
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

HANS-CHRISTIAN HEGE MARTIN SEEBASS

DETLEV STALLING MALTE ZÖCKLER

A Generalized Marching Cubes
Algorithm Based On Non-Binary

Classifications

Preprint SC 97-05 (December 1997)



A Generalized Marching Cubes Algorithm
Based On Non-Binary Classifications

Hans-Christian Hege, Martin Seebaß, Detlev Stalling, Malte Zöckler

Abstract

We present a new technique for generating surface meshes from a uniform set
of discrete samples. Our method extends the well-known marching cubes algo-
rithm used for computing polygonal isosurfaces. While in marching cubes each
vertex of a cubic grid cell is binary classified as lying above or below an iso-
surface, in our approach an arbitrary number of vertex classes can be specified.
Consequently the resulting surfaces consist of patches separating volumes of two
different classes each.

Similar to the marching cubes algorithm all grid cells are traversed and classi-
fied according to the number of different vertex classes involved and their arrange-
ment. The solution for each configuration is computed on base of a model that
assigns probabilities to the vertices and interpolates them. We introduce an au-
tomatic method to find a triangulation which approximates the boundary surfaces
- implicitly given by our model - in a topological correct way. Look-up tables
guarantee a high performance of the algorithm.

In medical applications our method can be used to extract surfaces from a 3D
segmentation of tomographic images into multiple tissue types. The resulting sur-
faces are well suited for subsequent volumetric mesh generation, which is needed
for simulation as well as visualization tasks. The proposed algorithm provides a
robust and unique solution, avoiding ambiguities occuring in other methods. The
method is of great significance in modeling and animation too, where it can be
used for polygonalization of non-manifold implicit surfaces.

1 Introduction

The classic marching cubes algorithm proposed by Lorensen and Cline in 1987 [3]
is the ancestor of a number of methods for generating surface meshes from sets of
regularly sampled data [6, 7, 9, 11]. Originally designed for iso-surface generation
the algorithm has been applied to a variety of related problems, ranging from polygo-
nalization of implicit surfaces used in modeling and animation [2] to computation of
complex meshes like removal envelopes [12].

In all these applications the basic assumption is that there are two distinct classes of
grid vertices, e.g. vertices above and below an iso-surface or vertices inside and outside
a volume of interest. Given a binary classification only (28) different configurations
can occur in a cubic grid cell. This makes it possible to create the triangulation for a
particular cell from a look-up table. In this way a very fast algorithm is obtained.

However, for many problems a simple binary classification is not suitable. Instead,
one is interested in surfaces separating regions of multiple type in space. Such sit-
uations cannot be treated as simple iso-surface problems anymore. In this paper we

1



extend the basic marching cubes algorithm by allowing multiple vertex classes. We
introduce and describe

• a model to define an appropriate inner-cell space partitioning,
• an automatic method for generating topologically correct cell triangulations,
• the use of look-up tables for configurations with up to 3 vertex classes.

The surfaces created by our algorithm may contain contours and points where three
or more regions join. More than two triangles are attached to an edge which is part
of such a multi-region contour. In most applications only 2 or 3 vertex classes occur
for the vast majority of cells. By using look-up tables for these cases we achieve a
performance similar to traditional marching cubes. On the other hand, our automatic
triangulation method allows us to create correct surfaces for the general case as well.

The ability to create surfaces from a non-binary space partitioning is of great sig-
nificance in a number of areas. An important example for non-binary classifications
are segmented tomographic images. In many medical applications for simulation of
physical or physiological processes a geometric patient model is required, i.e., a vol-
umetric mesh representing relevant tissue compartments. To be well suited for mesh
generation, the surfaces extracted from segmented image data should not describe each
tissue compartment as a separate object, but should be built up from surface patches
each separating two regions of different type.

Traditional approaches for generating surface meshes from medical image data of-
ten rely on connecting contours in neighbouring slices [5]. In such methods ambigui-
ties can arise, and they typically treat each compartment surface as a separate object.
In contrast, our approach provides a unique, robust, and fast solution to the surface
generation problem.

Bloomenthal and Ferguson [1] describe a different method for generating surfaces
from non-binary space partitionings, they refer to as non-manifold surfaces. Their
paper mainly addresses modeling via implicit surfaces and computational solid geom-
etry applications. In contrast to our table-based approach they propose a continuation
method. A cubic cell is propagated across the surface and decomposed into tetrahedra.
For each tetrahedron a plausible triangulation is constructed algorithmically. Although
decomposition into tetrahedra simplifies the polygonalization problem, it produces an
excessive number of triangles, many of them not well-shaped. This is also the case
with marching tetrahedra algorithm by Nielson and Franke [10]. These drawbacks are
efficiently avoided by our approach.

2 The Algorithm

In the following sections we will outline the ideas of the surface meshing algorithm.
We will first describe how to determine a unique region type for every point in space.
Then a method is presented to compute a consistent approximate triangulation. Finally
we show how the meshing algorithm can be accelerated via look-up tables and compare
the method with standard marching cubes algorithms.

2.1 Space Partitioning

Our goal is to compute non-manifold surfaces which accurately separate regions of
different type in space. For example in a medical application some parts of a volume

2



Figure 1: The left image shows the surface in a cell before the simplification step. The surface in the right
image has been simplified by keeping only branching points and points on edges.

may be classified as bone, while others are classified as muscle or fat. We denote the
total number of region types by n.

In the following we assume the region types to be defined on a discrete uniform
grid. In case of surface modelling via generalized implicit surfaces such a labelling
can be obtained by evaluating an analytical expression at each grid node. In medical
applications usually a segmentation algorithm like thresholding or region growing is
applied to a stack of tomographic images, e.g. CT or MR images.

Let us consider a cubic grid cell defined by eight vertices. In the general case it is
not quite obvious how to subdivide the grid cell into regions of different types, since
the type information is located at the vertices. To constitute a simple and unique space
partitioning strategy we define a set of n probabilities pi at each vertex. If a vertex is
assigned to material k then all pi are set to zero except pk which is set to 1.

The probabilities for all types are interpolated independently within a cell. To clas-
sify an inner point x we simply choose the region of maximal probability, i.e.,

region(x) = {i | pi(x) maximal}, (1)

where pi(x) denotes an interpolated probability at x. For the triangulation algorithm
described in the following section we use trilinear interpolation to compute pi(x).
Other interpolation methods can be used as well, but usually they will result in more
complex surface topologies.

It should be mentioned that a classification according to maximal probability does
not require pi to be 0 or 1 at the vertices of a cell. However, the case of distinct region
labels naturally corresponds to such integer vertex probabilities. In addition, integer
probabilities make it easy to distinguish between topologically different configurations.
Therefore cell triangulations can be stored in look-up tables using a simple indexing
scheme. An algorithm for the general case of non-integer probabilites will be presented
in a subsequent paper.

2.2 Cell Triangulation

The interpolation model defines a unique set of separating surfaces inside a cell. On
these surfaces the two largest probabilities are equal. Since trilinear interpolation is a
non-linear transformation the inner surfaces are not planar. Our goal is to construct a
triangular approximation of these non-planar surface patches. Such a triangulation has

3



boundary curve

branching point

patch 1

patch 2

patch 3

Figure 2: Parts of three different patches delimited by boundary curves (dark lines). At a branching point
multiple boundary curves join.

to be consistent between adjacent grid cells to avoid holes in the resulting mesh. It
should also preserve the topology inside a cell.

In the case of two different region types 256 configurations are possible which can
be divided into 14 different topological classes. For three region types there are 44
additional topological classes, see Figure 4. To be able to handle any case with up to
eight different region types we would like to have a method which is capable of gen-
erating the triangulation for any given configuration automatically. Such a method can
be obtained by a straight-forward subdivision approach.

Subdivision. To obtain a representation of the inner structure of a grid cell we start
by subdividing the cell into a number of smaller sub-cells. For each sub-cell the prob-
abilities pi at a representative point x are interpolated. We evaluate the probabilities
not at the centers of a sub-cell, but at slightly translated locations as depicted in the
following diagram:

Points are distributed equi-distantly. Notice, that they are located on the cell’s faces for
sub-cells at the boundaries. This way we can guarantee consistency between adjacent
grid cells.

The sub-cells are classified according to Eq. (1). Whenever two adjacent sub-cells
are of a different class their common face is added to an intermediate triangulation. An
example of a resulting sub-cell triangulation is shown in Fig. 1. It turns out that in case
of integer vertex probabilities 63 sub-cells are sufficient to give a topologically correct
representation of the implicitly defined separating surfaces.

From the high resolution sub-cell triangulation we compute the final cell triangula-
tion using a mesh simplification step.

Finding Patches. Simplification of the sub-cell triangulation first requires analysis
of the surface topology. All connected triangles separating the same vertex classes are
grouped into patches. Then the boundary curves surrounding each patch are extracted.
For each vertex of the triangulation the number of boundary curves it belongs to is
determined. For inner points of a patch this number is zero. Vertices which belong to
more than two boundary curves will be referred to as branching points. The notion of
surface patches, boundary curves, and branching points is illustrated in Fig. 2.

Simplifying Boundary Curves. The key observation for the following simplifica-
tion step is that only few vertices of the current triangulation are of real importance.

4



Among these vertices are the branching points because they reflect the inner topology.
Also vertices lying on the cell’s edges are important, since these are referenced by mul-
tiple cells. All other points will merely introduce complexity on sub-cell level, which
is not necessary to create a topologically correct triangulation. Therefore one can thin
out the boundary curves by keeping important points only. After this procedure the
boundary curve of a patch often consists of just three or four vertices. However, there
are also patches with five or more vertices.

Retiling Patches. After simplifying the boundary curves the patches are retiled with
triangles again. If a patch is planar this can be done in a straight-forward way, for
example using an anchor point strategy.

More attention has to be paid in cases where non-planar patches occur. Then the
simplification of the bounding curve in conjunction with an unfavorable triangulation
can lead to patches which penetrate each other. We avoided all penetration problems by
inserting an additional center vertex into patches with 5 or more boundary points and
choosing a fan-type triangulation scheme. However, in many cases it is also possible
to find a suitable triangulation without introducing an additional vertex.

2.3 Look-Up Tables

Subdividing grid cells, computing an intermediate sub-cell triangulation, and simpli-
fying the resulting surfaces is a pretty time-consuming procedure and is definitely not
suited to handle ten-thousands of grid cells occuring in common data sets. Fortunately
the overall algorithm can be accelerated very much by making use of look-up tables.
In contrast to standard marching cubes algorithms in our case not only points on edges
have to be created, but also inner points and points on faces. The look-up table has to
contain the point types in addition to the triangle information for each cell configura-
tion.

As already mentioned in the case of two vertex classes only 256 different con-
figurations are possible. For three vertex types this number increases to 6561 (38),
although there are only 58 different topological situations (including the 14 standard
cases). These 58 configurations are shown in Figure 4 in the Appendix, p. 9.

If the full triangulation for all 6561 configurations is tabulated, about 70 000 tri-
angles have to be stored. The exact number depends on how many inner points are
inserted during the patch retiling step. For every triangle three one-byte point indices
have to be stored. For every vertex an additional byte is necessary to encode the point
type (edge vertex, face vertex, or inner vertex). Consequently the table can easily be
kept smaller than 1 MB. While this is still a handable size for a look-up table, a full ta-
ble gets far too large in case of four vertex classes or more. For four classes 65536 (48)
configurations are possible, but only 124 of them are topologically distinct (including
the 58 cases from Figure 4). There are two ways out of this dilemma. The first way is
to store only the topological different cases for the ‘more than 3’ configurations and to
perform a mapping to a base configuration before the table look-up. Then the vertices
read from the table have to be rotated and mirrored accordingly. Of course this method
could also be applied to the 3-type case. However, here the use of a full table is feasible
and easier to implement.

The second alternative to handle configurations involving four and more vertex
classes arises from the observation that in most applications these cases are very rare.
This makes it feasible to compute the triangulations for these cases on-the-fly using the
comparatively expensive subdivison technique described above.

5



2.4 Comparison to Marching Cubes

Our method resembles the standard marching cubes algorithm [3] and its variations in
respect of the cell-by-cell traversal and the use of look-up tables to create triangular
surface patches. However, there are also some important differences.

First of all, checkerboard cases are handled differently than in most isosurface al-
gorithms. Such cases occur if adjacent vertices on a face are of different type, while the
vertices located at opposite corners have the same type. In this case the original march-
ing cubes algorithm chooses a triangulation which does not preserve the symmetry of
the configuration index. Special care has to be taken to ensure consistency between
neighbouring cells. Otherwise the resulting surface would exhibit holes [8, 4, 9, 11].
The classification model described in Section 2.1 avoids such problems, prescribing a
symmetric triangulation, i.e., a triangulation which has a branching point at the cen-
ter of a face. Such cell triangulations are depicted in Figure 4. The approach avoids
any ambiguities at the expense of an increased topological complexity of the resulting
surface.

Another difference to the original marching cubes algorithm is that we have integer
probabilities at the vertices instead of fractional values. As a consequence, points on
edges are always located at the edge midpoint. In case of a binary vertex classification a
similar approach is known as discretized marching cubes [7]. In contrast to the general
case edge bisection has the effect that only a limited set of triangle orientations occur.
This makes it possible to combine multiple triangles with equal orientation. Triangle
decimation was the reason why the discretized marching cubes algorithm has been
developed. A similar decimation strategy may be applied to our results as well.

3 Applications

In the following Figures 5 and 6 we additionally applied vertex shifting to account for
non-integer probabilities. In this way smooth surfaces can be obtained. Details will be
described in a subsequent paper. In [13] it is described how non-integer probabilities
can be generated during the segmentation process.

3.1 Mesh Generation in Medicine and Biology

An important application of our algorithm is generation of geometric patient models
for medical simulations. Typically generation of volumetric meshes is based on seg-
mented tomographic image data. Such meshes are frequently needed for finite-element
methods and other simulations. The proposed algorithm converts segmentation results
into a form well suited as input for volumetric mesh generation. The surface data pro-
vided by the algorithm include a description of boundary curves and branching points
which have to be reproduced in the volumetric meshes.

Another application area is biology, where image data from confocal microscopy
has to be analysed and converted into surfaces separating compartments of different
functionality.

Figure 3 shows a surface generated using our algorithm applied to a segmentation
of kidney and liver. Note how topological information is revealed correctly by the
algorithm. Bones and some more organs are shown in the upper part of Figure 5 in the
Appendix at page 10. In the upper part surfaces are colored according to the tissue type
of the enclosed volume, in the lower part according to the adjacent one.

6



Figure 3: The image shows a surface from a segmentation of kidney and liver. The darker patch represent
the common interface between both organs.

3.2 Modelling

Computational solid geometry is a common way to generate computer graphics models.
This is done by using geometric primitve bodies like spheres, cylinders, or cones to
add or remove volumes from the model. The geometric primitives are often defined
by analytical functions. To actually render the model many algorithms and especially
graphics hardware require a polygonal representation of the bounding surfaces. In the
traditional approaches the primitive bodies are added or subtracted sequentially. Often
this approach is too limited, since only two different region types are distinguished:
inside and outside the model. If for example a boat swimming in the water is to be
modelled, at least three different regions, namely water, air, and the boat are needed,
to distinguish between the water surface and the boat surface, that definitely should
look differently. This has been discussed in [1], where a cubic cell which is propagated
across the surfaces, is divided into tetrahedra to construct the triangulation.

With our method surface models can be generated from samples on a discrete grid
of appropriate resolution, taking advantage of the high-performance look-up tables.
The generated surfaces are guaranteed to be consistent, e.g. to have no holes, even
if the resolution is choosen too coarse to represent all details of the model. A simple
geometric example is shown in Figure 6. There non-integer probabilities have been
considered by moving the vertices on edges of the cubes. This leads to much smoother
surfaces.

4 Conclusions

We have presented a generalization of the well known marching cubes algorithm,
which can treat non-binary space partitionings instead of only distinguishing between
above and below an isosurface. Using look-up tables, the new method achieves high
performance, comparable to the standard marching cubes algorithm. It offers new pos-
sibilities for generating volumetric meshes as needed in medical applications, as well
as for surface mesh generation in computer graphics modeling.

7



References

[1] J. Bloomenthal, K. Ferguson, Polygonization of Non-Manifold Implicit Surfaces,
Proceedings of SIGGRAPH ’95 (Los Angeles, California, August 6-11, 1995).
In Computer Graphics Annual Conference Series, 1995, ACM SIGGRAPH,
pp. 309-316.

[2] T.A. Galyean, J.F. Hughes, Sculpting: An interactive volumetric modeling tech-
nique, Computer Graphics (SIGGRAPH ’91 Proceedings), 25:4, pp. 267-274,
1991.

[3] W.E. Lorensen, H.E. Cline, Marching cubes: A high resolution 3D surface con-
struction algorithm, Computer Graphics 21:4 (1987), pp. 163-169.

[4] W.E. Lorensen, Extracting Surfaces from Medical Volumes, In Visualization’94
Course Notes: Volume Visualization Algorithms and Applications, pp. 26-45,
1994.

[5] D. Meyers, S. Skinner, K. Sloan, Surfaces from contours, ACM Trans. Graphics,
11(3), pp. 228-258, July 1992.

[6] D. Moore, J. Warren, Mesh Displacement: An Improved Contouring Method for
Trivariate Data, Technical Report TR-91-166, Rice University, Department of
Computer Science, 1991.

[7] C.Montani, R. Scateni, R. Scopigno, Discretized Marching Cubes, In Proceedings
of Visualization ’94, IEEE Computer Society Press, pp. 281-287, 1994.

[8] C. Montani, R. Scateni, R. Scopigno, A modified look-up table for implicit disam-
biguation of Marching Cubes, The Visual Computer, 10(6), pp. 353-355, 1994.

[9] B.K. Natarajan, On generating topologically consistent isosurfaces from uniform
samples, The Visual Computer, 11(1), pp. 52-62, 1994.

[10] G.M. Nielson, Richard Franke, Computing the Separating Surface for Segmented
Data, IEEE Visualization ’97, Oct., pp. 229-233, 1997.

[11] S. Röll, A. Haase, M. von Kienlin, Fast Generation of Leakproof Surfaces
from Well-Defined Objects by a modified Marching Cubes Algorithm, Computer
Graphics Forum, 14(2), pp. 127-138, 1995.

[12] W. Schroeder, W. Lorensen, S. Linthicum, Implicit Modeling of Swept Surfaces
and Volumes, In Proceedings of Visualization ’94, IEEE Computer Society Press,
pp. 40-45, 1994.

[13] D. Stalling, M. Zöckler, H.C. Hege, Interactive Segmentation of 3D Medical Im-
ages with Subvoxel Accuracy, to appear in Proceedings of CAR’98 Computer
Assisted Radiology.

8



Appendix

Figure 4: The image shows the look-up table for up to three different vertex classes. The first two rows
contain the cases with only two classes. For some cases the triangulation is different from the original
marching cubes.

9



Figure 5: Compartments resulting from segmented CT data. Top: bone and some of the organs, bottom:
same, but surfaces are colored according to the adjacent tissue type.

Figure 6: Three different regions are separated by the surface: inside the sphere, below the plane, and above
the plane. Left: triangular surfaces with a finite number of normal directions due to integer probabilities
f0, 1g only, right: smooth surface due to utilization of non-integer probabilites.

10


