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Computation of Essential Molecular Dynamics

by Subdivision Techniques I: Basic Concept

†
Mathematisches Institut
Universität Bayreuth
95440 Bayreuth

∗
Konrad–Zuse–Fellow

Preprint SC 96–45 (December 1996)



      

Computation of Essential Molecular Dynamics

by Subdivision Techniques I: Basic Concept

P. Deuflhard, M. Dellnitz∗, O. Junge∗, and Ch. Schütte

Abstract

The paper presents the concept of a new type of algorithm for the numerical

computation of what the authors call the essential dynamics of molecular sys-

tems. Mathematically speaking, such systems are described by Hamiltonian

differential equations. In the bulk of applications, individual trajectories are

of no specific interest. Rather, time averages of physical observables or relax-

ation times of conformational changes need to be actually computed. In the

language of dynamical systems, such information is contained in the natural

invariant measure (infinite relaxation time) or in almost invariant sets (”large”

finite relaxation times). The paper suggests the direct computation of these

objects via eigenmodes of the associated Frobenius-Perron operator by means

of a multilevel subdivision algorithm. The advocated approach is different to

both Monte-Carlo techniques on the one hand and long term trajectory sim-

ulation on the other hand: in our setup long term trajectories are replaced

by short term sub-trajectories, Monte-Carlo techniques are just structurally

connected via the underlying Frobenius-Perron theory. Numerical experiments

with a first version of our suggested algorithm are included to illustrate certain

distinguishing properties. A more advanced version of the algorithm will be

presented in a second part of this paper.

∗Research partly supported by the Deutsche Forschungsgemeinschaft under Grant De 448/5-2
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1 Introduction

Reliable modelling and simulation of molecular processes is one of the really grand
challenges of today. Computational answers to chemical and biochemical questions
are as important for industry as they are hard to get.
The classical microscopic description of molecular processes leads to a mathematical
model in terms of Hamiltonian differential systems. Discretization of such systems
allows, in principle, a simulation of the dynamics. However, both forward and back-
ward analysis of numerical discretizations restrict such simulations to only short time
spans and comparatively small discretization time steps. Fortunately, most questions
of chemical relevance just require the computation of averages of physical observables.
For the computation of such averages several algorithmic approaches are popular at
present:

(i) time averages computed by “large” discretization steps — physically motivated
via the physical ergodicity hypothesis,

(ii) ensemble averages via Monte Carlo methods — physically motivated by pre-
scribed canonical ensembles which model a heat bath embedding of the molecule.

In the present paper, we advocate a new computational approach on the basis of
the mathematical theory of dynamical systems. We directly discretize the eigenvalue
problem of the Frobenius–Perron operator, which is associated with any dynamical
system. Without any physical a-priori assumptions we thus are able to compute:

(i) the associated (natural) invariant measure (corresponding to the eigenvalue
λ = 1), which determines the time averages of any physical observable,

(ii) almost invariant sets (for eingenvalues λ ≈ 1), which correspond to the essential
dynamics of the molecular system.

In what follows, we first examine the problem of MD simulation from the points
of view of Numerical Mathematics (Sec. 2.1), of Statistical Physics (Sec. 2.2), and
of Dynamical Systems (Sec. 2.3). In Section 3 we work out that conformations of
molecular systems mathematically correspond to almost invariant sets — which, in
turn, are related to eigenmeasures of the Frobenius–Perron operator for λ ≈ 1. The
discretization of the eigenvalue problem is a modification of techniques recently de-
veloped for hyperbolic systems [7, 9, 8] — see Section 4. This discretization requires
short term trajectory simulations only. Preliminary numerical experiments are pre-
sented in Section 5. A more advanced version of the algorithm will be presented in a
second part of this paper.
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2 Time Averages versus Ensemble Averages

In classical MD (cf. textbook [1]) a molecule is modelled as a collection of classical
mass points with masses mk, positions qk ∈ R3, and momenta pk ∈ R3, k = 1, . . . , N .
The interaction of these mass points is characterized by a Hamiltonian function

H(q, p) =
1

2
pTM−1p + V (q),

where q = (qT1 , . . . , q
T
N), p = (pT1 , . . . , p

T
N), M = diag(m1, . . . ,mN), and a differentiable

potential V . The Hamiltonian H is defined on the phase space Γ ⊂ R
6N . The

corresponding canonical equations of motion

q̇ = M−1p
ṗ = −gradV

(2.1)

describe the dynamics of the molecule. The formal solution of (2.1) with initial state
x0 = (q(0), p(0)) is given by x(t) = (q(t), p(t)) = Φtx0, where Φt denotes the flow.

2.1 Long Term Trajectory Simulation

Suppose we want to predict the motions of the molecular system by numerical inte-
gration of (2.1). This means that we replace the exact trajectories x(t) = Φtx0 by
discrete approximations. Thus, assuming one-step discretization for simplicity, the
(exact) flow Φt is replaced by a discrete flow Ψτ , so that the discrete solution can be
written as

xk+1 = Ψτxk ⇒ xk = (Ψτ )k x0,

with τ being the applied stepsize (assumed to be constant for the time being) . An
important feature of molecular processes is that long term predictions are required,
which means predictions over periods much longer than the applied time steps. We are
therefore led to discuss long term numerical integration of (2.1) in terms of accuracy
and stability of the selected discretizations.

Forward Analysis

In this type of analysis, we are interested in the propagation of initial perturbations
δx0 along the flow Φt of (2.1), i.e., in the growth of the perturbations δx(t;x0) =
Φt(x0 + δx0) − Φtx0. The condition number κ(t) is defined as the maximal error
propagation factor (cf. textbook [10]), so that, in first order perturbation analysis
and with a suitable norm | · |, we have

|δx(t;x0)| < κ(t)|δx0| for all x0.

By definition, the number κ(t) characterizes the worst case analytical error amplifi-
cation independent of any discretization. Long term accumulation of discretization
errors is just a special case.
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From this point of view, long term integration is only feasible as long as κ(T ) is
small enough for 0 ≤ t ≤ T . For integrable systems (such as the popular Kepler
problem) it is known that κ(T ) ∼ T [22], which allows for quite long term simula-
tions. Unfortunately, for real life MD problems, κ is exponentially increasing. As an
illustration, test simulations for the Butane molecule are presented in Fig. 1. As can
be seen, global error propagation totally spoils any initial information after a time
span, which is significantly shorter than time spans of physical interest.
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Figure 1: Comparison of two different MD simulations of the Butane molecule (Verlet discretization
with stepsize τ = 0.005fs) starting from two nearly identical initial states (initial spatial deviation:
10−4Å) . Left hand figure: Evolution of the length (Å) of the Butane molecule for the two cases.
Right hand side: Spatial deviation (Å) of the two trajectories versus time.

Backward Analysis

In this type of analysis, the discrete solution is regarded as an exact solution of a
perturbed problem. In particular, backward analysis of symplectic discretizations of
Hamiltonian systems has recently achieved a considerable amount of attention (see
[33] and references therein). The most prominent symplectic discretization is the
popular Verlet scheme.
These discretizations give rise to the following nice feature: the corresponding discrete
solution of a Hamiltonian system is “exponentially close” to the exact solution of a
perturbed system that is again Hamiltonian. To be more precise, let xk = (Ψτ )kx0 be
the discrete solution to (2.1) computed via a symplectic discretization Ψτ with order
of consistency p and stepsize τ . Then, the perturbed Hamiltonian is [20, 2]

H̃ = H +
N∑
k=0

τ p+k Hk (2.2)

where the components Hk are composed of derivatives of H up to order k. A nice
consequence is the fact that the discrete solution nearly conserves the Hamiltonian
H̃ and, thus, conserves H up to O(τ p). This is the reason for the superior long–term
energy conservation property of symplectic integrators in MD applications.
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Closer inspection reveals the following situation: If H is analytic, then the truncation
index N in (2.2) is arbitrary. In general however, the series diverges as N → ∞. For
the behavior of the solutions the following result holds:

Theorem 2.1 (Hairer/Lubich [21]) Let H be analytic and x̃ = x̃(t) the (exact)
solution of the perturbed Hamiltonian system corresponding to H̃ with x̃(0) = x0.
There exists some τ∗ > 0, so that for all τ < τ∗ the numerical solution xk = (Ψτ )kx0

and the exact solution x̃ of the perturbed system remain exponentially close in the
sense that

xk − x̃(kτ) = O(e−1/τ )

over a time interval T = O(| log τ |/τ), i.e., for all kτ < T .

Thus, closeness can only be guaranteed over finite time spans which decrease with
increasing τ . Unfortunately, the theorem does not state how small τ∗ might be for
a given problem. In fact, as MD simulations show, the critical stepsize τ∗ may be
several orders of magnitude smaller than desirable stepsizes τ . This is illustrated in
Fig. 2 via the time average of the length of a Butane molecule in an MD simulation
over 200 picoseconds. We observe τ∗ ≈ 10−2fs as opposed to typical MD stepsizes of
interest such as τ ≈ 10fs.
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Figure 2: Left hand figure: Dependence of the time average (time scale T = 200ps) of the length
of a Butane molecule on the stepsize τ of the discretization (symplectic Verlet–discretization with
order of consistency p = 2). Right hand figure: Zoom of the asymptotic domain (τ < 10−2 fs) and
quadratic fit.

Summarizing, both forward and backward analysis lead to the insight that trajectory
simulation is appropriate only for short time intervals even with symplectic discretiza-
tions.

Essential Dynamics

Fortunately, in most of the applications, details of individual MD trajectories of a
molecular system are of only minor importance. We begin with an illustrative exam-
ple due to Grubmüller [18] documented in Figure 3. It describes the dynamics of a
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polymer chain of 100 CH2 groups. The figure presents six different zoom levels, each
of which scales up in time by a factor of 10. On the small time scales (upper lev-
els) the dynamical behavior is characterized by nonlinear oscillations around certain
“equilibrium positions”. On larger and larger time scales these oscillations become
more and more unimportant. On the largest time scale (lowest level) we observe an
“essential” dynamical behavior as a kind of flip–flop between two “conformations”.

Figure 3: MD simulation of a polymer chain of 100 CH2 groups. The picture is taken from [18]. It
shows the dynamics of the distance between two CH2–groups (# 12 and # 36). The series of plots
illustrates the oscillations of the distance at time scales increasing by a zoom factor of 10 at each
level.

At this point it is visible that the essential dynamics of the molecular process could
as well be modelled by probabilities describing the average durations of stay within
the different conformations of the system. Possible stepsizes (τ < 10fs) for numerical
integration are confined by the fast oscillations. Time scales of physical interest range
between 103 and 105 picoseconds, which is a factor 105 − 107 larger.
These observations explain why, in MD applications, interest mainly concentrates on
computing statistical properties of the molecules under consideration such as in time
averages of physical observables. Let A : Γ → R

d denote a physical observable, then
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its time average Ā is given in terms of the flow Φt as

Ā(x) = lim
T→∞

1

T

T∫
0

A(Φtx) dt. (2.3)

Recall from Figure 2 that the actual evaluation of Ā will also require extremely short
time steps which lead to extraordinarily long computing times for long term averages.
More detailed information about the dynamics can be obtained by introducing run-
ning averages over typical finite time scales. Techniques to eliminate the smallest
time scales have recently been investigated by homogenization analysis (cf. [3, 34])
or by a statistical representation [31, 16]. In view of Figure 2 the whole MD problem
can be seen to be of a multi-scale nature, so that mere elimination of the smallest
time scales is not enough. In this situation, we herein aim at a different algorithmic
approach to compute averages directly by means of well–conditioned subtrajectory
simulations only.

2.2 Ensemble Averages in Statistical Physics

In many situations, the theory of “Statistical Mechanics” lights a way to avoid the
problem of reliable statistical characterization of the essential dynamics: the statis-
tical properties of the system are directly desribed in terms of the Hamiltonian H
without explicit use of the flow Φt. Time averages Ā are then replaced by ensemble
averages of A. Ensembles are defined via given probability measures μ on the phase
space Γ. The associated expectation values

〈A〉μ =

∫
Γ

A(x) dμ(x) (2.4)

describe the mean values of A over a statistical ensemble of identically prepared
systems with Hamiltonian H. Probability measures on Γ, which are of particular
physical importance, define certain statistical equilibrium densities. The correspond-
ing ensemble averages are interpreted as thermodynamic equilibrium quantities. In
what follows we discuss the canonical and the microcanonical ensembles.

Canonical Ensemble Averages

The canonical ensemble γT is shown to be connected to an equilibrium embedding of
the molecule into a “heat bath” of temperature T , i.e., the expectation values with
respect to γT include the statistics of a stationary interaction with a surrounding of
constant temperature [26, 19]. Its density fγT is defined as

fγT (x) =
1

Q
exp(−βH(x)) with Q =

∫
Γ

exp(−βH(x)) dλ(x),

and β = 1/(kBT ), where kB is Boltzmann’s constant.
The evaluation of expectation values with respect to the canonical ensemble γT is
mostly done via thermalization methods [29] or by means of various Monte Carlo
techniques.
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Monte Carlo (MC) methods (Metropolis algorithm) The recursive scheme
of all MC algorithms is the construction of a sequence (xk)k∈N ⊂ Γ of states with two
essential properties:

• Numerically, the state xk+1 can be computed using its predecessor xk only and
without any evaluation of the density fγT itself.

• The subsequent mean values of the sequence converge to the expectation value
desired, i.e.,

lim
N→∞

1

N

N∑
k=1

A(xk) = 〈A〉γT , (2.5)

for the observable A under consideration.

The algorithmic realization of the step xk → xk+1 consists of two parts:

(i) The update step xk → x̃k = Q(xk): herein, the numerical operations necessary
for realizing the “update operator” Q : Γ → Γ should be computationally cheap,
e.g., should exclude evaluation of fγT . There is a single theoretical restriction:
Q must be irreducible [35].

(ii) The acceptance step: evaluate ΔE = H(x̃k) −H(xk), set

a = min{1, exp(−βΔE)}, (2.6)

and compute r randomly equidistributed from [0, 1]. The state x̃k is accepted
as xk+1 if r ≤ a, otherwise xk+1 = xk is kept.

In the context of the theoretical justification of the Metropolis algorithm the sequence
(xk) is discussed as a realization of a Markov chain [5]. The transition operator of
this Markov chain proves to be an irreducible Frobenius–Perron operator, the largest
eigenvalue of which is λ = 1. The corresponding eigenspace is one–dimensional
and the normalized eigenfunction proves to be the canonical density fγT . Thus,
the sequence (xk) is the result of a fixed point iteration, which converges to the
dominant eigenfunction fγT , which, in turn, guarantees the convergence (2.5). In MC
simulations, eigenvectors to smaller eigenvalues of the Frobenius–Perron operator are
not taken into account (apart from the fact that the second largest eigenvalue may
be considered to estimate the convergence rate [36]).
As is widely known, MC simulations for ensemble averages may suffer from possible
“critical slowing down” [27]. This phenomenon occurs when the iteration xk → xk+1

gets trapped near a local potential minimum so that a proper sampling of the phase
space within reasonable computing times is prevented. In order to overcome such
a trapping, large steps in the potential energy landscape (so–called global updates)
would be required, which are extremely hard to construct. In [35] a multigrid ap-
proach to MC has been advocated designed to treat this multiscale phenomenon on
sufficiently coarse grids. The algorithm to be designed herein will have some flavor
of multigrid methods as well, but within a rather different underlying mathematical
concept.
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Hybrid Monte Carlo (HMC) methods The basic idea of HMC is the real-
ization of the update step via short discrete subtrajectories [14]. The update step
starting with x = (q, p) ∈ Γ is realized via a discretization Ψτ of (2.1): first, new mo-
menta p̃ are determined randomly according to the canonical momentum distribution
exp(−β pTM−1p/2). Secondly, a trajectory is computed yielding the proposal

Q(x) = x̃ = (Ψτ )m (q, p̃),

for the next state, with m and τ being free parameters. Q is irreducible, iff Ψτ is
reversible and symplectic. The parameters m and τ have to be adjusted according
to two requirements: On one hand, τ must be not too large, so that the energy
variation is small enough to guarantee a sufficiently large rate of acceptance. On the
other hand, m and τ have to be large enough, otherwise the update Q remains to act
essentially locally with the undesirable consequences described above. It should be
noted, that in HMC the discrete flow Ψτ need not be a good approximation of the
exact flow Φτ . It is only used as a technique for proposing the next state and energy
stability is the only requirement on τ .
HMC is reported to be an appropriate approach for several problems concerning
polymerization [23, 28, 15]. However, for most MD applications, the sampling of the
phase space still remains to be local.

Microcanonical Ensemble Averages

For introducing the microcanonical ensemble, consider an energy cell defined by

Γδ(E) = {x ∈ Γ, |H(x) − E| < δ}

for E ∈ R and δ ≥ 0. This reduces to an energy surface for δ = 0. In the following,
all energy cells are assumed to be bounded sets. Let m be the Lebesgue–measure on
Γ. Then, the microcanonical ensemble μE is defined as the limit of measures μE,δ

with densities

fE,δ(x) =

{
0, x �∈ Γδ(E)

1
m(Γδ(E))

, x ∈ Γδ(E)
,

for δ → 0. Thus, μE corresponds to an equidistribution on Γ0(E). In statistical
mechanics, the corresponding density fE is interpreted as the equilibrium density for
the states of the molecule at energy E when the system is closed, i.e., without any
interaction to an exterior, and when it is large enough (i.e., in the “thermodynamical
limit” [26]).
The microcanonical ensemble is intimately linked with the physical ergodicity hypoth-
esis, which assumes that the expectation value of A with respect to this ensemble is
equal to the time average Ā of each macro–observable A [1]:

Ā(x0) = 〈A〉μE
=

∫
Γ

A(x) dμE, (2.7)
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where E = H(x). Obviously, Ā is a function of E only and does not depend on the
initial state x0 of the time average. “Macro–observables” are observables like total
energy or entropy, which do not only measure local properties of molecules.
On the basis of this hypothesis we are free to either compute Ā via (2.7) by sim-
ply integrating A over the energy surface under consideration or to compute 〈A〉μE

by an approximation of the time average Ā(x) via (2.3) starting with an arbitrary
x ∈ Γ0(E). Typically, the latter option is taken using symplectic discretizations
(compare the discussion in Section 2.1) to generate a time series. Its mean value is
then taken as an approximation to Ā . The stepsizes applied are as large as pos-
sible – the only restriction being the stability of the discrete iteration and not any
accuracy requirement with respect to an exact trajectory. As a justification of this
procedure, it is claimed that the time series “samples” the phase space with respect
to the equidistribution of the microcanonical measure. Frankly speaking, however,
the present authors are not aware of any more rigorous justification.
Finally, we want to emphasize that the “physical ergodicity hypothesis” should not
be mixed up with the mathematical ergodic theory of dynamical systems (see Sec-
tion 2.3). In fact, the underlying equidistribution hypothesis may even be wrong as
will be exemplified in Section 5.

2.3 Invariant Measures of Dynamical Systems

We now turn to the question of how time averages Ā can be described in the theory
of dynamical systems. For simplicity, we again restrict our attention to symplectic
discretizations of (2.1). The discrete flow Ψτ as an approximation of the continuous
flow Φτ can meet any accuracy requirement by a suitable choice of the time steps. In
view of Section 2.1, we will only consider well–conditioned short–term subtrajectories.
These restrictions lead us to discrete dynamical systems of the form

xj+1 = f(xj), j = 0, 1, 2, . . . , (2.8)

where f = Ψτ : Γ → Γ.

Mathematical Ergodicity

The long term behavior of any system (2.8) is described by so-called invariant mea-
sures: a probability measure μ is invariant iff μ(f−1(B)) = μ(B) for all measurable
subsets B ⊂ Γ. In other words, invariant measures describe the recurrence behavior
of the dynamical system:

Theorem 2.2 (Poincaré Recurrence Theorem) Let μ be an invariant mea-
sure. Then for any measurable set B almost all points x ∈ B (with respect to μ)
return to B under some iterate.

Obviously, invariant measures are deeply connected to invariant sets, i.e., subsets
B ⊂ Γ with f−1(B) = B. An invariant measure is ergodic if μ(B) ∈ {0, 1} for
every invariant set B ⊂ Γ. The following theorem implies that ergodic measures have
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particularly nice recurrence properties. Roughly speaking, it will state that the time
average is equal to the spatial average for μ-almost all initial conditions.

Theorem 2.3 (Birkhoff Ergodic Theorem) Let μ be an ergodic measure. Then
for μ almost all points x ∈ Γ we have that

lim
N→∞

1

N

N−1∑
j=0

A(f j(x)) =

∫
A dμ

for each integrable function A.

This theorem is fundamental in mathematical Ergodic Theory. However, there is an
essential drawback, which we are now going to illustrate by an example.

Example 2.4 Suppose that the dynamical system (2.8) has a stable fixed point p,
that is f(p) = p, and there is a neighborhood U of p such that all points inside
that neighborhood converge to p in the course of the iteration. The ergodic measure
related to p is the Dirac measure μ = δp, and the Birkhoff Ergodic Theorem implies
that for δp almost all x ∈ Γ

lim
N→∞

1

N

N−1∑
j=0

A(f j(x)) =

∫
A dμ = A(p) (2.9)

for each integrable function A. In particular, this theorem just provides information
on the temporal behavior of the point p itself, since this is the only point where (2.9)
can be applied to. On the other hand, since p is stable, (2.9) would be satisfied for
all points inside the neighborhood U of p.

The previous example illustrates that the stability property of an invariant set – in
that case the stable fixed point p – is not taken into account in the notion of an
ergodic measure. However, from the application point of view it would be much
more satisfactory if the existence of an invariant measure were guaranteed which
provides equality of the temporal and the spatial average for a “large” set of points.
This observation leads naturally to the notion of an SBR-measure named after Sinai,
Bowen and Ruelle (cf. [32, 4]).

Definition 2.5 An ergodic measure μ is an SBR-measure if there exists a subset
U ⊂ Γ with m(U) > 0 and such that for all x ∈ U

lim
N→∞

1

N

N−1∑
j=0

A(f j(x)) =

∫
A dμ (2.10)

for each continuous function A. Once again, m denotes Lebesgue measure.
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Frobenius-Perron Operator

The most important observation in connection with the numerical computation of
invariant measures is the fact that it is equivalent to the solution of an eigenvalue
problem. To make this relationship more precise, we introduce the Frobenius-Perron
operator on the set M of probability measures on Γ.

Definition 2.6 The Frobenius-Perron operator P : M → M is defined by

(Pμ)(B) = μ(f−1(B)) for all measurable B ⊂ Γ and arbitrary μ ∈ M.

By the definition of the Frobenius-Perron operator,

a probability measure μ ∈ M is invariant if and only if Pμ = μ.

Hence a promising strategy will be to discretize this operator equation in such a way
that the matrix approximation Pd of P has an eigenvector vd with Pdvd = vd which is
close to an invariant measure. More precisely, suppose that – by backward analysis
– the numerical discretization is exact for a stochastic perturbation of the original
system. Then it is reasonable to assume that an SBR-measure is approximated by
our discretization, since these measures are robust with respect to stochastic pertur-
bations. We will explain the discretization in more detail in Section 4.1 (see also
Appendix 5.2). There, we will also see that the entries of the stochastic matrix Pd

can indeed be evaluated by a collection of short–term subtrajectories — as desired
by considerations in Section 2.1.
Summarizing, we will aim at constructing an algorithm based on a multiscale dis-
cretization of the eigenvalue problem for the Frobenius-Perron operator. In contrast
to the Statistical Physics approach, where certain measures μ are prescribed on the
basis of physical model considerations, the solution of the eigenvalue problem for
λ = 1 will supply approximations of the invariant measure μ without any physical
modelling assumptions.

3 Conformational Changes

From a chemist’s point of view, biomolecular systems are characterized by different
“conformations”. This term simultaneously describes both distinguishable geomet-
ric configurations and the associate chemical “functionality”. In a conformation the
large-scale geometric structure of the molecule is understood to be conserved, while
the system may well rotate, oscillate or fluctuate on small spatial scales. Fluctua-
tions of a molecule are only of interest in the transient phase from one conformation
to another (compare the flip-flops between conformations in Fig. 3). Typically the
duration of stay within a conformation is long enough to make the conformation an
object of chemical interest or, equivalently, to make a significant contribution to any
(statistical) averages. Consequently, conformational changes are rare events, which
normally can only be observed in long–term simulations.
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Mathematically speaking, conformations are described as special subsets of phase
space. Invariant sets of MD systems, which correspond to infinite relaxation times,
typically consist of a number of different subsets describing different conformations.
These conformation subsets, in turn, correspond to finite relaxation times and may
therefore be denoted as “almost invariant” sets. Of course, the main interest focusses
on those conformations with the largest relaxation times.

3.1 Illustrative Example

Let us introduce a suitably simple example in order to illustrate the notion of almost
invariant sets for Hamiltonian systems. For p = (p1, p2), q = (q1, q2) ∈ R

2 consider
the potential

V4(q) =

(
3

2
q4
1 +

1

4
q3
1 − 3q2

1 −
3

4
q1 + 3

)
·
(
2q4

2 − 4q2
2 + α

)
with α = 3. (3.1)

As illustrated in Fig. 4, this potential comprises four local minima at the points
(±1,±1) (named A, B, C, D), which are separated by four saddlepoints. The energy
barrier between A and B is significantly higher than the other three ones. The
dynamical behavior of the system consists of oscillations around the local minima
and, if the total energy is large enough for the system to cross the barriers, of motions
from one minimum to the other. If the energy is not too large, there will be two kinds
of “long term” dynamical behavior:

(a) oscillations in the neighborhood of the four different minima,

(b) back and forth oscillations between two different minima: A ↔ D, B ↔ C, and
C ↔ D.

This is observed in simulations of the dynamics. Fig. 4 presents a solution which starts
with an oscillation between A and D, followed by an oscillation around C, a long
period of oscillations between A and D and so on. The similarity of the trajectories
shown in Fig. 4 (right) and Fig. 3 illustrates that we are actually looking at the
same kind of phenomena. Thus, for the case presented in Fig. 4, the neighborhoods
of the different minima should turn out to be “almost invariant sets” as well as
neighborhoods of the pairs of minima (A,D), (C,D) and (B,C) together with regions
around the corresponding saddlepoints “between” them. In Section 5 we will see that
this fact can indeed be justified.

3.2 An Eigenvalue Approach to Almost Invariant Sets

In Section 2.3, we have already seen that invariant measures correspond to fixed
points of the Frobenius-Perron operator. Hence, eigenmeasures of the Frobenius-
Perron operator corresponding to (real) eigenvalues close (but not equal) to 1 should
be related to almost invariant sets as described above.
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Figure 4: The left hand side figure shows a contour plot of the potential energy landscape due to
V4 with equipotential lines of the energies E = 1.5, 2, 3 (solid lines) and E = 7, 8, 12 (dashed lines).
There are minima at the four points (±1,±1) (named A to D), a local maximum at (0, 0), and
saddlepoints in between the minima. The right hand figure illustrates a solution of the corresponding
Hamiltonian system with total energy E = 4.5 (positions q1 and q2 versus time t). See Section 3 for
more details.

Let us illustrate this fact using the simple test system given by V4 in (3.1). First
suppose that our system has two disjoint invariant sets B1 and B2 with correspond-
ing invariant measures μ1 and μ2. For total energy E = 4.5 this is the case, if we
choose α ≥ 4.5 in (3.1). Then B1 may be chosen as the neighborhood of the pair
of minima (B,C) and B2 as the neighborhood of (A,D) (cf. Fig. 4). The invariant
measures μ1 and μ2 are two independent eigenmeasures of the Frobenius-Perron op-
erator corresponding to the (at least) double eigenvalue 1. They may be chosen so
that μk(Bj) = 0 for (k, j) = (1, 2) and (k, j) = (2, 1). Assume that the corresponding
eigenspace E1 is two–dimensional. Then, μ∗ = (μ1 + μ2)/2 and ν∗ = (μ2 − μ1)/2 are
also a basis of E1 with the property that

ν∗(B1) = −1/2 and ν∗(B2) = 1/2. (3.2)

This fact will be of importance in the following.
Next suppose that we vary the control parameter α in (3.1) such that the two invariant
sets B1 and B2 merge for a certain value of the parameter (α = 4.5) leading to a
“confluent” invariant set B ≈ B1 ∪ B2. For α ≤ 4.5 trajectories can move from B1

to B2 and vice versa, but this will happen rarely and they will stay in each of these
components for quite a long time. (In fact, this is precisely the flip-flop behavior
between the almost invariant sets that we have observed in the previous examples
— see the lowest level of Fig. 3.) In the merging process of the two invariant sets
B1 and B2, one of the two eigenvalues 1 has to move away from 1 along the real
line into the unit circle. We now show how to extract information on the “almost
invariant components” from the magnitude of this eigenvalue and its corresponding
eigenmeasure.
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Let us begin with a mathematically precise definition of an almost invariant set. Let
ρ ∈ M be a probability measure. We say that the set B is δ-almost invariant with
respect to ρ if

ρ(f−1(B) ∩B)

ρ(B)
= δ.

Thus, δ is the probability that points in B are mapped into B under f . In particular,
if B is an invariant set, that is f−1(B) = B, then δ = 1. The main purpose is to
relate the magnitude of eigenvalues of the Frobenius-Perron operator P which are
close to 1 to this probability δ.
Once δ = δB has been computed for a given set B ⊂ Γ using the stepsize τ in the
discrete dynamical system with f = Ψτ , the system’s probability of staying within B
for time T can be estimated to be

pB(T ) = δ
T/τ
B . (3.3)

It is clear that this information is of utmost chemical importance.
We assume that λ �= 1 is an eigenvalue of P with corresponding real valued eigen-
measure ν ∈ MC, that is,

Pν = λν, where ν is scaled so that |ν| ∈ M.

(We denote by MC the set of bounded complex valued measures.) Obviously, ν
cannot be a probability measure – in fact, it is easy to see that ν(Γ) = 0, see Ap-
pendix 5.2. However, if the eigenvalue λ is close to one it is reasonable to assume
that the probability measure |ν| is close to the invariant measure μ of the system. To
see this observe that |ν| ≈ |ν∗| = μ∗ ≈ μ when λ ≈ 1.
We return to our example from above to illustrate these facts. In Figure 5 we present
the eigenmeasure ν for α = 3. Since B1 and B2 were taken to be the regions around
(B,C) and (A,D), respectively, we observe ν(B1) < 0 and ν(B2) > 0 so that ν(Γ) =
ν(B1 ∪ B2) = 0. Obviously, we find ν(B2) = −ν(B1) = 1/2 since |ν| is a probability
measure. Thus, the perturbation via the variation of α conserves the property (3.2)
for the two emerging almost invariant sets. Consequently, it is reasonable to look for
the almost invariant sets B among the sets with the property ν(B) = ±1/2.
We now state a result concerning the relationship between probabilities, by which
sets are almost invariant, and the eigenvalue λ. A proof of the result in the context
of small random perturbations can be found in [9].

Proposition 3.1 Let B ⊂ Γ be a set with ν(B) = 1
2
. If B is δ1-almost invariant

and Γ – B is δ2-almost invariant with respect to |ν|, then

δ1 + δ2 = λ + 1. (3.4)

If there are more than two almost invariant sets, then a set B as in Proposition 3.1
may itself be the union of several almost invariant sets. In order to identify all these
components one has to consider all the eigenmeasures corresponding to eigenvalues
which are close to one. We will illustrate this in our numerical examples in Section
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Figure 5: Eigenmeasure ν of the Frobenius–Perron operator to the eigenvalue λ = 0.9963 for the
test system (3.1) with α = 3. ν was computed via our new subdivision algorithm (cf. Section 5.2).

5. (An alternative numerical approach is presented in [8].) In that context also the
following consideration will be useful. Suppose that we are given the probabilities δX
and δY for two separate almost invariant sets X and Y . Then we will be interested
in computing δX∪Y . This can be done by means of the following lemma.

Lemma 3.2 Let ρ ∈ M be a probability measure and let X and Y disjoint sets
which are δX- resp. δY -almost invariant with respect to ρ. Moreover suppose that
f−1(X) ∩ Y = ∅ and f−1(Y ) ∩ X = ∅. Then X ∪ Y is δX∪Y -almost invariant with
respect to ρ where

δX∪Y =
ρ(X)δX + ρ(Y )δY

ρ(X) + ρ(Y )
. (3.5)

Proof: We calculate

δX∪Y =
ρ(f−1(X ∪ Y ) ∩ (X ∪ Y ))

ρ(X ∪ Y )

=
ρ((f−1(X) ∩X) ∪ (f−1(Y ) ∩ Y ))

ρ(X) + ρ(Y )
=

ρ(X)δX + ρ(Y )δY
ρ(X) + ρ(Y )

.

In (3.4), both δ1 and δ2 appear and in general there will be no relation between these
constants. However, if the underlying system possesses an additional symmetry –
as in (3.1), since the Hamiltonian system is equivariant under the transformation
(q2, p2) → −(q2, p2) –, then we can express one of these numbers in terms of the
other one. To illustrate this fact, let us consider the simplest case where we have a
symmetry transformation κ in the problem with κ2 = id. Then one can show (see
again [9]):
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Corollary 3.3 In addition to the assumptions in Proposition 3.1 suppose that

(i) the set B satisfies κB = Γ – B, and

(ii) the measure |ν| is κ-symmetric, that is κ∗|ν| = |ν|.

Then Γ – B is δ-almost invariant with respect to |ν| if and only if B is δ-almost
invariant. In particular

δ =
λ + 1

2
. (3.6)

Example 3.4 Consider the Hamiltonian system discussed in Section 3.1 above. The
symmetry κ is given by κ(q1, q2, p1, p2) = (q1,−q2, p1,−p2). We define our phase space
to be R4 without the fixed point space of κ, that is

Γ = R
4 – {(q, p) ∈ R4 : (q2, p2) = (0, 0)},

and set
B = {(q, p) ∈ Γ : q2 ≥ 0 and p2 > 0 if q2 = 0}.

Obviously κB = Γ – B, and therefore condition (i) in Corollary 3.3 is satisfied. Now,
consider the real valued eigenmeasure ν from Fig. 5 with corresponding eigenvalue
λ ≈ 0.9963. |ν| has the symmetric support B1 ∪ κB1 = B1 ∪B2. Then Corollary 3.3
supplies that B1 (the neighborhood of the pair of minima (B,C)) is δ-almost invariant
with respect to |ν| if and only if B2 = κB1 (the neighborhood of (κB, κC) = (A,D))
is δ-almost invariant. Moreover, δ is given by (3.6) which results in δ = (λ + 1)/2 ≈
0.9981. For a detailed discussion see Section 5.2 below.

4 Subdivision Algorithms

Until now subdivision techniques have been used to analyze the long term dynamical
behavior of hyperbolic dynamical systems. In particular, they turned out to be very
useful in the computation of invariant measures and invariant manifolds [7, 9, 8]. In
this section we describe how these techniques can be modified to apply to Hamiltonian
dynamical systems. Both for completeness and in order to make the differences more
transparent, we briefly review the techniques for hyperbolic systems in Sections 4.1.

4.1 Hyperbolic Systems

The central mathematical object to be approximated by the subdivision algorithm
due to [7] is the so-called relative global attractor,

AQ =
⋂
j≥0

f j(Q), (4.1)

where Q ⊂ R
n is a compact subset. Roughly speaking, the set AQ should be viewed

as the union of unstable manifolds of invariant objects inside Q. In particular, AQ

may contain subsets of Q which cannot be approximated by direct simulation.
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Covering of the Relative Global Attractor

The numerical realization involves the discretization of the Frobenius-Perron opera-
tor. For that purpose we first need to determine a sequence of box coverings Bk of the
relevant dynamics in phase space. The subdivision algorithm for the approximation
generates a sequence B0,B1,B2, . . . of finite collections of boxes with the property that
for all integers k the set Qk =

⋃
B∈Bk

B is a covering of the relative global attractor
AQ under consideration. The sequence of coverings is constructed in such a way that
the diameter of the boxes,

diam(Bk) = max
B∈Bk

diam(B)

converges to zero for k → ∞.
Given an initial collection B0, one recursively obtains Bk from Bk−1 for k = 1, 2, . . .
in two steps.

(i) Subdivision: Construct a new collection B̂k such that⋃
B∈B̂k

B =
⋃

B∈Bk−1

B and diam(B̂k) ≤ θ diam(Bk−1)

for some 0 < θ < 1.

(ii) Selection: Define the new collection Bk by

Bk =
{
B ∈ B̂k : f−1(B) ∩ B̂ �= ∅ for some B̂ ∈ B̂k

}
.

The following proposition establishes a general convergence property of this algo-
rithm.

Proposition 4.1 ([7]) Let AQ be the global attractor relative to the compact set Q,
and let B0 be a finite collection of closed subsets with Q0 = Q. Then

lim
k→∞

h (AQ, Qk) = 0,

where we denote by h(B,C) the usual Hausdorff distance between two compact subsets
B,C ⊂ R

n.

Remarks 4.2 (a) Observe that for the convergence result in Proposition 4.1 it is
not necessary to assume that the underlying system is hyperbolic. However,
for estimates concerning the speed of convergence the existence of a hyperbolic
structure is very useful (see [7]).

(b) A drawback of the described subdivision technique is that at each level boxes
of the same size are taken into account without any use of information about
the underlying dynamical behavior. In particular, also those boxes are further
subdivided that are dynamically irrelevant in the sense that their (natural)
invariant measure is zero. For this reason, an adaptive version of the subdivi-
sion algorithm has recently been developed in [8], which led to a considerable
computational speed-up.
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Discretization of the Frobenius-Perron Operator

Following [12, 9] we use a Galerkin method to approximate the Frobenius-Perron
operator. This treatment is theoretically justified in Appendix 5.2 where, roughly
speaking, it is shown that the Frobenius-Perron operator becomes a compact operator
on L2 if the system is stochastically perturbed. In this case, invariant measures have
L∞-densities, and L2 is simply a nice choice for a corresponding function space.
Having this in mind we describe the discretization of the Frobenius-Perron operator
P viewed as an operator acting on densities in L2.
Let Vd, d ≥ 1, be a sequence of d–dimensional subspaces of L2 and let {ϕi}, i =
1, 2, . . . , d, be a basis of Vd such that

d∑
i=1

ϕi(x) = 1 for all x ∈ Γ. (4.2)

For g ∈ L2 the Galerkin projection Qd : L2 → Vd is defined by

(Qdg, ϕi) = (g, ϕi) for i = 1, . . . , d,

where (·, ·) is the usual inner product in L2. Observe that Qd converges pointwise to
the identity on L2.
In most of the applications Vd consists of functions which are locally constant. More
precisely, let Bi, i = 1, . . . , d, denote the boxes contained in the covering Bk. Then
we can choose

ϕi = χBi
, i = 1, 2, . . . , d.

With this choice the discretized Frobenius-Perron operator Pd = QdP is represented
by the stochastic matrix

v = Pdu, v(Bi) =
d∑

j=1

m(f−1(Bi) ∩Bj)

m(Bj)
u(Bj), i = 1, . . . , d, (4.3)

where m denotes Lebesgue measure. Now a fixed point ud of Pd provides an approx-
imation to the SBR-measure of f .

Remark 4.3 Until now it is theoretically not clear whether the fixed points ob-
tained by the discretization described above indeed converge to an SBR-measure for
d → ∞. Except for expanding maps (and other specific situations) this is not even
known under the additional assumption of the existence of an SBR-measure. How-
ever, convergence to SBR-measures can be proved in the context of small random
perturbations of the underlying system. We will outline these results for systems
with a hyperbolic structure in Appendix 5.2.
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4.2 Hamiltonian Systems

The above subdivision algorithm has proved to be well suited for hyperbolic dynami-
cal systems where the long term dynamical behavior is confined to a low-dimensional
object in phase space. In the Hamiltonian context, however, energy surfaces are
dynamically invariant and it is of interest to derive information on the dynamical
behavior of the system restricted to this manifold. Of course, the long term dynam-
ics again may be confined to a lower-dimensional subset of the energy surface under
consideration. Consequently, the main algorithmic steps for the approximation of the
dynamical behavior of a Hamiltonian system are as follows:

(i) Construction of an approximate covering of the energy surface;

(ii) extraction of the subset containing the long-term dynamics;

(iii) setting up the Frobenius-Perron operator with respect to this subset.

We now describe each of these steps in more detail.

Covering of the Energy Surface

Given a compact energy surface Γ0(E) ⊂ Γ we want to construct a collection B of
compact subsets of Γ such that Γ0(E) is contained in the union Q of these subsets.
We require B to be a good approximation in the sense that the Hausdorff-distance
between Q and Γ0(E) is smaller than a prescribed accuracy δ.
The algorithm, by which this collection B is constructed, is very similar to the stan-
dard subdivision algorithm except for one modification. The selection-step must be
replaced by the following rule: define the new collection Bk by

Bk = {B ∈ B̂k : B ∩ Γ0(E) �= ∅}. (4.4)

One easily verifies that, if Γ0(E) ⊂ Q0, then the union Qk of the boxes of the collec-
tion Bk covers the energy surface Γ0(E) under consideration for every k = 1, 2, . . ..
Furthermore the Hausdorff-distance between Qk and Γ0(E) can be seen to approach
zero for k → ∞.
Equation (4.4) is difficult to check in practice. Therefore, in the actual implementa-
tion, we employ a somewhat different procedure: instead of an energy surface we aim
at covering an energy cell Γδk(E) in the k-th step of the algorithm. The sequence
(δk) is chosen to decrease with increasing k. With this modification, (4.4) can be
checked by calculating the energy for a heuristically determined (fixed) number of
points within each box. In each subdivision step k, the parameter δk is adapted to
the size of the boxes.

Extraction of the Location of the Long-Term Dynamics

Once we have constructed a covering B of the energy surface Γ0(E) under considera-
tion, this collection may be used as the initial collection for the standard subdivision
algorithm. Note, however, that still one modification has to be taken into account:
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since we are interested in the dynamics on Γ0(E) we just have to map those points
in the boxes of the current collection that lie on Γ0(E). Hence the selection-step
becomes: define the new collection Bk by

Bk =
{
B ∈ B̂k : f(B̂ ∩ Γ0(E)) ∩B �= ∅ for some B̂ ∈ B̂k

}
. (4.5)

Again, we encounter the same problem for the realization of (4.5) as for (4.4) before.
But since we are approximating energy cells (as described above), we just need to
check additionally whether a given point is contained in the energy cell or not.

Discretization of the Frobenius-Perron Operator

The previous two steps led to a collection B = {B1, . . . , Bd} covering the global
attractor relative to a certain energy surface. We may now use this covering for the
computation of a discretized Frobenius-Perron operator as described in Section 4.1.
As an example consider again the case of locally constant basis functions

ϕi = χGi
, i = 1, 2, . . . , d,

where we have set Gi = Bi ∩ Γ0(E). Then, as in (4.3), the discretized Frobenius-
Perron operator v = Pdu can be written componentwise as

v(Gi) =
d∑

j=1

piju(Gj), pij =
m(f−1(Gi) ∩Gj)

m(Gj)
, i = 1, . . . , d. (4.6)

In the implementation we are faced with the calculation of the transition probabilities
pij for Gi = Bi ∩ Γδk(E). This is done via a Monte-Carlo approximation,

pij =
1

m(Gj)

∫
Gj

χGi
(f(x))dx ≈ 1

N

N∑
n=1

χGi
(f(xn)),

where the xn are chosen randomly and uniformly distributed in Gj.
After the assembling of the stochastic matrix Pd we have to solve the associated non–
selfadjoint eigenvalue problem. In order to catch the multiscale flavor of the whole
problem, the new adaptive multigrid algorithm due to Friese [17] is most appropri-
ate. This algorithm is an extension of the adaptive multigrid methods for selfadjoint
eigenvalue problems as published in [11]. Up to now, apart from first tests, our pre-
liminary numerical results presented in Section 5 have been computed with speig

(by Radke and Sørensen) in Matlab. An important feature of all these algorithms
is that they allow for a simultaneous subspace iteration to compute eigenmodes as-
sociated with eigenvalue clusters. (Here we are, of course, interested in the cluster
around λ = 1.)
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5 Illustrative Numerical Experiments

In this section we want to illustrate certain features of a first version of our subdivision
algorithm SubMD. As derived above, the objects of interest will be invariant measures
and almost invariant sets.

5.1 Invariant Measures

Recall that invariant measures are approximated by the eigenvectors of the discretized
Frobenius-Perron operator according to the eigenvalue λ = 1.

Counterexample to the Physical Ergodicity Hypothesis

For x = (q, p) ∈ R2 consider the “double-well” potential

V (q) =
(
q2 − 1

)2
.

All solutions are periodic (cf. Fig. 6). The periodicity allows a reliable evaluation of
the invariant measure via direct simulation.
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Figure 6: The double well potential V2 and the corresponding phase portrait.
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E = 0.95. Left hand side: computed via the subdivision algorithm. Right hand side: computed via
direct simulation.
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As can be seen in Fig. 7, both our subdivision algorithm and direct simulation yield
comparable approximations of the invariant measure. Note that the measure is not
equidistributed on the energy cell in clear contradiction to the physical ergodicity
hypothesis. Instead, there is a significant maximum of the probability density near
the point (0, 0). This is caused by the fact that the energy chosen is nearly critical
and the mass particle is creeping slowly near the turning point.

Inefficiency of Direct Simulation

Recall example (3.1) from Section 3.1. We want to compute the corresponding in-
variant measure μ4. A direct analytical solution does not exists. Direct long term
simulation by symplectic discretization of (2.1) yields the discrete solution (xk)1,...,N .
For N large enough and a box B ⊂ Γ one takes

p =
1

N |B|

N∑
j=1

χB(xj)

as an approximation of the density f 4|B. If the system were ergodic, the convergence
of this algorithm would be guaranteed. Even in this case the convergence could be
arbitrarily slow, when the iteration gets trapped within an almost invariant set of the
system – compare the sequence of results obtained by direct simulation in Fig. 9.
Our global subdivision approach is not sensitive to such a situation. Over sufficiently
long run times of direct simulation both methods eventually yield roughly the same
results, see Fig. 8.
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Figure 9: Discrete spatial density h(q) =
∫
h4(q, p)dp of the invariant measure of the potential V4

for total energy E = 4.5. Results of direct simulation with stepsize τ = 1/30 leading to an energy
variation of about 1 percent. Between the 60000th and the 105000th step the discrete solution gets
repeatedly trapped in one of the minima of the potential. The approximation has still not recovered
from this event after 1 million steps.

23



     

5.2 Almost Invariant Sets

Recall that the relevant almost invariant sets correspond to eigenvalues λ ≈ 1 with
|λ| < 1 of the associated Frobenius–Perron operator.
Again we consider the example of Section 3. Based on observations concerning the
dynamical behavior we already conjectured that there exist seven almost invariant
sets – a conjecture that we now want to check numerically. We employ the subdivision
algorithm for stepsize τ = 0.1. The final box-collection corresponding to the total
energy E = 4.5 after 18 subdivision steps consists of 18963 boxes.
A simultaneous computation of the four largest eigenvalues λ1, . . . , λ4 leads to the
following table:

Number Eigenvalue
1 1.0000
2 0.9963
3 0.9891
4 0.9782

The invariant measure ν1 corresponding to λ1 = 1 has already been shown in Fig.
8. Next, we discuss the information provided by the eigenmeasure ν2 corresponding
to λ2. The box coverings in the two parts of Fig. 10 approximate two sets, where
the discrete density of ν2 is positive resp. negative. In other words each of these
sets is a candidate for a set B mentioned in the assumptions of Corollary 3.3. Thus,
by this result, both of these sets are almost invariant with probability δ = (λ2 +
1)/2 = (0.9963+1)/2 = 0.9981. Observe that these almost invariant sets confirm the
observation made in Section 3 that dynamically there exist “long term” oscillations
between the minima A ↔ D and B ↔ C.
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Figure 10: Illustration of two almost invariant sets with respect to the probability measure |ν2|.
The coloring is done according to the magnitude of the discrete density.

The third eigenmeasure ν3 corresponding to λ3 provides information about three
additional almost invariant sets: on the left hand side in Fig. 11 we have the set
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corresponding to the oscillation C ↔ D, whereas on the right hand side the two
almost invariant sets around the equilibria A and B are identified. Again the boxes
shown in the two parts of Fig. 11 approximate two sets where the discrete density of
ν3 is positive resp. negative. In this case we can use Proposition 3.1 and the fact that
A and B are symmetrically related to conclude that for all these almost invariant sets
δ ≥ λ3 = 0.9891.
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Figure 11: Illustration of three almost invariant sets with respect to the probability measure |ν3|.
The coloring is done according to the magnitude of the discrete density.

Finally, the information on the remaining almost invariant sets in the neighborhood
of the equilibria C and D can be extracted using the eigenvalue λ4 with the eigen-
measure ν4 (see Fig. 12). In the two parts of Fig. 12 we show again the boxes, which
approximate two sets, where the discrete density of ν4 is positive resp. negative. Let
us denote by Y the union of the boxes around equilibrium B in the first part of
the figure and by X the boxes around D. (We ignore the isolated box in the left
lower corner, which we regard as a numerical artefact.) We now use Lemma 3.2 to
derive a lower bound for δX . Numerically we obtain the values |ν4(X)| = 0.3492 and
|ν4(Y )| = 0.1508. Note that |ν4(X ∪ Y )| = 0.5 and λ4 + 1 = 2δX∪Y (using again the
symmetry and Corollary 3.3) which leads to the estimate

δX =
0.5δX∪Y − ρ(Y )δY

ρ(X)
=

λ4 + 1 − 4ρ(Y )δY
4ρ(X)

≥ λ4 + 1 − 4ρ(Y )

4ρ(X)
= 0.9844

In all calculations done so far a fixed stepsize τ = 0.1 has been used. Hence an appli-
cation of formula (3.3) leads to the following table concerning flip–flop probabilities
between different conformations.

probability to stay within for
conformation

0.1 sec. 1 sec. 10 sec. 100 sec.
A ↔ D, B ↔ C 0.9981 0.9812 0.8268 0.1493
C ↔ D, A, B 0.9891 0.8962 0.3342 < 0.0002

C,D 0.9844 0.8545 0.2076 < 10−6
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Figure 12: Illustration of four almost invariant sets with respect to the probability measure |ν4|.
The coloring is done according to the magnitude of the discrete density.

These numbers indicate that it is very unlikely for the system to stay in C and D for
more than 100 seconds, whereas for an oscillation A ↔ D or B ↔ C this may well be
the case. In particular, these results are in nice agreement with Fig. 4 (right): there
we observe an oscillation A ↔ D for about 200 seconds, whereas the longest stay in
the neighborhood of the minimum C only lasts about 60 seconds.
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Appendix A: Theoretical Background

Theoretically it is known that in the hyperbolic case the discretization of the Frobe-
nius-Perron operator by the Galerkin method as outlined in this article indeed leads
to an approximation of an underlying SBR-measure – if it exists. In this appendix
we briefly summarize the related results from [9].

A.1 Stochastic Transition Functions

The theoretical results rely on the concept of small random perturbations of dynamical
systems. Hence we begin by recalling some basic notions and results on Markov
processes that will be needed later on. For a detailed introduction the reader is
referred to [13].

Invariant Measures

First we describe the notion of an invariant measure in the stochastic framework. We
assume that Γ is compact equipped with a σ-algebra A.

Definition A.1 A function p : Γ ×A → R is a stochastic transition function, if

(i) p(x, ·) is a probability measure for every x ∈ Γ,

(ii) p(·, B) is Lebesgue-measurable for every measurable B.

Example A.2 Let δy denote the Dirac measure supported on the point y ∈ Γ. Then
p(x,B) = δh(x)(B) is a stochastic transition function for every m-measurable function
h. Moreover, the specific choice h = f represents the deterministic situation in this
more general set up.

Definition A.3 Let p be a stochastic transition function. If μ ∈ M satisfies

μ(B) =

∫
p(x,B) dμ(x)

for all measurable B, then μ is an invariant measure of p.

Absolutely Continuous Stochastic Transition Functions

Now we assume that for every x ∈ Γ the probability measure p(x, ·) is absolutely
continuous with respect to the Lebesgue measure m. Hence we may write p(x, ·) as

p(x,B) =

∫
B

k(x, y) dm(y) for all measurable B,

with an appropriate transition density function k : Γ × Γ → R. Obviously,

k(x, ·) ∈ L1(Γ,m) and k(x, y) ≥ 0.
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In this case we also call the stochastic transition function p absolutely continuous.
Note that ∫

k(x, y) dm(y) = p(x,Γ) = 1 for all x ∈ Γ.

The Frobenius–Perron Operator

Definition A.4 Let p be a stochastic transition function. Then the Frobenius–
Perron operator P : MC → MC is defined by

Pμ(B) =

∫
p(x,B) dμ(x),

where MC is the space of bounded complex valued measures. If p is absolutely
continuous with density function k then we may define the Frobenius–Perron operator
P on L1 by

Pg(y) =

∫
k(x, y)g(x) dm(x) for all g ∈ L1.

Remark A.5 By definition a measure μ ∈ M is invariant if and only if it is a fixed
point of P . In other words, as in the deterministic case invariant measures correspond
to eigenmeasures of P for the eigenvalue one.
Moreover, let λ ∈ C be an eigenvalue of P with corresponding eigenmeasure ν, that
is, Pν = λν. Then in particular

λν(Γ) = Pν(Γ) =

∫
p(x,Γ) dν(x) = ν(Γ)

since p(x,Γ) = 1 for all x ∈ Γ. It follows that ν(Γ) = 0 if λ �= 1.

A.2 Convergence to SBR-measures in the Hyperbolic Case

Small Random Perturbations

Recall that the purpose is to approximate the Frobenius-Perron operator of a deter-
ministic dynamical system represented by a diffeomorphism f . Hence the approx-
imating stochastic system that we consider should be a small perturbation of the
original deterministic system.
For ε > 0 we set

kε(x, y) =
1

εnm(D)
χD

(
1

ε

(
y − x

))
, x, y ∈ Γ. (A.1)

Here D = D0(1) denotes the open ball in Rn of radius one and χD is the characteristic
function of D. Obviously kε(f(x), y) is a transition density function and we may define
a stochastic transition function pε by

pε(x,B) =

∫
B

kε(f(x), y) dm(y). (A.2)
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Remark A.6 Note that pε(x, ·) → δf(x) for ε → 0 uniformly in x in a weak*–
sense. Hence the Markov process defined by any initial probability measure μ and
the transition function pε is a small random perturbation of the deterministic system
f in the sense of Yu. Kifer ([24]).

Now observe that∫∫
|kε(f(x), y)|2 dm(x)dm(y) ≤

(
m(Γ)

εnm(D)

)2

< ∞,

and therefore the corresponding Frobenius-Perron operator Pε : L2 → L2 is compact.
Since the invariant densities are not just in L1 but even in L∞ the restriction of Pε

to L2 is perfectly reasonable.

Approximation of SBR-Measures

The idea is to combine classical convergence results for compact operators with results
from Ergodic Theory on the convergence of invariant measures of small random per-
turbations to SBR-measures with decreasing magnitude of the perturbation. Let us
be more precise. Suppose that the diffeomorphism f possesses a hyperbolic attractor
Λ with an SBR-measure μSBR, and let pε be a small random perturbation of f . Then,
under certain hypotheses on pε, it is shown in [24] that the invariant measures of pε
converge in a weak*–sense to μSBR as ε → 0. On the other hand standard results
on compact operators (see [30]) guarantee that the relevant eigenmeasures of Pε are
approximated by our Galerkin projection, and this leads to the desired convergence
result.

Theorem A.7 ([9]) Suppose that the diffeomorphism f has a hyperbolic attractor
Λ, and that there exists an open set UΛ ⊃ Λ such that

kε(x, y) = 0 if x ∈ f(UΛ) and y �∈ UΛ.

Then the transition function pε in (A.2) has a unique invariant measure πε with
support on Λ and the approximating measures

με
d(A) =

∫
A

gεd dm

obtained by the Galerkin method described in Section 4.1 converge in a weak*–sense
to the SBR–measure μSBR of f as ε → 0 and d → ∞,

lim
ε→0

lim
d→∞

με
d = μSBR. (A.3)

Remark A.8 Recently Yu. Kifer [25] has obtained a similar convergence result by a
discretized version of his methods and results on stochastic perturbations of dynam-
ical systems.
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