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Abstract

Expected recourse functions in linear two-stage stochastic programs with mixed-integer
second stage are approximated by estimating the underlying probability distribution via
empirical measures. Under mild conditions, almost sure uniform convergence of the em-
pirical means to the original expected recourse function is established.
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1 Introduction

Mathematical modelling of phenomena in nature, technology and economics typically in-
volves some level of uncertainty. Depending on the modelling environment and the avail-
ability of (statistical) information on the random data stochastic programming offers mod-
els for finding optimal decisions under uncertainty. The present paper is devoted to linear
two-stage stochastic programs with integer requirements in the second stage. Problems to
be considered are formulated as follows

min
x∈X

[
cTx+

∫
f(x, ω)P (dω)

]
, (1.1)

where X ⊂ IRnx is the first stage feasible set and f : IRnx × Ω �→ IR denotes the recourse
function dependent on x and on an elementary event in some probability space (Ω,Σ, P ).
The recourse function is defined as the optimal value of the mixed-integer linear program

f(x, ω) = min
{
qTy + q′Ty′ | Wy +W ′y′ = b(x, ω), y′ ∈ IR

n′
y

+ , y ∈ ZZny
+

}
. (1.2)

Here, b : IRnx × Ω �→ IRmy is a measurable function, q, q ′,W,W ′ are vectors and matrices
of proper dimensions, and ZZ+ denotes the set of nonnegative integers.

Behind the model (1.1)-(1.2) there is a two-stage decision process under uncertainty.
The first-stage decision x and the elementary event ω, which is observed only after x has
been taken, determine the quantity b(x, ω) entering a second-stage (or recourse) optimiza-
tion procedure. Optimization in (1.1) aims at finding a feasible first-stage (here-and-now)
decision such that its direct costs plus the expectation of costs arising from the recourse
procedure are minimal. The above scheme, although seemingly abstract, turns out to
be quite powerful when optimizing decision making under uncertainty in many practical
situations. For further details we refer to [8, 14].

Mathematical analysis of (1.1) focuses on the expectation
∫
f(x, ω)P (dω). If, for exam-

ple, b is linear and (1.2) contains no integer requirements then f is convex piecewise linear,
and the techniques of convex analysis can be applied. In the present setting, however, the
integrality conditions in (1.2) lead to discontinuities in f . This is one of the reasons why
integer recourse stochastic programming is, up to now, far less developed than its contin-
uous counterpart. Some first contributions to theory and algorithms in stochastic integer
programming can be found in [1, 2, 4, 7, 9, 10, 15, 16, 17].

We are interested in approximations of the expected value function

F (x) =
∫

f(x, ω)P (dω) (1.3)

obtained by replacing the original probability measure P by empirical measures. Given
an independent identically distributed sample s = {si}∞i=1 ∈ Ω∞ = ΩIN, the empirical
measures Pn(s), n ∈ IN are defined by

Pn(s) =
1

n

n∑
i=1

δsi, (1.4)
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where δsi denotes point mass at si. This leads to the empirical mean

Fn(x) =
∫

f(x, ω)Pn(s)(dω) =
1

n

n∑
i=1

f(x, si). (1.5)

As in [12], our main interest will be in deciding right from the data in (1.1)-(1.2) whether
uniform convergence of Fn to F takes place for almost all s (with respect to the product
probability P∞ on Ω∞). Again, a necessary and sufficient condition for uniform conver-
gence of empirical means developed by Talagrand [19] will lead us to classes of right-hand
sides b(x, ω) such that the mentioned uniform convergence takes place. In [12] we showed
persistence of Talagrand’s condition under transformations which, in particular, allow to
form the value functions of linear programs with continuous variables. For building value
functions of mixed-integer linear programs, however, using the pointwise integer round-up
operation is indispensable in general [6]. Since Talagrand’s condition does not persist un-
der this transformation, mixed-integer recourse stochastic programs do not fall within the
scope of [12]. The key issue of the present paper, therefore, is to elaborate an alternative
verification of Talagrand’s condition tailored to value functions of mixed-integer linear
programs.

Let us add a few bibliographical comments. Our paper addresses a specific topic in
stability of stochastic programs under perturbations of the integrating probability measure.
Basically, there are two motivations for this line of research: incomplete information on
the underlying measure and numerical difficulties in computing integrals like (1.3) for
complicated (e.g., multivariate continuous) P . The majority of papers on stability of
stochastic programs deals with continuous variables. With a certain accent on estimation
via empirical measures, the references in [12] reflect developments in this field and are
not repeated here. The papers [1, 15, 16] study continuity properties of the mapping
assigning to the underlying measure P the expectation in (1.3); in [1], also the integrand
in (1.3) may belong to the argument space of the mentioned mapping. A further joint
feature of [1, 15, 16] is that integrands are discontinuous, namely in [1] general lower
semicontinuous functions and in [15, 16] value functions of mixed-integer linear programs
as in the present paper. Moreover, variations of P in these papers are more general
than here. The measure P varies in a space endowed with weak convergence of probability
measures. Results in [1, 15, 16] assert lower semicontinuity, continuity and Hölder estimates
of the mentioned mappings, respectively. In addition, extensions towards stability of
optimal values and sets of optimal solutions of the accompanying optimization problems
are discussed. In [2], the authors study convergence of empirical means involving general
lower semicontinuous integrands. Their setting comprehends the one adopted here since,
as will be made precise in the next section, value functions of mixed-integer linear programs
are lower semicontinuous under natural conditions. As a central result, epi-convergence
of empirical means is established in [2] which can be seen as a one-sided version of the
uniform convergence addressed in the present paper.

The rest of the paper is organized as follows. In Section 2 we collect the prerequisites
on empirical measures and value functions that are needed for our analysis. Section 3
contains the main results on uniform convergence. In the final section, some concluding
remarks are added.
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2 Prerequisites on empirical measures and value func-

tions

Our analysis of uniform convergence for expected recourse functions will combine known
results on value functions of mixed-integer linear programs and on uniform convergence
of abstract empirical means. To have a self-contained exposition and to introduce some
notation, we collect these results in the present section.

Definition 2.1. A class of integrable functions ϕx : Ω �→ IR, x ∈ X, is called a P -uniformity
class if

lim
n→∞ sup

x∈X

∣∣∣∣
∫
ϕx(ω)P (dω) −

∫
ϕx(ω)Pn(s)(dω)

∣∣∣∣ = 0

for P∞-almost all s.

In these terms, uniform convergence of (1.5) to (1.3) means that the family of functions
ω �→ f(x, ω), x ∈ X, is a P -uniformity class. Having in mind application to stochastic
programming, we restrict our attention to functions which are measurable with respect to
both arguments (x, ω). This avoids technical difficulties associated with non-measurability
of sets defined with the use of the existence quantifier.

Of course, with ϕx(ω) taken as indicator functions of lower left orthants in a Euclidean
space X, validity of the property in Definition 2.1 coincides with the well-known Glivenko-
Cantelli Theorem on almost sure uniform convergence of distribution functions. This
leads to the notion Glivenko-Cantelli problem for deciding whether an abstract family
of integrands forms a P -uniformity class. In [19], a practicable necessary and sufficient
criterion for detecting P -uniformity classes is given. As in [12], it will turn out to be most
useful for the special case we have in mind. It is based on the following notion of P -stability
that we reformulate with the mentioned simplification concerning measurability.

Definition 2.2. Let ϕ : X × Ω �→ IR be measurable in both arguments. The class of
functions ω �→ ϕ(x, ω), x ∈ X, is called P -stable if for each α < β and each set A ∈ Σ
with P (A) > 0 there exists n > 0 such that

P 2n
{
(s1, . . . , sn, t1, . . . , tn) ∈ A2n : (∃x ∈ X)

ϕ(x, si) < α, ϕ(x, ti) > β, i = 1, . . . , n } < (P (A))2n ,

where P 2n is the product probability on Ω2n.

The criterion in [19] reads.

Theorem 2.3. ([19], Theorem 2). Assume that the function ϕ(x, ω) : X × Ω �→ IR is
measurable in both arguments. Then the following statements are equivalent:

(a) the class of functions ω �→ ϕ(x, ω), x ∈ X, is a P -uniformity class and
∫
ϕ(x, ω)P (dω),

x ∈ X, is bounded;
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(b) the class of functions ω �→ ϕ(x, ω), x ∈ X, is P -stable and there exists v with∫
v(ω)P (dω) < ∞ such that, for all x ∈ X, |ϕ(x, ω)| ≤ v(ω) a.s.

Since we shall use this result arguing by contradiction, it is convenient to restate the
definition of stability.

Remark 2.4. ([19], Proposition 4). Let ϕ : X×Ω �→ IR be measurable in both arguments.
The class of functions ω �→ ϕ(x, ω), x ∈ X, fails to be P -stable if and only if there
exist α < β and A ∈ Σ with P (A) > 0 such that for each n ∈ IN and almost each
(s1, . . . , sn) ∈ An, for each subset I of {1, . . . , n} there is x ∈ X with

ϕ(x, si) < α for i ∈ I

and
ϕ(x, si) > β for i 	∈ I.

The second basic ingredient of our subsequent analysis, the value function of a mixed-
integer linear program, belongs to the well-studied objects in optimization theory. The
properties displayed below can be looked up in [3, 5], for instance. We also refer to [16]
where this collection of results is discussed in more detail than here.

Let

Φ(t) = min
{
qTy + q′Ty′ | Wy +W ′y′ = t, y′ ∈ IR

n′
y

+ , y ∈ ZZny

+

}

where W and W ′ are rational matrices. Assume further that

for any t ∈ IRmy there exist y′ ∈ IR
n′
y

+ , y ∈ ZZny

+ such that Wy +W ′y′ = t, (2.1)

there exists u ∈ IRmy such that W Tu ≤ q and W ′Tu ≤ q′. (2.2)

Standard existence theorems from mixed-integer linear programming (cf., e.g., [11] Propo-
sition I.6.7.) then yield Φ(t) ∈ IR for all t ∈ IRmy .

Proposition 2.5. Suppose that (2.1), (2.2) are satisfied, then the following holds

(i) Φ is lower semicontinuous on IRmy and there exists a countable partition IRmy =
∞⋃
i=1

Bi

such that Φ is Lipschitz continuous with uniform constant L > 0 on each of the Bi;

moreover, each of the Bi admits a representation Bi = {ti +K} \ No⋃
j=1

{tij +K} where

K := W ′(IR
n′
y

+ ), ti, tij ∈ IRmy (i ∈ IN, j = 1, . . . , No), and No does not depend on i,

(ii) there exist constants γ1 > 0, γ2 > 0 such that for all t1, t2 ∈ IRmy it holds

|Φ(t1)− Φ(t2)| ≤ γ1‖t1 − t2‖+ γ2,

(iii) there exists a number N1 ∈ IN such that for any t ∈ IRmy the ball around t with

radius 1 intersects at most N1 different subsets of the partition
∞⋃
i=1

Bi.
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3 Uniform convergence

We now pass on to (1.3) and its approximation (1.5). Uniform convergence will be es-
tablished by showing that, under suitable assumptions, the family of functions ω �→
Φ(b(x, ω)), x ∈ X, is P -stable.

Before doing so, we again consider the partition
∞⋃
i=1

Bi arising in Proposition 2.5. By

Proposition 2.5 (i), the boundary of each cell Bi may be decomposed into finitely many
pieces such that each of them parallels a facet of K (by (2.1), K has to be full-dimensional).
Introducing a sufficient number of hyperplanes that are parallel to facets of K, each cell
Bi can be subdivided into sets whose closures are polyhedra. Enriching, if necessary, the
family of hyperplanes by members parallel to facets of the non-negative orthant, bound-
edness of the cells is achieved, and each Bi may be subdivided into sets of the mentioned
type with arbitrarily small diameter. By Proposition 2.5 (iii), these subdivisions can be
carried out in such a way that the number of subsets hit by an arbitrary ball of radius 1
is bounded above by a uniform constant. Of course, there are infinitely many subsets, but
only finitely many ”facet slopes” occur.

Altogether, for any δ > 0, there exists a partition IRmy =
∞⋃
i=1

Πi such that, for each

i ∈ IN, the closure of Πi is a polyhedron with diameter less than δ, and the function Φ is
Lipschitz continuous with modulus L > 0 on Πi. Moreover, up to location in (infinitely
many) parallel hyperplanes, there arise only finitely many different facets in the Πi, i ∈ IN,
and the number of cells hit by an arbitrary ball is bounded above by a constant depending
only on the radius of the ball.

Proposition 3.1. Suppose (2.1) , (2.2) to hold and assume further that

(i) for any fixed a ∈ IRmy , the family I of indicator functions

ω �→ �x,ao(ω), x ∈ X, ao ∈ IR

of the sets {ω ∈ Ω : aT b(x, ω) ≤ ao} is P -stable,

(ii) there exists v with
∫
v(ω)P (dω) < ∞ such that ‖b(x, ω)‖ ≤ v(ω) a.s. for all x ∈ X.

Then the family of functions ω �→ Φ(b(x, ω)), x ∈ X, is a P -uniformity class.

Proof. Assume on the contrary that ω �→ Φ(b(x, ω)), x ∈ X, is not P -stable. By Re-
mark 2.4 then there exist α < β and A ∈ Σ with P (A) > 0 such that for each n ∈ IN and
almost each (s1, . . . , sn) ∈ An, for each subset I of {1, . . . , n} there is x ∈ X with

Φ(b(x, si)) < α for i ∈ I and Φ(b(x, sj)) > β for j 	∈ I. (3.1)

Let IRmy =
∞⋃
i=1

Πi be a subdivision of the type discussed above such that each of its cells

has a diameter less than β−α
L

where L > 0 denotes the Lipschitz modulus from Proposition
2.5.

5



Consider the family Io of indicator functions ω �→ �x,i(ω), x ∈ X, i ∈ IN of the sets
{ω ∈ Ω : b(x, ω) ∈ Πi}. Since the closures of the Πi are polyhedra and since, up to
location in parallel hyperplanes, only finitely many facets occur, the family Io arises from
I by finitely many complementations and min-operations. Proposition 24 in [19] then
yields that Io is P -stable.

Let M > (P (A))−1
∫
v(ω)P (dω) and let AM = {ω ∈ Ω : v(ω) ≤ M}. By Markov’s

inequality,

P (AM) ≥ 1 −M−1
∫

v(ω)P (dω) > 1− P (A).

Consequently the event A0 = A ∩ AM has a positive probability. By (ii), ‖b(x, ω)‖ ≤ M

for all x ∈ X and all ω ∈ A0. In view of the local finiteness of
∞⋃
i=1

Πi there exists N ∈ IN,

not depending on x, such that b(x,Ao) intersects at most N different cells from
∞⋃
i=1

Πi.

Now consider the family I1 of indicator functions given by

ω �→ max
j=1,...,N

�j(ω), �j(ω) ∈ Io.

It coincides with the indicator functions of unions of at most N sets of the type
{ω ∈ Ω : b(x, ω) ∈ Πi}. Again Proposition 24 in [19] implies that I1 is P -stable.

From (3.1) we conclude that there are no two points b(x, si), b(x, sj), i ∈ I, j /∈ I

belonging to the same cell in
∞⋃
i=1

Πi, since otherwise

|Φ(b(x, si))−Φ(b(x, sj))| ≤ L · ‖b(x, si)− b(x, sj)‖ ≤ L · β − α

L
= β − α.

Hence for each n ∈ IN and almost all (s1, . . . , sn) ∈ An
o , for each subset I ⊆ {1, . . . , n}

there is x ∈ X such that no two points b(x, si), b(x, sj), i ∈ I, j /∈ I belong to the same

cell in
∞⋃
i=1

Πi. Since the b(x, si), i ∈ I , belong to at most N different cells from
∞⋃
i=1

Πi, there

exists an indicator function �(ω) ∈ I1 such that �(si) = 1 for all i ∈ I and �(sj) = 0 for
all j /∈ I .

By Remark 2.4 this contradicts the P -stability of I1. Therefore the family of functions
ω �→ Φ(b(x, ω)), x ∈ X, is P -stable.

To obtain the assertion via Theorem 2.3 it remains to show that there exists v̄ with∫
v̄(ω)P (dω) < ∞ and |Φ(b(x, ω))| ≤ v̄(ω) a.s. whenever x ∈ X. Indeed, since assumptions

(2.1) and (2.2) together imply that Φ(0) = 0 we obtain with γ1 > 0, γ2 > 0 as in Proposition
2.5 (ii)

|Φ(b(x, ω))| = |Φ(b(x, ω))− Φ(0)| ≤ γ1‖b(x, ω)‖+ γ2 ≤ γ1v(ω) + γ2 a.s.

and we can take v̄(ω) = γ1v(ω) + γ2. 2

The following statement shows that assumption (i) in the above proposition holds for
a fairly wide class of right-hand sides b(x, ω). Its proof will employ Vapnik-Červonenkis
theory which is combinatorial by nature but has a strong impact on uniform convergence
of empirical means (see [13, 18, 20], for instance).
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A family C of sets is called a Vapnik-Červonenkis class (VČ class) if there exists m ∈ IN
such that for any finite set E with m elements not every subset Eo ⊂ E arises as an
intersection Eo = E ∩ C for some C ∈ C. Now it holds that a family F of indicator
functions is P -stable if the corresponding family of sets C is a VČ class. Indeed, suppose
that F were not P -stable. For m ∈ IN as in the definition of the VČ property we then
obtain by Remark 2.4 that there are points s1, . . . , sm such that for each subset I of
{1, . . . , m} there exists a function f ∈ F such that f(si) = 1 if and only if i ∈ I . In other
words, for each subset I of {1, . . . , m} there exists a set C = Cf ∈ C such that si ∈ C if
and only if i ∈ I contradicting the assumption that C is a VČ class.

Compared with P -stability the above sufficient condition in terms of VČ classes is
rather restrictive since it does not depend on the probability measure P . What makes
the condition useful, however, is that, in the literature, there are several techniques for
verifying the VČ property. These can be readily applied as we will see in the following
lemma.

Lemma 3.2. If the family of functions ω �→ b(x, ω), x ∈ X, belongs to a finite-dimensional
vector space then the family I of indicator functions introduced in Proposition 3.1 is
P -stable.

Proof. We employ Lemma 18 in [13], p.20, which states that families of level sets of
real-valued functions in a finite-dimensional vector space of functions have the VČ prop-
erty. Let {ξ1(.), . . . , ξd(.)} denote a basis of the vector space containing {b(x, .) : x ∈ X}.
For fixed a ∈ IRmy , the set {aT ξ1(.), . . . , aT ξd(.), 1l}, with 1l denoting the constant func-
tion with value 1, generates a finite-dimensional vector space of real functions. Any set
{ω ∈ Ω : aT b(x, ω) ≤ ao}, x ∈ X, ao ∈ IR now can be written as

{ω ∈ Ω :
d∑

r=1

λra
T ξr(ω) − ao · 1l ≤ 0},

i.e., as a lower level set of a real-valued function in a finite-dimensional vector space.
Therefore, the family of sets corresponding to I is a VČ class, and I is P -stable.2

Remark 3.3. In particular, the important case where

b(x, ω) = h(ω) − T (ω)x

is covered by the above lemma. Indeed, the set {h(ω), t1(ω), . . . , tnx(ω)}, with t1(ω), . . . , tnx(ω)
denoting the columns of T (ω) generates a finite-dimensional vector space of functions that
contains all the right-hand sides b(x, .), x ∈ X.

4 Concluding remarks

Uniform convergence of the empirical mean (1.5) to the expected recourse function (1.3)
was established under essentially the condition that families of indicator functions as-
sociated with the right-hand side b(x, ω) are P -stable.Verification of this condition may
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be non-trivial since suitable sets of positive P -measure have to be identified. A suffi-
cient condition for P -stability that does not involve the measure P can be formulated
via Vapnik-Červonenkis theory. This condition, although coarse from formal viewpoint,
already covers many practically important cases. For instance, it enables us to establish
the P -stability of the relevant indicator functions by showing that {b(x, .) : x ∈ X} is
contained in a finite-dimensional vector space of functions (Lemma 3.2). In particular,
this includes the linear case where b(x, ω) = h(ω)− T (ω)x.

Altogether, Proposition 3.1 fairly extends our abilities to check uniform convergence of
empirical approximations to expected recourse functions in stochastic programming. Up
to now, the only related result we are aware of applied to the case b(x, ω) = h(ω)− Tx. It
may be obtained as a conclusion from Proposition 3.1 in [16].

As is well known in stability analysis, uniform convergence of approximate objective
functions has immediate consequences for the continuity of the optimal-value function and
the upper semicontinuity of the solution set mapping. Without elaborating this, we here
only mention that Proposition 3.1 enables us to prove such stability results in the context
of estimation via empirical measures.
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Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1995.

[18] G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics,
Wiley, New York 1986.

[19] M. Talagrand, ”The Glivenko-Cantelli problem”, The Annals of Probability 15(1987)
837-870.
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