
Konrad-Zuse-Zentrum für Informationstechnik Berlin — • = = = = 

Ronald H. W. Hoppe 

Numerical Solution of Multicomponent Alloy 

Solidification by Multi-Grid Techniques 

Preprint SC 89-10 (December 1989) 



Herausgegeben vom 
Konrad-Zuse-Zentrum für Informationstechnik Berhn 
Heilbrunner Strasse 10 
1000 Berlin 31 
Verantwortlich: Dr. Klaus Andre 
Umschlagsatz und Druck: Rabe KG Buch- und Offsetdruck Berhn 

ISSN 0933-7911 



Contents 

1 Introduction 1 

2 The mathematical model 4 

3 The multi-grid method 17 

4 Numerical Results 28 

Acknowledgements 30 

References 37 

Abstract 

The solidification of an iV-component alloy is described by an initial boundary 
value problem for a system of degenerate parabolic equations modelling heat con
duction and mass diffusion. Discretizing implicitly in time and by piecewise linear 
finite elements in the space variables, at each time step the solution of a system of 
quasivariational inequalities is required. For the numerical solution of that system, 
a multi-grid algorithm is developed by making use of game theoretic concepts and 
duality arguments from convex analysis. Finally, the efficiency of the algorithm is 
demonstrated by displaying numerical results for a ternary alloy. 





1. Introduction 
The computation of the temperature distribution and the concentration pro

files in the solidification of a multicomponent alloy plays a decisive role in the 
metallurgical industry, because the spatial distribution of the alloy components 
strongly affects the structural behaviour of the fully solidified workpiece. In this 
paper, we will be concerned with the numerical solution of a mathematical model 
taking into account heat conduction and mass diffusion. Since the occurrence 
of mushy regions, i.e., regions where we do have coexistence of liquid and solid 
regime, is a typical phenomenon in alloy solidification, that model is not based on 
the classical formulation of the process which assumes a sharp interface between 
the liquid and solid phase, but relies on a weak formulation in terms of an initial 
boundary value problem for a coupled system of degenerate parabolic equations 
(cf. e.g. BERMUDEZ, SAGUEZ [5], CROWLEY, OCKENDON [8] and Fix [11]). Note, 
however, tha t the weak formulation does not allow for a determination of the mi-
crostructure within the mushy region (see e.g. LACEY, OCKENDON, TAYLER [21] 
and the recent work of RAPPAZ [24] for microscopic modelling). 

In existing work, in particular in the engineering literature, the difficulty to 
deal with degenerate parabolic equations is often circumvented by introducing the 
liquid fraction of the solution as an additional unknown to model the temporal 
evaluation of the latent heat (cf. e.g. TACKE ET AL. [26], VOLLER ET AL. 
[27], WHITE [28]). We do not follow this approach, but rather take the system 
as it is and discretize it implicitly in time and by piecewise linear finite elements 
in the space variables. At each time step, this leads to a coupled system of alge
braic inclusions being equivalent to a system of quasivariational inequalities which, 
however, is not uniquely solvable but possesses a partially ordered set of solutions. 
The minimum and maximum element of that set can be computed by an itera
tive procedure based on fixed point arguments, which is typical for the solution of 
quasivariational inequalities (cf. e.g. [5]). 

The novelty of the approach presented in this paper is twofold: 

• First, we will make use of game theoretic concepts to determine a unique and 
physical reasonable solution. This is motivated by the intrinsic relationship 
between solutions to systems of quasivariational inequalities and Nash equi
libria of noncooperative iV-person games (cf. e.g. AUBIN [1], MOSCO [22]). 
In particular, within the set of Nash equilibria we aim to determine a weak 
Pareto minimum for which the sum of the loss functionals is minimal. From 
a physical point of view, such a Pareto minimum characterizes a collectively 
stable equilibrium configuration on the lowest energy level and hence appears 
to be the most appropriate selection from the set of Nash equilibria, which 
are known as being only individually stable. However, that Pareto minimum 
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will not be computed globally, but in a decentralized way by using a sym
metric nonlinear block Gauss-Seidel iterative scheme requiring the successive 
solution of local noncooperative N-person games. As it turns out , by means 
of the easily accessible local data, we can instantly decide whether a nodal 
point is situated within the liquid, solid or mushy region. In particular, we 
do have uniqueness of a Nash equilibrium for a "liquid" and "solid" nodal 
point while for a "mushy" nodal point the computation of a unique Pareto 
minimum on the lowest energy level can be done inexpensively. An addi
tional feature of this procedure is that , after having computed the unique 
local multistrategy, we can assign to each nodal point a liquid fraction which 
varies between 0 and 1 for a "mushy" nodal point and, expectedly, turns out 
to be 1 and 0 for a "liquid" and "solid" nodal point, respectively. As men
tioned before, in contrast to other work the liquid fraction can be cheaply 
obtained as a by-product of the calculations, but is not an integral part of 
the mathematical model. 

• The second novelty is that the above described symmetric nonlinear block 
Gauss-Seidel iteration will be used as a smoothing procedure within a mul t i -
grid framework involving a hierarchy of triangulations. Besides the special 
smoother, the multi-grid algorithm has two distinctive features: 

a) The first one is the choice of the coarse grid correction. Following 
the approach by HOPPE/KORNHUBER [16], [17], [18] for the mul t i -
grid solution of two-phase Stefan problems, by well-known results from 
convex analysis it can be shown that the system of algebraic inclusions 
is equivalent to a system of nonlinear algebraic equations and it is that 
system to which a modification of Brandt 's FAS scheme [7], [13] will be 
applied. 

b) As in previous work on the multi-grid solution of free and moving 
boundary problems (cf. e.g. [6], [15], [16], [17], [18], [19]), the sec
ond characteristic of the algorithm is an adaptive choice of restrictions 
and prolongations in the fine-to-coarse and coarse-to-fine parts of the 
multi-grid cycle to allow for monitoring of an appropriate transfer of 
data . 

The paper is organized as follows: 

• Following this introduction, in section 2, we will introduce the system of 
degenerate parabolic equations modelling the solidification process, discuss 
its semi-discretization in time and outline the basic relationship between 
the resulting system of quasivariational inequalities and noncooperative N-
person games. 
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• Section 3 is entirely devoted to the presentation of the multi-grid algo
rithm including a detailed description of its basic ingredients, i.e., the special 
smoother, the coarse grid correction process and the special realization of the 
fine-to-coarse and coarse-to-fine transfers. 

• Finally, in section 4, we will present some numerical results for a ternary 
Fe-C-Mn alloy. 
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2. The mathematical model 
We consider an alloy with N > 2 components occupying a bounded domain 

ft ClRd, d Gl\l, with piecewise smooth boundary T — <9ft. We denote by u(x,t), 
(x,t) G Q := ft x (0,T), T > 0, the temperature and by cu(x,t), (x,t) G Q, 
1 < i/ < N — 1, the concentrations of the N — 1 impurities. Then denoting by 
um(x,t), (x,t) G Q, the unknown melting temperature, the sets 

QL = \(x,t) G Q \u(x,t) > um(x,t)j (2.1.a) 

Qs = {(x,t) G Q\u(x,t) < um(x,t)} (2.1.b) 

will be called liquid and solid region, respectively. Moreover, setting 

S = {(x,t) G Q |u(x,<) = um{x,t)} , 

we define 

s L =g L ns , Es=Qsns (2.i.c) 

S M = S \ ( S L U E 5 ) (2.i.d) 

where E M refers to the so-called mushy zone while E^, E5 are the free boundaries 
between the liquid and mushy region ("liquidus") and between the solid and mushy 
region ("solidus"), respectively. The mushy zone represents a region where we do 
have coexistence of solid and liquid regime. 
We set uL — u | 2 i , us = u | S s , cLil/ = CL|EL and cs,v = c„|s s , 1 < v < N - 1, 
and we assume that in the mushy region, the liquid fraction (solid fraction) is 
in chemical equilibrium with the solid (liquid) such that the formation of liquid 
(solid) is coupled with the temperature at the liquidus (solidus) surface of the 
phase diagram according to 

N-l 

UL = ud- J2lL,»CL,u (2.2.a) 

N-l 

us = Ud~ J2ls,vCs,v (2.2.b) 

where 75^ > JL,I> and uj, denotes the melting temperature of the pure material 
(no impurities). From the above, we then get the following constitutive equation 
for the unknown melting temperature 

um = uL = us . (2.3) 
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In order to complete our notations of relevant physical quantities, the function 
p = p(x), x 6 0 , refers to the density, a(u) = Q cr(0d£ denotes the heat content 
with respect to the melting temperature of the pure material where a stands for 
the heat capacity, s = s(u) is the latent energy content, « = K(U) the thermal 
conductivity and ßv = ß„(u), 1 < v < N — 1, the molecular diffusion coefficient of 
the i/-th component of the alloy. 
In the sequel, for simplicity, we assume the density p and the heat capacity to be 
constant while the functions s, K and ßv are assumed to be piecewise constant, in 
particular s(u) = 0 for u < um, s(u) = pL for u > um, L ^ 0 denoting the latent 
heat, K(U) = «5 for u < um, K(U) = KL for u > um and ßv{u) = ßs,v for u < um, 
ßv{u) = ßLtU for u > um, 1 < v < N - 1. 
It is further assumed tha t the alloy will be cooled only at the boundary T, i.e., there 
are no internal sinks. Then, under the hypothesis that E M = 0 and E = E^ = E5 
is a sufficiently smoothly oriented hypersurface, from the hea t - and mass-balance 
relations in integral form it may be deduced that in Qi and Qs we do have the 
pointwise equations 

pa-^- - V • ( K V U ) = 0 (2.4.a) 

^ - V • ( & V C ) = 0 , \ < P < N - \ (2.4.b) 

while the following pointwise jump conditions hold true at the change-of-phase 
boundary 

« L V « | E L -Tr^rlsi - « S V U | E S -Tr^rlss = pL COS(J/T, l t ) , (2.5.a) 

ßL,u^Cu\T,L • TTVT\xL - ßS,„Vcv\zs • 7TI/T |Es 

= {CL,U ~ cs,v) cos(i/T, 1<) , 1 < v < N - 1 
(2.5.b) 

Here vr is the normal to E, outward for QL and inward for Qs, respectively. TTI/T 

is its projection onto the fi-plane and 1( G IR + 1 denotes the unit vector in t-
direction. 
The preceding equations have to be completed by the Neumann- type boundary 
conditions 

K-^- = q on Tx(0,T) (2.6.a) 

^ • ^ = 0 on r x (0, T) , 1 < v < N - 1 (2.6.b) 
on 

where q = q(x, t), (x, <) G T x ( 0 , T) denotes the thermal flux through the boundary. 
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The equations (2.4.a), (2.4.b), (2.5.a), (2.5.b) and (2.6.a), (2.6.b) constitute 
the classical multicomponent alloy solidification problem. However, there is both 
experimental and mathematical evidence (cf. eg. [23], [26]) that the classical for
mulation, which excludes the existence of mushy regions, is a less suitable physical 
model for alloy solidification than those models which allow the coexistence of 
liquid and solid regime. In pure heat transfer problems with a change of phase, it 
is well known that the enthalpy formulation does provide a framework for a weak 
solution concept including the existence of mushy regions (cf. e.g. [10], [20] and 
the references therein). As far as alloy solidification problems are concerned for 
binary alloys, i.e., N = 2, a related weak solution concept has been developed by 
CROWLEY, OCKENDON [8] and Fix [11] and has been extended to the case of more 
than one impurity (N > 2) by BERMUDEZ and SAGUEZ [5] (cf. also work done by 
TACKE ET AL. [26]). This basic idea is to introduce new variables according to 

J -1L,UCV in QL 

*>»=< . „ • (2-7) 
I -ls,uC„ in Qs 

Then, setting 

N-\ JV-l 
w = ^2wv » u„ = u — ̂  u;M , I < v < N — 1 (2-8) 

U=l M = l 

in view of (2.2.a), (2.2.b), the transformed constitutive equation for the unknown 
melting temperature um can be given the equivalent forms 

um - ud = w (2.9.a) 

uv-ud = wv, l<u <N -1 . (2.9.b) 

In particular, in terms of the new variables u, % , 1 < u < N — 1, the liquid and 
solid region as well as the change-of-phase zone can be expressed by 

QL = {{x,t) £Q\u(x,t)-ud>w(x,t)} = 

= {(x,t)^Q\w„(xit)<ud + ul/(x,t), l<v<N-l}, 

QS = Ux,t) <EQ\u(x,t)-Ud<w{x,t)\ = / „ m i x 

r i (z.lO.b) 
= \(x,t) € Q\w„(x,t) > ud + u„(x,t) , 1 <v <N -lj , 

S = {(x,t) e Q\u(x,t) -ud = w(x,t)} = 

= | ( x , 0 e Q\wu{x,t) = ud + uu(x,t) , 1 < v < Ij . 
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For the sake of simplicity, in the sequel we will assume uj = 0, which can always 
be achieved by a suitable transformation. 

Introducing the multivalued mappings Hr : IR —• IR and G> : IR —• IR, 
1 < v < N - 1, where r €IR~, by 

Hr(X) = { 

pa\ if A < r 

[par, par + pL] if A = r 

paX + pL if A > r 

(2.11.a) 

and setting 

\j^L,u if A < r 
GrW = S [r/7L,u,r/fs,u] if A = r 

^lls,v if A > r 

K(U,W) 
KL if u > w 

Ks if u < w 

(2.11.b) 

(2.12.a) 

ßu(uu,wu) = < I < v < N -I 
I ßs,vhs,v if «* < u>„ 

(2.12.b) 

then the system (2.4.a) - (2.6.b) can be written in conservation form by means of 
the following system of degenerate parabolic equations 

dHw(u) 

dt 
)Vn) = 0 in Q , (2.13.a) 

dGUv{wv) 
dt 

- V- (ßu(u„,wu)S7wu) = 0 i n Q , \<v<N-l (2.13.b) 

K^ = q, ^ = 0 o n r x ( 0 , T ) ) l<v<N-l. 

Evidently, the above system has to be understood in a suitable weak sense. Namely, 
an TV-tuple (u, wi, • • •, WJV-I) of functions 

u.^erf io . r ) ; H\n))nHl[[n,T}- L2(n))nL'x>{Q) 
is said to be a weak solution to the alloy solidification problem, if the equations 

/ 
N u(f) 

Hw{u)— - K(U,W)VU • V</> 
Qx{T} 

+ I H°(f>dx= I q<j>dadt 
fix{o} rx(o,T) 

dxdt— / Hw(u)4>dx + 

(2.14.a) 
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/ G ^ K J ^ - ^ C u ^ ^ V ^ - V ^ dxdt- J G^(wu)cf>dx + 

Q fix{r} (2.14.b) 

+ J G"'°<f>dx = 0 , l<v<N-l 
fix{0} 

hold true for all test functions 

^c([o,r],ir1(fl))nff1([o,r],i,(fl)) 

where if0 G Hwo(u°) and G^'0 G G£„(w°), 1 < v < N - 1, are appropriately given 
initial da ta at time t = 0. 

In case of pure heat transfer with a change of phase at a fixed temperature um, 
the existence of a weak solution can be shown in a constructive way by discretiz-
ing the corresponding degenerate parabolic equation (enthalpy formulation of the 
two-phase Stefan problem) implicitly in time with respect to a uniform partition 
tm = m A t , 0 < m < M , At = T/M, M G IN, of the time interval [0,*]. At time 
levels tm, m > 1, this semi-discretization requires the solution of elliptic differ
ential inclusions being equivalent to elliptic variational inequalities of the second 
kind which admit unique solutions whose piecewise linear prolongations can be 
shown to converge for At —> 0 in the Z2-sense to a weak solution of the problem 
[20]. 

For multicomponent alloy solidification problems, a closely related approach has 
been used by BERMUDEZ and SAGUEZ [5]: Denoting by um, w™ approximations to 
u, wu, 1 < j / < JV — 1, at time tm, linearizing the nonlinear elliptic part in (2.14.a), 
(2.14.b) by evaluating the coefficient functions K and ß„ at the preceding time level 
£m_i, averaging the t ime-dependent Neumann data q on [tm-i,tm] and finally, se
lecting some Hm-1 G H^-^u™-1), G"'™-1 G G ^ « 1 " 1 ) , 1 < v < N - 1, we 
arrive at the following system of elliptic differential inclusions 

H™-1 - AtL™um G Hwm{um) in Ü , (2.15.a) 

G ^ " 1 - AtL?w? G Gu
um{w™) in ft , 1 < v < N - 1 , (2.l5.b) 

l ~ 1 V - = 9 m , ^ = 0 o n l \ l < v < N - l (2.15.c) 
on dn 

where 

L™um = - V • ( /cm - 1Vum ) , K™-1 = K(um-\ w™-1) , (2.16.a) 



Lvw? = -V • (ßr1 VuC) , flT1 = / W \ <~l) , (2.16.b) 

l A t 

9m = (Ai)"1 / 9(<)<ft. (2.16-c) 
( m - l ) A t 

Now, for fixed r G IR~ the multivalued functions #,•(•) and G>(-), 1 < f < TV —1, as 
given by (2.12.a), (2.12.b), respectively, turn out to be the subdifferentials d$T{-) 
and d^v

r{-) of the piecewise quadratic functions 

,,, f ^ A 2 + öLr i f A ^ r 
* r ( A ) = I 2H H T (2.17.a) 

I i/xrA2 + />LA if A > r 

*r(A) = ( ' ^ - ̂  ^ - 7 ^ ) if " - r (2.17.b) 

1 hSAL if A > r 

where the integration constants have been chosen such that $ r(0) = 0, ^ ( 0 ) = ®i 
1 < v < T V - 1 . 
By means of (2.17.a), (2.17.b), we define functionals <f> : Z2(0) x L2(Si) -+ IR and 
V>" : i 2 ( 0 ) x L2(fi) ->|R, 1 < v < TV - 1, according to 

<f>(u,v) = [$u{x)(v(x))dx , u,v € L2(fl) , (2.18.a) 

^"(u,i;) = jK(*)(v(x))dx ) ¥ e I 2 ( 0 ) . (2.18.b) 
Q 

Then, for fixed u G L2(Vl) we consider the functionals 4>u : L2(Cl) —>• IR and 
^ : £2(ft) -+ IR as given by 

</>» = # u , u ) , v G £2(ft) , (2.19.a) 

xft(v) = xl>,'(u,v),v€L2(Sl). (2.19.b) 

Furthermore, we denote by a™(-, •) and a™(-, •), 1 < f < TV — 1, the bilinear forms 
on i^x(0) x //^(fi) associated with the second order elliptic differential operators 
L™, L™, respectively, i.e.: 

a£(v,z) = JK^VvVzdx , v^eH^ft), (2.20.a) 
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<C(u,z) = lß™~lVv -Vzdx , v,z e H\Ü) . (2.20.b) 
n 

Then, it is easily shown that (2.15.a) - (2.15.c) is equivalent to the following system 
of quasivariational inequalities of the second kind 

Ata™(um,v - um) + 4>wm(v) - <^m(um) > C{v - um) , 

A * < C « , v-w™) + ^™(v) - ^ m « ) > l?(v - «,-) , 

veH\Sl), 1 < v < N -1 

where 
C(z) = {Hm-\z)0 + At<qm , z>0, zeH1^) 

C{z) = (G">m-\z)0 , z G i / 1 ^ ) , 1 < i/ < N - 1 , 

(2.21.a) 

(2.21.b) 

(2.22) 

(-,-)o and (-,-}o denoting the usual Z2-inner products with respect to tt and T, 
respectively. 

Let us define functional J™ : ( i / 1 ^ ) ) ^ ->IR, 0 < v < N - 1, by 

J 0
m ( u m , < , - - - , ^ _ 1 ) = i A ^ ( w m , u m ) + ^ m ( u m ) - C ( u m ) , (2.23.a) 

^ ( « r o , < J - - - , ^ - i ) = | A < a - ( < , < ) + ^ ( < ) - C ( < ) , 3 

1 <*/ < 7 V - 1 . 

Then, setting vm = « , < , • • • , u ^ ) with uj1 = um , u™ = w™, 1 < i/ < N - l , and 
using the fact that J™(v™, • • •, uJJLl7 • , v ^ j , • • •, "3v-i) a r e subdifferentiable convex 

functional on /f1(fi), it is easily verified (cf. e.g. [1]) that any v G (H1^)) is a 
solution to (2.21.a), (2.21.b) if and only if v is a Nash equilibrium of the following 
noncooperative iV-person game: 

Find v e (H1^))" such that 

*e^(n) (2.24) 

0 < i/ < J V - 1 . 

Both from a theoretical and — as we shall see in the subsequent chapter — 
from a numerical point of view, it can be advantageous to use duality methods in 
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the treatment of the semi-discretized alloy equations. 
We remind the well known fact from convex analysis (cf. e.g [9]) that for any 
convex lower semicontinuous functional 0 the equivalence 

v G dQ(u) ^ « e dQ*(v) (2.25) 

holds true where 0* denotes the Fenchel conjugate of 0 . Taking (2.25) into ac
count, the system of elliptic differential inclusions (2.15.a), (2.15.b) is equivalent 
to 

um e d$*wm (if"1"1 - AtL%um) in Q (2.26.a) 

w™ G dV% (G" ,m_1 - AtL™w™) in Ü , l<i/<N-l (2.26.b) 

In view of (2.17.a), (2.17.b), the Fenchel conjugates <&*, *&"'* a n d their subdiffer-
entials d$*, d^"'* can be easily computed. In particular, we obtain 

X/pa if A < par 

<9$*(A) = I r if A € [par, par + pL] 

(A — pL)lpa if A > par + pL 

(2.27.a) 

d$?*(\) 
1L.A if A < r/7L|1/ 

r if A e [r/~(L,v , rlls,u 

Is, A if A > r/~fs,v • 

(2.27.b) 

It turns out that d$* and d^^*, 1 < v < N — 1, are piecewise linear con
tinuous functions and hence, in contrast to the subdifferentials 3 0 r and dty", 
1 < v < N — 1, they are single-valued. Consequently, the inclusion "€" in (2.26.a), 
(2.26.b) can be replaced by the equality "=" or, in other words, the "dual" system 
(2.26.a), (2.26.b) together with the boundary conditions (2.15.c) represents the 
weak formulation of a system of nonlinear elliptic boundary value problems. 
Note that, in terms of the dual formulation, the liquid and solid region Qz,(£m), 
Qs(tm) a n d the mushy zone Y,M(tm) at time tm (with respect to the alloy equations 
discretized implicitly in time) can be equivalently described by means of 

QL(tm) [x e n\um > wm) = 

{x e ÜIH™-1 - AtL™um > pawm + pL , 

G".™-i _ AtL™w™ < u™hLfU , 1 < v < N - l } , 

(2.28.a) 
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Qs(tm) = {* e ft|um < ™m} = 

= {x E ttlH™-1 - AtL%um < pawm , (2.28.b) 

QV,m-\ _ AtL™W™ > U™llS,v , 1 < 1/ < JV — l } , 

Sm(<m) = {x E 0 |pS m < Hm~l - AtL^um < pawm + PL , 

KHL,V < G^-1 - AtLZw? < xChs,v , (2.28.c) 

1 < „ < J V - l } . 

(compare (2.10.a-c), bu t observe the assumption uj = 0). 

As far as the existence of solutions is concerned due to the equivalence of 
(2.21.a), (2.21.b) and (2.24), we may try to apply known existence results either for 
systems of quasivariational inequalities or for Nash point equilibria of variational 
integrals (cf. e.g. [1], [2], [3], [4], [22], [29]). Since some of these results are based 
on order structures, we recall that L2(Vl), equipped with the usual Z 2 -no rm || • ||o, 
is a complete Hubert lattice with respect to the canonical ordering given by u < v, 
u, v E L2(Vl), iff u(x) < v(x) f E fi. In particular, any two elements u, 
v E L2(fl) have a common least upper bound and a common greatest lower bound, 

denoted by uVu and uAv, respectively, and every subset S C L2(Q,) with an upper 

bound possesses a least upper bound, denoted by VS. The Sobolev space H1^) 

is a sublattice of L2(Q), i.e., for any u, v E i71(f]) the elements u V w and u A v, 

formed with respect to the canonical ordering in £ 2 ( f i ) , also belong to i71(fl) . The 

Sobolev norm | | -1 |! on i f a ( 0 ) satisfies | |«+ | | i < IMIi a n d | |u~| | i 5: ||u||i> u £ ^(il), 

where u+ = u V 0 and u~ = — u A 0 (cf. e.g. [14], [25]). Moreover, denoting by 

T0(L
2(Cl)) the set of all proper convex funct ional on L2(fl), we may define an 

order relation on r 0 ( L 2 ( Q ) ) by fa < fa, fa,fae T0(L
2(Ü)) iff either fa-fa = c 

for some c ElR+ or fa—<pi ^ cfor all c ElR and fa(u/\v) + fa(u\/v) < <f>\{u) + fa(v) 

for all u, v E L2(tt) (cf. e.g. [2], [14]). 

Preparatory, we will now state some basic results which are easy to verify and thus 

will be given without proofs. 

L e m m a 2.1 The junctionals <f> and ip", 1 < u < N — 1, as given by (2.18.a), 
(2.18.b) are continuous on L2(Cl) x L2(Q). 

L e m m a 2.2 (i) For any u E L2(Cl), the Junctionals fa and tpu> 1 < ^ < -/V — 1 
defined by means of (2.19.a), (2.19.b), are continuous proper convex junc
tionals on Z/2(0). 
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(ii) For any Ui, u2 6 L2(Vi), there holds 

{ rui < K , i < v < N - 1 . 

Lemma 2.3 (i) The bilinear forms a™, 0 < v < N-l, given by (2.20.a), (2.20.6), 
are continuous on //^(O) x /f1(0) and L2(Q,)-coercive in the sense that there 
exist constants av > 0 and \u GIR such that 

a™{u,u) + \u\\u\\2
0 > av\\u\\\ , u G Hl(Q) . 

(ii) The bilinear forms a™, 0 < i/ < N — 1, are compatible with the lattice structure 
in the sense that 

a™(u+,u-) = 0 , u £ ^ ( ( ] ) . 

Taking advantage of well-known results for standard variational inequalities 
(cf. e.g. [2], Theorem 10.2), from Lemma 2.2 (i) and Lemma 2.3 the following 
conclusions can be immediately drawn: 

Proposition 2.4 For fixed wm 6 //a(fi), the variational inequality (2.21.a) is 
uniquely solvable. Likewise, for v G {1,...,N — 1} and fixed u™ G H1^), the 
same holds true for the variational inequalities (2.21.6). 

In terms of the noncooperative iV-person game (2.24), the preceding result 
tells us that, given the complementary coalition's choice wm respectively u™, 1 < 
v < N — 1, then for player v G { 0 , 1 , . . . , iV — 1} there exists a uniquely defined 
strategy um G if1 (ft) respectively w™ G //^(ft), 1 < u < N — 1, minimizing his 
loss function J™, i.e., 

J0
m(2m,ti>i, • • • ,w%_x) = inf J?(v,w?,... , < L J 

v£Hx(U) 

i n f ' m J ? ( u m , < , - . . , < - i , « , < + ! , • • - . t i ; ^ ) , 1 < I / < J V - 1 . 

Introducing the operators T^ : i/x(ft) —• ./^(ft), 0 < v < N — 1, uniquely de
fined by T0w

m = um and Tuu™ = u5„m, 1 < i/ < N - 1, it is evident that any 
t>m = (um,w™,... ,wj}_x) G [if1(0)] jV is a solution to the system of quasivaria-
tional inequalities (2.21.a), (2.21.b) and a Nash point equilibrium of (2.24) iff vm 

is a fixed point of the operator T : [Hl{Ü)]N -* [H\£l)}N given by 

Tvm = (T0w
m, TlU?,..., IV- i t i^) . (2.29) 

We will now establish some nice mapping properties oi T„, 0 < v < N — 1, 
and T which will enable us to deduce the existence of fixed points: 
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L e m m a 2.5 (cf. [5], Lemme 2.1) 
The operators Tu, 0 < v < N — 1 are monotonely increasing, i.e., given 

Zi G H1^), i = 1,2, Mere /JOWS 

zi < -̂ 2 = ^ 2^21 < T„z2 • (2.30) 

Proof. In view of Lemma 2.2 (ii) and Lemma 2.3, the proof is a direct conse
quence of the standard comparison theorem for variational inequalities (cf. e.g. 
[2]; Theorem 19.11, [22]; Theorem 3.1). • 

Let us now define u , ü G H1^) and w^^w» G Hx(Vl), 1 < v < N — 1, as the 
unique solutions to the variational equalities 

(pau + pL,v)0 + Ata™{u,v) = l™(v) , v G H\Ü) , (2.31.a) 

{pa%v)0 + Ata%(ü,v) = / £ » , u G / ^ ( f t ) , , (2.31.b) 

( 7 ^ , " ) o + btaZ^v) = C ( u ) , u G ^ ( f t ) , (2.31.c) 

( 7 Z > , ^ ) o + A ^ ü ; ^ ) = C ( « ) , v G ^ ( 0 ) . (2.31.d) 

Then there holds: 

L e m m a 2.6 (cf. [5]; Lemme 2.2) 

Let v_ = («, 2£ i , . . . ,W_N~I), ^ =
 (W,IÜI , . . . ,Tü^r_i) an</ /ei us denote by 

[v.,v] C [if1(fi)] ; v it/ie order interval with lower bound v_ and upper bound v. Then 
the operator T, given by (2.29), satisfies 

T : [ i / 1 ^ ) ] " - > [ £ , ü ] . (2.32) 

Proof. The proof follows immediately from the preceding Lemma 2.5. • 

Based on the results obtained so far, we will now constructively prove that the 
set of fixed points of the operator T is non empty and possesses a minimum ele
ment v* = (u*,wl,... , to/y-i) and a maximum element v** = (u**, w " , . . . , u ^ _ a ) . 
Starting from 

u° = ü,w°v = wv, 1 < v < N - 1 , (2.33.a) 

we define uß, iu£, fi > 1, recursively by 

u" = Tow*-1 , < = r X _ 1 , l < i / < i V — l , / z > l . (2.33.b) 
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Then, setting 

we get: 

T h e o r e m 2.7 (cf. [5]; Proposition 2.1) 
The fixed point set F(T) of the operator T is non empty, and the sequence (zß)ß>0 

respectively (2M)A,>o is a monotonely increasing respectively monotonely decreasing 
sequence converging weakly in [i71(rj)]iV to the minimum element v* = AF(T) 
respectively the maximum element v** = VF(T). 

Proof. Since the uß and wß, fi > 1, are solutions to the variational inequalities 
(2.22) with fixed wß~1 and u £ - 1 , respectively, it is easy to see that both sequences 
(IM)M>O

 a n d ("zß)ß>o are bounded in [ / f 1 (0) ] N . Combined with the monotonicity 
properties, which follow directly from Lemma 2.5, this implies the existence of 
elements z* G [Hl{tt)]N and z** <= [H^Sl)]* such tha t (zß)ß>0 and (J")M>0 con
verge weakly in [üf 1 (0) ] i V to z* and z**, respectively. Then, passing to the limit 
in the variational inequalities satisfied by the elements of z_ß respectively in the 
dual variational inequalities satisfied by the elements of ~zß and using the results of 
Lemmas 2.1, 2.2, and 2.3, it can be shown that z* and z** are solutions to (2.21.a), 
(2.21.b), i.e., z\ z** <E F(T). Finally, the assertions z* = AF(T) and z** = VF(T) 
follow immediately from Lemmas 2.5 and 2.6. (For details, the reader is referred 
to [5]; Proposition 2.1). • 

R e m a r k . If we replace the startvalues u° and w^ in (2.33.a) by u° = u and 
to° = Ü7, 1 < v < N — 1, and define uß and wß, \i > 1, and in (2.33.b), we get the 
same results with the only difference that the roles of (z_ß)ß>o and (z~ß)ß>o have to 
be mutually exchanged. 

In the context of noncooperative iV-person games, the iterative scheme given 
by (2.33.a), (2.33.b) corresponds to a parallel minimization, i.e., each player chooses 
his strategy uß respectively wß, 1 < v < N — 1, by minimizing his loss function 
with respect to the previous complementary coalition's choice wß~l repectively 
uu~Xi ^ ^ 1- An alternative would be to use some kind of sequential minimiza
tion in the sense that , with respect to a prespecified ordering of the players, each 
player makes up his current strategy by taking into account the chosen strategies 
of his predecessors. We will come back to this point in the following section on 
the numerical solution of the multicomponent alloy solidification problem. 

By definition, Nash equilibria only exhibit "individual" stability which means 
that no player can diminish his loss function when the other players do not change 
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their strategies. However, there may exist strategies which result in a smaller loss 
for each player. Such strategies require a certain amount of cooperation among 
the N players and lead to the concept of weak Pareto strategies, which exhibit 
a "collectively" stable behaviour (cf. [1]; Chapter 10). In particular, in terms of 
the loss functionals J™, 0 < v < N — 1, given by (2.23.a), (2.23.b), a strategy 
z = (u,wi,... ,wn_i) G [/f1(f2)]Af is said to be a weak Pareto strategy iff there is 
no v e [Ä'1(^)]7V such that J™(v) < J?(z), 0 < v < N - 1. The corresponding 
multiloss Jm(z) = (j^(z),..., JN^Z)) is called a weak Pareto minimum. 

Finally, a strong equilibrium is a strategy which is both a Nash equilibrium 
and a weak Pareto strategy, i.e., it satisfies both "individual" and "collective" sta
bility. 
Since, with regards to the alloy solidification process, the loss functionals J™ rep
resent individual "energy contents", from a physical point of view it is natural 
to ask for the existence of strong equilibria. Using Lemma 2.1 and Lemma 2.3, 
the existence of a weak Pareto strategy as a "best compromise" within the set 
of Nash equilibria can be shown by standard arguments (cf. [1], Chapter 10.2.4). 
However, we still do not have uniqueness of a strong equilibrium. Therefore, 
arguing again from a physical point of view, we may use the "total energy con-

N - l 

tent" Em(v) = ^2J™(v) as a further selection and ask for a strong equilibrium 
i/=0 

z G [i/1(fl)] ;v on the lowest energy level Em(z). In the next section we will show 
how to use such a selection process within a multi-grid approach based on a dis
cretization of the system (2.21.a), (2.21.b) by piecewise linear finite elements with 
respect to a hierarchy of triangulations. 
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3. The multi—grid method 
In this section we will present a multi-grid algorithm for the numerical solu

tion of the multicomponent alloy solidification problem based on a finite element 
discretization with respect to a hierarchy of triangulations. 

For simplicity, we will assume that Q is a bounded domain in IR2 with polyg
onal boundary T = dCl. Starting from an initial regular triangulation T0 with 
il = (J T, we generate a hierarchy (Tk)k=.Q, / £ M, of triangulations by successive 

refinements realized in the usual way, i.e., Tk+\ is obtained from Tk by subdividing 
each triangle T E Tk into four subtriangles such that the midpoints of the edges of 
T are the additional vertices. We refer to Vk, 0 < k < I, as the finite dimensional 
subspace of i J x ( 0 ) generated by piecewise linear finite elements, i.e., 

vk = {vk e C(U)\vk\T e A(r) for ail T G rk} 
where P\(T) is the set of polynomials on T of degree less than or equal to 1. 
Denoting by aj, 1 < i < 3, the vertices of T G Tk, the set fi*. of nodal points is 
given by fit = |J {af, a^, a j } , and we have dim Vk = nk, nk = card Q,k- Ordering 

TeTk 

the nodal points lexicographically, we may write Qk — {&£,...,&£ }, and a suitable 

basis {<£>*}"=! ov Vk is given by ^(b1-) = <S,j, 1 < i, j < rik. Then for a function 

v G C ( 0 ) its interpolate will be denoted by I"Uu = ]T\(&, )<£>f • 
t = i 

In order to discretize the multicomponent alloy solidification problem within 
the above finite element setting, the functionals <pu : L

2(Cl) —> IR and i\)v
u : L

2(Sl) —> 
IR, 1 < v < N — 1 defined by means of (2.19.a), (2.19.b), will be approximated by 

functionals <pk,uk : Vfc —>IR and $ j : Vk —+IR, Uk € Vk, according to 

J (jlk$Uk(vk)){x)dx = 

(3.1.a) 

EJ«ea(r)E^(.n(t'*(«?')) 
Ten f=i 

I (nkKM))(x)dx = 

(3.1.b) 

T€Tk i=l 

Further, we introduce a discrete L2 inner product 

3 

(uk,vk)k = ^2 3 a r e a (T)J2uk(aT)vk(aI)> uk,vk€Vk. (3.2) 
TeTk «=i 

V*,u*(u*) = 

lft,«>*) = 

17 



Moreover, denoting by Tk
T the set of all triangles T G Tk such that two vertices 

af, iß G {1,2,3}, 1 < \i < 2, are situated on T and assuming the thermal flux 
function q to be at least piecewise continuous as a function on T, we approximate 
the boundary integral in (2.23.a) by 

2 

7fc,r»(«*) = J2\\al,al\ Z)C u*( aD ' u* e v* ' (3-3) 

where |a^, a^ | stands for the Euclidean distance of ci^^aj and ^ = Uiaqm(x) for 

xe#rnr, x->a£, 1 <^<2. 
Assuming given #fc

m-1 G V* and Gl'™"1 eVk,l<v<N-l, we set 

^o(vjb) = (H?-\vk)k + At7kiq-m{vk) , vkeVk, (3.4.a) 

^ ( ^ ) = ( G r _ 1 , ^ ) f c , l < ^ < i V - l , UfcGVfc. (3.4.b) 

Finally, as discrete counterparts of the functionals given by (2.23.a), (2.23.b), 
we define 

(3.5.a) 

(3.5.b) 

where 
N - l 

<= £<„ and 

i V - l 

<„ = < - £ < , , I < I / < J V - I . 

As an approximation to (2.24), we consider the following finite dimensional non-
cooperative A^-person game: 
Find v? = Km

0, • • •, <yv-i) e Vk
N with u£0 = u? and *£„ = w%v, l<v<N-l, 

such that 

0 < v < N-l . 
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As in the continuous case, the computation of a Nash equilibrium of (3.6) is 
equivalent to the solution of a system of quasivariational inequalities, which is the 
discrete counterpart of (2.21.a), (2.21.b): 

AtaZ(u%,vk - O + <pk,w?(vk) - ^ - . K ) > l^M - v%) , 

vkEVk 

A ' < C « „ vk - < J + PkKtf(vk) - ^ « „ ) > l^(vk - u£„) , 

vk G Vk , 1 < v < N - 1 . 

By identifying functions in Vk with vectors via the bijective map 

hvk = 52vk<irf, vke\Rn", (3.8) 
t = i 

we can state (3.6) and (3.7.a), (3.7.b) in the algebraic form. Indeed, it can be 
easily seen that (3.7.a) , (3.7.b) is equivalent to a coupled system of N algebraic 
inclusions 

- K o < ! o - fTfi) € M^W) , (3.9.a) 

- (AZ|„<„ - fZ,) e d%<v{wl„) , 1 < v < N - 1 , (3.9.b) 

with nk x nk diagonally dominant Z-matrices A™,,, vectors f™u £ IRn*, 
0 < v < N - 1, and 

$k,vk(uk) = £*v* | j(«*,0 
i-1 

(^kv (uk)i 1 < ^ < Â  — 1, being defined analogously). 
Note that the loss functions J™ of the associated noncooperative TV-person game 
(3.6) take the form 

<4moK) = HKovk - {ftflfvk + **,<(f*), 
J&M = K ^ * > - (f^)Tvk + n,uTJvk) , 1 < v < N - 1 . 

Defining subsolutions uk, w^^ and supersolutions Tik, wkiU, 1 < v < N — 1, 
by the discrete analogues of (2.31.a-d) and setting y_k = (uf.,^^,... ,w_kN_1), 
vk = (uk,wk}i,... ,wktN-i), we may introduce the operator 

Tk :\Rn* ^ [vk,vk] (3.10) 

in the same way as we did in the continuous case by means of (2.29), (2.32). Again, 
the set of Nash equilibria of (3.6) turns out to be the fixed point set F(Tk) of the 
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operator Tk and, arguing as in the preceding section, it can be shown that F(Tk) is 
non empty and possesses a minimal and maximal element v% and u " , respectively. 
We may compute those elements by the discrete analogue of the iterative scheme 
(2.33.a), (2.33.b) where at each iteration step we have to solve an uncoupled system 
of N variational inequalities of the second kind. This can be done by applying 
multi-grid techniques for such variational inequalities as developed in [17] and [18] 
which are more efficient than working with the single grid approach in [5] based 
on the Moreau-Yosida proximal approximation of the subdifferentiable functionals 
<Pk,vk

 a n d 4>kv,l<v<N — 1- However, the use of algorithm (2.33.a), (2.33.b) 
has an important drawback: The initial vector i?° = (ük, uk, Wj.,\i • • • ?Ulk,N-i) 
is usually "far away" from v% and u£* and hence, we need unsatisfactorily many 
iterations to compute sufficiently accurate approximations. For this reason, we 
propose a quite different strategy which is not based on decoupling techniques but 
on some kind of decomposition by using symmetric block nonlinear Gauss-Seidel 
iteration. As we shall see, at each iteration step, we have to solve a system of 
N coupled scalar inclusions being equivalent to a noncooperative N-person game 
with loss functions in N variables. We can explicitly determine the set of Nash 
equilibria and subsequently compute a unique Pareto minimum within this set. 
This iteration will then be used within a multi-grid framework both as a smoother 
and as an iterative solver on the lowest level. 

We will describe the (/i + l)-st step of the iteration on level k of the hierarchy 
of discretizations where for notational convenience we will drop the indices k and 
m, i.e., we will write u instead of u™, etc. and denote by a^, 1 < i, j < n^, the 
elements of the matrices A£\,, 0 < v < N — 1. 
The block structure is obtained by assembling the unknowns according to 

, = i« v ) ^ , (W1) 
Zi = (ui,w1j,...,wN-1,i) GlR , 1 < i < nk . 

As said before, we attempt to solve (3.9.a), (3.9.b) by symmetric nonlinear Gauss-
Seidel with respect to that block structure. Hence, given an iterate zß, /i > 0, it 
is sufficient to describe the first half step in the computation of zß+1, namely the 
determination of z? for i — l , . . . ,nj t , since afterwards 2f+ will be obtained 
by the same procedure but in reversed order i = n^, n ^ - i , . . . , 1. 
The computation of z? for i = 1 , . . . , nk will be accomplished within the fol
lowing two steps: 

Step 1. Determination of Nash equilibria 
We compute the set 5f of solutions zf ' of the system of N scalar inclusions 

- aluf112 + /„,,• - do,,- € ö$~M+1/2(ä?+1/2) (3.12.a) 
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"•< (o.lz.b) 
1 <v <N -1 . 

where 

<i = £ < * ? £ ? + £ « . ,+1 . 0 < v < N - 1 . (3.13) 
3 = 1 j=«'+l 

Again, introducing loss functions 

Jo,i(ui, wi,i, • • •, tujv-i.t) = £a°u2 + («io,t - /o,t)«t + $u<i(".-) > (3.14.a) 

^ , i ( « i , W!,,-,..., WAT-I,,-) = !<•«>£,• + (<*„,,- - /„,.-)u>i/,.- + * ^ j («>„,•) (3.14.b) 

and setting u; = (u,-,o,Ut,i> • • • >U«',N-I) with Uji0 = uf+1/2, u,-,„ = w^1'2, I < v < 
N — 1, the system (3.12.a), (3.12.b) is equivalent to the noncooperative TV-person 
game 

Ju,i{vißy • • • •> vi,N-i) = min J^,-(u,-,o, • • •, u ,>- i , 2, u;,„+i, • • •, u,-,jv_i) , 
*eR (3.15) 

0 < i / < i V - 1 . 

From previous results we have seen that the set 5f of solutions to (3.12.a), 
(3.12.b) is non empty and corresponds to the Nash equilibria of (3.15). Knowing 
that in terms of the solidification problem the vector V{ E IR characterizes either 
the liquid, solid or mushy region, and using the equivalence of (3.12.a), (3.12.b) 
with the corresponding dual inclusions (cf. (2.26.a), (2.26.b)), we find tha t the 
unknowns satisfy exactly one of the following sets of equations or inequalities, 
respectively: 

(i) Liquid region 

- 4ä f + 1 / 2 + bo,i = paufXl2 + PL , (3.16.a) 

- « T / a + K,i = llKT'2 > 1 < v < N ~ 1 ; (3-16-b) 

(ii) Solid region 

- a ^ r ^ + V ^ ^ f 1 7 2 , (3.17.a) 

" « t 1 / 2 + Vi = 7 s > S 1 / 2 , l<v<N-l; (3.17.b) 
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(iii) Mushy region 

pawf+1/2 < - 4 u f + 1 / 2 + b0ti < pawf1'2 + pL ; (3.18.a) 

7zX!1 / 2 < - « T 1 / 2 + K> < 7sX! 1 / 2 . i < " < N - 1 ; (3-18-b) 

where 6̂ ,- = /„it- - c ^ , 0 < v < N - 1. 

In view of (3.16.a), (3.16.b), (3.17.a), (3.17.b) and (3.18.a) (3.18.b), the following 
quantities obviously play a central role in the computation of solutions to (3.12.a), 
(3.12.b): 

cfn = ( 4 + P°T\K - PL) ; «T* = ( 4 + pcr)-lb0tt , (3.19.a) 

<:n = «•+75j)-%-, < r = «• + 7ri)_1v.-> i < ^ < w - 1 , (3.i9.b> 

<rn = E < f , c a x = E c a x • (3-19-c) 
J/ = l U = l 

In particular, if u,- represents a liquid or solid state, it follows readily from (3.16.a), 
(3.16.b), (3.17.a), (3.17.b) that we have a unique solution given by 

-M+l/2 = cmin ^ -H- l /2 = ^max ^ ! < „ < # _ ! (3 2 0 ) 

in case of a liquid state and 

-M+l/2 = cmax ^ -/H-l/2 = ^ i n ? 1 < ,/ < JV - 1 (3.21) 

for a solid state. 
On the other hand, if ut- characterizes the mushy region, we also have 

-M+l/2 = -M+l/2 ^ s j .+l /2 = -H- l /2 < v < N _ l m ( 3 . 2 2 ) 
u 

Substituting (3.32) into (3.18.a), (3.18.b) reveals 

cmin < -H- l /2 < ^ a x (3.23.a) 

< i n < ^ , t 1 / 2 < < i x , 1 < v < N - 1 . (3.23.b) 
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Moreover, observing 

~ r + l / 2 = ^ ^ + 1 / 2 = - ,+1 /2 

for mushy states, (3.23.b) gives 

df" < uf+1/2 < d™x . (3.24) 

Hence, setting 

I<i = [<-n, <C] ' 1 < ^ < ̂  - 1 , (3-25.a) 

is:. = [ c ^ t f " ] n [d™n,d™ax] , (3.25.b) 

we must have Ki^® and consequently, the set of solutions to (3.12.a), (3.12.b) is 
given by 

N?+l/2 = {Vi | wtf12 £ K* , 1 < 1 < v < N - 1 and 
~,+l /2 _ -M+l/2 e K \ ( 3 > 2 6 ) 

W: 

Summarizing, the above considerations show that the determination of Nash 
equilibria can be accomplished by means of the easily available local data and the 
set Ki as given by (3.19.a-c) and (3.25.b), respectively. In particular, we have to 
distinguish the following three cases: 

(i) dfn > df&x {Ki = 0) 
In this case there exists a unique Nash equilibrium, which is given by (3.20) 
and represents a liquid state. 

(ii) cfax < ^ n (Ki = 0) 
Again, we do have uniqueness of a Nash equilibrium being explicitly given 
by (3.21) and representing a solid state. 

(hi) K#% 
In this case there is a set of Nash equilibria given by (3.26) whose elements 
characterize a state within the mushy region. 

Step 2. Determination of a Pareto minimum on lowest energy level 
As we have noticed above, the only situation where we are faced with a continuum 
of Nash equilibria occurs when ^ ^ 0 , i.e., in the mushy region. If we make use of 
the relations uif+1/2 = uf+1/2 and u%1/2 = w^l/2, 1 < v < N - 1, in (3.14.a), 
(3.14.b), it is easily seen that the local loss functions J0,i

 a n d Ji>,ii 1 — v — ^ ~ 1? 
attain their unique minima in cf"n and d^f1, respectively. Thus, with regard to 
the computation of Pareto minima, we will distinguish the following two cases: 
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(iü)i <Tn < df* < ̂ Tax < cT^ o r 

Obviously, a unique Pareto minimum within the set N-1 of Nash equilibria is 
given by 

-M+l/2 = ^min ^ ^M+l/2 = ^ n ^ I < „ < N - 1 . (3.27) 

(iii)2 d™in < c™in < d?ax < d?™ or 

In this case üf ' is uniquely determined by cf1"1. On the other hand, due to the 
monotonicity of «/„,;, 1 < v < N — 1, on /Q', we do not have uniqueness of the 
concentrations. Indeed, each element of the set 

pt+i/2 = {(crn, < i / a , . . . , äjö?) I <r l / a G ^ , 

i < „ < N -1, x x r / 2 = <r} »-1 (3.28) 

i /= i 

represents a Pareto minimum within the set Nf of Nash equilibria. 
To each Pareto minimum vi & P? , we may assign the sum ot the individual loss 
functions or equivalently, in terms of the physical solidification process, the total 

N-l 

energy content Ei(v{) = ^J«/«/,«(u,-). Hence, each Pareto minimum u,- represents a 
i /=0 

well-defined energy level Ei(vi) Then, from a physical point of view, it is natural 
to ask for that Pareto minimum which characterizes the lowest energy level, and 
this amounts to the constrained minimization problem: find v* € Pf such that 

Ei{v*) = min Ei(vi) . (3.29) 

Since Ei is quadratic and P? is a closed convex set, there exists a unique v* 
which can be easily computed, e.g. by standard Lagrange multiplier techniques. 

The preceding nonlinear block Gauss-Seidel iteration can be interpreted as a 
local selection procedure in (3.9.a) and (3.9.b), respectively. To be more specific, 
for z = 1 , . . . , n;t we define a ^ , 0 < u < N — 1, by 

- a%u^ + 60,i = pcruf+1'2 + a0<ipL , (3.30.a) 

- « ,T 1 / 2 + K = {^asl + (i - ^,hz,lRT1/2 • (3-30.b) 

Then, in view of (3.19.a-c), (3.20), (3.21) and (3.27), (3.28), it follows readily that 
o:o,,- = l(a0,i = 0), if the i-th nodal point represents a liquid (solid) state, while 
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<*o,« £ [0) 1]) if it is in the mushy region. Correspondingly, for all 1 < v < N — I we 
have auj = 0(0:̂ ,- = 1), if the i-th nodal point is in the liquid (solid) zone, while 
again avj £ [0,1] holds true in the mushy region. 

Since pL stands for the release of latent energy at change of phase, we can 
interpret aoi as the liquid fraction of the solute corresponding to the z'-th nodal 
point. 

Remark: The computation of the liquid fraction OLQJ according to (3.30.a,b) con
stitutes a distinctive feature of the above iterative scheme: The liquid fraction can 
be determined as a by-product of the iteration in contrast to other approaches 
where the liquid fraction is introduced as an additional unknown in the mathe
matical model to account for the temporal evolution of the latent heat (cf. e.g. 
[26], [27], [28]). 

So far, we have only described one basic ingredient of the multi-grid algo
rithm, namely the smoothing process. We will now focus our interest to the coarse 
grid correction including an appropriate realization of the grid interactions in the 
fine-to-coarse and coarse-to-fine transfers. 
As already pointed out in the introductory part of this paper, the coarse grid cor
rection will be done by a modification of Brandt's FAS scheme [7] taking advantage 
of a duality argument from convex analysis. In particular, the duality result (2.25) 
tells us that the fully discretized system as given by the inclusions (3.9.a), (3.9.b) 
is equivalent to the following system of nonlinear algebraic equations 

Uk = d$lw(fkfl - Akt0uk) (3.31.a) 

v>k,v = d%'*u»(fk,. - Ak,vwki„) , l<u<N-l. (3.31.b) 

Adopting the approach in [16], [17] and [18], we then proceed as follows: 
Given an iterate vk = (uk,wkl,... ,wk x^) a n d denoting by vk the result after 
having executed a certain number of smoothing steps, we determine a new iterate 
_£,new a c c o r c j j ng i0 

SET = *C - rf-i(r{"X - VEU » 0 < * < JV - 1 . (3.32) 

Here r£_1 and pl
k_1 are suitably chosen restrictions and prolongations while 

vk\ = ( i t ^ i , wkt\ i, • • •, wk-i N-I) solves the nonlinear algebraic system 

uk_x = d^l^^^ (fk-ijo ~ 4b_i,oti*-i) (3.33.a) 

wk.ltV = d^:i,uk.l<vUk-x,u ~ Ak_hl/wk_hl/) , \<u<N-l (3.33.b) 
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where 

/*_!,„ = Afc.L.rJ-X. + r*_ 1(/^ - A * X J • 0 < ^ < iV - 1 . 

R e m a r k : Note that in view of (2.25) the system (3.33.a), (3.33.b), constituting 
the coarse grid correction on level k — 1, can be equivalently reformulated as a 
system of algebraic inclusions of the same structure as that which we encountered 
on level k. 

In the multi-grid solution of algebraic equations arising from elliptic prob
lems discretized by piecewise linear finite elements with respect to a hierarchy 
of triangulations, restrictions and prolongations are usually chosen in a canonical 
way, namely by the so-called seven-point restrictions and prolongations (c.f. e.g. 
[12], [13]). If we first analyze the fine-to-coarse transfer, by looking at the fine 
grid system (3.31.a), (3.31.b) and its coarse grid counterpart (3.33.a), (3.33.b) it 
is evident that we cannot use the standard seven-point restriction globally. The 
reason is that for a nodal point on level k — 1 with a neighbouring nodal point on 
level k representing a different phase, the defect in that fine nodal point is not a 
reliable indicator for the accuracy of the approximation in the coarse nodal point. 
This situation typically occurs within a neighbourhood of the discrete liquidus and 
the discrete solidus so that we have to distinguish between nodal points close to 
and off the discrete free boundaries. To make this point more explicit, we define 
ü^(vk), R = L,S,M, as the set of "liquid", "solid" and "mushy" nodal points 
in ftk with respect to the iterate vk, i.e., Qk(vk) = IXJ G ük\(ük)j > {wk)j> and 

^ f (uk) 5 ^fc^(^fc) being defined analogously. Further, for i £ fit we denote by 
U£(x) the set consisting of x and its adjacent nodal points in fl^. Then a nodal 
point x £ fifc will be called regular if U£(x) is a subset of either the set of "liquid", 
"solid" or "mushy" nodal points and will be said irregular otherwise. In particular, 
we will refer to 

^ e sK) = {* € nk\ui(x) c fi«K), R e {L,S,M}} 

as the sets of regular and irregular nodal points on level k with respect to vk. 
Now, a convenient strategy to overcome the above mentioned difficulty in the fine-

to-coarse transfer is to use pointwise restriction rk for irregular coarse nodal 
points while the standard seven-point restriction rk~

l can be chosen in regular 
coarse nodal points: 

(rfz,) (x) = 
(f*-^)(x), i fxeQ^nnr^) 

Jk-i \ ( 3 - 3 4 ) 

h *k)(x), ifzeJifc-innr^) . 
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On the other hand, concerning a proper choice of prolongations, it is well known 
(cf. e.g. [6], [16], [17], [18], [19]) that in the context of free boundary problems the 
coarse grid information on the discrete free boundary is insufficient for a proper 
modelling of the discrete free boundary on the finer grid. In particular, for nodal 
points close to the discrete free boundaries the usual transfer of coarse grid in
formation by the standard seven-point prolongation may result in an oscillatory 
behaviour of both the liquidus and the solidus. Therefore, we will use the strategy 
that a change of the discrete free boundaries should not be caused by the coarse 
grid correction process. This can be easily realized by not prolongating onto irreg
ular nodal points on the higher level. To be more precise, we refer to ^^_i(^fc-i)) 
R = L,S,M, as the set of "liquid", "solid" and "mushy" nodal points in Clk-i 
with respect to u£-i- Further, for x G fU, we define U^_x{x) as the set consisting 
either of the single element x, if x £ 0^._1, or of the adjacent nodal points in flk-i 
if x £ Qk-i- Then, we set 

{x G ttk\x e Of (ü£) and 

^ i W c O L ( i + ; ) , Re{L,s,M}}, 

Finally, denoting by pl_l the standard seven-point prolongation, we choose p\_x 

according to 

(ft-izk-i) (x) , iixesiFfavpl) 
o , if x € n» (vf, »ft1) • 

n?" (*£; Ä1) 

(p*-n**-i) ix) 
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4. Numerical Results 
We consider macrosegregation of carbon and manganese during continuous 

casting of an Fe-C-Mn ternary alloy in a slab of rectangular cross section R = 
(0, a) x (0, b). At the initial time t — 0, we assume a uniform distribution of both 
the temperature u° = u(0) and the concentrations of the impurities c° = Ci(0) and 
c° = c2(0) with u° given by the melting temperature u,f of the prime component 
of the alloy so that initially the alloy is in a completely liquid state. We further 
assume that the slab is cooled uniformly at its boundary dR (cf. Table 1 below 
which contains the basic physical data). 

Data Units Values Data Units Values 

P kg/m3 7.40 103 
ßS,2 m2/s 1.00-10-11 

a J/(kg-°C) 6.91 102 
1L,\ — 7.80 • 101 

K-L J/(m -s-°C) 3.40 101 
75,1 — 2.23 • 102 

KS J/(m -s-°C) 3.40 101 
7L ,2 — 4.90 

L J/kg 2.72 105 
7S,2 — 6.53 

9 J/{m2 • °C) -6.25 105 ud °C 15.36 • 102 

ßL,l m2 /s 1.00 io-8 u° °C 15.36 • 102 

ßs,i m2/s 0.50 io-8 
c°r % 0.60 

ßL,2 m2 /s 1.00 10"11 c° % 0.60 

Table 1. Physical data 

For symmetry reasons it is sufficient to perform the computations on a quad
rant of R, i.e., the computational domain can be chosen as fl — (0,a/2) x (t/2,6) 
with an inhomogeneous Neumann boundary condition on the left and upper part 
of the boundary dft, and a homogeneous Neumann boundary condition on the 
right and lower part. 

For a = b — 0.1m we have discretized the problem implicitly in time using 
At = 1 as time step size and by continuous, piecewise linear finite elements in the 
space variables with respect to a hierarchy (2*)*=" . of regular triangulations of 
Q involving 22k+3 triangular elements on each level km\n < k < kmax. Choosing 
&min = 2 and kmax = 5, we have computed approximations of the temperature 
and the concentrations of the impurities at selected time instants by multi-grid 
V-cycles. In particular, we have performed one pre- and one post-smoothing 
step on each level 2 < k < 5 while using the special symmetric nonlinear block 
Gauss-Seidel scheme also as an iterative solver on the lowest level k — 2. Suitable 
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start iterates on the highest level k — 5 have been obtained by nested iteration 
incorporating the already known values at the previous time step (cf. e.g [16]). 

For comparison we have also implemented the algorithm proposed in [5] start
ing at appropriately chosen super- resp. subsolutions and requiring the solution 
of three "classical" two-phase Stefan problems at each iteration step. These aux
iliary problems have been solved using the multi-grid algorithm MGSTEF2 from 
[16] (which is already much more efficient than the single-grid approach in [5]). 
The findings were that in terms of execution times the algorithm presented in this 
paper was up to 4 times faster (depending on the actual time level). 

Concerning temperature and concentration profiles, Figures la-c display level 
curves at time t = 100s while Figures 2a-c represent the related curves at t = 2505. 
In Figures la, 2a the first level curve from the right corresponds to a temperature 
of u = 1486.26 °C which is the liquidus temperature of the alloy for concentrations 
ci == C2 = 0.6%. The following curves are associated with temperatures at levels 
u = 1400°C, 1300 °C, 1200 °C, • • •. In Figures lb,c and 2b,c the first level 
curve from the right corresponds to the concentrations ca = 0.6% and c2 = 0.6%, 
respectively, while the curves close to the left and upper boundary represent slightly 
lower and the curves in between slightly higher levels. 

The computed concentration profiles are in good agreement with experimental ob
servations and confirm that molecular diffusion has a limited impact on macroseg-
regation in so far as the concentrations only change within a relatively small mar
gin. 

29 



A c k n o w l e d g e m e n t s . Most part of this paper has been written while the author 
was with the Scientific Computing Group at Konrad-Zuse-Zentrum für Informa
tionstechnik Berlin (ZIB). The author is deeply indebted to the president of ZIB, 
Prof. Dr. P. Deuflhard, for providing him with the excellent working facilities 
at the insti tute and for the stimulating atmosphere at the Scientific Computing 
Group which contributed a great deal to this paper. 

The author is also grateful to Mr. C. Besev at National Supercomputer Center 
(NSC), Linköping (Sweden), for assistance in preparing the computer graphics. 

Finally, the author wants to express his sincere thanks to Mrs. E. C. Körnig at 
ZIB for her careful and excellent TgX-typing of the manuscript. 

30 



31 



CO 
to 

F I G . l b Carbon Concentration at t=100 



00 
00 





co 
Cn 

F I G . 2b Carbon Concentration at t=250 



CO 
O l 



References 
J. P. Aubin: Mathematical Methods of Game and Economic Theory. North-
Holland, Amsterdam (1979). 

C. Baiocchi and A. Capelo: Variational and Quasivariational Inequalities. Ap
plications to Free-Boundary Problems. John Wiley k. Sons, Chichester (1984). 

A. Bensoussan and J. Frehse: Nash point equilibria for variational integrals. 
In: Nonlinear Analysis and Optimization. (Ed.: C. Vinti), Lect. Notes in 
Math., vol. 1107, pp. 28-62. Springer-Verlag, Berlin (1984). 

A. Bensoussan and J. L. Lions: Impulse Control and Quasivariational In
equalities. Gauthier-Villars, Paris (1984). 

A. Bermudez et C. Saguez: Modelisation et simulation d' un alliage ä n com-
posants. Dans: Analysis and Optimization. Proc. 5th Int. Conf. on Analysis 
and Optimization of Systems, Versailles, Dec. 1982. (Eds.: A. Bensoussan 
and J.L. Lions), Lect. Notes Control Inf. Sei., Vol. 44, pp. 147-160, Springer-
Verlag, Berlin (1982). 

M. Bloß and R. H. W. Hoppe: Numerical computation of the value function 
of optimally controlled stochastic switching processes by multi-grid techniques. 
Numer. Funct. Anal. Optimization 10, pp. 275-304 (1989). 

A. Brandt: Multi-level adaptive solutions to boundary value problems. Math. 
Comp. 31, pp. 333-390 (1977). 

A. B. Crowley and J. R. Ockendon: On the numerical solution of an alloy 
solidification problem. Int. J. Heat Mass Transfer 22, pp. 941-947 (1979). 

I. Ekeland and R. Temam: Convex Analysis and Variational Problems. North-
Holland, Amsterdam (1976). 

C. M. Elliott and J. R. Ockendon: Weak and Variational Methods for Mov
ing Boundary Problems. Research Notes in Mathematics 59. Pitman, Boston 
(1982). 

G. J. Fix: Numerical methods for alloy solidification problems. In: Moving 
Boundary Problems. (Eds.: D. Wilson, A. D. Solomon and P. S. Boggs), 
pp. 109-128. Academic Press (1978). 

W. Hackbusch: Multi-grid convergence theory. In: Multi-Grid Methods. Pro
ceedings, Köln-Porz, Nov. 1981. (Eds.: W. Hackbusch and U. Trottenberg), 
Lect. Notes in Math, vol. 960, pp. 177-219. Springer-Verlag, Berlin (1982). 

37 



[13] W. Hackbusch: Multi-Grid Methods and Applications. Springer-Verlag, 
Berlin (1985). 

[14] B. Hanouzet et J. L. Joly: Methodes d'ordre dans Interpretation de certaines 
inequations variationnelles et applications. J. Funct. Anal. 34, pp. 217-249 
(1979). 

[15] R. H. W. Hoppe: Multi-grid algorithms for variational inequalities. SIAM J. 
Numer. Anal. 24, pp. 1046-1065 (1987). 

[16] R. H. W. Hoppe and R. Kornhuber: Multi-grid solution of the two-phase 
Stefan problem. In: Multigrid Methods: Theory, Applications and Super-
computing. (Ed.: St. Mc Cormick), pp. 267-297. Marcel Dekker, New York 
(1988). 

[17] R. H. W. Hoppe and R. Kornhuber: Numerical simulation of induction heating 
processes by multi-grid techniques. In: Numerical Methods in Thermal Prob
lems, vol. VI (Ed.: R. W. Lewis), pp. 1142-1152. Pineridge Press, Swansea 
(1989). 

[18] R. H. W. Hoppe and R. Kornhuber: Multi-grid solution of two coupled Stefan 
equations arising in induction heating of large steel slabs. To appear in Int. J. 
Numer. Methods Eng. 

[19] R. H. W. Hoppe and H. D. Mittelmann: A multi-grid continuation strategy 
for parameter-dependent variational inequalities. J. Comput. Appl. Math. 26, 
pp. 35-46 (1989). 

[20] J. W. Jerome: Approximation of Nonlinear Evolution Systems. Academic 
Press, New York (1982). 

[21] A. A. Lacey, J. R. Ockendon and A. B. Tayler: Modelling mushy regions. In: 
Analysis and Optimization. Proc. 5th Int. Conf. on Analysis and Optimization 
of Systems, Versailles, Dec. 1982. (Eds.: A. Bensoussan and J.L. Lions), Lect. 
Notes Control Inf. Sei., Vol. 44, pp. 111-126, Springer-Verlag, Berlin (1982). 

[22] U. Mosco: Implicit variational problems and quasivariational inequalities. In: 
Nonlinear Operations and the Calculus of Variations. (Eds.: J. P. Gossez 
et al.), Lect. Notes in Math., vol. 543, pp. 83-156. Springer-Verlag, Berlin 
(1963). 

[23] W. W. Mullins and R. F. Sekerka: Morphological stability of a particle growing 
by diffusion or heat flow. J. Appl. Phys. 14, pp. 323-329 (1963). 

[24] M. Rappaz: Micro/macroscopic modelling of solidification. Int. Met. Review 
(in press). 

38 



[25] H. H. Schaefer: Banach Lattices and Positive Operators. Springer-Verlag, 
Berlin (1974). 

[26] K. H. Tacke, A. Grill, K. Miyazawa and K. Schwerdtfeger: Macrosegregation 
in strand cast steel: Computation of concentration profiles with a diffusion 
model. Arch. Eisenhüttenwesen 52, pp. 15-20 (1981). 

[27] V. R. Voller, M. Cross and N. Markatos: An enthalpy method for convection 
diffusion phase change. Int. J. Numer. Methods Eng. 24, pp. 271-284 (1987). 

[28] R. E. White: The binary alloy problem: Existence, uniqueness and numerical 
approximation. SIAM J. Numer. Anal. 22, pp. 205-244 (1985). 

[29] K. Zhang: Nash point equilibria for variational integrals. I: Existence results. 
Acta Math. Sin., New Ser. 4, pp. 155-176 (1988). 

39 



Veröffentlichungen des Konrad-Zuse-Zentrum für Informationstechnik Berlin 
Preprints December 1989 

SC 86-1. P. Deuflhard; U. Nowak. Efficient Numerical Simulation and Identification cf Large Chemical 
Reaction Systems. (Vergriffen) In: Ber. Bunsenges. Phys. Chem., vol. 90, 1986, 940-945 
SC 86-2. H. Melenk; W. Neun. Portable Standard LISP for CRAY X-MP Computers. 

SC 87-1. J. Anderson; W. Galway; R. Kessler; H. Melenk; W. Neun. The Implementation and Optimization 
of Portable Standard LISP for the CRAY. 
SC 87-2. Randolph E. Bank; Todd F. Dupont; Harry Yserentant. The Hierarchical Basis Multigrid Method. 
(vergriffen) In: Numerische Mathematik, 52, 1988, 427-458. 
SC 87-3. Peter Deuflhard. Uniqueness Theorems for Stiff ODE Initial Value Problems. 
SC 87-4. Rainer Buhtz. CGM-Concepts and their Realizations. 
SC 87-5. P. Deuflhard. A Note on Extrapolation Methods for Second Order ODE Systems. 
SC 87-6. Harry Yserentant. Preconditioning Indefinite Discretization Matrices. 

SC 88-1. Winfried Neun; Herbert Melenk. Implementation of the LISP-Arbitrary Precision Arithmetic for 
a Vector Processor. 
SC 88-2. H. Melenk; H. M. Möller; W. Neun. On Grobner Bases Computation on a Supercomputer Using 
REDUCE, (vergriffen) 
SC 88-3. J. C. Alexander; B. Fiedler. Global Decoupling of Coupled Symmetric Oscillators. 
SC 88-4. Herbert Melenk; Winfried Neun. Parallel Polynomial Operations in the Buchberger Algorithm. 
SC 88-5. P. Deuflhard; P. Leinen; H. Yserentant. Concepts of an Adaptive Hierarchical Finite Element 
Code. 
SC 88-6. P. Deuflhard; M. Wulkow. Computational Treatment of Polyreaction Kinetics by Orthogonal 
Polynomials of a Discrete Variable, (vergriffen) 
SC 88-7. H. Melenk; H. M. Möller; W. Neun. Symbolic Solution of Large Stationary Chemical Kinetics 
Problems. I 
SC 88-8. Ronald H. W. Hoppe; Ralf Kornhuber. Multi-Grid Solution of Two Coupled Stefan Equations 
Arising in Induction Heating of Large Steel Slabs. 
SC 88-9. Ralf Kornhuber; Rainer Roitzsch. Adaptive Finite-Element-Methoden für konvektions-
dominierte Randwertprobleme bei partiellen Differentialgleichungen. 
SC 88-10. S -N. Chow; B. Deng; B. Redler. Homoclinic Bifurcation at Resonant Eigenvalues. 

SC 89-1. Hongyuan Zha. A Numerical Algorithm for Computing the Restricted Singular Value 
Decomposition of Matrix Triplets. 
SC 89-2. Hongyuan Zha. Restricted Singular Value Decomposition of Matrix Triplets. 
SC 89-3. Wu Huamo. On the Possible Accuracy of TVD Schemes. 
SC 89-4. H. Michael Möller. Multivariate Rational Interpolation: Reconstruction of Rational Functions. 
SC 89-5. Ralf Kornhuber; Rainer Roitzsch. On Adaptive Grid Refinement in the Presence of Internal or 
Boundary Layers. 
SC 89-6. Wu Huamo; Yang Shuli. MmB-A New Class of Accurate High Resolution Schemes for 
Conservation Laws in Two Dimensions. 
SC 89-7. U. Budde; M. Wulkow. Computation of Molecular Weight Distributions for Free Radical 
Polymerization Systems. 
SC 89-8. Gerhard Maierhöfer. Ein paralleler adaptiver Algorithmus für die numerische Integration. 
SC 89-9. Harry Yserentant. Two Preconditioned Based on the Multi-Level Splitting of Finite Element 
Spaces. 
SC 89-10. Ronald H. W. Hoppe. Numerical Solution of Multicomponent Alloy Solidification by Multi-Grid 
Techniques. 
SC 89-11. B. Einfeldt. A Conception for the Design of Difference Methods for Nonlinear Conservation 
Laws: I. The Geometric Approach. 


