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Abstract

The aim of this work is to study the accuracy and stability of the Cheby-
shev approximation method as a time—discretization for wave packet dynam-
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proximation and round—off error. These estimates mathematically confirm
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1 Introduction

Computational simulations of molecular dynamics have to cope with a va-
riety of elementary processes. To a certain degree, some of them can be
modelled using classical mechanics. Others, like tunneling or zero-point en-
ergy effects in a molecule, require a quantum—mechanical description. In
this case one seeks a solution of the time-dependent Schrédinger equation,
i.e., a partial differential equation (PDE):

ihY = Hyy (1)

where H; denotes a selfadjoint Hamilton operator.

Unfortunately, these time-dependent quantum mechanical simulations
cause even for small systems a huge numerical effort. Thus, one is interested
in the use of efficient and numerically stable algorithms for both: the time—
and the spatial discretization. In this paper we want to confine ourself on a
rigorous investigation of one popular time—discretization under the assump-
tion, that (1) is already spatially discretized by Fourier—(pseudo-)spectral
or Fourier—collocation methods [1, 2, 3]. Thus, we suppose that (1) is a
d-dimensional system of ordinary differential equations and H; denotes the
d x d matrix-representation of the Hamilton operator.

One method widely used for solving (1) is the Chebyshev approxima-
tion technique [4]. In this method the corresponding propagation operator
exp(—itH,) of (1) is expanded in a truncated series of Chebyshev polyno-
mials. Analytically, a suitable increase of the order of the method, i.e., the
number of expansion terms, allows us to meet any accuracy requirement,
even for large timesteps. Interestingly, an increase of the stepsize in time
reduces the computational work per unitstep. In consequence, the stepsizes
(and, thus, expansion orders) typically used in real life applications are quite
large.

Thus, the question arises whether increasing the order of the method
yields unstabilities due to a simultaneously increasing round—off error. Main-
ly, this round—off error is produced by the large number of Fast—Fourier—
Transforms used for the calculation of the Chebyshev polynomials. At worst,
one could expect a tremendously growing round—off error for increasing or-
ders of the Chebyshev method, an effect, which is observed for other ex-
pansion techniques (cf. Section IV). For this reason we present a rigorous
estimation of the approximation error and the round—off-error. The results



demonstrate that the round—off-error is increasing very mildly with the step-
size applied. There is no exploding amplification of the round—off error. In
application to the Schrédinger equation, the Chebyshev—method is better
than expected concerning the round—off error. The previous statement de-
scribes the relative dependence of the round—off error on the stepsize for
fized spatial grid dimension d. Unfortunately, the specific magnitude of the
round—off error strongly depends on d, i.e., large grid dimensions can lead
to severe restrictions on the achievable accuracy.

This paper is organized in the following way. Section II briefly describes
the Chebyshev—approximation method. In Section III we present the es-
timates of approximation and round-off error and discuss the algorithmic
consequences. For the sake of clarity the details of the calculation of the
round—off error are referred to an appendix. Section IV illustrates the con-
sequences of these results via some numerical simulations.

2 Chebyshev Expansion
The solution to the space—discretized Schrodinger equation (1) has the form
V(1) = exp(—i Hyt)¥y. (2)

Because of numerical instabilities of methods using truncated Taylor series
to evaluate the matrix exponential function for large dimensions and large
timesteps one is interested in efficient and numerically stable approximations
of the propagator exp(—i H; 7) for a suitable time step 7. One of the most
promising approaches is the expansion in Chebyshev polynomials [4]. This
is due to the fact, that the evaluation of Chebyshev polynomials 7;(z) can
be done numerically stable for |z| < 1 via the recurrence relation:

Tir1(x) =22 Ty (x) — Ti—1(z); Ti(z) = x; To(z) = 1.

The matrix representation of the Hamiltonian operator H; has a bounded
spectrum. Thus, it is possible to transform the spectrum of the Hamiltonian
into the open interval | — 1,1[:

1
H = ;Hd so that o(H) C]—1,1]. (3)

This transformation can be done by analyzing the spectral radius of Hj
or, more simply, by calculating the energy range, which corresponds to the



potential and the spatial discretization chosen [4]. For a problem with one
degree of freedom, i.e., one space dimension before spatial discretization, the
latter yields:

w2 h2 2

=Fow — Boin = ——
r max min 2mL2

+ Vmax - Vmirn

where d and L denote the spatial grid dimension and the length of the
spatial interval respectively. Note, that the notation used differs slightly
from customary presentations of the method in order to support our further
argumentation. However, we obtain:

exp (—i Hy1)Vy = exp (—i H r1)¥. (4)

To avoid restrictions on the stepsize due to stability reasons one expands
(4) in Chebyshev polynomials in the operator H instead of Hrr. Therefore
we get:

exp(—i Hrr ‘I’o—(i e (rm) Ti( ))\IJO. (5)
k=0
Thus,
N
Py (rr H)Wo = (> ex(rr) To(H)) g (6)
k=0

denotes the Chebyshev approximation of the order N. Analytically, the
expansion coefficients ¢, are determined via the orthogonality relation of
the Chebyshev polynomials:

(rr) = ¢ 2 (i) () (7)

1+ 5k0)
where J,, denotes the nth Bessel function. The reader should note that the
expansion coefficients depend on the stepsize 7 in time and — via r — on the
dimension of the spatial discretization.
The implementation of the Chebyshev approximation is particularly efficient
if the space is discretized using spectral methods based on Fourier—Galerkin
or Fourier Collocation techniques [1, 3]. They allow the realization of each
multiplication with H by means of two Fast Fourier Transforms reducing the
asymptotic scaling of the computational effort of one matrix-vector multi-
plication to dlogy(d) instead of d?.



3 Error Estimation

It is our aim to estimate the global error which originates in the numerical
realization of the Chebyshev approximation in comparison with the exact
evolution operator. In this context, the term ”global error” indicates the
error accumulated during the total integration time from .., t0 tg,.. For-
tunately, the unitarity of our propagator effects that there is only accumu-
lation but no amplification of discretization errors with time. Thus, if the
local error, i.e., the error per time step, is bounded by some predefined local
tolerance tol then we achieve an estimation of the global error:

[|eg || < K tol, (8)

where k is the number of timesteps made. The global error is growing only
linearly with the number of timesteps.

For this reason we might concentrate our further study on the local error
analysis, i.e., on the discretization error introduced in one single time step,
rather than on a global view.

To start with, one remark on the notation used: let us distinguish be-
tween any analytical quantity and its numerical realization by a tilde atop
the latter. Thus, we denote the local error by

e = exp(—iHy1)¥y — PN(’I"TH)\IJ(),

where 7 represents the length of the timestep. Obviously this error comprises
two parts: The approximation error which measures the effect of the trun-
cated expansion in Chebyshev polynomials and the round—off error which
occurs in every numerical realization. This yields:

€ = €N + €R,
with the approximation error:
ey = exp(—tHy1)Vg — Py(rm H)Y
and the round—off error:
er = Py(rm H)Wy — Py (rT H)y.

In the following, we separately analyse both errors.



Approximation Error The approximation error can sufficiently be es-
timated via the Faber polynomial approximation theory [5, 6] because the
Chebyshev polynomials are, up to a scalar factor, identical with certain
Faber polynomials. One obtains the following result:

llex]| = |lexp(—iHg1)Vo — Py(rm H)Yy|
2 < erT >N+1
< - (N+1>r7). (9)
=y \N+1

The proof of this estimate is presented in [7]. According to it, ey exponen-
tially decreases with increasing N if rer < N. Thus, analytically, for any
stepsize T any accuracy can be obtained by increasing N.

Stepsize Dependence of Round—Off Error The analysis of the round—
off error er can be based on a linearized error theory [8] in addition to the
foundations of three-term recurrence relations ([9]; chapter 6 of [8]). The
details of the investigation are collected in the appendix. They include
the round—off error introduced by the recursion in order to compute the
Tk(TT H)¥y, by the evaluation of the coefficients ¢, and by the subsequent
multiplication and summation yielding Py (rm H)Wy. The result is the fol-
lowing upper bound for the round—off error:

lerll = ||Pn(rm H)Wo — Py(rr H)T||
< (ag (r7)? + BarT + a)eps, (10)

where eps denotes the machine precision. It is valid as long as the order N
under consideration is “reasonably chosen”, i.e., as long as it is not chosen
foolishly large, e.g., much larger than those N with which the exponential
decrease of the approximation error actually starts (cf. Fig. 2).

The result is reassuring because it guarantees that, for fixed space dimen-
sion, the total round—off error per time step increases only quadratically if
the stepsize 7 is increased. In contrast, many alternative polynomial expan-
sions lead to a very strong, successive amplification of the round—off error.
In many cases this amplification results in an exponential increase. For ex-
ample, this is the case for the Taylor expansion (cf. Fig. (1)). Moreover,
the Chebyshev expansion itself produces such exponential amplification if
the spectrum of H becomes complex, i.e., in the case of dissipative quantum
mechanics [7, 10] or if absorbing boundary conditions are applied [11].

By construction, this estimation reveals an upper bound for the round—off
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Figure 1: Dependence of the local error ||€°®®|| on the approximation order N
for the evaluation of exp(—iT A) for an hermitian 10 x 10 test matrix A for dif-
ferent stepsizes 7. The picture on the left hand side shows an approximation via
Chebyshev polynomials, the picture on the right hand side an approximation via
the truncated Taylor expansion. Obviously, the asymptotically remaining round—off
error increases exponentially only in the second case.

error. Numerical simulations, to be presented in the next section, show that
the method is even better than the upper bound promises: the actual depen-
dence on the stepsize seems to be linear.

Grid Dependence of Round—Off Error The reader should also note,
that the details of the estimation process disclose that the quantities ¢y, By
and -4 of inequality (10) do not depend on 7 but on the spatial dimension
d! For a problem with one degree of freedom one finds that this dependence
scales with the square root of d, i.e.,

1
ag, Ba, Ya o< dz.

This is an effect of the numerical realization of the matrix—vector multiplica-
tion HVy via Fast-Fourier—Transforms (FFT), which introduces a round—off
error of scale O(dY/?) (see [12]). For larger numbers of degrees of freedom
this d-dependence becomes even stronger.



Algorithmic Consequences At this point we are able to describe the
consequences of the preceding results. Our opening question was whether
the increase of the stepsize in time could threaten the reliability of the results
of the simulation?

Obviously, for any given stepsize T and with respect to the approximation
error only, the Chebyshev expansion can realize any accuracy requirement
for sufficiently large orders N: Assume a local tolerance tol > eps to be
given and choose N according to

2 err \NVt!
len| < ( ) < tol.

- \N+1

While there is no restriction on the stepsize via the approximation error,
it might come into play with the round—off error. First off all, the error
estimate (10) leads to a lower bound for the possible tolerance tol > ~ eps.
Let us therefore write the T—dependence of the round—off error as:

lerll < (ca (r7)? + 7a) eps, (p <2), (11)

with some still d-dependent constant ¢;. This formula summarizes our the-
oretical result ((10), p = 2) on one hand and the finding from numerical
experiments ((cf. Fig. 3), p = 1) on the other. From the requirement
ller|| < tol, we obtain a restriction on the stepsize:

1 tol
p -
T < \/Cd o (eps 'Yd) : (12)

Herein, the constant ¢; contains the d-dependence of the constants o4 and
Bq from (10), i.e., for one degree of freedom

cg o< dV?, = cqrP oc 4PV, (13)
Thus, (12) is an important restriction for large spatial grid dimensions d:

1
Tmax X ———.
d2+ﬂ

In the case of several degrees of freedom, the d dependence is even stronger
and the restriction to 7 even tougher.

Let us now return to the global view. Let the simulation interval in time
be of length T = ts.0 — tinia- Using a stepsize 7 locally, we approximately



have to make T'/7 steps. According to (11) and (8), the global round-off
error sums up to

lex™™]] < T (chTp_l + %)eps.

Obviously, this estimate of the global round—off error has in the case of p = 1
at 7 =T a minimum which increases with d and 7.

4 Numerical Results

In this section, the theoretical results are checked and illustrated by numeri-
cal simulations. Obviously, the requirement to analyse not only the approx-
imation error but also the round—off error confines the possible examples
to those, which can be solved with an extremely high precision. Therefore,
we have chosen a simple model problem, an harmonic quantum oscillator,
which is modeled to represent the ground state of an H-CIl molecule [13].
The Hamiltonian is given by:
2

Hep = —j—m Ay + %waQ. (14)
The frequency of the oscillator corresponds to a wavenumber of 3000cni ! or
to an energy of hw = 35.78 kJ/mol. The reduced mass of the H-CI molecule
is m = 0.98u.

We apply a Fourier collocation method as spatial discretization. The
spatial discretization is, if not stated otherwise, done on a grid of 128 collo-
cation points over a spatial computation domain x/A= [-4.2,4.2].

The comparative solution is calculated with quadruple precision, i.e.,
eps = 10732, via the diagonalization of the matrix representation of the
Hamilton operator. Note, that the introduction of a discrete grid and peri-
odic boundary conditions prevent us from adopting the analytical solution
of the harmonic quantum oscillator. The initial state was chosen to be a
combination of some eigenstates of the discrete problem. Figure 2 shows
the dependence of the local error ||€°*|| on the approximation order N for
different stepsizes 7 = 41.3, 124.0, 206.7, 289.4, 372.1 fs.

As mentioned before, the local error comprises two parts: the approxi-
mation error €y and the round—off error eg. The results reflect the expected
exponential decay of the approximation error with growing approximation
order N. But obviously, the error does not reach machine precision (herein
eps=2-10716), even for great N. We observe an asymptotically remaining,
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Figure 2: Dependence of the local error [|€°“®!|| on the approximation order N for
different stepsizes . 7 = 41.3 fs (left solid line), 7 = 124.0 fs (dashed line), 7 = 206.7
fs (dashed-dotted line), 7 = 289.4 fs (dotted line), 7 = 372.1 fs (right solid line)

7—depending error, which is almost independent of N. It can be connected
with the round-off error: For N large enough, we have ||ey|| < ||| which
implies |||l & ||er||. This observation of a nearly constant remainder
illustrates the theoretical result (10) which gives us an upper bound for the
round—off error which is independent from N. For a closer examination of
the round-off error we analysed the dependence of this remaining local error
on the stepsize 7 (cf. Figure 3). The reader should note the linear growth
in 7 which verifies our theoretical estimation of the round—off error but
promises an even better numerical stability of the Chebyshev method. This
observation corresponds to the case p =1 in (11) with all the consequences
discussed above.

But note, the linearity of growth of the asymptotically remaining local
error can also be a result of a small constant in front of the quadratic term
in (10). This would mean, that for very large stepsizes in time, there might
be a quadratic increase.

Finally we are interested in the dependence of the round—off error, i.e., the
remainder for great N, on the spatial dimension d. Figure 4 illustrates the
results using an uniform timestep 7 = 4.1 fs and a variety of spatial dimen-
sions. Note that the regression line in the double logarithmic representation
has a gradient of 2.4. Thus we obtain a round-up error proportional to &
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Figure 3: Dependence of the asymptotically remaining local error, i.e., round—off-
error |leg||, on the stepsize 7 in time.
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Figure 4: Dependence of the round—off-error ||| on the spatial dimension d.

which fits the theoretical result (13) for p = 1.
Conclusively, all observations perfectly reflect the theoretical results.
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Appendix

In this section the proofs and details of the estimate (10) of the round—off
error are presented. As the reader might remember we denoted the analytic
Chebyshev approximation of the solution ¥(7) = exp(—iTH )Yy of (2) by

N
PN(TTH)\IJO = Z Ck(TT)Tk(H)\I/(),
k=0

vgith short notation PyW¥y. We are interested in its numerical realization
Py (r7H) or, more exactly, in the round—off error

er(N,r7) = pN(T‘TH)‘IJO — Pn(rTH)Y

of the Chebyshev approximation, which depends on the machine precision
eps . The numerical error consists of three different parts:

1. The computation of the coefficients ¢ (r7) via the Bessel functions.

2. The evaluation of all the Tj(H)¥, via the recursion of the Cheby-
shev polynomials and the FFT—-algorithm.

3. The successive summation.

Below we will present estimates for each of the three parts using lin-
earized round-off error analysis [8].
4.1 The computation of the Bessel functions

Herein, we will assume that, either, the computation of the q. is not neces-
sary because they are available via table look—up, or, that their evaluation is
as precise as an elementary operation. In other words, the computed values
¢, are assumed to be of the form

&k = ¢k + Acg=cp (1 + ageps), (15)
with |ag| < 1, i.e., the Ac¢y are of order eps.

4.2 The computation of the Chebyshev polynomials

The following argumentation is comparable to a condition analysis in [8] or
[9].
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B We will estimate the error which results from the numerical realization
Ty11 Vg of the Chebyshev polynomial 731 applied on ¥q:

ATy (H)Uy = T(H)Uy — Ti(H)W.

Let us skip the argument H of the Chebyshev polynomials in the following.
Due to our restriction to a linearized error analysis we might write the
realized three—term recursion in the following way:

Tir1%o = (Id + By41 eps) ((Id + T,y eps) 2HT, Vg — Tk—l‘l’o)

with diagonal matrices I’Z 41 and By corresponding to the application of
the Hamilton operator on T}, ¥ respectively the summation. Because Be+1
represents an elementary operation, it is bounded by one. The reader should
note that Iﬁ 41 depends crucially on the spatial dimension via the FFT
algorithm.

We derive easily:

T]H_l‘lfo = (Id + (Fﬁ+1 + ﬁk+1)eps) QHTk‘IIO — (Id + /Bk‘-i-l eps)Tk_l\Ilo,
which leads us to a perturbed recursion for the error AT Vy:

ATp W = (Id+ (T, + Bera)eps) 2H Ti U
— (Id + fiy1 eps) T 1 W — (2HT %o — T 10y
= 2HATWWo — ATy 1V + Ep1 ¥y (16)
with . .
Ej1=((T{ 1 + Bet1)eps) 2HT), + (Brr1eps) Th1

and the initial values AT} ¥y = (Fgﬂeps) HYy and ATy¥g = 0.
The solution of (16) is given by:

k
ATy (H) = Y BEjUy;(H)
=0

where Uj is the jth Chebyshev polynomial of the second kind.
Using p(H) < 1 we get an upper bound for the norm of U, (H):

UA(H) = spscon (Un(N} < [ =0 (A7

12



Note, that in (17) it is of prime importance to guarantee that the spectral
radius does actually not reach unity (cf. (3)).
Using || Tx(H)|| < 1 we can estimate Ejyq by:

< 2[H[ Tkl (Tf11l + 1Brsrleps + | Th-rll [Br+1] eps
< (2% 1| + 3Betal) eps
< E%eps (18)

| Bl

with the constant E¢ = maxj<y_1 {(2[Fg+1] + 3|Bk+1) }-
Combining (17) and (18) we find an upper bound for the error of the
numerical realization of the Chebyshev polynomials:

k
AT, (H) Wol| < Z 1E; Uk (H)

< FE'U Z eps
j=0
= C%(k+1)eps. (19)

with a constant C% > 0 strongly depending on the spatial dimension d.

4.3 The summation process

With these two results we are able to investigate the summation process.
Let P,_,¥( denote the computed value of the (k — 1)th Chebyshev approx-
imation. Then, the kth is evaluated as the product of the two floating point
results ¢, and Tk(H )¥( added to the vector P,_1¥. Herein, summation
and multiplication are floating point operations, i.e.,

Pk\lfo = (Id ~+ Bk eps) (Pk,1q10 + (Id + Yk eps) Ck Tk(H)\IIO )
with diagonal matrices S, v and ||Bk, [|[7%]] < 1. Due to the linear error

concept a direct evaluation leads to the following recursion for the round—off
error after k steps:

er(k,rm) = er(k—1,r7) + ¢ ATR(H)Vy + B Px—1Poeps
+Acy, Te(H)Yo + (B + k) e Te(H) Yo eps.

13



Thus, with suitable values for ATy, Acg, v and Sy and the Ac from
(15), we have

N
r(k,rT) Z e, AT(H)Upeps + Z Br Pi,_1V eps
k=1
N
+ Z (o Id + By + i) ok T(H)¥g eps.

Below, we will give estimates for each of the three summands. Easily,
we get:

N N

1 (ardd + By + i) e T(H)oll < 3> el
k=0 =

N

||ch AT (H)Wol| < O (k+1)|exl,
k=0 k=0

while the second one gives us — via a rearrangement of the two sums —

N N-1
HZ Br Pe_1%o || = | Z ( > ﬁz) o Te(H)Woll < > (N — k) |exl.
k=0 \i=k+t1 =0

We now present two different approaches to provide an estimate for the
round—up error, which differ in handling the expansion coefficients ¢,. While
the effort in applying these approaches differs a lot, there is no substantial
change in the result. The first approach bounds every |g,(r7)| with 2, which
is clearly an upper bound but for k& > r7 a rough overestimation (cf. Fig-
ure 5). Nevertheless we get:

lerll < <3 Z lek| + C Z E+1)|c| + Z \ck|>eps
< <(C’+1)N2+(30+7)N+(2(J+6))eps. (20)

We are interested in an approximation error e4(/N) smaller than some
predefined tolerance tol. It is easy to show that there exists an m > 1, only
depending on tol, so that we find an

rT <N <mrrt (21)

14



with e4(N) < tol. Thus, we may restrict ourselves to those suitable
choices of N. Obviously, inserting (21) into (20) yields a quadratic growth
in rr.

For the second approach we use an improved estimate for the asymptotic
decrease of the ¢;,. According to [14] an upper bound for the Bessel-functions
and, thus, the ¢ is given by

2 k
lex(r7)| = |2 Jk(r7)] < 2 min{1, %} k> 1.
Figure 5 illustrates the decrease of the exact coefficients and our upper
bound. Calculations basing on this estimation yields a quadratic growth in
r7 as well.

10
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0 20 [y 40 60 0 50 N 100 150

Figure 5: Decay of the coefficients cy(r7)/2 (solid line) and the upper bound
(dashed line) with N for fixed r7 = 40 (left hand side) and r7 = 100 (right hand
side).

Collecting the preceding results yields the following statement:

15



Lemma 4.1 In the context of linear error theory the round—off error of
the realization of the Chebyshev approximation on a computer with machine
precision eps can be estimated by

llerll < (ad (r7)? + BarT + vd) eps, (22)
where ag, Bq, V4 are constants regarding N and rT.
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