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Abstract We consider the fast solution of large, piecewise smooth mini-
mization problems as resulting from the approximation of elliptic free bound-
ary problems. The most delicate question in constructing a multigridmethod
for a nonlinear, non–smooth problem is how to represent the nonlinearity on
the coarse grids. This process usually involves some kind of linearization.
The basic idea of monotone multigrid methods to be presented here is first to
select a neighborhood of the actual smoothed iterate in which a linearization
is possible and then to constrain the coarse grid correction to this neighbor-
hood. Such a local linearization allows to control the local corrections at each
coarse grid node in such a way that the energy functional is monotonically
decreasing. This approach leads to globally convergent schemes which are
robust with respect to local singularities of the given problem. The numer-
ical performance is illustrated by approximating the well-known Barenblatt
solution of the porous medium equation.
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1 Introduction

Let Ω be a polygonal domain in the Euclidean space R
2. We will consider

the minimization problem

u ∈ H : J (u) + φ(u) ≤ J (v) + φ(v), ∀v ∈ H, (1.1)

on a closed subspace H ⊂ H1(Ω). For simplicity, we select H = H1
0 (Ω).

Other boundary conditions of Neumann or mixed type and the case of three
space dimensions can be treated in a similar way [6, 7]. The quadratic func-
tional J ,

J (v) = 1
2
a(v, v)− �(v), (1.2)

is induced by a continuous, symmetric, and H–elliptic bilinear form a(·, ·)
and a bounded, linear functional �. H is equipped with the energy norm
‖ · ‖ = a(·, ·)1/2. The functional φ,

φ(v) =
∫
Ω
Φ(v(x)) dx, (1.3)

is generated by a piecewise smooth function Φ : R → R∪{+∞}. If Φ is con-
vex, takes finite values on some closed interval and satisfies certain growth
conditions [18], then the functional φ is convex, lower semi–continuous and
proper (i.e. φ(v) > −∞ and φ 
≡ +∞). For such functionals φ, the mini-
mization problem (1.1) has a unique solution u ∈ H and can be equivalently
rewritten as the elliptic variational inequality of the second kind

u ∈ H : a(u, v− u) + φ(v)− φ(u) ≥ �(v − u) , ∀v ∈ H. (1.4)

To fix the ideas, we will concentrate on the special case

Φ(z) = m
m+1

z1+
1
m , z ≥ 0, Φ(z) = +∞, z < 0, (1.5)

arising from an implicit time discretization of the porous medium equation
as explained below.

Let Tj be a regular partition of Ω in triangles with minimal diameter of
order 2−j . The interior nodes and edges of Tj are denoted by Nj and Ej ,
respectively. Discretizing H by continuous, piecewise linear finite elements
Sj, we obtain the discrete minimization problem

uj ∈ Sj : J (uj) + φj(uj) ≤ J (v) + φj(v), ∀v ∈ Sj . (1.6)

Observe that the functional φ is approximated by its Sj–interpolate φj,

φj(v) =
∑
p∈Nj

Φ(v(p))
∫
Ω
λ(j)p (x) dx, v ∈ Sj. (1.7)
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It is easily seen that the discrete functional φj is still convex, lower semi–
continuous, and proper. Hence, the discrete problem (1.6) has a unique
solution uj ∈ Sj which is characterized by the variational inequality

uj ∈ Sj : a(uj, v − uj) + φj(v)− φj(uj) ≥ �(v − uj), ∀v ∈ Sj. (1.8)

The convergence of the discretization (1.6) is a consequence of general results
as condensed e.g. by Glowinski [10].

The main issue of this paper is the fast solution of the discrete minimization
problem (1.6). A meanwhile classical way to construct a multigrid method
for nonlinear variational problems is to use a Newton–type linearization as
an outer iteration and then to replace the solution of the resulting linear
system by a number of multigrid steps. Global convergence of such Newton–
multigrid methods can be obtained by a suitable damping of the multigrid
correction, provided that the nonlinearity is smooth enough. We refer to
Bank and Rose [1] and to recent results of Deuflhard and Weiser [8] in these
proceedings. In contrast to Newton–multigrid, nonlinear multigrid methods
are based on a hierarchy of nonlinear problems (see e.g. Hackbusch [11]).
Introducing a suitable damping of the corrections from each refinement level,
Hackbusch and Reusken [12] proved global convergence in sufficiently smooth
cases.

However, if the above Newton–multigrid or nonlinear multigrid methods are
applied to problems of the form (1.8) with a strongly varying or even non–
differentiable nonlinearity φj, then the damping parameters may become very
small or even zero so that the resulting convergence rates are unacceptable.
A common remedy is to replace the given non-smooth problem by a more
regular one. Unfortunately, such regularization leads to a coupling of the
discretization error with the convergence of the iterative solver. High con-
vergence speed may have to be paid with low accuracy.

In this paper, we describe a local damping strategy that reflects the local
singularities of the subdifferential ∂φj but does not involve any kind of regu-
larization. The resulting algorithms can be regarded as an extension of recent
monotone multigrid methods [16, 17, 18] from piecewise quadratic function-
als φj to the piecewise smooth case. The basic idea is first to find out a
neighborhood of the actual smoothed iterate in which a linearization of ∂φj

can be controlled by pointwise Lipschitz constants and then to constrain the
coarse grid correction to this neighborhood. Using suitable restrictions of
the Lipschitz constants, we are able to compute local damping parameters
for all local corrections at all different coarse grid nodes on all levels. In this
way, our approach combines maximal flexibility of the coarse grid correction
with global convergence.

We will present a standard and a truncated variant of the method and state
their basic properties. Detailed convergence proofs featuring asymptotic
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bounds for the convergence rates and a more sophisticated fine grid smooth-
ing will be published elsewhere [19]. In order to illustrate the numerical
properties of our monotone multigrid algorithms, we approximate the well-
known Barenblatt solution of the porous medium equation. Using nested
iteration, we observed a similar efficiency as in the linear selfadjoint case.
Moreover, our experiments indicate a considerable robustness with respect
to the smoothness of the nonlinearity φ.
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2 A Standard Monotone Multigrid Method

with Local Damping

Assume that Tj is resulting from j refinements of a given, intentionally coarse
triangulation T0 of Ω. Though all algorithms and convergence results to be
presented in this paper can easily be extended to locally refined grids, we
assume for simplicity that the triangulations are uniformly refined. More
precisely, each triangle t ∈ Tk is subdivided into four congruent subtriangles
to obtain the next triangulation Tk+1.

In this way, we obtain a sequence of triangulations T0, . . . , Tj and of corre-
sponding nested finite element spaces S0 ⊂ . . . ⊂ Sj. Each of the spaces Sk

is spanned by the nodal basis

Λk = {λ(k)p | p ∈ Nj}, k = 0, . . . , j,

with the nk basis functions λ(k)p ∈ Sk defined by λ(k)p (q) = δpq, ∀p, q ∈ Nk,
(Kronecker delta). Collecting the nodal basis functions from all refinement
levels, we define the multilevel nodal basis ΛS,

ΛS =
(
λ(j)p1

, . . . , λ(j)pnj
, λ(j−1)

p1
, . . . , λ(j−1)

pnj−1
, . . . , λ(0)p1

, . . . , λ(0)pn0

)

which is ordered from fine to coarse. We frequently write ΛS = (λ1, . . . , λm)
with m = nj + . . . + n0.

In the special case of an elliptic selfadjoint problem (i.e. φ ≡ 0) one step
of a classical multigrid V–cycle with Gauß–Seidel smoother can be regarded
as the successive minimization of the energy functional J in the direction
of the multilevel nodal basis functions λl ∈ ΛS (cf. e.g. McCormick [21],
Xu [23], or Yserentant [24]). We will use a straightforward extension of this
multilevel relaxation as the starting point for the construction of monotone
multigrid methods for the non–smooth optimization problem (1.6). For this
reason, we introduce the splitting

Sj =
m∑
l=1

Vl, (2.1)

of Sj in the one–dimensional subspaces Vl = span{λl}, l = 1, . . . , m. Then,
for a given ν–th iterate uνj ∈ Sj , we set w0 = uνj and compute a sequence of
intermediate iterates wl from the m local subproblems

v̄l ∈ Vl : J (wl−1 + v̄l) + φj(wl−1 + v̄l) ≤
≤ J (wl−1 + v) + φj(wl−1 + v), ∀v ∈ Vl,

(2.2)

setting wl = wl−1 + v̄l. Finally, the next iterate is given by uν+1
j = wm.
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The leading fine grid corrections in the direction of λl ∈ Λj can be regarded
as one step of a nonlinear Gauß–Seidel relaxation which is well–known to be
globally convergent [10]. Observe that the resulting smoothed iterate ūνj :=
wnj satisfies ūνj (p) ≥ 0, ∀p ∈ Nj, or, equivalently, φj(ū

ν
j ) < ∞ for all ν ≥ 1

and any initial iterate u0j ∈ Sj. The subsequent coarse grid corrections of the
smoothed iterate ūν

j in the directions λl ∈ ΛS \Λj are intended to reduce the
low frequency components of the error.

Let us now consider a more general iteration of the form

uν+1
j = uνj +

m∑
l=1

vl (2.3)

where the corrections vl ∈ Vl may be regarded as approximate solutions of
the local problems (2.2). A proof of the following convergence result can be
taken almost literally from [18].

Theorem 2.1 Assume that the local fine grid corrections are the unique so-
lutions of (2.2),

vl = v̄l, l = 1, . . . , nj, (2.4)

and that the local coarse grid corrections satisfy the monotonicity condition

J (wl−1+vl)+φj(wl−1+vl) ≤ J (wl−1)+φj(wl−1), l = nj+1, . . . , m. (2.5)

Then, for any initial iterate u0j ∈ Sj, the sequence of iterates (uνj )ν≥0 defined
in (2.3) converges to the solution uj of the discrete problem (1.6).

In the special case φj ≡ 0 the computation of all the optimal corrections v̄l
can be implemented as a V–cycle: Representing the bilinear form a(·, ·) on
the coarse grid spaces Sk by their values on Λk, one can update the residual
and evaluate the local corrections without visiting the fine grid. This provides
optimal numerical complexity, i.e. O(nj) operations, for each iteration step.

For the nonlinearity defined in (1.5), the fine grid corrections in the direction
of some fixed λl ∈ Λj can be computed iteratively by a simple bisection
method. A more sophisticated analysis shows that condition (2.4) can be
relaxed in such a way that the exact solution of (2.2) can be replaced by one
step of a suitable descent method. Details will be contained in a forthcoming
paper [19].

From now on, we assume that the smoothed iterate ūν
j is available. Let us

consider the coarse grid correction in the direction of some λl ∈ Λk, k < j.
Using subdifferential calculus [9], the local correction v̄l = z̄lλl ∈ Vl can be
equivalently computed from the following scalar inclusion for the unknown
coefficient z̄l ∈ R

0 ∈ a(λl, λl)z̄l − (�(λl)− a(wl−1, λl)) + ∂φj(wl−1 + z̄lλl)(λl). (2.6)
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For all w ∈ Sj with non–negative values and all v ∈ Sj the subdifferential
∂φj takes the form

∂φj(w)(v) =
∑
p∈Nj

∂Φ(w(p))v(p)
∫
Ω
λ(j)p (x) dx

where the subdifferential ∂Φ of the scalar function Φ (cf.(1.5)) is given by

∂Φ(z) = m
√
z, z > 0, ∂Φ(0) = [0,−∞).

It is clear that the solution of (2.6) requires (at least) one evaluation of
∂φj(wl−1+ zλl)(λl) which in turn leads to (at least) one additional prolonga-
tion, because ∂φj is non–linear. As a consequence, the number of operations
for one complete step of the nonlinear multilevel relaxation grows (at least)
like O(njlog(nj)).

This motivates the local linearization of the subproblems (2.6) in a neighbor-
hood of the smoothed iterate ūν

j . Let us first introduce the regular nodes

N ◦
j (ū

ν
j ) = {p ∈ Nj | ūνj (p) > 0} ⊂ Nj. (2.7)

Φ is differentiable in ūνj (p), if and only if p ∈ N ◦
j (ū

ν
j ). Using Taylor’s expan-

sion
Φ′(w(p)) ≈ Φ′(ūνj (p)) + Φ′′(ūνj (p))(w(p) − ūνj (p)),

we introduce the formal linearization

∂φj(w)(v) ≈ būν
j
(w, v)− fūν

j
(v) (2.8)

involving the symmetric positive semidefinite bilinear form b ūν
j
(·, ·),

būν
j
(w, v) =

∑
p∈N ◦

j (ū
ν
j )

Φ′′(ūνj (p))w(p)v(p)
∫
Ω
λ(j)p (x) dx, (2.9)

and the linear functional fūν
j
,

fūν
j
(v) = −

∑
p∈N ◦

j (ū
ν
j )

(
Φ′(ūνj (p))− Φ′′(ūνj (p))ū

ν
j (p)

)
v(p)

∫
Ω
λ(j)p (x) dx. (2.10)

Observe that no contribution is taken from the remaining critical nodes

N •
j (ū

ν
j ) = Nj \ N ◦

j (ū
ν
j ) (2.11)

where the subdifferential ∂Φ is set–valued. Of course, the linearization (2.8)
can only make sense in a suitable neighborhood Kūν

j
⊂ Sj ,

Kūν
j
= {w ∈ Sj | ϕūν

j
(p) ≤ w(p) ≤ ϕūν

j
(p), p ∈ Nj}.
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The obstacles ϕ
ūν
j

, ϕūν
j
∈ Sj are selected in such a way that the pointwise

Lipschitz conditions

|Φ′′(z1)− Φ′′(z2)| ≤ Lp|z1 − z2|, ∀z1, z2 ∈ [ϕ
ūν
j

(p), ϕūν
j
(p)], (2.12)

hold for all p ∈ N ◦
j (ū

ν
j ) while

ϕ
ūν
j

(p) = ϕūν
j
(p) = 0 (2.13)

is set at the critical nodes p ∈ N •
j (ū

ν
j ). In order to control the linearized

coarse grid correction by local Lipschitz constants, we will require wl ∈ Kūν
j

for all l = nj + 1, . . . , m. As a consequence, the values ūνj (p) at the critial
nodes p ∈ N •

j (ū
ν
j ) remain invariant under coarse grid correction.

Now, using the local linearization

aūν
j
(·, ·) = a(·, ·) + būj(·, ·), �ūν

j
= �+ fūν

j

and the corresponding quadratic energy functional

Jūν
j
(v) = 1

2
aūν

j
(v, v)− �ūν

j
(v)

the local subproblems (2.2) are approximated by the quadratic obstacle prob-
lems

vl = zlλl ∈ Dl : Jūν
j
(wl−1 + vl) ≤ Jūν

j
(wl−1 + v), ∀v ∈ Dl. (2.14)

To make sure that wl = wl−1 + vl ∈ Kūν
j
holds true, the set of constraints

Dl = {v ∈ Vl | ψl
≤ v ≤ ψl} ⊂ Vl

must satisfy
0 ∈ Dl ⊂ D∗

l = {v ∈ Vl | wl−1 + v ∈ Kūν
j
}. (2.15)

Hence, the obstacles ψ
l
, ψl have to be chosen in such a way that

ϕ
ūν
j

− wl−1 ≤ ψ
l
≤ 0 ≤ ψl ≤ ϕūν

j
−wl−1. (2.16)

We cannot simply take ψ
l
= ϕ

ūν
j

−wl−1 and ψl = ϕūν
j
−wl−1, because then the

evaluation of wl−1 would be necessary to check whether some v is contained in
Dl or not. This would still require an extra prolongation. Suitable monotone
approximations ψ

l
, ψl ∈ Vl of ϕūν

j
− wl−1, ϕūν

j
− wl−1 can be computed by

monotone restriction of the initial defect obstacles ϕ
ūν
j

− ūνj and ϕ
ūν
j

− ūνj ,

respectively [16, 18].

Unfortunately, the approximate local corrections vl resulting from (2.14) may
violate the monotonicity condition (2.5). Hence, we introduce an additional
local damping parameter ωl. The proof of the following proposition relies on
the fact that vl 
= 0 holds only if φj is locally smooth in the direction of λl.
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Proposition 2.1 Let vl = zlλl be the solution of (2.14). Assume that the
damping parameter satisfies ωl ∈ [0, 1] and

ωl|zl| ≤ 2

⎧⎨
⎩
|�ūν

j
(λl)− aūν

j
(wl−1, λl)| − Ll‖ūνj − wl−1‖2∞,l

aūν
j
(λl, λl) + Ll(‖ūνj − wl−1‖∞,l + ωl|zl|)

⎫⎬
⎭

+

(2.17)

with
Ll =

∑
p∈N ◦

j (ū
ν
j )

Lpλl(p)
∫
Ω
λ(j)p (x) dx (2.18)

and the local maximum norm

‖v‖∞,l = max
p∈Nj∩ int supp λl

|v(p)|. (2.19)

Then the damped correction ωlvl satisfies the local monotonicity condition (2.5).

The approximation ωlvl can be regarded as resulting from a damped sim-
plified Newton step applied to the original local problem (2.2). Indeed, the
approximate correction zl can be written as

zl = ωDl

�ūν
j
(λl)− aūν

j
(wl−1, λl)

aūν
j
(λl, λl)

where the factor ωDl
∈ [0, 1] reflects the condition vl = zlλl ∈ Dl. Inserting

this representation in (2.17), we obtain the upper bound

ωDl
ωl ≤ 2

aūν
j
(λl, λl)

aūν
j
(λl, λl) + Ll(‖ūνj − wl−1‖∞,l + ωl|zl|)

·

·
⎧⎨
⎩
|�ūν

j
(λl)− aūν

j
(wl−1, λl)| − Ll‖ūνj − wl−1‖2∞,l

|�ūν
j
(λl)− aūν

j
(wl−1, λl)|

⎫⎬
⎭

+

for the damping parameter ωDl
ωl of the fully linearized equation. The first

factor on the right hand side is measuring the effect of linearizing ∂φj while
the second factor is the price we have to pay for taking the derivative at ūνj
and not at wl−1. In our numerical experiments, we found that the damping
parameters ωl tend to one as ūνj approaches uj. A theoretical justification
will be given elsewhere [19].

In the light of (2.17), we compute the damping parameter ωl ∈ [0, 1] by
projecting the solutions of the quadratic equation

Llω
2|zl|2 + ω|zl|(al + LlBl)− 2(|rl| − LlB

2
l ) = 0 (2.20)
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to the interval [0, 1]. Observe that (2.20) only involves the correction zl, the
residual rl = �ūν

j
(λl)− aūν

j
(wl, λl), the diagonal element al = aūν

j
(λl, λl), the

local Lipschitz constant Ll and an upper bound Bl,

Bl ≥ ‖ūνj − wl−1‖∞,l,

for the maximal correction in the support of λl. All these parameters are
available without any extra prolongations. In particular, the Lipschitz con-
stants Ll = L(λl) are just values of the linear functional L ∈ S ′

j,

L(v) =
∑

p∈N ◦
j (ū

ν
j )

Lpv(p)
∫
Ω
λ(j)p (x) dx,

which can be restricted like a residual. Upper bounds Bl for the maximal
local corrections follow inductively from the triangle inequality. To be precise,
we introduce the identification

λlik = λ(k)pi
, i = 1, . . . , nk, k = j, . . . , 0,

of the supporting point pi and the level k of λl ∈ ΛS . On the finest grid,
we clearly have Blij = 0, ∀i = 1, . . . , nj. Given values Blik+1

on some level
k + 1 ≤ j are restricted to the next coarser grid by simply taking

Blik := max
{s|s=i or e=(ps,pi)∈Ek+1}

Blsk+1
, i = 1, . . . , nk. (2.21)

This procedure defines a restriction operatorMk
k+1 : R

nk+1 → R
nk . Note that

the values Blsk+1
appearing in (2.21) are associated with the k+1–neighbors

ps ∈ Nk+1 of the node pi ∈ Nk. Finally, each local correction zlik at pi on the
new level k is followed by an update of the bounds Blsk at all k–neighbors ps
of pi according to

Blsk := Blsk + |zlik|. (2.22)

The resulting approximate multilevel relaxation (2.3) based on exact fine grid
corrections (cf. (2.2)) and on damped approximate coarse grid corrections (cf.
(2.14), (2.20)) can be regarded as an extension of a standard monotone multi-
grid method [16, 17, 18] to piecewise smooth nonlinearities φj. Hence, we call
it standard monotone multigrid method with local damping. Other variants
with symmetric smoothers, W–cycles or post smoothing can be obtained in
a similar way. The convergence follows immediately from Theorem 2.1 and
Proposition 2.1.

Theorem 2.2 The standard monotone multigrid method with local damping
is globally convergent.

In contrast to the nonlinear multilevel relaxation (2.2), the locally linearized
coarse grid correction can be implemented as a classical V–cycle.
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Algorithm 2.1 Standard Monotone Multigrid Method with Local Damping

given iterate: uνj
nonlinear fine grid smoothing: ūνj := Mj(u

ν
j )

local linearization: neighborhood Kūν
j

pointwise Lipschitz constants Lp, p ∈ Nj

aūν
j
:= a+ būν

j
, �ūν

j
:= � + fūν

j

coarse grid correction:

initialize:

bilinear form and residual: a(j) := aūν
j
, r(j) := �ūν

j
− aūν

j
(ūνj , ·)

defect obstacles: ψ(j) := ϕν
ūν
j
− ūνj , ψ

(j)
:= ϕν

ūν
j
− ūνj

local Lipschitz constants L(j) := L

maximal corrections B(j) := 0

global correction: vνj := 0

for k = j − 1 step −1 until 0 do

restrictions:

stiffness matrix: a(k) := a(k+1)|Sk×Sk

residual and Lipschitz constants: r(k) := r(k+1)|Sk
, L(k) := L(k+1)|Sk

maximal corrections: B(k) =Mk
k+1B

(k+1)

defect obstacles: ψ(k) := Rk
k+1ψ

(k+1), ψ
(k)

:= R
k

k+1ψ
(k+1)

coarse grid smoothing: v(k) := M̄k(a
(k), r(k), ψ(k), ψ

(k)
, L(k), B(k))(0)

update:

residual: r(k) := r(k) − a(k)(v(k), ·)
defect obstacles: ψ(k) := ψ(k) − v(k), ψ

(k)
:= ψ

(k) − v(k)

for k = 0 step 1 until j − 1 do

canonical prolongation: vνj := vνj + v(k)

new iterate: uν+1
j := ūνj + vνj

In Algorithm 2.1, Mj stands for one step of the nonlinear Gauß–Seidel re-
laxation. The exact solution of the corresponding one–dimensional problems
(2.2) may be quiet costly motivating more economic variants [19]. For the
nonlinearity Φ defined in (1.5), the construction of a neighborhood Kūν

j
and

of pointwise Lipschitz constants Lp is straightforward, because |Φ′′′(z)| exists
and is monotonically decreasing for z > 0. In this special case, we simply set

ϕ
ūν
j

(p) = ūνj (p)/2, ϕūν
j
(p) = +∞, Lp = |Φ′′′(ϕ

ūν
j

(p))|

for all p ∈ N ◦(ūνj ). Of course, the local linearization may be more difficult

(and expensive) in other cases. The bilinear form a(k)(·, ·) and the actual
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residual r(k) can be applied directly to the elements of the subspaces Sk

which gives the canonical restriction. Suitable monotone restrictions R
k

k+1

and Rk
k+1 of the defect obstacles can be found in [16, 18] and the maximal

restrictionsMk
k+1 are defined in (2.21). The evaluation of the correction v(k),

v(k) =
nk∑
i=1

ωlikvlik,

can be regarded as one step of a projected Gauß–Seidel method with suc-
cessive underrelaxation. This includes the successive computation of the
damping parameters ωl (cf. (2.20)) and the inductive update of the maxi-
mal corrections Blik (cf. (2.22)). For given bilinear form a, right–hand side
r, obstacles ψ, ψ, local Lipschitz constants L and maximal corrections B

the corresponding iteration operator is denoted by M̄k(a, r, ψ, ψ, L,B). The
canonical prolongation is defined by the interpolation of vνj ∈ Sk ⊂ Sk+1.

We finally remark that the definition (2.7) of the regular set N ◦
j (ū

ν
j ) is a bit

dangerous from the numerical point of view, because the pointwise Lipschitz
constants Lp may become arbitrary large. For this reason, it is useful to
select the regular nodes according to the strengthened condition

N ◦
j (ū

ν
j ) = {p ∈ Nj | ūνj (p) > 0 and Lp < Lmax} (2.23)

with some given threshold Lmax > 0. Of course, this modification preserves
the global convergence. Moreover, if Lmax is large enough, then the local
corrections which by (2.23) are excluded a priori would be excluded anyway
a posteriori by local damping. This argument is supported by our numerical
experiments, showing a considerable robustness of the convergence speed
with respect to the actual choice of Lmax.
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3 A Truncated Variant

The standard multigrid method relies on the condition that the coarse grid
correction must not change the values of the smoothed iterate ūν

j at the
critical nodes p ∈ N •

j (ū
ν
j ). Hence, only the λl ∈ ΛS \ Λj with the property

int supp λl ∩N •
j (ū

ν
j ) = ∅ (3.1)

are allowed to contribute to the coarse grid correction. In comparison with
the linear selfadjoint case, this leads to a poor representation of the low
frequency parts of the error. To improve the convergence rates by improved
coarse grid transport, we will now modify all λl ∈ ΛS \Λj with the property
(3.1) according to the actual guess of the free boundary.

Following [16, 17, 18], we define the modified basis functions

λ̃(k)p = T ν
j,kλ

(k)
p , p ∈ Nk, (3.2)

by using the truncation operators T ν
j,k, k = 0, . . . , j,

T ν
j,k = ISν

j
◦ . . . ◦ ISν

k
. (3.3)

Here ISν
k
: Sj → Sν

k denotes the Sν
k–interpolation, and the spaces Sν

k ⊂ Sk,

Sν
k = {v ∈ Sk | v(p) = 0, p ∈ N ν

k } ⊂ Sk, (3.4)

are the reduced subspaces with respect to N ν
k = Nk ∩ N •

j (ū
ν
j ), k = 0, . . . , j.

Similar subspaces of Sj a have been considered recently by other authors
[2, 13, 20] in connection with the coarsening of a given mesh.

Replacing the multilevel nodal basis ΛS by the actual truncation Λ̃ν
S ,

Λ̃ν
S =

(
λ(j)p1

, . . . , λ(j)pnj
, λ̃(j−1)

p1
, . . . , λ̃(j−1)

pnj−1
, . . . , λ̃(0)p1

, . . . , λ̃(0)pn0

)
, ν ≥ 0,

we can now derive a globally convergent truncated monotone multigrid method
by the same reasoning as described in the previous section. As all λl ∈ ΛS
with the property (3.1) are contained in Λ̃ν

S, we can hope for a higher conver-
gence speed than in the standard case. This heuristic argument is supported
by the numerical results reported below. To ensure the monotonicity of the
coarse grid correction in the sense of (2.5), we can compute appropriate lo-
cal damping parameters ω̃l from a straightforward analogue of (2.20). Then
the global convergence of the resulting truncated monotone multigrid method
with local damping follows from a suitable variant of Theorem 2.1 (see e.g.
Theorem 2.2 in [18]).

Theorem 3.1 The truncated monotone multigrid method with local damping
is globally convergent.

The algorithm can be implemented as a variant of the standard monotone
multigrid method with local damping. More precisely, the restrictions and
prolongations appearing in Algorithm 2.1 have to be modified as follows:

12



Modifications of Algorithm 2.1 Truncated Variant

modified restrictions of the bilinear form and of the residual:

treat all entries from the actual critical nodes N •
j (ū

ν
j ) as zero

modified quasioptimal restrictions of the upper (lower) defect obstacle:

treat all entries from the actual critical nodes N •
j (ū

ν
j ) as ∞ (−∞)

modified prolongations of the corrections:

prolongate zero to all critical nodes

Observe that the restrictions Mk
k+1 of the maximal corrections Blik+1

remain
unchanged.

Again, the definition (2.7) of the regular set N ◦
j (ū

ν
j ) should be replaced by

(2.23) in numerical computations. For truncated variants, the convergence
speed might be even improved by excluding the nodes with very large point-
wise Lipschitz constants from the coarse grid correction, because then the
damping of the corrections associated with the resulting truncated basis
functions could be considerably reduced. This behavior is different from
the standard case where it does not make much difference whether such a
node is considered as regular or not.
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4 Numerical Experiments

We will now illustrate the numerical performance of our monotone multigrid
methods in the case of the well–known porous medium equation (cf. e.g. [22])

θt = Δθm, m > 1, in x ∈ (−3, 3)× (−3, 3), t > 0 (4.1)

with homogeneous Dirichlet boundary conditions. An analytical solution of
this model problem was given by Barenblatt [4]

θ(x, t) =
1

(t + T0)1/m

{
|a|2 − m− 1

4m2

|x|2
(t + T0)1/m

}1/(m−1)

+

.

We select a = 0.5, T0 = 0.1 and m = 6 in our computations. A very popular
discretization scheme for (4.1) was proposed by Jäger and Kačur [14, 15]. See
e.g. Bänsch [3] for numerical results. The basic idea is to use a Chernov–type
formula with pointwise relaxation parameters μp ≈ 1/(mθ(p)m−1).

After the Kirchhoff–type transformation

U = θm

we apply an implicit Euler discretization with uniform time step τ , to obtain
spatial problems of the form (1.1) with Φ defined in (1.5) and

a(v, w) = τ
∫
Ω
∇v · ∇w dx, �(v) =

∫
Ω
Uτ (·, tk−1)v dx

Figure 4.1: Spatial Discretization Error ‖θ(·, tk)− θk‖L2(Ω)

for the solution Uk ≈ U(·, tk) at each time step. Stationary solutions, e.g.
with inflow and absorption, can be computed in the same way. Observe that
the inverse transformation θk =

m
√
Uk is ill–conditioned at the free boundary,

reflecting the the degeneracy of (4.1).
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We discretize the spatial problems on the subdomain Ω = (0, 3)×(0, 3) using
symmetry boundary conditions at x = 0 and y = 0. The initial triangulation
T0 is obtained by subdividing Ω into four congruent triangles and the final
triangulation Tj is resulting from j = 7 uniform refinement steps. Of course,
adaptive techniques are very attractive for such kind of problems but this is
not our subject here. The time step is τ = 0.01 and we stopped the compu-
tation at t50 = 0.5. The implementation was carried out in the framework of
the finite element toolbox KASKADE [5]. Figure 4.1 shows the spatial dis-
cretization error in L2(Ω) over the time t. Observe the parabolic smoothing
by the porous medium equation.

Figure 4.2: Iteration History: Initial Iterate u0j = 0

Figure 4.3: Iteration History: Nested Iteration
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In order to compare the convergence properties of the standard monotone
multigrid method (STDKH) and of the truncated version (TRCKH), we now
consider the iterative solution of the discrete problem arising in the first time
step on the final triangulation Tj, j = 7. Throughout the following, we use
the modified definition (2.23) of N ◦

j (ū
ν
j ) with Lmax = 106. Starting with the

initial iterate u0j = 0, we obtain the algebraic errors ‖uj −uνj‖, ν = 0, . . . , 50,
as shown in Figure 4.2. The overall convergence behavior can be divided
into a transient phase, characterized by (severe) damping of the coarse grid
correction and an asymptotic phase, where the local damping parameters ωl

are equal to one. As the iteration starts from the singularity u0
j = 0, it takes

more than 25 steps until the asymptotic behavior is reached. In comparison
with the standard method, the truncated variant then exhibits a tremendous
improvement of the convergence rates, giving a numerical justification for
the truncation of nodal basis functions. Note that the transient convergence
properties of both algorithms are basically the same.

Figure 4.4: Asymptotic Efficiency Rates

Better initial iterates should be used in practical applications. Starting with
the final iterate from the previous level, the transient phase is almost elim-
inated from the convergence history. This is illustrated in Figure 4.3. In
particular, the fast asymptotic convergence of TRCKH now dominates the
whole iteration process.

To study the convergence properties for increasing j, we introduce the asymp-
totic efficiency rates ρj,

ρj =
ν0

√
δν0j /δ

0
j , j = 0, . . . , 8, (4.2)

where δνj denotes the algebraic error after ν iteration steps. We choose ν0
such that δν0j < 10.−12. The results are shown in Figure 4.4. Note that the

16



Figure 4.5: Robustness with respect to Φm

asymptotic efficiency rates for both multigrid methods seem to saturate with
increasing j.

In our previous experiments we found similar convergence properties as in
the piecewise linear case [16, 17, 18]. In order to illustrate the robustness
of the methods with respect to the smoothness of the nonlinearity, we now
vary the parameter m in the definition (1.5) of Φ = Φm. We still use the
same bilinear form and right hand side (m=6) as before. The corresponding
asymptotic efficiency rates on the refinement level j = 7 are depicted in
Figure 4.5. Observe that the convergence speed of the truncated variant is
almost independent of m, though Φm is linear on uj for m = 1 and becomes
even discontinuous as m tends to infinity.
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