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Abstract

Recently subdivision techniques have been introduced in the numerical
investigation of complicated temporal behavior of dynamical systems. In this
article we intertwine the subdivision process with the computation of invariant
measures and propose an adaptive scheme for the box refinement which is
based on the combination of these methods. Using this new algorithm the
numerical effort for the computation of box coverings is in general significantly
reduced, and we illustrate this fact by several numerical examples.

1 Introduction

Recently subdivision methods have been successfully applied to the numerical anal-
ysis of complex dynamical behavior (e.g. [6, 3, 2, 4]). These methods can be used for
two essentially different purposes: the first is to understand the geometric structure
of an underlying attractor. Secondly the goal may be to approximate the observable
dynamical behavior of the underlying system in a specific region of state space by
the computation of invariant measures. This paper concerns the second possibility,
and we propose an adaptive scheme incorporated into the subdivision techniques
which allows to reduce the numerical effort significantly in this case.

∗Research of the authors is partly supported by the Deutsche Forschungsgemeinschaft under
Grant De 448/5-2 and by the Konrad-Zuse-Zentrum für Informationstechnik Berlin.
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Obviously the dynamical behavior just needs to be approximated on the support
of a certain invariant measure. Indeed, the idea for the adaptive principle stated
here is to intertwine the subdivision techniques with the computation of a natural
invariant measure, an SBR-measure, say. Roughly speaking, the size of the covering
boxes is reduced in those parts of state space where the natural invariant measure
μ is concentrated, and, on the other hand, boxes are not subdivided in areas which
have μ-measure zero.

The main goal of this article is to illustrate the efficiency of the new method by
numerical examples. For that purpose we consider several dynamical systems for
which the SBR-measure is known analytically since this allows us to compare the
numerical results obtained by the adaptive subdivision algorithm to those obtained
by the standard subdivision procedure. The adaptive algorithm is essentially based
on the combination of two existing methods for which convergence results are known.
However, this fact does not immediately imply convergence of the adaptive method
as well. Rather this theoretical but relevant problem is currently under investigation,
and the results will be published elsewhere.

An outline of the paper is as follows: in §2 we recall the standard subdivision
technique from [3]. The numerical method for the approximation of SBR-measures
is described in §3. Then, in §4, we present our adaptive subdivision technique, and
the efficiency of this method is illustrated by several examples in §5.

2 The Standard Subdivision Algorithm

The purpose is to approximate invariant sets of discrete dynamical systems of the
form

xj+1 = f(xj), j = 0, 1, . . . ,

where f is a continuous mapping on Rn . The central object which is approximated
by the subdivision algorithm developed in [3] is the so-called relative global attractor,

AQ =
⋂
j≥0

f j(Q), (2.1)

where Q ⊂ R
n is a compact subset. Roughly speaking, the set AQ should be viewed

as the union of unstable manifolds of invariant objects inside Q. In particular, AQ

may contain subsets of Q which cannot be approximated by direct simulation.
The subdivision algorithm for the approximation of AQ generates a sequence

B0,B1,B2, . . . of finite collections of boxes with the property that for all integers k the
set Qk =

⋃
B∈Bk

B is a covering of the relative global attractor under consideration.
Moreover the sequence of coverings is constructed in such a way that the diameter
of the boxes,

diam(Bk) = max
B∈Bk

diam(B)

converges to zero for k → ∞.
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Given an initial collection B0, one inductively obtains Bk from Bk−1 for k =
1, 2, . . . in two steps.

(i) Subdivision: Construct a new collection B̂k such that⋃
B∈B̂k

B =
⋃

B∈Bk�1

B and diam(B̂k) ≤ θ diam(Bk−1)

for some 0 < θ < 1.

(ii) Selection: Define the new collection Bk by

Bk =
{
B ∈ B̂k : f−1(B) ∩ B̂ �= ∅ for some B̂ ∈ B̂k

}
.

The following proposition establishes a general convergence property of this al-
gorithm.

Proposition 2.1 ([3]) Let AQ be the global attractor relative to the compact set
Q, and let B0 be a finite collection of closed subsets with Q0 = Q. Then

lim
k→∞

h (AQ, Qk) = 0,

where we denote by h(B,C) the usual Hausdorff distance between two compact sub-
sets B,C ⊂ R

n .

3 Approximation of SBR-Measures

Recently it has been shown in [4] how to compute numerically approximations of
an SBR-measure supported on a hyperbolic invariant set. Since we want to use this
method in our adaptive scheme we now sketch the main ingredients of this algo-
rithm. To make the ideas more transparent we simplify the description drastically
by avoiding all technical details concerning the underlying mathematical foundation
in Ergodic Theory.

The crucial observation is that the calculation of invariant measures can be
viewed as a fixed point problem. Let M be the set of probability measures on R n .
Then μ ∈ M is invariant if and only if it is a fixed point of the Frobenius-Perron
operator P : M → M,

(Pμ)(B) = μ(f−1(B)) for all measurable B ⊂ R
n . (3.1)

To discretize the operator P : M → M we replace M by a finite dimensional
set Mk: let Bi ∈ Bk, i = 1, . . . , N , denote the boxes in the covering obtained after
k steps in the subdivision algorithm. We choose Mk to be the set of “discrete
probability measures” on Bk, that is,

Mk =

{
u : Bk → [0,∞)

∣∣∣∣
N∑
i=1

u(Bi) = 1

}
.
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Then the discretized Frobenius-Perron operator Pk : Mk → Mk is given by

v = Pku, v(Bi) =
N∑
j=1

m(f−1(Bi) ∩ Bj)

m(Bj)
u(Bj), i = 1, . . . , N, (3.2)

where m denotes Lebesgue measure. Now a fixed point u = Pku of Pk provides an
approximation to an invariant measure of f .

Remark 3.1 For the mathematically precise statement on the convergence of this
method one would have to introduce the concept of small random perturbations.
The reason is that this allows one to use a result of Yu. Kifer on the convergence
of invariant measures in the perturbed systems to the SBR-measure ([8]). However,
the purpose of this article is to develop and to test an adaptive scheme for the
box refinement in the subdivision algorithm rather than to explain the theoretical
background concerning the computation of SBR-measures. Therefore the reader is
referred to [4] for the rigorous mathematical treatment.

4 The Adaptive Subdivision Algorithm

As mentioned above, the standard subdivision algorithm may approximate a part
of the global attractor which is dynamically irrelevant in the sense that no invariant
measure has support on this subset. The reason is that each box is subdivided in
a step of the subdivision algorithm regardless of any information on the dynamical
behavior. In particular, also those subsets of the relative global attractor correspond-
ing to unstable or transient dynamical behavior are approximated by the standard
procedure.

On the other hand, if one is mainly interested in the approximation of the support
of the (natural) invariant measure rather than in the precise geometric structure
of the global attractor then this strategy may lead to unnecessary high storage
and computation requirements. In the following we present a modified subdivision
strategy which avoids this drawback: roughly speaking,

– in the subdivision step we use the information on the actual approximation of
the invariant measure to decide whether or not a box should be subdivided;

– in the selection step we keep only those boxes which have a nonempty inter-
section with the support of the invariant measure.

To be more precise, let {δk} be a sequence of positive real numbers such that
δk → 0 for k → ∞. The algorithm generates a sequence of pairs

(B0, u0), (B1, u1), (B2, u2), . . .

where the Bk’s are finite collections of compact subsets of Rn and the discrete mea-
sures uk : Bk → [0,∞) can be interpreted as approximations to the SBR-measure
μSBR:

uk(B) ≈ μSBR(B) for all B ∈ Bk.
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Given an initial pair (B0, u0), one inductively obtains (Bk, uk) from (Bk−1, uk−1)
for k = 1, 2, . . . in three steps.

(i) Subdivision: Define

B−
k−1 = {B ∈ Bk−1 : uk−1(B) < δk−1} and B+

k−1 = Bk−1\B−
k−1.

Construct a new (sub-)collection B̂+
k such that⋃

B∈B̂+
k

B =
⋃

B∈B+
k�1

B

where
diam(B̂+

k ) ≤ θ diam(B+
k−1)

for some 0 < θ < 1.

(ii) Calculation of the invariant measure: Set

B̂k = B−
k−1 ∪ B̂+

k .

For the collection B̂k calculate the approximating invariant measure as the
fixed point ûk of the discretized Frobenius-Perron operator defined by (3.2).

(iii) Selection: Set
Bk = {B ∈ B̂k : ûk(B) > 0}

and
uk = ûk|Bk

.

Remarks 4.1 (a) In the realization of the algorithm we typically subdivide the
boxes in the collection B+

k by bisection. This guarantees that the number of
boxes is not growing too fast. For the details concerning the implementation
the reader is again referred to [3, 4].

(b) In principle there is some freedom in choosing the sequence {δk} of positive
numbers used in the subdivision step. Note however that this sequence deter-
mines the number of boxes which will be subdivided and hence it has a signif-
icant influence on the storage requirement. In the computations it turned out
to be quite efficient to choose the average

δk =
1

Nk

∑
B∈Bk

uk(B) =
1

Nk
,

where Nk is the number of boxes in Bk.
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5 Numerical Examples

In this section we illustrate the efficiency of the adaptive scheme by several nu-
merical examples. First we consider three one-dimensional mappings for which the
SBR-measures are known analytically. For these cases we will see that, as expected,
the new technique is particularly useful if the underlying invariant density has sin-
gularities. Additionally we consider the Hénon map as a two-dimensional example
and show the box refinement produced by the adaptive subdivision algorithm at a
certain step.

Before proceeding let us indicate some details concerning the implementation of
the adaptive subdivision algorithm:

(a) The subdivision is always done by bisection and the boxes are stored in a
binary tree. This way we keep the storage requirement at a low level.

(b) For the computation of the transition probabilitiesm(f −1(Bi)∩Bj) in (3.2) we
use an exhaustion technique as described in [7]. This method is particularly
useful when – as in our examples – local Lipschitz constants are available for
the underlying dynamical system.

(c) The computation of the discrete measures is done by an inverse power method.
In the solution of the corresponding linear systems the fact is taken into ac-
count that the discretized Frobenius-Perron operator is extremely sparse.

The adaptive algorithm is integrated into the C++ code GAIO (Global Analysis of
Invariant Objects). A link to a detailed description of GAIO can be found on the
homepages of the authors.

Three one-dimensional examples

Motivated by the numerical investigations in [5] we apply the adaptive subdivision
algorithm to three different one-dimensional dynamical systems on the interval [0, 1].
In each case we have chosen the initial collection B0 = {[0, 1]}.

1. As a first example we consider the Logistic Map f1 : [0, 1] → [0, 1],

f1(x) = λx(1− x)

for λ = 4. The unique absolutely continuous invariant measure μ of f1 has the
density

h1(x) =
1

π
√
x(1 − x)

(see e.g. [9]). Using the standard and the adaptive algorithm we have approx-
imated this density on several levels and the results are shown in Table 1. We
remark that even the computation for � = 20 only takes about 50 sec on an
MIPS R4400 cpu.
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Table 1: Comparison between the standard and the adaptive subdivision algorithm
for the Logistic Map. The minimal box volume in each row is 2−�.

� number of boxes L1-error
standard adaptive standard adaptive

6 64 21 0.1266 0.1153
8 256 45 0.0726 0.0656
12 4096 187 0.0248 0.0257
16 65536 777 0.0127 0.0113
20 1048576 3371 – 0.0080

In Figure 1 we illustrate the fact that the size of the boxes is much smaller for
those which are close to zero or one. Indeed, this is what we expect since the
density has singularities in these points.
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Figure 1: Illustration of the relation between the density and the actual box refine-
ment produced by the adaptive subdivision algorithm for � = 10: (a) the density
h1; (b) the radii versus the midpoints of boxes.

2. We consider the map f2 : [0, 1] → [0, 1],

f2(x) =

⎧⎪⎪⎨
⎪⎪⎩

2x

1− x2
for 0 ≤ x <

√
2− 1,

1− x2

2x
for

√
2− 1 ≤ x ≤ 1.

Its invariant density is

h2(x) =
4

π(1 + x2)
.
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Figure 2: (a) The map f2; and (b) its invariant density h2.

In Table 2 we present the numerical results for this case. As expected the
application of the adaptive subdivision algorithm is not more efficient than the
standard one since the invariant measure is quite close to Lebesgue measure.

Table 2: Comparison of the numerical results for f2 (� as in Table 1).

� number of boxes L1-error
standard adaptive standard adaptive

6 64 45 0.0014 0.0026
8 256 183 4.3 · 10−4 6.4 · 10−4

10 1024 759 1.3 · 10−4 1.7 · 10−4

12 4096 3044 4.2 · 10−5 5.2 · 10−5

3. Finally we consider the map f3 : [0, 1] → [0, 1],

f3(x) =

(
1

8
− 2

∣∣∣∣x− 1

2

∣∣∣∣
3
) 1

3

+
1

2
,

with the invariant density

h3(x) = 12

(
x− 1

2

)2

.

The graphs of f3 and h3 are shown in Figure 3.
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Figure 3: (a) The map f3; and (b) its invariant density h3.

We now discuss the numerical results presented in Table 3. Note that the
derivative of f3 has singularities at two points inside [0, 1]. This is the reason
why several boxes get lost in the realization of the selection step in the standard
subdivision algorithm. Consequently the computation of the invariant measure
does not lead to satisfying results. In contrast to this no boxes are lost in the
application of the adaptive subdivision technique, and accordingly the L1-error
is decreasing with an increasing number of subdivision steps.

Table 3: Comparison of the numerical results for f3 (� as in Table 1).

� number of boxes L1-error
standard adaptive standard adaptive

6 63 18 0.0127 0.2377
8 249 30 0.0100 0.2015
10 993 174 0.0127 0.0571
12 3967 816 0.0155 0.0064

The Hénon map

We apply the adaptive subdivision algorithm to a two-dimensional example, namely
a scaled version of the well known Hénon map

f : R2 → R
2 , f(x, y) = (1− ax2 + y/5, 5bx).

In the computations we have fixed the parameters by a = 1.2, b = 0.2, and we have
chosen B0 = {[−2, 2]2}.

In Figure 4 we present a tiling of the square [−2, 2]2 obtained by the adaptive
subdivision algorithm after several subdivision steps. The resulting box-collection B
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consists of the yellow boxes shown in part (a) of this figure. We expect that due to
the numerical approximation some boxes have positive discrete measure although
they do not intersect the support of the real natural invariant measure. Having
this in mind we neglect those boxes with very small discrete measure and show in
Figure 4(b) a subcollection B̃ ⊂ B with the property that∑

B∈B̃
u(B) ≈ 0.99. (5.1)

Remark 5.1 For our choice of the parameter values we cannot explicitly write
down a natural invariant measure. Hence it is impossible to compare our numerical
results using analytical ones. Moreover, it is not even known for an arbitrary choice
of the parameter values whether or not the Hénon map possesses an SBR-measure.
However, recently it was proved by M. Benedicks and L.-S. Young that the Hénon
map indeed has an SBR-measure for a “large” set of parameter values, see [1].
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Figure 4: (a) A tiling of the square [−2, 2]2 obtained by the adaptive subdivision
algorithm; and (b) the subcollection B̃ of boxes with discrete density bigger than
0.35 (see also (5.1)).

Finally we apply the numerical techniques described in [4] to determine the es-
sential dynamical behavior of the Hénon map for this choice of parameter values.
An approximation of the (natural) invariant measure obtained by the adaptive sub-
division algorithm is shown in Figure 5. This computation is based on the total
number of 1514 boxes inside the square [−2, 2]2, whereas the support of the invari-
ant measure is covered by 1442 boxes. The results indicate that the Hénon map
exhibits complicated dynamical behavior.

Moreover it can be shown that the areas where the density is colored red resp.
blue are permuted cyclically by the mapping. Hence altogether we may conclude
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that for these parameter values the Hénon map exhibits a two-cycle (the “macro-
dynamics”) in addition to unpredictable (chaotic) behavior. This fact is also demon-
strated by a Java-animation for which a link can be found on the homepages of the
authors.
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Figure 5: Illustration of the (natural) invariant measure for the Hénon map. The
picture shows the density of the discrete measure on B̃, see (5.1).
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