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Abstract

We present efficient techniques for the numerical approximation of compli-
cated dynamical behavior. In particular, we develop numerical methods which
allow to approximate SBR-measures as well as (almost) cyclic behavior of a
dynamical system. The methods are based on an appropriate discretization
of the Frobenius-Perron operator, and two essentially different mathemati-
cal concepts are used: the idea is to combine classical convergence results
for finite dimensional approximations of compact operators with results from
Ergodic Theory concerning the approximation of SBR-measures by invariant
measures of stochastically perturbed systems. The efficiency of the methods
is illustrated by several numerical examples.
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1 Introduction

The approximation of the behavior of a dynamical system is typically done by di-
rect simulation. This method is particularly useful in the situation where a specific
trajectory has to be approximated for a finite period of time. However, if one is
interested in the long term behavior and if the underlying system exhibits com-
plicated dynamics then the information derived from one single trajectory is not
always satisfying. Rather in this case it seems more appropriate to determine a
statistical description of the dynamical behavior, and this information is encoded in
an underlying (natural) invariant measure.

In this paper we describe a numerical method for the approximation of such in-
variant measures based on a discretization of the Frobenius-Perron operator. Using
the fact that invariant measures are fixed points of this operator we first approxi-
mate it by a Galerkin projection and then compute eigenvectors of the discretized
operator corresponding to the eigenvalue one. This allows us to identify regions in
state space where trajectories are likely – or, on the other hand, hardly – to be
observed. In addition to this information we show how to use other parts of the
spectrum of the Frobenius-Perron operator to determine the essential dynamical
behavior of the system. For instance, by an application of our methods we can
detect (almost) invariant sets, that is, components of invariant sets which are, on
average, visited for a “long” period of time before the dynamical process leads to
different areas in phase space. More generally the same techniques allow us to de-
tect (almost) cyclic behavior, that is, to identify components of invariant sets which
are “frequently” cyclically permuted by the dynamical process. Moreover, we can
quantify the probability by which the cycle occurs depending on the absolute value
of a corresponding eigenvalue of the Frobenius-Perron operator. Roughly speaking,

we construct an approximation of the essential dynamical behavior, that
is, the dynamics modulo complex (unpredictable) behavior which is due
to the presence of chaos.

There are two essential mathematical ingredients which allow us to develop a
numerical method for the approximation of invariant measures. We use a result of
Yu. Kifer on the convergence of invariant measures in stochastic perturbations of the
dynamical system to an SBR-measure (see [15]) and combine this with results on
the convergence of eigenspaces of discretized compact operators (see e.g. [20]). The
same technique is used for the approximation of the subsets in state space which
are (almost) cyclically permuted by the dynamical process. With respect to the
approximation of SBR-measures a similar result has previously been obtained by F.
Hunt (see [13]). However, our methods are quite different to the ones used in that
work. In particular, the results stated here cover the important situation where the
random perturbations have a probability distribution with local support. In fact,
this is the relevant case having in mind that the round off error in the numerical
approximation can be interpreted as such a local perturbation.

As mentioned above in addition to the approximation of SBR-measures the main
development in this paper is a numerical method which allows to identify (almost)
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cyclic behavior. To accomplish this we use a Galerkin method to discretize the
Frobenius-Perron operator in such a way that the discretization has the same cyclic
properties as the operator itself. More precisely, if the underlying dynamical system
has a cycle of order r then the rth roots of unity are eigenvalues of the Frobenius-
Perron operator, and we will show that the corresponding eigenmeasures ν0, . . . , νr−1

yield the desired information on the cyclic components: these components can be
identified as supports of probability measures obtained by specific linear combina-
tions of ν0, . . . , νr−1. Our Galerkin approximation respects the cyclic behavior in
the sense that the rth roots of unity are also eigenvalues of the discretized operator
and that the corresponding eigenvectors converge to the eigenmeasures ν0, . . . , νr−1

with increasing dimension of the approximating space. Finally we illustrate how to
use these results to determine the subsets in state space which are almost cyclically
permuted.

An outline of the paper is as follows. In §2 we begin with a brief review of the
results on Markov processes which will be needed later on. The Frobenius-Perron
operator is introduced in §3. In that section we also describe the Galerkin projection
that we use in the numerical approximation. In §4 we use Kifer’s result on small
random perturbations of diffeomorphisms to prove convergence of the approxima-
tions to an SBR-measure in the hyperbolic case (Theorem 4.4). In the main section
of this article, §5, we show how to extract numerically the information on the (al-
most) cyclic components from the spectrum of the Frobenius-Perron operator. In
particular, we present a method to identify regions in phase space where, on average,
trajectories stay for a long period of time. Finally, in §6 we illustrate the usefulness
of our methods as tools in the numerical analysis of dynamical behavior by several
examples.

2 Stochastic Transition Functions

For our main theoretical results we are using the concept of small random perturba-
tions of dynamical systems. Since we assume that the typical reader is not familiar
with this concept we begin by recalling some basic notions and results on Markov
processes that will be needed later on. For a detailed introduction the reader is
referred to [9].

Invariant Measures

Our aim is to approximate the dynamical behavior of discrete dynamical systems of
the form

xi+1 = f(xi), i = 0, 1, 2, . . . ,

where f : X → X is a diffeomorphism on a compact subset X ⊂ R
n . We denote

by B the Borel σ–Algebra on X and by m the Lebesgue measure on B. Moreover,
let M be the space of probability measures on B. Recall that a measure μ ∈ M is
invariant if

μ(B) = μ(f−1(B)) for all B ∈ B.
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On the other hand, a set A ∈ B is invariant if

f(A) ⊂ A.

We now turn our attention to the more general stochastic framework.

Definition 2.1 A function p : X × B → R is a stochastic transition function, if

(i) p(x, ·) is a probability measure for every x ∈ X ,

(ii) p(·, A) is Lebesgue-measurable for every A ∈ B.
Let δy denote the Dirac measure supported on the point y ∈ X . Then p(x,A) =

δh(x)(A) is a stochastic transition function for every m-measurable function h. We
will see below that the specific choice h = f represents the deterministic situation
in this more general set up.

We set p(1)(x,A) = p(x,A) and define recursively the i-step stochastic transition
function p(i) : X × B → R by

p(i+1)(x,A) =

∫
p(i)(y, A) p(x, dy), i = 1, 2, . . . .

It is easy to see that p(i) is indeed a stochastic transition function. In particular, for
the case where p(x,A) = δf(x)(A) we obtain for i ≥ 1

p(i)(x,A) = δf i(x)(A).

We now define the notion of an invariant measure in the stochastic setting.

Definition 2.2 Let p be a stochastic transition function. If μ ∈ M satisfies

μ(A) =

∫
p(x,A) dμ(x)

for all A ∈ B, then μ is an invariant measure of p.

Remarks 2.3 (a) In the literature on Markov processes (e.g. [9]) an invariant
measure is typically referred to as a stationary absolute probability measure.
However, having the situation in mind that we consider stochastically per-
turbed dynamical systems we prefer the notion of an invariant measure (see
also [15, 19]).

(b) If μ is an invariant measure of p then it follows that

μ(A) =

∫
p(i)(x,A) dμ(x)

for all i = 1, 2, . . ..

The following example illustrates the previous remark that we recover the determin-
istic situation in the case where p(x, ·) = δf(x).

3



Example 2.4 Suppose that p(x, ·) = δf(x) and let μ be an invariant measure of p.
Then we compute for A ∈ B

μ(A) =

∫
p(x,A) dμ(x) =

∫
δf(x)(A) dμ(x) =

∫
χA(f(x)) dμ(x) = μ(f−1(A)),

where we denote by χA the characteristic function of A. Hence μ is an invariant
measure for the diffeomorphism f .

Definition 2.5 A set A ∈ B is called a consequent set of x, if p(i)(x,A) = 1 for
all i ≥ 1. The set A is invariant if it is the consequent set of all of its points.
Furthermore if C ∈ B is a set for which

lim
i→∞

p(i)(x, C) = 0 for all x ∈ X,

then C is called a transient set.

Considering our guiding example let p(x, ·) = δf(x) and let A be an invariant set
for p. Then we have for y ∈ A

1 = p(y, A) = δf(y)(A).

Hence f(A) ⊂ A and A is an invariant set for the diffeomorphism f .

Absolutely Continuous Stochastic Transition Functions

Now we assume that for every x ∈ X the probability measure p(x, ·) is absolutely
continuous with respect to the Lebesgue measure m. Hence we may write p(x, ·) as

p(x,A) =

∫
A

k(x, y) dm(y) for all A ∈ B,

with an appropriate transition density function k : X ×X → R. Obviously,

k(x, ·) ∈ L1(X,m) and k(x, y) ≥ 0.

In this case we also call the stochastic transition function p absolutely continuous.
Note that ∫

k(x, y) dm(y) = p(x,X) = 1 for all x ∈ X.

We let k(1)(x, y) = k(x, y) and define the i-step transition density function as

k(i+1)(x, y) =

∫
k(x, ξ)k(i)(ξ, y) dm(ξ), i = 1, 2, . . . .

With this definition we obtain for A ∈ B
p(i)(x,A) =

∫
A

k(i)(x, y) dm(y),

that is, the i-step transition density function k (i) is the stochastic transition density
function for p(i).

The following theorem allows a characterization of all invariant measures of a
certain class of stochastic transition functions.
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Theorem 2.6 Let p be an absolutely continuous stochastic transition function with
density function k. Suppose that k(x, y) ≤M for some positive constant M > 0 and
all x, y ∈ X.

Then X can be decomposed into finitely many disjunct invariant sets E1, E2, . . . , Ee

and a transient set F = X – ∪e
j=1 Ej such that for each Ej there is a unique proba-

bility measure πj ∈ M with πj(Ej) = 1 and

lim
N→∞

1

N

N∑
i=1

p(i)(x,A) = πj(A) for all A ∈ B and all x ∈ Ej. (2.1)

Furthermore the left hand side q(x,A) in (2.1) exists uniformly in x and defines for
every fixed x ∈ X an invariant measure. Finally, every invariant measure of p is a
convex combination of the πj’s.

A proof of this theorem can be found in [9].

Remarks 2.7 (a) The Ej’s are called the ergodic sets of p.

(b) One can show that the invariant measures πj are absolutely continuous with
density functions κj ∈ L1, that is, we have

πj(A) =

∫
A

κj(x) dm(x), j = 1, . . . , e.

It follows that for every x ∈ X the limit q(x, ·) in (2.1) is also absolutely
continuous with a density function 	(x, ·) ∈ L1.

3 Approximation of the Frobenius–Perron

Operator

The main purpose of this section is to describe an appropriate Galerkin method for
the approximation of the Frobenius–Perron operator. Before this we first introduce
this operator and derive certain spectral properties.

The Frobenius–Perron Operator

Definition 3.1 Let p be a stochastic transition function. Then the Frobenius–
Perron operator P : MC → MC is defined by

Pμ(A) =

∫
p(x,A) dμ(x),

where MC is the space of bounded complex valued measures on B. If p is abso-
lutely continuous with density function k then we may define the Frobenius–Perron
operator P on L1 by

Pg(y) =

∫
k(x, y)g(x) dm(x) for all g ∈ L1.
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Remarks 3.2 (a) By definition a measure μ ∈ M is invariant if and only if
it is a fixed point of P . In other words, invariant measures correspond to
eigenmeasures of P for the eigenvalue one.

Moreover, let λ ∈ C be an eigenvalue of P with corresponding eigenmeasure
ν, that is, Pν = λν. Then in particular

λν(X) = Pν(X) =

∫
p(x,X) dν(x) = ν(X)

since p(x,X) = 1 for all x ∈ X. It follows that ν(X) = 0 if λ �= 1.

(b) Observe that in the deterministic situation where p(x, ·) = δf(x) we obtain

Pμ(A) =

∫
p(x,A) dμ(x) = μ(f−1(A))

(cf. Example 2.4). This is indeed the standard definition of the Frobenius–
Perron operator in the deterministic setting (see e.g. [17]).

(c) Note that in the case where p is absolutely continuous we have P : L1 → L1

since for each g ∈ L1

∫
Pg(y) dm(y) =

∫∫
k(x, y)g(x) dm(x) dm(y)

=

∫
g(x)

∫
k(x, y) dm(y) dm(x)

=

∫
g(x) dm(x) < +∞.

Correspondingly a nonnegative fixed point g ∈ L1 of P with ‖g‖1 = 1 is the
density of an invariant probability measure and conversely the density of every
absolutely continuous invariant probability measure is a fixed point of P .

We are particularly interested in approximating cyclic dynamical behavior of
the underlying dynamical system. In the stochastic setting this corresponds to the
situation where there are disjoint compact subsets Xj ⊂ X , j = 0, . . . , r − 1, such
that

X =

r−1⋃
j=0

Xj,

and for which the stochastic transition function p satisfies

p(x,Xj+1mod r) =

{
1 if x ∈ Xj

0 otherwise.
(3.1)

We now relate the cyclic dynamical behavior described by (3.1) to spectral prop-
erties of the corresponding Frobenius-Perron operator P .
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Proposition 3.3 If the stochastic transition function p satisfies (3.1) then we have
for the corresponding Frobenius-Perron operator P :

(a) The r-th power P r has an eigenvalue one of multiplicity at least r. Moreover,
there are r corresponding invariant measures μk ∈ M, k = 0, 1, . . . , r − 1,
with support on Xk, that is, supp(μk) ⊂ Xk. These measures can be chosen to
satisfy

μk = P kμ0, k = 0, 1, . . . , r − 1.

(b) The r-th roots of unity ωk
r , k = 0, 1, . . . , r−1, where ωr = e2πi/r, are eigenvalues

of P .

Proof:

(a) Observing that for each μ ∈ MC

P jμ(A) =

∫
p(j)(x,A) dμ(x),

where p(j) is the j-step stochastic transition function, the existence of the
measures μk, k = 0, 1, . . . , r − 1, follows from standard results on Markov
processes (see e.g. [9], Chapter V). Moreover, these measures can be chosen so
that

μk+1mod r = Pμk, k = 0, 1, . . . , r − 1.

Simply note that if μk is invariant for P r then

P r(Pμk) = P (P rμk) = Pμk

and hence Pμk is an invariant measure with support on Xk+1.

(b) Let μ be one of the probability measures which exist by part (a). We show
that for k ∈ {0, 1, . . . , r − 1}

νk =

r−1∑
j=0

ω−kj
r P jμ ∈ MC (3.2)

is an eigenmeasure of P for the eigenvalue ωk
r . Indeed, using the fact that

P rμ = μ we compute

Pνk = Pμ+ ω−k
r P 2μ+ · · ·+ ω−k(r−2)

r P r−1μ+ ω−k(r−1)
r μ

= ωk
r

(
μ+ ω−k

r Pμ+ · · ·+ ω−k(r−1)
r P r−1μ

)
= ωk

rνk.

Finally, νk �= 0 since νk(Xj) �= 0 for j = 0, 1, · · · , r − 1.
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Approximation by a Galerkin Method

We begin with the following observation which immediately follows from standard
results on integral operators (see e.g. [22], p. 277).

Lemma 3.4 Suppose that the transition density function k satisfies∫∫
|k(x, y)|2 dm(x)dm(y) <∞. (3.3)

Then the Frobenius-Perron operator P : L2 → L2 is compact.

From now on we consider the case where P is given by a dynamical process with
a transition density function k satisfying the condition (3.3). The aim is to use
a Galerkin method for the approximation of such a Frobenius–Perron operator
together with its spectrum. More precisely, let Vd, d ≥ 1, be a sequence of d–
dimensional subspaces of L2 and let Qd : L2 → Vd be a projection such that Qd

converges pointwise to the identity on L2. If we define the approximating operators
by Pd = QdP then we have

‖Pd − P‖2 → 0 as d → ∞.

Denote by σ(P ) and ρ(P ) the spectrum and resolvent set of P respectively and
by Rz = (zI − P )−1, z ∈ ρ(P ), the resolvent operator. Let λ �= 0 ∈ σ(P ) be a
nonzero eigenvalue of P and let Γ ⊂ C be a circle in ρ(P ) with center λ such that
no other point of σ(P ) is inside Γ. Then the operator defined by

E = E(λ) =
1

2πi

∫
Γ

Rz(P ) dz

is a projection onto the space of generalized eigenvectors associated with λ and P .
The following theorem – which is a specific application of the main result of [20] on
compact operators – allows to approximate eigenvectors of P by eigenvectors of Pd.

Theorem 3.5 ([20]) Let λd be an eigenvalue of Pd such that λd → λ for d → ∞,
and let gd be a corresponding eigenvector of unit length. Then there is a vector
hd ∈ R(E) and a constant C > 0 such that (λI − P )hd = 0 and

‖hd − gd‖2 ≤ C‖(P − Pd)|R(E)‖2.

Next we use Theorem 3.5 to approximate the eigenvalues of P which are lying
on the unit circle. For this we construct a Galerkin projection which possesses the
same cyclic behavior in the approximation. Suppose that (3.1) holds and let {ϕ j

i},
j = 0, 1, . . . , r − 1, i = 1, 2, . . . , dj be a basis of Vd with the following properties:

(i) supp(ϕj
i ) ⊂ Xj (j = 0, 1, . . . , r − 1, i = 1, 2, . . . , dj),

(ii)
dj∑
i=1

ϕj
i (x) = 1 for all x ∈ Xj, j = 0, 1, . . . , r − 1.

(3.4)
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Remarks 3.6 (a) In §4 we will see how to generate a basis satisfying (3.4). In
that case, Vd consists of functions which are locally constant.

(b) Observe that by construction∑
i,j

ϕj
i (x) = 1 for all x ∈ X .

The Galerkin projection Qdg of g ∈ L2 is defined by

(Qdg, ϕ
j
i) = (g, ϕj

i ) for all i, j,

where (·, ·) is the usual inner product in L2. The following result is a generalization of
Lemma 8 in [8], where just the fixed point of P is considered. Recall that ωr = e2πi/r.

Proposition 3.7 Suppose that the Galerkin projection satisfies (3.4). Then the
approximating operators Pd = QdP possess the eigenvalues ωk

r , k = 0, 1, . . . , r − 1.

Proof: Suppose that λ is an eigenvalue of Pd with corresponding eigenvector ψ(x) =∑
i,j β

j
iϕ

j
i (x). Then Pdψ = λψ is equivalent to

∑
i1,k1

βk1
i1
(Pϕk1

i1
, ϕk2

i2
) = λ

∑
i1,k1

βk1
i1
(ϕk1

i1
, ϕk2

i2
) for all i2, k2.

Introducing the coefficient vector β = (βj
i ) we may write this equation in matrix

form as
M1β − λM2β = 0, (3.5)

where both M1 and M2 have non-negative entries. Moreover, noting that∫
Qdg dm =

∫
Pdg dm =

∫
g dm for every g ∈ L2,

and using the fact that
∑

i,j ϕ
j
i (x) = 1 we can proceed in the same way as in [8],

Lemma 8, to see that (1, 1, . . . , 1) is a left eigenvector with eigenvalue one of the
generalized eigenvalue problem (3.5). The fact that M2 is invertible – since {ϕj

i} is
a basis of Vd – now implies that there is an eigenvector α with

M−1
2 M1α = α.

We claim that M−1
2 M1 has a cyclic structure so that (M−1

2 M1)
r is of block diagonal

form where the blocks have the dimensions dj, j = 0, 1, . . . , r − 1. Decomposing α
with respect to this block structure we may proceed as in the proof of part (b) of
Proposition 3.3 to show that ωk

r , k = 0, 1, . . . , r − 1, are eigenvalues of (3.5) and
hence of Pd as desired.

We now proof the claim. Since the matrix M2 in (3.5) already has the desired
block diagonal form (by (i) in (3.4)), it remains to show that the basis functions are
cyclically permuted by Pd respecting the block structure of M2. More precisely we
will show that (Pϕk1

i1
, ϕk2

i2
) = 0 if k2 �= (k1 + 1)mod r.
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By (3.1) we have∫
X

j+1mod r

k(x, y) dm(y) =

{
1 if x ∈ Xj

0 otherwise.

It follows that∫
Xk2

∫
Xk1

k(x, y) dm(x)dm(y) =

∫
Xk1

∫
Xk2

k(x, y) dm(y)dm(x) = 0

if k2 �= (k1 + 1)mod r, and therefore

(Pϕk1
i1
, ϕk2

i2
) =

∫
Xk2

∫
Xk1

k(x, y)ϕk1
i1
(x)ϕk2

i2
(y) dm(x)dm(y) = 0

if k2 �= (k1 + 1)mod r as desired.

Now we may combine Theorem 3.5 and Proposition 3.7 to obtain a convergence
result for eigenvectors corresponding to eigenvalues of P of modulus one.

Corollary 3.8 Suppose that P and its approximation Pd satisfy the hypotheses
stated above. Then each simple eigenvalue e2πik/r of P on the unit circle is an
eigenvalue of Pd and there are corresponding eigenvectors gd of Pd converging to an
eigenfunction h of P . More precisely, there is a constant C > 0 such that for all
d ≥ 1

‖h− gd‖2 ≤ C‖Pd − P‖2.

4 The Computation of SBR-Measures

SBR-Measures

Let us briefly recall the notion of an SBR-measure. In the existing literature several
different definitions can be found which are all equivalent in the case where the
underlying dynamical behavior is Axiom A. This is precisely the situation we will
consider, and hence we can – without loss of generality – work with just one of them.

Definition 4.1 An ergodic measure μ is an SBR-measure if there exists a subset
U ⊂ X with m(U) > 0 and such that for each continuous function ψ

lim
N→∞

1

N

N−1∑
j=0

ψ(f j(x)) =

∫
ψ dμ (4.1)

for all x ∈ U .

Remark 4.2 (a) Recall that (4.1) always holds for μ-a.e. x ∈ X by the Birkhoff
Ergodic Theorem. The crucial difference for an SBR-measure is that the tem-
poral average equals the spatial average for a set of initial points x ∈ X which
has positive Lebesgue-measure. This is the reason why this measure is also
referred to as the natural or the physically relevant invariant measure.
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(b) The existence of SBR-measures has been shown for Axiom A systems by R.
Bowen and D. Ruelle (see [21, 2]). More recently M. Benedicks and L.-S.
Young have shown that the Henon-map has an SBR-measure for a “large”
set of parameter values, [1]. However, it is still one of the major problems in
Ergodic Theory to establish the existence of SBR-measures for a more general
class of dynamical systems.

Small Random Perturbations

We specify concretely the stochastic transition function p underlying the numerical
realization. Recall that the purpose is to approximate the Frobenius-Perron operator
of a deterministic dynamical system represented by a diffeomorphism f . Hence the
stochastic system that we consider should be a small perturbation of this original
deterministic system.

For ε > 0 we set

kε(x, y) =
1

εnm(B)
χB

(
1

ε

(
y − x

))
, x, y ∈ X. (4.2)

Here B = B0(1) denotes the open ball in Rn of radius one and χB is the characteristic
function of B. Obviously kε(f(x), y) is a transition density function and we may
define a stochastic transition function pε by

pε(x,A) =

∫
A

kε(f(x), y) dm(y). (4.3)

Remark 4.3 Note that pε(x, ·) → δf(x) for ε → 0 uniformly in x in a weak*–sense.
Hence the Markov process defined by any initial probability measure μ and the
transition function pε is a small random perturbation of the deterministic system f
in the sense of Yu. Kifer ([15]).

Observe that we can apply the results from §3 since∫∫
|kε(f(x), y)|2 dm(x)dm(y) ≤

(
m(X)

εnm(B)

)2

<∞,

and therefore the Frobenius-Perron operator Pε : L
2 → L2 is compact (see Lemma 3.4).

Approximation of SBR-Measures

We now combine Corollary 3.8 with a result of Yu. Kifer [15] to show that the ap-
proximations of the invariant measures converge to an SBR-measure with decreasing
magnitude of the random perturbations.

Let us be more precise. Suppose that the diffeomorphism f possesses a hyperbolic
attractor Λ with an SBR-measure μSBR, and let pε be a small random perturbation
of f . Then, under certain hypotheses on pε, it is shown in [15] that the invariant
measures of pε converge in a weak*–sense to μSBR as ε→ 0. On the other hand we
can approximate the relevant eigenmeasures of Pε by Corollary 3.8 and this leads to
the desired result.
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Theorem 4.4 Suppose that the diffeomorphism f has a hyperbolic attractor Λ, and
that there exists an open set UΛ ⊃ Λ such that

kε(x, y) = 0 if x ∈ f(UΛ) and y �∈ UΛ.

Then the transition function pε in (4.3) has a unique invariant measure πε with
support on Λ and the approximating measures

με
d(A) =

∫
A

gεd dm

converge in a weak*–sense to the SBR–measure μSBR of f as ε→ 0 and d → ∞,

lim
ε→0

lim
d→∞

με
d = μSBR. (4.4)

Proof: It is straightforward to check that the conditions of Theorem 1 in [15] are
satisfied for the densities

qεx(y) = kε(x, y),

provided ε < 1. Hence – denoting the unique invariant measure of the transition
function pε with support in UΛ by πε – this theorem implies that

πε
weak∗−→ μSBR for ε → 0. (4.5)

By Remark 2.7 we know that πε is absolutely continuous, and we denote its
density function by κε. Then Corollary 3.8 guarantees that the fixed points gεd of P

ε
d

converge to κε as d→ ∞. Therefore∣∣∣∣
∫
h dμε

d −
∫
h dπε

∣∣∣∣ =

∣∣∣∣
∫
h(gεd − κε) dm

∣∣∣∣
≤ ‖h‖2‖gεd − κε‖2 → 0

as d→ ∞ for every h ∈ L2 and, in particular,

με
d

weak∗−→ πε as d→ ∞.

Combining this with (4.5) leads to (4.4), as desired.

5 Extracting Dynamical Behavior

In the previous section we have seen that we can approximate the physically relevant
invariant measure – the SBR-measure – of our original deterministic system by the
computation of the invariant measure of a randomly perturbed system. However,
dynamically also the non-stationary behavior is interesting, and we will now describe
how to detect numerically components in state space which are (almost) cyclically
permuted.

12



Extraction of Cyclic Behavior

Suppose that the stochastic transition function of the randomly perturbed dynam-
ical system satisfies the cycle condition (3.1). Then the purpose is to identify the
components Xj. By Proposition 3.7 we know that the approximating operator P ε

d

has the eigenvalues ωk
r , k = 0, 1, . . . , r − 1, and we now show that the cyclic com-

ponents can be approximated by certain linear combinations of the corresponding
eigenvectors.

It is instructive to consider the simplest case first before we turn our attention
to the general situation. Suppose that we have two components X0 and X1 which
are cyclically permuted by our process. Then the aim is to find approximations of
eigenmeasures μ0 and μ1 = Pεμ0 of P

2
ε with support on X0 and X1 respectively, see

Proposition 3.3. By the same proposition we know that ω0 = 1 and ω1 = −1 are
eigenvalues of Pε. Let ν0 and ν1 be corresponding (real) eigenmeasures. Then, by
(3.2), there are α0, α1 ∈ R such that

ν0 = α0(μ0 + Pεμ0) and ν1 = α1(μ0 − Pεμ0).

Rescaling ν0 and ν1 so that ν0(X0) = ν1(X0) = 1 we can compute μ0 and μ1 by

μ0 =
1

2
(ν0 + ν1) and μ1 =

1

2
(ν0 − ν1) .

This process also shows how to construct eigenvectors of the Galerkin approximation
for which linear combinations are appropriate approximations of the probability
measures μ0 and μ1.

We now consider the general case. For 	 = 0, 1, . . . , r − 1 denote by μ� = P �
εμ0

the invariant measure of P r
ε with support on X� (see Proposition 3.3).

Lemma 5.1 For s ∈ {0, 1, . . . , r − 1} let

νsk =

r−1∑
j=0

ω−kj
r P j

εμs (5.1)

be a specific choice for the eigenmeasures of Pε corresponding to the eigenvalues ωk
r ,

k = 0, 1, . . . , r − 1 (see (3.2)). Then

1

r

r−1∑
k=0

ω�k
r ν

s
k = μ

�+smod r
.

Proof: We compute

1

r

r−1∑
k=0

ω�k
r ν

s
k =

r−1∑
j=0

(
1

r

r−1∑
k=0

ω(�−j)k
r

)
P j
εμs = P �

εμs = μ
�+smod r

.

Here we have used the identity

1

r

r−1∑
k=0

ω(�−j)k
r = δ�j ,

13



where δ�j is the Kronecker symbol.

The previous lemma indicates how to approximate the cyclic components of X :
we have to find eigenvectors vs0, . . . , v

s
r−1 of the matrixM−1

2 M1 (see (3.5)) which are
approximations of the eigenmeasures ν s

k in (5.1) for an s ∈ {0, 1, . . . , r − 1}. Then
we can compute

u
�+smod r

=
1

r

r−1∑
k=0

ω�k
r v

s
k

for 	 = 0, 1, . . . , r−1, and the boxes corresponding to the positive components of uj

provide an approximation of the support of μj on Xj (j = 0, 1, . . . , r−1) as desired.
Hence it remains to describe how to construct eigenvectors vs0, . . . , v

s
r−1 approx-

imating the νsk in (5.1) for an s ∈ {0, 1, . . . , r − 1}. We do this for the case where
the eigenvalues ωk

r are simple – the case of several coexisting cycles will be treated
in the following paragraph.

Suppose that we have a set of eigenmeasures ρk corresponding to the eigenvalues
ωk
r , k = 0, 1, . . . , r − 1. Since the eigenvalues are simple we know that for each
s ∈ {0, 1, . . . , r − 1} there is a constant αs

k ∈ C such that ρk can be written as

ρk = αs
kν

s
k.

Hence the task is to rescale ρk so that αs
k = 1 for all k. By (3.2) it is easy to see

that for each s ∈ {0, 1, . . . , r − 1}

ρk(Xs) �= 0.

We choose a particular s and rescale the ρk’s by (complex) factors so that

ρk(Xs) = 1 for all k = 0, 1, . . . , r − 1.

With this choice it follows that ρk = νsk.
In the realization of the approximation of the ν s

k’s we proceed with the eigenvec-
tors of M−1

2 M1 in an analogous way: by our choice of the Galerkin approximation
we just need to find an index such that the corresponding components of the eigen-
vectors do not vanish. The scaling as described above can then be done in a similar
way: find complex multiples of the eigenvectors so that they possess (real) positive
components which add up to one for each vector. We will illustrate the method by
examples in §6.

Identification of Several Coexisting Cycles or Invariant Sets

In applications it may occur that there exist several different cycles in the dynamical
system under consideration. We now show how to identify these sets numerically.
Replacing Pε by an appropriate power P r

ε if necessary we can, without loss of gen-
erality, restrict our attention to the case where there are different invariant sets.

14



Again we begin with the simplest case and assume that Pε has two linearly
independent invariant probability measures ν1 and ν2. Then, by Theorem 2.6, there
are constants αi

j (i, j = 1, 2) with

α1
1ν1 + α1

2ν2 = π1 and α2
1ν1 + α2

2ν2 = π2,

where π1 and π2 are probability measures with πi(Ei) = 1 for invariant sets E1 and
E2. Let Bi ⊂ Ei be subsets with νi(Bi) �= 0. Then the coefficients αi

j can be found
as the solutions of the equations

α1
1ν1(B2) + α1

2ν2(B2) = 0

α2
1ν1(B1) + α2

2ν2(B1) = 0,

with the additional requirement that πi = αi
1ν1 + αi

2ν2 are probability measures.
Indeed, let βi

j be constants such that

α1
1ν1 + α1

2ν2 = β1
1π1 + β1

2π2

α2
1ν1 + α2

2ν2 = β2
1π1 + β2

2π2

Then, in particular,

0 = α1
1ν1(B2) + α1

2ν2(B2) = β1
1π1(B2) + β1

2π2(B2) = β1
2π2(B2)

0 = α2
1ν1(B1) + α2

2ν2(B1) = β2
1π1(B1) + β2

2π2(B1) = β2
1π1(B1).

Since νi(Bi) �= 0 it follows that πi(Bi) �= 0 and therefore β1
2 = β2

1 = 0 as desired.
We now generalize this observation. Suppose that the eigenspace of the Frobenius-

Perron operator corresponding to the eigenvalue one is e-dimensional. Then, by The-
orem 2.6, there are e distinct invariant sets E1, E2, . . . , Ee and invariant measures
π1, π2, . . . , πe such that πj(Ej) = 1.

Lemma 5.2 Let νj, j = 1, . . . , e, be invariant measures spanning the e-dimensional
eigenspace of the Frobenius-Perron operator corresponding to the eigenvalue one.
Let Bi ⊂ Eki be subsets such that νi(Bi) �= 0, i = 1, 2, . . . , e. We have:

(a) the matrix M = (νj(Bi))i,j=1,...,e has full rank if and only if

{k1, k2, . . . , ke} = {1, 2, . . . , e}; (5.2)

(b) if rank(M) = e then the invariant measures πj, j = 1, . . . , e, are given by

πk� =
e∑

j=1

α�
jνj ,

where α� = (α�
j) is the (rescaled) nullvector of M� = (νj(Bi))i,j=1,...,e, i �=�.

15



Proof: Suppose that (5.2) holds. Let α ∈ R
e be an element of the kernel of the

matrix M = (νj(Bi)), that is,

e∑
j=1

αjνj(Bi) = 0, i = 1, 2, . . . , e.

Using the fact that there are constants βj, j = 1, . . . , e, such that

e∑
j=1

αjνj =

e∑
j=1

βjπj

we obtain

0 =

e∑
j=1

βjπj(Bi) = βkiπki(Bi), i = 1, 2, . . . , e.

Since 0 �= νi(Bi) = γiπki(Bi) for appropriate constants γi it follows that βi = 0 for
i = 1, 2, . . . , e (here we have used (5.2)). Hence

∑e
j=1 αjνj = 0 and since the νj ’s

span the e-dimensional eigenspace of the Frobenius-Perron operator corresponding
to the eigenvalue one we may conclude that α = 0.

To complete the proof of part (a) it remains to show that M = (νj(Bi)) is
singular if (5.2) is not satisfied, that is, if there is a k ∈ {1, 2, . . . , e} which is not in
{k1, k2, . . . , ke}. Writing πk as

πk =
e∑

j=1

αjνj

and using Bi �⊂ Ek we obtain for i = 1, . . . , e

0 = πk(Bi) =

e∑
j=1

αjνj(Bi).

Hence α = (αj) is a nontrivial nullvector of M . The statement in part (b) is an
immediate consequence.

For the numerical identification of the sets E1, . . . , Ee we choose nonvanishing
components of the e approximations v1, . . . , ve of eigenmeasures ν1, . . . , νe in such a
way that the matrix M = (vji )i,j=1,...,e is nonsingular. Then we identify the distinct
invariant components as the support of the eigenmeasures approximated by the
scaled nullvectors of the matrices M� = (vji )i,j=1,...,e, i �=�.

Extraction of Almost Cyclic Behavior

We distinguish two different scenarios by which an almost cyclic behavior may occur
in a dynamical system:

(i) The first scenario we have in mind is that cyclic components X0, X1, . . . , Xr−1

merge while a control parameter is varied in the system. If this has happened
then the cyclic behavior can frequently be observed although it is strictly no
longer present.
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(ii) Secondly it may happen that two different cycles merge while a control param-
eter is varied. For instance, if two invariant sets “collide” then immediately
after the collision there are still two subsets in state space which are almost
invariant.

In §6 we will illustrate both scenarios by numerical examples.
We know that the r-th roots of unity are eigenvalues of Pε if there are r cyclic

components. If these components merge then these eigenvalues leave the unit circle
and the main purpose of this paragraph is to relate the modulus of these eigenvalues
to the probability that the cyclic behavior is still observed. As in the previous
subsection we may just consider almost invariant sets by replacing Pε by P r

ε if
necessary. In this case a bunch of eigenvalues moves away from one along the real
line while several (precisely) invariant sets disappear.

Definition 5.3 A subset A ⊂ X is δ-almost invariant with respect to ρ ∈ M if
ρ(A) �= 0 and ∫

A

pε(x,A) dρ(x) = δρ(A).

Remark 5.4 (a) Using the definition of pε we compute for a subset A ⊂ X

pε(x,A) =
m(A ∩Bf(x)(ε))

m(B0(ε))
.

Hence

δ =
1

ρ(A)

∫
A

m(A ∩Bf(x)(ε))

m(B0(ε))
dρ(x).

(b) We have seen that pε(x, ·) → δf(x) for ε → 0. Thus, we obtain in the deter-
ministic limit∫

A

p0(x,A) dρ(x) =

∫
A

δf(x)(A) dρ(x) = ρ(f−1(A) ∩ A).

Therefore in this case δ is the relative ρ-measure of the subset of points in A
which are mapped into A.

According to the classification of the occurrence of almost cyclic behavior given at
the beginning of this paragraph we identify almost cyclic behavior in the numerical
realization as follows:

(i) If cyclic components X0, X1, . . . , Xr−1 merge while a control parameter is var-
ied in the dynamical system then we use the same linear combinations as in
the unperturbed case to identify the components of the “almost-cycle”. The
overlap of the different components indicates the subset of points which do no
longer follow the cyclic behavior.
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(ii) If two invariant sets merge then we use the results obtained for the identifica-
tion of coexisting invariant sets. However, observe that in the perturbed case
we can no longer expect that an approximation of the matrixM in Lemma 5.2
will be singular although the chosen subsets do not properly represent the (al-
most) cyclic behavior. In the numerical realization we take this into account
and use as a criterion the condition number of these matrices: in the construc-
tion of the matrix M we choose the components of the approximating vectors
in such a way that the condition number of M is as small as possible.

From now on we assume that λ �= 1 is an eigenvalue of Pε with corresponding
real valued eigenmeasure ν ∈ MC , that is,

Pεν = λν.

Recall that in this case ν(X) = 0 (see Remark 3.2 (a)). The aim is to relate the
value of this eigenvalue to the probability δ in Definition 5.3. We begin with the
following elementary observation.

Lemma 5.5 Suppose that ν is scaled so that |ν| ∈ M, and let A ⊂ X be a set with
ν(A) = 1

2
. Then ν = |ν| on A.

Proof: Obviously, ν(B) ≤ |ν|(B) for all measurable B. For contradiction let
B ⊂ A be a measurable set with ν(B) < |ν|(B). It follows that there is a C ⊂ A
with ν(C) < 0. Hence we have for E = A – C

ν(E) > ν(A) =
1

2
.

Using ν(X) = 0 and |ν|(X) = 1 this leads to a contradiction

1 = |ν|(E) + |ν|(X – E) ≥ |ν(E)|+ |ν(X – E)| > 1

2
+

1

2
= 1.

Remark 5.6 Observe that by the Hahn decomposition (see e.g. [22]) the existence
of a set A with ν(A) = 1

2
is guaranteed.

Proposition 5.7 Suppose that ν is scaled so that |ν| ∈ M, and let A ⊂ X be a
set with ν(A) = 1

2
. Then

δ + σ = λ+ 1, (5.3)

if A is δ-almost invariant and X – A is σ-almost invariant with respect to |ν|.
Proof: By Lemma 5.5 we have∫

A

pε(x,A) dν(x) =

∫
A

pε(x,A) d|ν|(x) = δν(A)
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since ν(A) = 1
2
. Similarly,∫
X – A

pε(x,A) dν(x) =

∫
X – A

1− pε(x,X – A) dν(x)

= ν(X – A)− σν(X – A)

= (σ − 1)ν(A),

since ν(X – A) = −ν(A). Finally, using the fact that ν is an eigenmeasure we
compute

λν(A) =

∫
A

pε(x,A) dν(x) +

∫
X – A

pε(x,A) dν(x)

= δν(A) + (σ − 1)ν(A) = (δ + σ − 1)ν(A),

yielding (5.3).

Remark 5.8 Observe that in the case where λ is close to one we may assume that
the probability measure |ν| is close to the invariant measure μ of the system. In
this sense we have derived the desired relation between the eigenvalue λ and the
probability that the system is still behaving in a cyclic way.

In (5.3) both δ and σ occur, and in general there will be no relation between these
constants. However, if the underlying system possesses an additional symmetry, then
we can express one of them in terms of the other one.

To illustrate this fact let us consider the simplest case where we have a symmetry
transformation κ in the problem with κ2 = id. In that case

pε(x,B) = pε(κx, κB) for all measurable B ⊂ X, (5.4)

which implies that for any ρ ∈ M∫
B

pε(x,B) dρ =

∫
κB

p(x, κB) dκ∗ρ.

Hence we have

Corollary 5.9 Suppose in addition to the assumptions in Proposition 5.7 that

(i) pε is symmetric, that is (5.4) holds,

(ii) the set A satisfies κA = X – A, and

(iii) the measure |ν| is κ-symmetric, that is κ∗|ν| = |ν|.
Then X – A is δ-almost invariant with respect to |ν| if and only if A is δ-almost
invariant, and in particular

δ =
λ+ 1

2
. (5.5)
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Numerical Solution of the Eigenvalue Problems

Since in this article we were mainly interested in the description of how to extract
numerically information on the dynamical behavior from the spectrum of P ε we
just outline the algorithmic steps which are necessary for the numerical approxima-
tion and solution of the eigenvalue problem (3.5). For the details concerning the
implementation the reader is asked to consult the references listed below.

(i) Construction of a box-covering: we begin with the construction of a box-
covering of the interesting (randomly perturbed) dynamics in state space. This
can be done either by a subdivision technique (see [10, 5, 4, 6]) or by a cell-
mapping approach (see e.g. [16, 12]). This way we obtain a collection of boxes
Bk, k = 1, 2, . . . , N , such that the part of state space containing the interesting
dynamics is covered by their union.

Remark 5.10 To simplify the description we assume that all the boxes have
the same volume. However, it turned out that a box-covering can be con-
structed in an even more efficient way, if the size of the boxes is chosen in
an adaptive way in each step of the subdivision procedure. This fact will be
explored in [7].

(ii) Galerkin approximation: the basis functions we have chosen are the charac-
teristic functions of the Bk’s,

ϕk = χBk
.

We assume that the Hausdorff distance between X and the covering ∪Bk is
small enough so that the assumption (3.4) on the ϕk’s is satisfied.

Remark 5.11 In practice we use the subdivision technique from [5] to con-
struct a box-covering for which (3.4) holds. In fact, we simply neglect those
boxes which have measure zero once a certain number of steps in the subdivi-
sion algorithm have been performed.

(iii) Approximation and solution of the eigenvalue problem: we approximate the
coefficients of the matrices M1 and M2 in (3.5) by a numerical evaluation
of the integrals which are involved. Observe that by our specific choice of
the boxes and the ϕk’s the matrix M2 is a multiple of the identity. Hence
the main numerical effort lies in the computation of the inner products to
approximate the operator Pε. This is done either by a Monte-Carlo method
or by an exhaustion technique as described in [11].

Since we know precisely which part of the spectrum we are interested in,
the computation of eigenvalues and corresponding eigenvectors is done by an
inverse power method. For the solution of the systems of linear equations we
use an iterative method taking the fact into account that the matrix M1 is
extremely sparse.
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6 Examples

In this section we illustrate our numerical methods by three examples in which the
transition from a true cyclic behavior to an almost cycling one becomes apparent.
First we use the well known Hénon map as an example to analyze a 2-cycle and
an almost 2-cycle. The second example is a Z3-equivariant mapping in the complex
plane which shows a cycling behavior of period six. Finally we investigate numeri-
cally the Chua circuit. Since this is an ordinary differential equation no nontrivial
cycling is expected to be seen. However, in this case we will identify two sets in
phase space which are almost invariant with respect to the flow.

All the computations were done without an artificial introduction of noise. Rather
it turned out to be sufficient for our purposes to interpret the round off error as a
small random perturbation.

A Two Cycle in the Hénon Map

We consider a scaled version of the well known Hénon map,

f(x, y) = (1− ax2 + y/5, 5bx),

where we fix b = 0.2 and vary a. For a = 1.2 this map possesses a 2-cycle, and we
have used the approximation procedure described in §5 to identify the two compo-
nents X0 and X1. In Figure 1 we show the approximations v0 and v1 of the two
eigenmeasures of the Frobenius-Perron operator corresponding to the eigenvalues
λ0 = 1 and λ1 = −1.
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(a) v0
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Figure 1: Eigenvectors of the approximation of the Frobenius-Perron operator for
the Hénon map (a = 1.2, b = 0.2).

By Lemma 5.1

u0 =
1

2
(v0 + v1) and u1 =

1

2
(v0 − v1)
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Figure 2: Approximations of probability measures with support on the two compo-
nents of the 2-cycle (a = 1.2, b = 0.2).

are approximations of probability measures μ0 and μ1 which have support on X0

and X1 respectively. These are shown in Figure 2.

Remark 6.1 In the computation the box-covering was obtained by the continu-
ation algorithm described in [4]. The boxes were of size 1/28 in each coordinate
direction and the continuation was restricted to the square Q = [−2, 2]2 ⊂ R2 . This
way we have produced a covering of the closure of the one-dimensional unstable
manifold of the hyperbolic fixed point in the first quadrant by 2525 boxes.

Next we set a = 1.272. For this parameter value the 2-cycle has disappeared,
but in simulations the cycling behavior can still be observed for most iterates. Cor-
respondingly we find that λ1 = −0.9944 is an eigenvalue of the approximation of the
Frobenius-Perron operator. Using the same notation as before we show in Figures 3
and 4 the approximations of the eigenmeasures. In this case the box-covering has
3101 elements. Note that the supports of u0 and u1 have a nonempty intersection.
This fact is illustrated in Figure 5 where we have marked all boxes on which u 0 > 10
and u1 > 10 by black circles.
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Figure 3: Eigenvectors of the approximation of the Frobenius-Perron operator for
the Hénon map (a = 1.272, b = 0.2).
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Figure 4: Approximations of probability measures which correspond to the two
components of the almost 2-cycle (a = 1.272, b = 0.2).
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Figure 5: Approximation of a subset which is in the supports of both probability
measures corresponding to the almost 2-cycle.
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A Period Six Cycle

As the second example we slightly modify a mapping from [3] and consider the
dynamical system f : C → C ,

f(z) = e−
2πi
3

(
(|z|2 + α)z +

1

2
z̄2
)
,

for the parameter value α = −1.7. For the computation of the box-covering we
have used the subdivision algorithm described in [5]. Starting with the square
Q = [−1.5, 1.5]2 we have subdivided Q seven times by bisection in each coordinate
direction which lead to a box-covering by 3606 boxes. In Figure 6 we show the
approximation of the invariant measure, that is, the eigenvector v0 corresponding
to the eigenvalue λ0 = 1 of the discretized Frobenius-Perron operator. In this case
this operator additionally has the eigenvalues ω k

6 , k = 1, . . . , 5, and hence we may
use Lemma 5.1 to compute approximations v0, . . . , v5 of the probability measures
with support on the cyclic components X0, . . . , X5. These supports are shown in
Figure 7.
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Figure 6: Approximation of the invariant measure for α = −1.7.

Now we vary the parameter and set α = −1.8. For this value of α the strict
cyclic behavior disappears and there is an almost 6-cycle. In Figure 8(a) we show the
“essential” supports of the approximations v0, . . . , v5 of the six almost cyclic com-
ponents. More precisely we show all boxes B� for which (vi)� > 0.1, i = 0, . . . , 5 (by
(vi)� we denote the 	-th component of the vector vi). In Figure 8(b) we demonstrate
that the intersection of these supports is nonempty. We have shown all boxes B�

for which there are at least two indices i, j ∈ {0, . . . , 5}, i �= j, such that (vi)� > 0.1
and (vj)� > 0.1.
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In the following table we list the corresponding eigenvalues together with their
absolute value.

j λj |λj|
0 1 1
1,5 0.4918± 0.8534i 0.985
2,4 −0.4880± 0.8437i 0.9747
3 −0.9709 0.9709

Finally we remark that for this parameter value the subdivision algorithm leads to
a covering by 4364 boxes.
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Figure 7: Approximation of the cyclic components X0, . . . , X5 for α = −1.7.

Two Almost Invariant Sets in the Chua Circuit

Finally we present a system of three first order ordinary differential equations in
which two almost invariant sets can be identified numerically. The system which we
are considering is the Chua circuit,

ẋ = α

(
y −m0x− 1

3
m1x

3

)
ẏ = x− y − z

ż = −βy,
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(a) “Essential” supports
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Figure 8: Approximation of the almost cyclic components for α = −1.8.

where we have chosen the parameter values α = 18, β = 33, m0 = −0.2 and
m1 = 0.01. A detailed discussion of the dynamical behavior of this system can
be found in [14], see also [18]. We consider the time-0.1 map and – using the
continuation method described in [5] – cover the unstable manifold of the origin
by 10372 boxes. In addition to the eigenvalue one the discretized Frobenius-Perron
operator does also possess the eigenvalue λ1 = 0.9272. We may conclude from this
result that there are two almost invariant sets. Indeed, a numerical approximation
of the corresponding regions in phase space leads to the result shown in Figure 9.
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Figure 9: Illustration of the existence of two almost invariant sets in the Chua
circuit. (a) Boxes corresponding to components of the approximating densities with
value bigger than 10−4; (b) boxes corresponding to components of the approximating
densities with value less than −10−4; (c) superposition of the two almost invariant
sets.
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