} VdeD,
(3.4d) tmaty < ki, VdeD,

(3.4e) oy <1, V (1, 1T) € AYMP Y d e D,
(3.41) e >0, Yac Ay VdeD.

3.4 x integral.

(3.4g) integral

Let v := (14)ie € R7 denote the Lagrangean multipliers according to the flow conditions
(3.4b). With respect to (3.4b), the Lagrangean function of (3.4) is the ILP



z satisfies

(21c)-(2.ag) ~dED 4¢ A;-trip teT deG(t)

(35)  Leal) = min {Z S et = You( Y whe - 1)}

and the Lagrangean relaxation LRq of (3.4) reads
(3.6) max Lgq(v).

The subscript “fcd” of Liq and LRgq stands for Flow-ConDition. Note that the La-
grangean function Lgg can be decomposed into a constant objective shift ©™1 and into
|D| independently solvable minimum-cost flow (circulation) problems. It is easy to see
that a feasible solution of each subproblem d corresponds to a set of vehicle schedules
satisfying the depot specific capacity.

4 Implementation Details

The subgradient algorithm is almost the same for both Lagrangean relaxations LLRgs and
[LR¢cq. Here is our basic method, the details of each step are outlined below:

(4.1) Algorithm. (Subgradient Method for the MDVSP)

Input: Lagrangean function (3.2) L or (3.5) Lgea, denoted by L.

Output: Lower bound for ILP (2.1).

1. Choose initial Lagrangean multiplier u(®) and set k := 0.
Evaluate L(u(*)).

Compute subgradient g*) := g(®) (4(),

If the iteration limit Ny is reached or ¢*) = 0 then STOP; otherwise continue.

Compute new step length o),

Compute new step direction g% € conv{g(®, ..., ¢g"}.

Set w1 .= y*) 4 5(F gk,

Increment k& and goto 2.

0o oA N

Step 1. Choose initial Lagrangean multiplier.

The initial 7 for LRy is set to zero. Initializing O for TReq: Tt turned out from
computational investigations that the following initialization of the Lagrangean multipliers
(0) performs best concerning the maximal achieved objective value Lg.q and the number
of iterations of the subgradient method: Solve the Lagrangean function Lgs(0) of the
Lagrangean relaxation (3.3) LRgs. Let vt and v~ denote the optimal dual multipliers
of the constraints (3.1b) and (3.1c¢), respectively. Then O .= v+ — 1~ defines a good
starting point since it can be shown that Lfcd(l/(o)> and L(0) yield the same value.

Step 2. Evaluate Lagrangean function.
The core of our Lagrangean relaxation codes is the network simplex implementation MCF

~I



of [12]. This paper reports about the implementation details for the Lagrangean relaxation
LRt (3.3). Important ingredients of MCF are the multiple partial pricing rule and a
delayed column generation for large-scale test instances. We also use a modified version of
MCF to solve the minimum-cost flow problems occurring within the Lagrangean function
Ltca (3.6). The minimum-cost flow problem arising in the evaluation of L(u(k)) is solved
to optimality with delayed column generation for both relaxations. All unloaded trips
provided by our partners (and all timetabled trips in the case of LRgq) define the initial
restricted arc set.

Step 3. Compute subgradient.
Let 7(®) denote the k' Lagrangean multiplier for LR, and let z(¥) denote some optimal
solution attaining the value of Lic (’/T(k)). Then

g ¥ = g®) (x4 (((l-d)(’“) (5=(7) = (4" (5+(t+)))t%)

is a subgradient for L at k),

deD

Let v®) denote the kth Lagrangean multiplier for LRgq, and let 2% denote now some
optimal solution attaining the value of Lfcd<7/(k)>. Then

g = gW (M) = 1 - (:C(k) (5+(t—)))

is a subgradient for L at v(®). Tt is also easy to see that gfk) ef{...,—2,—1,0,1}.

teT

Step 4. Stopping criteria.
First, we check whether ¢i®) = 0. If this condition is satisfied, the corresponding z(*)
is feasible as well as optimal, and we can STOP. Second, we check our iteration limit,

denoted by N;. If £ > N; we STOP. Our standard value for Ny is 100.

Step 5. Compute new step length.

Our goal was to compute good lower bounds quickly. Therefore, we focused our efforts on
performance improvements within our given iteration limit rather than satisfying some
convergence criteria. The step length and the step direction play a key role here. Based
on the parameter setting, we use one of the following step length rules:

A) (k) a(k;), if I declines for Ny consecutive iteration(s),
o\ =
o1 else

with ¢(® := 10 and a maximum failure parameter N, := 2.
B) if I, declines for IV

®) (T _ (k) GE-1) eclines for N,

) - “ (L kLgu >> with o .— 2 7 consecutive iteration(s),
g™l ab=1) elge,

a® such that o(® becomes 10, a maximum failure parameter N, := 2, and an upper

bound I for L provided by [13].



The objective for all our test data is to minimize the fleet size and, secondary, to
minimize the operational costs among all fleet minimal solutions. For almost all of our
test instances, the initial Lagrangean function Lg(0) and Lfcd(l/(o)) provide already the
exact value for the fleet size. Therefore, to preserve this part of the lower bound, we
choose a value for ¢(®) that is significantly smaller than our big M value.

The initial step length is the only sensitive parameter of our subgradient methods. For
each of our test instances, we have made several test runnings to find out good starting
values for ¢(®). We are, however, not able to provide any reasonable rule for a good starting
configuration. Thus, we have decided to use o(°) = 10 as default for our presentation. For
our complete test set, this value was one of the best among all that we have tried out.
We refer the reader to [10] for a detailed description of these tests.

Step 6. Compute new step direction §*.
Following the key idea of bundle methods, e. g., see [4], we use the following step direction:

g™ = 0.6g"® + 0.2 £ 0.19%2 4 0,19
(we set gt = g= = (=3 = g(o)). This turned out to be a robust choice.

5 Test Data

Our computational investigations are based on real-world test instances from the cities
of Berlin and Hamburg. Table 1 gives the characteristics of our test set problems; the
average size of the depot-group G/(t) for a timetabled trip ¢ € T is denoted by @|G(t)|.

The problems from Berlin

Berlin 1: At present, BVG maintains 9 garages and runs 10 different vehicle types
(2 double-decker types, 6 single-decker types, and 3 articulated bus types). Combining
the garages with their available vehicle types results in 44 different depots. There are
no depots containing vehicles of different garages. For a normal weekday, about 28,000
timetabled trips have to be serviced. This number reduces to about 24,900 timetabled
trips since some of the timetabled trips are out-sourced to third-party companies. The
number of unloaded trips for our largest Berlin instance is about 70 millions from which
about 846 thousand are explicitly user-defined.

Berlin 2: Since the LP relaxation for Berlin 1 is extremely large — more than 125
thousand equations — we have generated a smaller problem with more depots, but much
fewer unloaded trips. This problem is based on the same set of timetabled trips as the
problem Berlin 1, but the depots and the dead-head trips are generated with different
rules resulting in fewer degrees of freedom.

Berlin 3: This is a relatively small test instance including 9 lines from the south of
Berlin and 3 depots from one single garage.

Berlin-Spandau: All the test sets denoted by Berlin-Spandau are defined on the data
of the district of Spandau for different weekdays and different depot generation rules.



A
Test Sets* Dl 7 User-def. || | Total 2|G(1)]
Berlin 1 44 24,906 846,000 | 69,700,000 4.03
Berlin 2 49 24,906 304,000 | 13,200,000 1.56
Berlin 3 3 1,313 77,000 | 2,300,000 2.33
Berlin-Spandau 1 9 2,424 164,000 | 3,700,000 4.94
Berlin-Spandau 2 9 3,308 327,000 | 8,800,000 5.49
Berlin-Spandau 3 13 2,424 39,000 590,000 1.92
Berlin-Spandau 4 13 3,308 72,000 | 1,530,000 2.25
Berlin-Spandau 5 13 3,331 75,000 | 1,550,000 2.25
Berlin-Spandau 6 13 1,998 28,000 380,000 1.90
Berlin-Spandau 7 7 2,424 145,000 | 3,300,000 4.16
Berlin-Spandau 8 7 3,308 283,000 | 7,800,000 5.02
Hamburg 1 12 8,563 | 1,322,000 | 10,900,000 2.23
Hamburg 2 9 1,834 99,000 | 1,000,000 2.02
Hamburg 3 2 791 30,000 200,000 1.32
Hamburg 4 2 238 2,000 23,000 1.04
Hamburg 5 2 1,461 85,000 580,000 1.31
Hamburg 6 2 2,283 176,000 | 1,600,000 1.33
Hamburg 7 2 341 6,000 34,000 1.32
| Hamburg-Holstein | 4 | 3413 | 230,000 | 4,000,000 | 1.68 |

?Compared to the problems presented in [8], the number of timetabled trips

and unloaded trips and the weights for some unloaded trips have been changed

for some instances due to slightly different rules for the depot generation and

compatibility of dead-head trips.

Table 1: Real-world test sets.

The problems from Hamburg and Hamburg-Holstein

At the moment, HHA together with other transportation companies maintain 14 garages
with 9 different vehicle types. The existing garage-vehicle combinations define 40 depots.
In Hamburg, more than 16,000 daily timetabled trips must be scheduled with about 15.1
million unloaded trips. The problem in Hamburg decomposes into a 12-depot problem,
a 9-depot problem, five smaller 2-depot problems, and nine small 1-depot problems. We
consider only the multiple-depot problems, denoted by Hamburg 1-7. The planning of
the region Hamburg-Holstein is based on 18 garages, each defining one depot.

6 Computational Results

We have made many test runnings to find out the right parameter configurations for our
subgradient methods. Among them we first present the computational results for our

10



default configuration: a maximal number of iterations Ny := 100; the step length rule
A with maximal number of consecutive failures N, := 2 and ¢(® := 10; and the step
direction %) := 0.6g" + 0.29%*=Y 4+ 0.1¢g%=? 4+ 0.1¢*=3). Afterwards, we show some
effects if the one or the other parameter is changed.

6.1 Results for the Default Configuration

In Tab. 2 we summarize the objective values (fleet size and operational weight) of the
investigated subgradient methods for LR and LRg.q in comparison with the values of
the LP relaxation taken from [13] and the optimum taken from [14]. The values of the
column “Best run” in Tab. 2 and 3 are the objectives of the best parameter configurations
provided in [10].

Table 3 gives the gaps relative to the optimum. The most surprising result is that the
trivial problem relaxation Lg(0) neglecting the flow conservations provides almost always
a tight lower bound for the fleet size. The largest gap for the fleet size is at most 0.01 %. It
is remarkable that this simple problem relaxation gives such tight estimations of the fleet
size. Rounding up the fleet sizes given by the LP relaxation to the next integer value, the
gap to the optimal fleet size is always zero. Hence, we consider our problems to be well
conditioned in some sense, which we see to be confirmed by our computational results.
Ignoring the fleet sizes and considering only the operational costs, the gap between Li.s(0)
and the optimum is already not larger than 16.01 %. With a good parameter configuration
depending on each single instance, this gap can be reduced with our subgradient methods
to less than 10 %.

As we can observe from Tab. 4, none of the two relaxations together with the sub-
gradient methods with standard parameter configuration yield significantly better lower
bounds for our test set. From our point of view, we cannot prefer one of them definitely.
The advantage of the relaxation with respect to the flow conditions is that the largest
instance, Berlin 1, is solved significantly faster. This may be strengthened if the evalua-
tion of the Lagrangean function Lg.q is parallelized. On the other side, however, the other
Lagrangean relaxation with respect to the flow conservations can be employed within a
schedule first — cluster second heuristic, which works quite good in practice.

Theoretically, the two Lagrangean relaxations and the LP relaxation yield the same
optimal value. Nevertheless, our subgradient methods do not attain the LP value for three
instances, but the resulting gap are very small and can be neglected, see Tabs. 2 and 3.
However, the big advantage of the Lagrangean relaxations is that they can be solved by
far faster than the LP relaxation, see Tab. 4.

6.2 Variations of Certain Parameters

Considering a fixed parameter configuration, our methods show a similar behaviour for
each test instance. Thus, we present the effects of varying a single parameter and use the
problem Hamburg 1 as an example.

11
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Subgradient methods LP relaxation Optimum
Weight
Test Sets Fleet Default Best run® Fleet Weight Fleet | Weight
Lfcs(o) LRfcs | LI{fcd LRfcs | LRfcd

Berlin 1 1323 | 715714 | 708008 | 704666 — — 1323 | 759162.0° || 1329°¢ | 850680
Berlin 2 1350 | 715623 | 719952 | 718463 — — || 1353.7 | 797918.8 1354 | 777823¢
Berlin 3 69 | 14043 | 14075 | 14105 | 14101 | 14111 69 14119.0 69 14119
B-Spandau 1 125 | 65585 | 64984 | 65021 | 65586 | 65586 125 65610.5 125 65611
B-Spandau 2 184 | 78947 | 78204 | 77342 | 79038 | 78963 184.5 79110.0 185 | 790524
B-Spandau 3 127 | 90514 | 92711 | 92298 | 93461 | 93534 127 93745.0 127 93745
B-Spandau 4 191 | 195844 | 197786 | 203178 | 205752 | 209023 191 | 230846.0 191 | 230846
B-Spandau 5 191 | 191141 | 194436 | 197965 | 202886 | 207237 191 | 227580.0 191 | 227580
B-Spandau 6 98 | 91109 | 92490 | 91797 | 98392 | 92700 98 | 101075.0 98 | 101075
B-Spandau 7 125 | 65585 | 65135 | 65427 — — 125 65610.5 125 65611
B-Spandau 8 184 | 78947 | 78657 | 78072 — — 184.5 79110.0 185 | 791607
Hamburg 1 432 | 66874 | 69728 | 68447 | 70266 | 68447 432 71068.3 432 71069
Hamburg 2 103 | 15356 | 15769 | 15759 | 15814 | 15769 103 16070.0 103 16070
Hamburg 3 39 5557 5796 5733 5796 | 5860° 39 5860.0 39 5860
Hamburg 4 6 | 1358 — — — — 6 1358.0 6 1358
Hamburg 5 62 | 12092 | 12430 | 12374 | 12439 | 12502 62 12502.0 62 12502
Hamburg 6 111 | 15705 | 15791 | 157919 | 15791% | 15791 111 15791.0 111 15791
Hamburg 7 15 2832 2961 2959 2961° 2961/ 15 2961.0 15 2961
| H-Holstein || 201 | 28697 | 28860 | 28916 | 28972 | 29018 || 201 | 29027.0 [ 201 [ 29027

“Best parameter configuration of [10]

*Best known LP value, which is certainly not optimal.

“Best known solution value.
Not proved to be optimal.
®Feasible and optimal after 65 iterations.
fAlready feasible and optimal.
9Feasible and optimal after 24 iterations.
hFeasible and optimal after 55 iterations.
"Feasible and optimal after 31 iterations.
JFeasible and optimal after 50 iterations.
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Gaps relative to optimum in %
Fleet® Weight
Test Sets Subgradient methods

Lagr. Lp Ig)efault Best run® Lp

relax. | relax. Tiee(0) | TRiws | Read | TRe | T Req relax.
Berlin 2¢ 0.01 0.00 — — — — — —
Berlin 3 0.00 0.00 0.54 | 0.31 0.10 | 0.13 0.06 0.00
B-Spandau 1 0.00 0.00 0.03 | 1.00 0.90 | 0.04 0.04 0.00
B-Spandau 2¢ 0.01 0.00 — — — — — —
B-Spandau 3 0.00 0.00 3.45 | 1.10 1.54 | 0.30 0.22 0.00
B-Spandau 4 0.00 0.00 15.16 | 14.32 | 11.98 | 10.87 9.45 0.00
B-Spandau 5 0.00 0.00 16.01 | 14.56 | 13.01 | 10.85 8.94 0.00
B-Spandau 6 0.00 0.00 9.86 | 8.49 9.18 | 2.65 8.29 0.00
B-Spandau 7 0.00 0.00 0.03 | 0.72 0.28 — — 0.00
B-Spandau 8° 0.01 0.00 — — — — — —
Hamburg 1 0.00 0.00 5.90 | 1.89 3.69 | 1.13 3.69 0.00
Hamburg 2 0.00 0.00 4.44 | 1.87 1.93 | 1.59 1.87 0.00
Hamburg 3 0.00 0.00 5.17 | 1.09 2.16 | 1.09 0.00 0.00
Hamburg 4 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 0.00
Hamburg 5 0.00 0.00 3.27 | 0.57 1.02 | 0.50 0.00 0.00
Hamburg 6 0.00 0.00 0.54 | 0.00 0.00 | 0.00 0.00 0.00
Hamburg 7 0.00 0.00 4.36 | 0.00 0.07 | 0.00 0.00 0.00

| H-Holstein || 0.00| 0.00]] 1.13] 0.57] 0.38] 0.19] 0.03 [ 0.00 |

%Berlin 1 is not solved to optimality.
Best parameter configuration of [10]

“There is still a fleet size gap between the optimum and all Lagrangean functions. Therefore,

we are not able to give weight gaps.



Subgradient methods .
Test Sets Teea(0) ‘ TR ‘ TR LP relax.
Berlin 1 916 | 49258 | 31602 —
Berlin 2 229 | 11051 | 4819 30985
Berlin 3 17 365 417 311
B-Spandau 1 27 | 1501 | 1172 43777
B-Spandau 2 93 | 4447 | 3834 170408
B-Spandau 3 9 357 236 739
B-Spandau 4 25| 1116 858 4384
B-Spandau 5 31 | 1037 818 5264
B-Spandau 6 17 189 142 162
B-Spandau 7 23 | 1367 | 1063 24717
B-Spandau 8 67 | 3919 | 3118 62041
Hamburg 1 185 | 6838 | 6643 50246
Hamburg 2 12 386 415 685
Hamburg 3 4 52 89 31
Hamburg 4 2 2 2 3
Hamburg 5 10 221 332 155
Hamburg 6 18 198 267 84
Hamburg 7 2 7 12 8
| H-Holstein || 40 | 1371 | 1919 || 2087 |

“Fastest method taken from [13].

PMore than 375 hours cpu time were necessary to reach the
best known LP value, and 200 hours to reach a fleet minimal
value.

Table 4: Running times in seconds on a SUN Model 170 UltraSPARC with 512 MByte

main memory.

Figures 2 and 3 show the influence of different step directions: “1 subgradient” means
g = ¢, “2 subgradients” means §*) := 0.7¢"®) 4 0.3¢*~Y, and “4 subgradients”
means (default) §*) := 0.6 + 0.29%=1 4+ 0.19%=2 4 0.1¢9*=3). Using more than one
subgradient leads to a faster convergence and, in general, yields better lower bounds. For
our test set and for our computational test runnings, the default step direction shows the
fastest convergence and provides, on the average, the better lower bounds than the other
tested directions.

As we can observe from Figs. 4 and 5, the two presented step size rules perform
comparable. This is the main reason to use the simpler rule A as default since we do not
need to provide an upper bound L for the Lagrangean functions.

The last Fig. 6 shows the behaviour for different maximal allowed consecutive failures
N;. The Lagrangean functions improve quickly within few iterations if we use Ny = 1,

14
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Figure 2: Comparing different step directions for Hamburg 1 and LRjeq.
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Figure 3: Comparing different step directions for Hamburg 1 and LRjc.
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Figure 4: Comparing the two step length rules for Hamburg 1 and LRjq.
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Figure 5: Comparing the two step length rules for Hamburg 1 and LRjc.
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but afterwards, no further significant improvements can be achieved since the step length
is reduced far too fast. For Ny = 3, the step length is reduced only once or twice such that
the subgradient method cannot converge to an optimal solution, but starts to oscillate
until the iteration limit is reached. Empirically based on our observations, we can claim
that Ny = 2 is a good compromise.

43200075000 e e e f e e

43200070000 [ T

43200065000

43200060000

43200055000

43200050000

43200045000

43200040000 L i i i i i
0 20 40 60 80 100
Iteration

Figure 6: Comparing different maximum failure values N; for Hamburg 1 and L.Rgs.

7 Conclusions

We have presented two Lagrangean relaxations for the MDVSP and reported on numerical
tests for the subgradient methods on truely large-scale real-world test instances. The main
results of this paper are as follows:

Our real-world test instances seem to be fairly well structured. On the one hand,
the trivial problem relaxation neglecting the flow conservation constraints gives already
a very good approximation for the minimum integral fleet size. On the other hand,
this relaxation can be evaluated efficiently for our instances. So, we are able to quickly
compute tight lower bounds for the fleet size.

If we ignore the values for the fleet size, there are still gaps (up to 16 %) of the op-
erational costs between our trivial problem relaxation and the LP relaxation. To reduce
them, we employed the presented subgradient methods. For these methods, testing many
parameter configurations for each instance may lead to a significant gap reduction. How-
ever, we are unable to provide a default starting parameter setting improving significantly
the lower bound for the operational costs for each of our test instances. The possible im-
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provements obtained by many runs of the subgradient methods testing different parameter
settings is entirely disproportionate to the necessary running times.

Since our methods provide tight lower bounds for the fleet size, public transportation
companies can use them to simulate different scenarios in vehicle scheduling, e. g., different
compatibility rules or different weights of unloaded trips, and so easily find out the best
of them. From our point of view, the Lagrangean relaxations are of further importance
within a delayed column generation approach to solve the LP relaxation exactly, see

[13, 14].
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