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Abstract

In molecular dynamics applications there is a growing interest in so-
called mixed quantum-classical models. These models describe most
atoms of the molecular system by the means of classical mechanics but
an important, small portion of the system by the means of quantum
mechanics. A particularly extensively used model, the QCMD model,
consists of a singularly perturbed Schrödinger equation nonlinearly cou-
pled to a classical Newtonian equation of motion.

This paper studies the singular limit of the QCMD model for fi-
nite dimensional Hilbert spaces. The main result states that this limit
is given by the time-dependent Born-Oppenheimer model of quantum
theory—provided the Hamiltonian under consideration has a smooth
spectral decomposition. This result is strongly related to the quantum
adiabatic theorem. The proof uses the method of weak convergence by
directly discussing the density matrix instead of the wave functions.
This technique avoids the discussion of highly oscillatory phases.

On the other hand, the limit of the QCMD model is of a different
nature if the spectral decomposition of the Hamiltonian happens not to
be smooth. We will present a generic example for which the limit set is
not a unique trajectory of a limit dynamical system but rather a funnel
consisting of infinitely many trajectories.
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1 Introduction

Most commonly, the simulation of the dynamical behavior of molecular sys-
tems is based on the assumption that the system of interest can sufficiently
well be described by models of classical mechanics. However, such classi-
cal molecular dynamics approaches cannot be valid if the very nature of the
process under consideration is quantum mechanically : e.g., the transfer of
key protons in enzymes, clusters, or matrices. In all these cases, a quantum
dynamical description is unavoidable. Since a full quantum dynamics simu-
lation of, e.g., a complete enzyme is not feasible, so-called mixed quantum-
classical models have found growing interest in applications. These models
describe most atoms by the means of classical mechanics but an important,
small portion of the underlying system by the means of quantum mechanics.

In the current literature various mixed quantum-classical models have
been proposed. We will restrict our attention to the so-called QCMD (quan-
tum-classical molecular dynamics) model which has been used extensively for
real life applications, cf. [4][7] and the references cited therein. Our concern
is a further mathematical understanding of this model.

For the sake of simplicity we introduce the QCMD model in the case of
two particles. We assume that they have spatial coordinates x ∈ Rd and
q ∈ R

n , with mass m = ε2 � 1, respectively M = 1. The interaction poten-
tial will be denoted by V (x, q). The lighter particle is supposed to perform
quantum motion. It thus has to be described by a quantum Hamiltonian H,
which is typically of the form

H(q) = −1

2
Δx + V (x, q), (1)

where Δx denotes the Laplacian with respect to x. Hence, the Hamiltonian
is parametrized by the position q of the heavier particle, the description of
which remains classical. The equations of motion of the QCMD model are
given by

q̈ε = − gradq 〈H(qε)ψε, ψε〉,
iε ψ̇ε = H(qε)ψε.

Here, 〈·, ·〉 denotes the scalar product in the Hilbert space of the model.

In the present paper, we will study the singular limit ε → 0 which is of
interest for a couple of reasons: Because the QCMD model is known to be an
O(ε)-approximation of full quantum dynamics [7], it is typically applied to
situations with ε� 1. On the other hand, the quantum part ψε is oscillating

1



on a time scale of order O(ε). Unfortunately, the computational effort of
any direct numerical integration of the QCMD model is heavily dominated
by the approximation of these fast oscillations. The chemically interesting
information, however, appears on a time scale of order O(1). In the singular
limit, the fast scale O(ε) will be eliminated but its averaged influence will
still be present. Thus, besides yielding analytical insight into the model,
the study of the limit ε → 0 opens the way towards advanced numerical
techniques.

We will assume that the Hilbert space of the quantum state ψε is finite
dimensional. Thus, H denotes an Hermitean matrix, which, for example,
can be viewed as the representation of the Hamiltonian (1) according to
a discretization of the Laplacian Δx. By employing considerable technical
tools from functional analysis, the first author was recently able to extend
the ideas presented below to the infinitely dimensional case, cf. [6]. However,
the present short account on the finite dimensional case helps to concentrate
on the basic ideas, which, in the opinion of the authors, could be of general
interest for singular perturbation problems with highly oscillatory solutions.

We will obtain a limit equation that can be motivated by referring to the
quantum adiabatic theorem, originating from work of Born and Fock [5].
The classical position q influences the Hamiltonian very slowly compared to
the time scale of oscillations of ψε, in fact, “infinitely slowly” in the limit ε→
0. Thus, in analogy to the quantum adiabatic theorem, one would expect—
under certain assumptions on the eigenstates ψλ(q) and eigenenergies Eλ(q)
of the Hamiltonian H(q)—the following adiabatic invariance:

|〈ψε, ψλ(qε)〉|2 → θλ = const, ε→ 0,

uniformly as functions of time. Together with a uniform convergence qε → q0,
this would imply the convergence of the “potential” energy,

〈H(qε)ψε, ψε〉 → UBO(q0) =
∑

λ θλEλ(q0).

Thus, we are led to expect the limit equation being

q̈0 = − gradq UBO(q0),

which is the well-known time-dependent Born-Oppenheimer approximation
of quantum theory, cf. [9][12]. In §2 we will present a rigorous proof for
this fact, which we call the quantum–classical adiabatic theorem. We employ
a variant of the weak convergence method which we have introduced for the
homogenization of certain singularly perturbed equations of classical mechan-
ics, cf. [8]. This method allows to address the limit motion straightforwardly

2



without explicit knowledge of the phase of ψε. This phase drops out since we
directly discuss the weak limit of the density matrix ρε = ψεψ

†
ε . In contrast,

all proofs of the quantum adiabatic theorem, the present authors know of,
proceed by first, representing the phase of ψε asymptotically correct, and
second, approximating the amplitude.

We will prove the quantum-classical adiabatic theorem in a way that the
quantum adiabatic theorem is a simple corollary. We will discuss in §3 to
which extend our approach weakens the assumptions known in the literature.

The proof of the quantum-classical adiabatic theorem relies strongly on
the assumption of a smooth dependence of the spectral decomposition of
H on the parameter vector q. Whereas this is generically true for a scalar
parameter dependence, it is not true for a vector parameter dependence in
general. In §4 we will illustrate what can happen in the case of a nons-
mooth spectral decomposition: The QCMD solutions can depend extremely
sensitively on the initial data for small ε. In the singular limit, this sensitiv-
ity leads to a funnel of limit solutions instead of a single unique limit. For
certain singularly perturbed classical equations of motion, the appearance
of such funnels as the limit set has been discovered by Takens, cf. [8][21].
With regard to his work we speak of Takens-chaos. However, its relevance
for problems in applications has yet to be studied.

2 The Singular Limit of the QCMD Model

For simultaneously addressing the quantum adiabatic theorem, we consider
a time-dependent version of the QCMD model given by the following set of
ordinary differential equations

(i) q̈jε = −〈∂jH(t, qε)ψε, ψε〉, j = 1, . . . , n,

(ii) iεψ̇ε = H(t, qε)ψε.
(2)

Here, q = (q1, . . . , qn) ∈ Rn , ψ ∈ C r , and 〈·, ·〉 denotes the Euclidean
sesquilinear form on C r . The Euclidean norm on Rn , resp. C r will be denoted
by | · |. We consider converging initial values, namely

lim
ε→0

qε(t0) = q∗, lim
ε→0

q̇ε(t0) = v∗, lim
ε→0

ψε(t0) = ψ∗, (3)

with the normalization |ψε(t0)| = 1 for all ε. We assume that the Hamiltonian
H satisfies the following conditions on a finite time interval [t0, t1]:

(H1) H : [t0, t1] × Rn → C r×r is a smooth map, the values of which are
Hermitean matrices, uniformly bounded from below

〈H(t, q)ψ,ψ〉 ≥ H∗ > −∞ t ∈ [t0, t1], q ∈ R
n , |ψ| = 1.
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(H2) The time derivative ∂tH(t, q) is uniformly bounded for t ∈ [t0, t1] and
q ∈ Rn .

(H3) There is a smooth spectral decomposition of H,

H(t, q) =
s∑

λ=1

Eλ(t, q)Pλ(t, q) t ∈ [t0, t1], q ∈ R
n ,

where Pλ denotes the orthogonal projections onto the mutually orthog-
onal eigenspaces of H which span C

r : I =
∑

λ Pλ.

The reader should note, that the smooth multiplicities1 nλ of the eigenvalues
Eλ are constants,

nλ = dimrangePλ(t, q) = const, t ∈ [t0, t1], q ∈ R
n . (4)

As we have already mentioned in the introduction, we will prove that the
singular limit of the QCMD model (2) is given by the time-dependent Born-
Oppenheimer model

q̈jBO = −∂jUBO(t, qBO) j = 1, . . . , n. (5)

The Born-Oppenheimer potential UBO is defined by

UBO(t, q) =
s∑

λ=1

θλEλ(t, q), θλ = 〈Pλ(t0, q∗)ψ∗, ψ∗〉,

and the initial values of the system are the limit ones of QCMD model,
qBO(t0) = q∗ and q̇BO(t0) = v∗.

We have to introduce a further notion concerning resonances of the energy
levels Eλ along the Born-Oppenheimer solution qBO. If for any resonance

Eλ(tr, qBO(tr)) = Eμ(tr, qBO(tr)) λ 	= μ

at a time tr ∈ [t0, t1] the transversality condition

d

dt
(Eλ(t, qBO(t)) −Eμ(t, qBO(t)))

∣∣∣∣
t=tr

	= 0

holds, we will call qBO at most generically resonant.

1More precisely, this is the multiplicity of the parameter-dependent eigenvalue Eλ(·).
At a resonance point q the multiplicity of the eigenvalue Eλ(q) itself might be accidentally
higher.
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Theorem 1. On the time interval [t0, t1], there exists a smooth unique so-
lution qBO of the Born-Oppenheimer model, and, for every ε > 0, a smooth
unique solution qε of the QCMD model. Let qBO be at most generically reso-
nant.2 Then, given a sequence ε→ 0, the classical components of the QCMD
model converge to those of the Born-Oppenheimer model,

qε → qBO in C1([t0, t1],R
n),

and the energy level populations of the wave functions converge to the con-
stants given by their limit initial values,

〈Pλ(·, qε)ψε, ψε〉 → θλ in C[t0, t1].

Proof. The proof will be given in several steps.

Step 1. We start with estimating the solutions on a time interval of exis-
tence. According to a well-known formula of Ehrenfest [18, Eq. (V.72)] we
obtain for any time-dependent observable A (Hermitean matrix) that

d

dt
〈Aψε, ψε〉 = i

ε
〈[H(·, qε), A]ψε, ψε〉+ 〈Ȧψε, ψε〉. (6)

Inserting A = I, the identity matrix, yields the conservation of the norm of
the wave function

|ψε(t)| = |ψε(t0)| = 1, t ≥ t0. (7)

A key quantity to look at is the energy of the QCMD model, i.e.,

Eε(t) =
1

2
|q̇ε|2 + 〈H(t, qε)ψε, ψε〉.

Inserting A(t) = H(t, qε) into the Ehrenfest formula (6) yields the time
derivative of the energy

Ėε = 〈∂tH(t, qε)ψε, ψε〉.
By assumption (H2) and the conservation of norm (7) we obtain a uniform
bound on Ėε. Integration shows that the energy is uniformly bounded on fi-
nite time intervals of existence (since Eε(t0) is converging for ε→ 0). Hence,
assumption (H1) yields a uniform bound for q̇ε and, after integration, one
for qε. Now, these a priori bounds in phase space prove the existence and
uniqueness of solutions (qε, ψε) for the time interval [t0, t1] under considera-
tion. Summarizing, we have obtained the uniform bounds

qε, q̇ε, q̈ε = O(1) (8)

in C([t0, t1],R
n) for ε→ 0, where the bound for q̈ε immediately follows from

equation (2(i)).

2In particular, there are at most finitely many resonances, cf. Step 7 of the proof below.
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Step 2. Analogously to Step 1 one can prove the existence of the Born-
Oppenheimer solution qBO on [t0, t1]. Here, one considers the energy

EBO =
1

2
|q̇BO|2 + UBO(t, qBO)

with the time derivative ĖBO = ∂tUBO(t, qBO). Once more, assumption (H2)
yields the boundedness of ĖBO, and after integration, assumption (H1) the
boundedness of EBO.

Step 3. We recall the fact, that the space L∞[t0, t1] = (L1[t0, t1])
∗ is the

dual of a separable space. Thus, by the Arzelà-Ascoli theorem [20, Theo-
rem 11.28] and the Banach-Alaoglu theorem [20, Theorem 11.29] for spaces
with a separable predual, the bounds (8) imply the existence of a subsequence
of ε—which we will denote by ε again—such that

qε → q0 in C1([t0, t1],R
n), q̈ε

∗
⇀ q̈0 in L∞([t0, t1],R

n).

We introduce the time-dependent density matrix ρε belonging to the pure
state ψε,

ρε = ψεψ
†
ε .

It turns out, that the sequence ρε is bounded in L∞([t0, t1], C
r×r ). For that,

we use the trace class norm ‖ · ‖1 on the space of r × r-matrices,

‖A‖1 = tr(AA†)1/2, A ∈ C
r×r ,

and observe that
‖ρε‖1 = tr ρε = 〈ψε, ψε〉 = 1.

By a further application of the Alaoglu theorem for spaces with a separable
predual, we may assume that a limit

ρε
∗
⇀ ρ0 in L∞([t0, t1], C

r×r )

exists for the above chosen subsequence. This limit matrix ρ0 is a time-
dependent density matrix as well, i.e., for each time its value is a nonnegative
Hermitian matrix with

tr ρ0 = 1.

However, since quadratic functionals are not weakly sequentially continuous,
ρ0 does not belong to a pure state in general, but to a mixture of states.3

3Mathematically speaking, the limit ρ0 might have a rank higher than one, as we will
see in Eq. (14) below, despite the fact that all the ρε are rank one matrices.
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The significance of the limit ρ0 becomes clear, if we take weak limits in the
first set (2(i)) of the QCMD equation, yielding

q̈j0 = − tr(ρ0 ∂jH(t, q0)). (9)

For that, we rewrite 〈H(t, qε)ψε, ψε〉 = tr(ρε∂jH(t, qε)) and observe that we
may pass to the weak limit because of the uniform convergence of qε.

Step 4. A simple calculation reveals, that the Schrödinger equation (2(ii))
is equivalent to the well-known evolution equation [18, Eq. (VIII.68)] for the
density matrix,

iερ̇ε = [H(t, qε), ρε].

Taking weak limits on both sides of the equation yields4 the commutativity
relation

0 = [H(t, q0), ρ0]. (10)

If we exclude resonances of the energy levels along q0, we would get a simul-
taneous block-diagonalization of H(t, q0) and ρ0. In fact, it is sufficient to
exclude resonances almost everywhere. Therefore, until Step 7, we make the
following assumption:

(Z) The resonance set

R = {t ∈ [t0, t1] : Eλ(t, q0(t)) = Eμ(t, q0(t)) for some λ 	= μ}
is a set of Lebesgue measure zero.5

Now, multiplying the commutativity relation (10) by Pλ(t, q0) from the left,
and by Pμ(t, q0) from the right, gives

(Eλ(t, q0) −Eμ(t, q0)) · Pλ(t, q0)ρ0Pμ(t, q0) = 0

as functions in L∞([t0, t1], C
r×r ). Thus, we obtain in L∞ that

Pλ(t, q0)ρ0Pμ(t, q0) = 0, λ 	= μ,

which implies the block-diagonal form of the limit density matrix ρ0,

ρ0 =
∑
λ

Pλ(t, q0)ρ0Pλ(t, q0). (11)

4For bounded sequences in L∞, the weak*-convergence is equivalent to the convergence
in the sense of distributions. In the sense of distributions, the limit of the left hand side is
given by i · 0 · ρ̇0 = 0.

5Since the resonance set R is a closed subset of the real line R, it has measure zero if
and only if it is countable. This follows immediately from the fact [15, Theorem 6.59] that
every open subset of R is the countable disjoint union of open intervals.
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Step 5. Using the abbreviation Pε
λ = Pλ(t, qε), we define the energy level

populations of the state ψε as

θελ = 〈P ε
λψε, ψε〉 = tr(ρεP

ε
λ).

Using the commutativity relation [H(t, qε), P
ε
λ] = 0, the Ehrenfest formula (6)

yields the time derivative

θ̇ελ = 〈Ṗ ε
λψε, ψε〉 = tr(ρεṖ

ε
λ).

Hence, the time derivatives form a bounded sequence in L∞[t0, t1], showing
by the Arzelà-Ascoli theorem that

θελ → θ0λ = tr(ρ0P
0
λ ) in C[t0, t1], θ̇ελ

∗
⇀ θ̇0λ = tr(ρ0Ṗ

0
λ ) in L∞[t0, t1].

Here, we have used the uniform convergence Ṗ ε
λ → Ṗ 0

λ in C([t0, t1], C
r×r )

which follows from q̇ε → q̇0 in C([t0, t1],R
n). However, the block diagonal

form (11) of ρ0 yields

θ̇0λ = tr(ρ0Ṗ
0
λ ) =

∑
μ

tr(P0
μρ0P

0
μ Ṗ

0
λ ) =

∑
μ

tr(ρ0P
0
μ Ṗ

0
λP

0
μ) = 0, (12)

since P 0
μ Ṗ

0
λP

0
μ = 0 for all λ and μ.6 Thus, the limit populations θ0λ are

constants and their values are given by

θ0λ(t) = θ0λ(t0) = lim
ε→0

θελ(t0) = θλ. (13)

Step 6. Inserting the spectral decomposition of H into the force term of
the abstract limit equation (9) yields

tr(ρ0 ∂jH) =
∑
λ

∂jEλ · tr(ρ0Pλ) +
∑
j

Eλ · tr(ρ0 ∂jPλ).

The same argument as in Step 5, Eq. (12), shows that

tr(ρ0 ∂jPλ(t, q0)) = 0.

This and the fact that the limit population is constant, tr(ρ0 Pλ(t, q0)) = θλ,

6For λ �= μ we have P 0
λP

0
μ = 0 and therefore Ṗ 0

λP
0
μ+P 0

λ Ṗ
0
μ = 0. Multiplying P 0

μ from the

left yields the asserted result for λ �= μ. From P 0
λP

0
λ = P 0

λ we obtain Ṗ 0
λ = Ṗ 0

λP
0
λ + P 0

λ Ṗ
0
λ .

Multiplying by P 0
λ from the left and cancelling equal terms yields the desired result for

λ = μ.
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reveals that the force term belongs to the Born-Oppenheimer potential,

tr(ρ0 ∂jH(t, q0)) =
∑
λ

θλ · ∂jEλ(t, q0) = ∂jUBO(t, q0).

Thus, q0 is the solution of the Born-Oppenheimer equation (5). Since the ini-
tial values coincide, we obtain the equality q0 = qBO—provided the resonance
condition of Step 4, Assumption (Z), is satisfied for q0.

Step 7. In this final step we will show by means of a continuation argument:
the accessible resonance assumption of the theorem, which has been imposed
on the Born-Oppenheimer solution qBO, implies the validity of the somewhat
inaccessible Assumption (Z), which is concerned with the limit q0 instead.

There are only finitely many resonances along qBO in the compact time
interval [t0, t1]. Otherwise we would get a converging sequence tj → t∗ of
crossing times for one and the same resonance surface. As a consequence, at
time t∗ there would be a non transversal crossing of qBO with that resonance
surface. This would contradict the assumption of transversality.

For proving the validity of Assumption (Z), and simultaneously the equal-
ity q0 = qBO, we consider the maximal time of equality,

t∗ = max {t ∈ [t0, t1] : q0|[t0, t] = qBO|[t0, t]} .
Because of q0(t0) = qBO(t0), this is a well defined quantity. Suppose we have
t∗ < t1. Then, there are only finitely many resonances of q0 during the time
interval [t0, t∗]. Since q0 and qBO are C1-functions of time, we get

q̇0(t∗) = q̇BO(t∗),

just using the initial values if t∗ = t0. Hence, if q0 crosses a resonance
surface at time t∗ it does so transversally. As a consequence, there is a small
δ > 0 such that there are no further resonances of q0 during the time interval
]t∗, t∗ + δ]. Thus, the resonance set of q0 restricted to the time interval
[t0, t∗ + δ] has measure zero, i.e., Assumption (Z) is satisfied for this time
interval. Employing the results of the previous steps to this time interval
proves that

q0|[t0, t∗ + δ] = qBO|[t0, t∗ + δ],

contradicting the maximality of t∗. We therefore obtain t∗ = t1, which is
equivalent to q0 = qBO.

We have shown that the limits of any converging subsequence of qε and θ
ε
λ

are uniquely given by qBO and θλ. Thus, we can finally discard the extraction
of subsequences.
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Despite the fact that we have made use of the density matrix ρε = ψεψ
†
ε

during the proof of Theorem 1, we could not state a convergence result in-
volving it. This is because the limit relations (11) and (13) do not identify
the limit density matrix ρ0 uniquely in general. However, there is a spe-
cial case, where ρ0 can be identified unambiguously. This allows to recover
information about the quantal part other than energy level populations.

Corollary 2. Let the limit populations θλ be nonzero only for simple eigen-
values.7 Then, the density matrix converges as

ρε
∗
⇀ ρ0 =

∑
λ

θλ Pλ(·, q0) in L∞([t0, t1], C
r ).

For each θλ 	= 0, the projection Pλ is the density matrix belonging to a
corresponding normalized eigenvector ψλ,

Pλ = ψλψ
†
λ, Hψλ = Eλψλ, |ψλ| = 1.

The expectation values of a time-dependent observable A converge as

〈Aψε, ψε〉 ∗
⇀
∑
λ

θλ〈Aψλ, ψλ〉 in L∞[t0, t1].

If the commutation relation [H(·, q0), A] = 0 holds, the convergence is strong
in C[t0, t1].

Proof. We go back to Steps 4 and 5 of the proof of Theorem 1. The
diagonal blocks Pλ(·, q0)ρ0Pλ(·, q0) of ρ0 are nonnegative Hermitean matrices.
Therefore, their trace class norm is given by

‖Pλ(·, q0)ρ0Pλ(·, q0)‖1 = tr(Pλ(·, q0)ρ0Pλ(·, q0)) = tr(ρ0Pλ(·, q0)) = θλ.

By assumption, all nonzero populations θλ belong to one-dimensional block-
diagonal entries of the matrix ρ0, which yields

Pλ(·, q0)ρ0Pλ(·, q0) = θλPλ(·, q0)
for all λ. Thus, ρ0 is uniquely given by the asserted expression. As in
the final step of the proof of Theorem 1, we may discard any extraction
of subsequences. The convergence of the expectation values follows directly
from

〈Aψε, ψε〉 = tr(ρεA)
∗
⇀ tr(ρ0A) =

∑
λ

θλ〈Aψλ, ψλ〉.

7This means, the smooth multiplicity nλ as defined in Eq. (4) is one, nλ = 1. Resonances
are still allowed.
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If [H(·, q0), A] = 0, the Ehrenfest formula (6) shows that the time derivative
of the expectation value remains bounded. Thus, a further application of the
Arzelà-Ascoli theorem proves the uniform convergence in time.

In the setting of this corollary we obtain that the limit density matrix ρ0
is a convex combination of density matrices belonging to pure states, namely
the simple eigenstates of H. In particular, the rank of ρ0 is given by

rank ρ0 = #{λ : θλ 	= 0}. (14)

3 The Adiabatic Theorem of Quantum Mechanics

The case n = 0 of Theorem 1, i.e., the absence of a “classical” particle,
corresponds to the so-called quantum adiabatic theorem. This theorem is of
considerable interest in itself and we have actually proven more for that case
than stated in Theorem 1. For thus, we will discuss it in detail here.

We consider a time-dependent Schrödinger equation in a finite dimen-
sional state space,

iεψ̇ε = H(t)ψε, ψ(t0) = ψ∗, |ψ∗| = 1. (15)

We assume that the Hamiltonian H satisfies the following conditions on a
finite time interval [t0, t1]:

(A1) H : [t0, t1] → C r×r is a smooth map, the values of which are Hermitean
matrices.

(A2) There is a smooth spectral decomposition of H,

H(t) =
s∑

λ=1

Eλ(t)Pλ(t) t ∈ [t0, t1],

where Pλ denotes the orthogonal projections onto the mutually orthog-
onal eigenspaces of H which span C r .

Notice, that the assumptions (A1) and (A2) imply those of the previous
section, i.e., (H1)–(H3). Asymptotically in the limit ε → 0, the quantum
adiabatic theorem now states the following: An initial value which belongs
to the λ-eigenspace of H(t0) leads to a solution at time t1 which likewise
belongs to the λ-eigenspace of H(t1).

11



Theorem 3. (Quantum Adiabatic Theorem). Let the resonance set

R = {t ∈ [t0, t1] : Eλ(t) = Eμ(t) for some λ 	= μ}
be at most countable.8 Then, given a sequence ε → 0, the energy level
populations of the wave functions converge to the constant values of the
initial populations,

〈Pλψε, ψε〉 → 〈Pλ(t0)ψ∗, ψ∗〉 in C[t0, t1].

If the initial populations θλ are nonzero only for simple eigenvalues, nλ = 1,
the assertions of Corollary 2 hold likewise.

Proof. The proof is given literally by the Steps 1–6 of the proof of Theorem 1.
Since there is no q-variable, we do not have to distinguish between q0 and qBO.
Thus, Step 7 is not needed, explaining the considerably weaker resonance
condition of Theorem 3, which is just Assumption (Z) of Step 4.

Under stronger assumptions, the first mathematical proof of the quantum
adiabatic theorem for finite dimensional state spaces was given by Born and
Fock [5]. They considered simple eigenvalues with at most finitely many
resonances. Further, they assumed that there exists a κ ∈ N0 such that
for each resonance Eλ(t∗) = Eμ(t∗) a higher order nondegeneracy condition
holds,

dκ

dtκ
(Eλ −Eμ)

∣∣∣∣
t=t∗

	= 0,

just putting κ = 0 if there are no resonances at all. By estimating oscilla-
tory integrals as arising in geometrical optics, they were able to prove the
asymptotic result [5, Eq. (60)]

〈Pλψε, ψε〉 = 〈Pλ(t0)ψ∗, ψ∗〉 +O
(
ε

1
κ+1

)
.

This shows in particular, that the rate of convergence in Theorem 3 can be
arbitrary slow as a power of the singular perturbation parameter ε.

Remark 4. The proof of Born and Fock for the case κ = 0 can also be
found in the textbook ofMessiah [18, Ch. XVII, §12]. The proof involves the
so-called “rotating axis representation” and needs a careful tracking of the
phases of the wave function. The proof presented here avoids the discussion
of phases by directly discussing the density matrix. The work of Born and
Fock was later extended to the infinite dimensional setting by Kato [16]
and Friedrichs [10][11]. The most complete account of this method of proof
can be found in recent work of Avron, Seiler, and Yaffe [2][3].

8By Footnote 5 on p. 7 this is equivalent to saying that R has Lebesgue measure zero.
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4 Takens-Chaos

According to Theorem 1, the limit dynamics as given by the Born-Oppen-
heimer equations does only depend on the limit initial values q∗, v∗, and ψ∗.
Thus, the details of the limiting process leading to these values do not matter
at all—which is a far-reaching stability property of the limit model.

In this section, we will show that a completely different situation may
appear if the assumption (H3) of a smooth spectral decomposition of the
Hamiltonian H is hurt. The perturbation theory of linear operators, [17,
Chap. 2, §6], teaches that property (H3) can only be hurt if there are eigen-
values of multiplicity greater than one for some parameter values. Now, the
set of Hermitean matrices, having at least one eigenvalue with multiplic-
ity greater than one, has real codimension two in the set of all Hermitean
matrices.9 Thus, for hurting property (H3) generically we need at least a
two parameter dependence of H, acting itself on a two-dimensional space.
We will construct an example with a time-independent Hamiltonian having
n = r = 2.

We consider the “classical” positions q = (q1, q2) and take as Hamiltonian
the real symmetric matrix

H(q) =

(
q1 q2

q2 −q1

)
.

This is the famous example of Rellich [19, §2][17, Chap. 2, Example 5.12]
for a smooth symmetric matrix which is not smoothly diagonizable. This
matrix also occurs in the work of Hagedorn [13][14] on the relation of the
time-dependent Born-Oppenheimer model to the full Schrödinger equation.
There, it appears as the normal form of so-called “energy level crossings of
codimension two.” The latter fact makes the matrix H particularly interest-
ing for our study.

The eigenvalues of H are E1(q) = −|q| and E2(q) = |q|. Excluding the
origin q = 0 and using polar coordinates,

q1 = r cosϕ, q2 = r sinϕ,

9The “loss” of two real dimensions can be explained as follows. Representing an Her-
mitean matrix H by its diagonalization H = S†DS shows that one real dimension is lost
due to the eigenvalue resonance in the real diagonal matrix D. Another real dimension
is lost, however, in the unitary matrix S since the corresponding eigenspace of dimen-
sion greater than one can be freely rotated without changing the resulting matrix H . See
also [1].
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yields the corresponding eigenvectors in the form

ψ1 =

( − sin(ϕ/2)
cos(ϕ/2)

)
, ψ2 =

(
cos(ϕ/2)
sin(ϕ/2)

)
.

The occurrence of the argument ϕ/2 shows that these eigenvectors are defined
up to a sign only. For a unique representation we have to cut the plane along
a half-axis, e.g., along ϕ = 3π/2. Hence, we restrict the angular variable to
the open interval

ϕ ∈
]
−π
2
,
3π

2

[
.

By this, ψ1 and ψ2 become smooth vector fields uniquely defined on the cut
plane

R
2
c = R

2 \ {q : q1 = 0, q2 ≤ 0}.
They cannot, however, be continued over the cut, but change their roles there
instead.

We consider the following family of initial values:

qε(0) = (1, 0), q̇ε(0) = (0, μ), ψε(0) = (1, 0),

depending on a parameter μ ≥ 0. For the discussion of the singular limit
ε→ 0 we have to distinguish two cases.

The Case µ = 0. In this case, the solutions of the QCMD model can be
calculated explicitly. The QCMD equations are given by

q̈1ε = − (|ψ1
ε |2 − |ψ2

ε |2
)
, q̈2ε = −2�

(
ψ1
εψ

2
ε

)
,

and
iεψ̇1

ε = q1εψ
1
ε + q2εψ

2
ε , iεψ̇2

ε = q2εψ
1
ε − q1εψ

2
ε .

A short calculation reveals that the unique solution is given by

q1ε (t) = 1 − 1

2
t2, q2ε ≡ 0, ψ1

ε (t) = exp

(
− i
ε

∫ t

0
q1ε (τ) dτ

)
, ψ2

ε ≡ 0.

Surprisingly, the q-components are independent of the singular perturbation
parameter ε. Therefore, the limit ε→ 0 of qε is trivially given by

qμ=0
0 =

(
1 − 1

2
t2, 0

)
.

As a particularity, this limit solution crosses the singularity q = 0 of the
spectral decomposition at time t =

√
2.
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The Case µ > 0. We will see that, in this case, the adiabatic Theorem 1
is applicable on the time interval [0, 2

√
2], at least for small μ > 0 and ε > 0.

For then, the limit would be given by the Born-Oppenheimer initial value
problem

q̈0 = − q0
|q0| , q0(0) = (1, 0), q̇0(0) = (0, μ). (16)

At the end of this section we will prove the following lemma.

Lemma 5. Let μ > 0 be small enough. Then, for all t ∈ [0, 2
√
2], the

Born-Oppenheimer solution q0 takes values in the cut plane R2c .

Hence, for μ > 0 and ε > 0 small enough, the hypothesis (H3) of §2 is
fulfilled and Theorem 1 indeed applicable, showing that

qε → q0 in C1[0, 2
√
2].

Now, we take the limit μ ↓ 0 of the Born-Oppenheimer solution q0, which
will be denoted by qμ↓00 . A direct calculation reveals that

qμ↓00 (t) =

{ (
1 − 1

2t
2, 0
)
, t ∈ [0,

√
2],(

1
2t

2 − 2
√
2t+ 3, 0

)
, t ∈ [

√
2, 2

√
2].

Notice, that qμ↓00 ∈ C1[0, 2
√
2].

Discussion. These two cases show that the limits ε→ 0 and μ ↓ 0 are not
interchangeable: In fact, after passing the singularity q = 0 at t =

√
2, the

two limit functions separate,

lim
ε→0

lim
μ↓0

qε(t) = qμ=0
0 (t) 	= qμ↓00 (t) = lim

μ↓0
lim
ε→0

qε(t), t >
√
2.

Thus, if we consider the simultaneous limit by taking an ε-dependent se-
quence μ(ε) ↓ 0, the resulting limit solution q0 would depend on how the
limit initial velocity

lim
ε→0

q̇ε(0) = lim
ε→0

(0, μ(ε)) = (0, 0)

is obtained. This is in sharp contrast to the assertion of Theorem 1, showing
the necessity of hypothesis (H3)—even for the principal structure of the re-
sult. The situation here is even worse: By continuity we may obtain as the
limit value of qε(t) at time t >

√
2 any value q̃ with

qμ=0
0 (t) ≤ q̃ ≤ qμ↓00 (t).
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One only has to choose the sequence μ(ε) accordingly. In a way, the limit
dynamics is thus described by the funnel between the two extreme cases qμ=0

0

and qμ↓00 . Figure 1 illustrates the situation.
The appearance of such funnels as the limit set of certain singularly per-

turbed problems has been discovered by Takens in his work [21] on Hamilto-
nian systems with a strong constraining potential. With regard to this work
we speak of Takens-chaos, cf. [8].
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Figure 1: Illustration (q1 vs. t) of the sensitivity on μ and ε, indicating
Takens-chaos: (a) the two different limit solutions qμ=0

0 and qμ↓0, (b)
the limit solution qμ=0

0 (solid line) and the QCMD–solution for ε = 0.05
and μ = 0.1 (dashed line), (c) the limit solution for ε → 0 with μ = 0.1
(solid line) and the QCMD–solution for ε = 0.005 and μ = 0.1 (dashed
line), (d) the funnel of possible limits for ε → 0, μ → 0.
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Proof of Lemma 5. The Born-Oppenheimer equation (16) belongs to the
Lagrangian

L =
1

2
|q̇|2 − |q| =

1

2
ṙ2 +

1

2
r2ϕ̇2 − r.

Thus, Eq. (16) transforms into polar coordinates as the set of Euler-Lagrange
equations

r̈ = rϕ̇2 − 1,
d

dt
(r2ϕ̇) = 0.

The corresponding initial values are given by r(0) = 1, ϕ(0) = 0, ṙ(0) = 0,
and ϕ̇(0) = μ. Along the solution there is conservation of energy,

E =
1

2
ṙ2 +

1

2
r2ϕ̇2 + r = α2 + 1, α =

μ√
2
.

Using this and eliminating the cyclic variable ϕ yields

ṙ2 = − 2

r2
(
r3 − (1 + α2)r2 + α2

)
=

2

r2
(1 − r)(r − r+)(r − r−), (17)

with

r± =
α2

2
±
√
α4

4
+ α2.

Because of r2ϕ̇ ≡ μ > 0 we always have r > 0 and ϕ̇ > 0. Thus, the local
extrema of r(t), given at ṙ = 0, are rmin = r+ and rmax = 1. In particular,
we obtain

0 < α < r+ ≤ r(t) ≤ 1.

It remains to show that 0 ≤ ϕ(t) < 3π/2 for 0 ≤ t ≤ 2
√
2. Since the motion

is periodic and ϕ is monotonely increasing, it suffices to compute the period
T of the motion and the angular difference Δϕ = ϕ(T ) − ϕ(0) during that
period. Using Eq. (17), we obtain

T = 2

1∫
r+

dr

ṙ
=

√
2

1∫
r+

r dr√
(1 − r)(r − r+)(r − r−)

.

Correspondingly, we obtain

Δϕ = 2

1∫
r+

ϕ̇ dr

ṙ
= 2

1∫
r+

αdr

r
√
(1 − r)(r − r+)(r − r−)

= 2

1∫
r+

α
√
z dz

r+
√
(1 − z)(1 − zr−/r+)(z − r+)

.
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In the limit α→ 0, these elliptic integrals can be evaluated explicitly:

T →
√
2

∫ 1

0

dr√
1 − r

= 2
√
2, Δϕ → 2

∫ 1

0

dz√
1 − z2

= π.

By continuity, these results readily imply the assertion for μ =
√
2α being

small enough.
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