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Decomposing Matrices into Blocks*

Ralf Borndorfer** Carlos E. Ferreira! Alexander Martin**

Abstract. In this paper we investigate whether matrices arising from linear or integer programming
problems can be decomposed into so-called bordered block diagonal form. More precisely, given some
matrix A, we try to assign as many rows as possible to some number 3 of blocks of size k such that
no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form
is desirable because it can guide and speed up the solution process for linear and integer programming
problems. We show that various matrices from the LP- and MIP-libraries Netlib and Miplib can indeed
be decomposed into this form by computing optimal decompositions or decompositions with proven quality.
These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the
matrix decomposition problem. In practice, however, one would use heuristics to find a good decomposition.
We present several heuristic ideas and test their performance. Finally, we investigate the usefulness of
optimal matrix decompositions into bordered block diagonal form for integer programming by using such
decompositions to guide the branching process in a branch-and-cut code for general mixed integer programs.

Keywords. block structure of a sparse matrix, matrix decomposition, integer programming, polyhedral
combinatorics, cutting planes
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Figure 1: Decomposing a matrix into bordered block diagonal form.

1 Introduction

We consider in this paper the following matriz decomposition problem. Given some matrix A, some number
B of blocks (sets of rows), and some capacity x (maximum block-size); try to assign as many rows as possible
to the blocks such that (i) each row is assigned to at most one block, (ii) each block contains at most x rows,
and (iii) no two rows in different blocks have a common nonzero entry in a column. The set of rows that
are not assigned to any block is called the border.

An equivalent statement of the problem in matrix terminology is as follows: Try to decompose the matrix
into bordered block diagonal form with 8 blocks of capacity at most k. The decomposition is considered
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the better, the smaller the number of rows in the border is; in the best case the border will be empty and
the matrix decomposes into block diagonal form. Figure 1 shows on its left side the structure of a 55 x 55
non-symmetric matrix, namely, an optimal basis matrix of the Netlib-problem recipe. The right side
of Figure 1 shows an optimal decomposition of this matrix into four blocks of capacity [55/4] = 14. To
make the block structure of the decomposition visible, we have not only permuted the rows such that rows
assigned to the same block appear consecutively, but also the columns. In this case, the blocks turn out
to be almost square of sizes 13 x 13, 13 x 13, 14 x 14, and 14 x 15, but in general this does not need to be
the case. The border consists of only one row that could not be assigned to any block.

The matrix decomposition problem fits into the general context of reordering matrices to special forms.
Special forms are well studied in the literature because they can be exploited by solution methods for linear
equation systems, for example by LU- or Cholesky factorization, or by conjugate gradient methods. The
two main points of interest are that special forms allow (i) to control fill-in (bordered block diagonal form,
in particular, restricts fill-in to the blocks and the border) and (ii) independent processing of individual
blocks by parallel algorithms.

Methods to obtain special forms, including (bordered) block diagonal form, are widely discussed in the
literature of computational linear algebra, see, for instance, Duff, Erisman, and Reid [1986], Kumar,
Grama, Gupta, and Karypis [1994], or Gallivan, Heath, Ng, Ortega, Peyton, Plemmons, Romine, Sameh,
and Voigt [1990]. The matrices studied in this context mainly arise from the discretization of partial
differential equations. Some newer publications deal with matrices that appear in interior point algorithms
for linear programs, see Gupta [1996] and Rothberg and Hendrickson [1996].

The applications we have in mind are different. We are interested in matrices arising from (mized) integer
programs (MIPs). Such matrices often have potential for decomposition into bordered block diagonal form
for two reasons. First, such matrices are sparse and generally have a small number of nonzero entries
in each column. Second, bordered block diagonal form comes up in a natural way in many real world
MIPs. The problems are often composed of small blocks to model decisions in a division of a company, in a
technical unit, or in a time period. These individual blocks are linked by a couple of constraints that model
possible interactions to yield an appropriate model that covers the whole company, technical process, or
time horizon. Examples of this type are production planning problems like the unit commitment problem
in power generation, where the blocks correspond to single unit subproblems and the border is given by
load balance and reserve constraints, see Sheble and Fahd [1994] for a literature synopsis and Dentcheva,
Gollmer, Méller, Romisch, and Schultz [1997] for a recent application, multicommodity flow problems
that come up, for example, in vehicle scheduling, see Lobel [1997], classes of combinatorial programs like
the Steiner-tree packing problem, see Grotschel, Martin, and Weismantel [1996], or, recently, scenario
decompositions of stochastic mixed integer programs, see Carge and Schultz [1996].

Bordered block diagonal form helps to accelerate the solution process of integer programs in several ways.
First, to solve the LP-relaxation of an integer program; here bordered block diagonal form can speed up
the required linear algebra (both if a simplex type method or an interior point method is used). Second,
it can be used to improve the polyhedral description of the set of feasible points of a MIP. For example,
given a block decomposition and taking one constraint from each block plus an according number from the
border results in the structure of a generalized assignment or multiple knapsack problem (see Gottlieb and
Rao [1990] and Ferreira, Martin, and Weismantel [1996]) whose facets are valid inequalities for the MIP
under consideration. Third, block decomposition can be used in a branch-and-bound or -cut algorithm to
guide branching decisions: Decomposing the transposed constraint matrix AT will identify the columns in
the border as linking columns that are interesting candidates for branching.

In this paper we develop a branch-and-cut algorithm for solving the matrix decomposition problem. Of
course the expected running time of such an algorithm will neither permit its usage within a parallel LU-
factorization nor within a branch-and-cut algorithm for general MIPs. Our aim is rather to have a tool at
hand that in principle obtains an optimal bordered block diagonal form. We can then evaluate whether
this special matrix structure indeed helps in solving general integer programs, and we can evaluate the
success of decomposition heuristics that try to obtain (bordered) block diagonal form and that could be
used, for instance, within a parallel LU-factorization framework.

The paper is organized as follows. In Section 2 we formulate the matrix decomposition problem as a 0/1 lin-
ear program and discuss connections to related combinatorial optimization problems, namely, node separa-
tion problems in graphs, the set packing, and the set covering problem. Section 3 is devoted to a polyhedral
investigation of the matrix decomposition problem and presents (new) valid and facet defining inequali-
ties. In the branch-and-cut Section 4 we present our matrix decomposition algorithm including separation



routines, primal heuristics, preprocessing, and other aspects of the implementation. We use this code in Sec-
tion 5 to decompose optimal basis matrices of linear programs taken from the Netlib (available by anony-
mous ftp from ftp://netlib2.cs.utk.edu), to decompose matrices arising from mixed integer programs
from the Miplib (available from URL http://www.caam.rice.edu:80/~bixby/miplib/miplib.html),
and to solve some equipartition problems investigated by Nicoloso and Nobili [1992].

2 Integer Programming Formulation and Related Problems

Consider an instance (A, 8, k) of the matrix decomposition problem where A € R™*™ is some real matrix,
B € N is the number of blocks and x € N is the block capacity. We introduce for each row i = 1,...,m
and block b = 1,..., 3 a binary variable 2% that has value 1 if row i is assigned to block b and 0 otherwise.
Then the matrix decomposition problem (A, 3, k) can be formulated as the 0/1 linear program (IP) that
is stated on this page.

Inequalities (i) guarantee that each row is assigned to at most one block. Constraints (ii) ensure that the
number of rows assigned to a particular block b does not exceed its capacity. Finally, (iii) expresses that
two rows ¢ and j must not be assigned to different blocks if both have a nonzero entry in some common
column. These three sets of inequalities plus the bounds (iv) and the integrality constraints (v) establish
a one-to-one correspondence between feasible solutions of (IP) and block decompositions of the matrix A
into 3 blocks of capacity . In the sequel we will also call a vector & € R™*# a block decomposition if it is
feasible for (IP). Note that formulation (IP) as it stands is not polynomial, since the number of variables
mf3 is not polynomial in the encoding length of 5. However, we may assume without loss of generality
B < m, because no more than m rows will be assigned. We also assume that the block capacity is at least
one (k > 1) and that we have at least two blocks (8 > 2).

NE
Pgm

max
1=1 b=1
B
(1) Zm?gl, fori=1,...,m;
b=1
(IP) (i) fogﬁ, forb=1,...,5;
i=1
(i) a¥+2¥ <1, forb b/ =1,...,8,b#Y and

fori,j=1,...,m, i # j such that
a;i; # 0 # aji, for some k € {1,...,n};

(iv) 0<al<1, fori=1,....m, b=1,...,5

(v) b integer, fori=1,....,m,b=1,...,0.

A first observation about (IP) is that different matrices A can give rise to the same integer program or,
in other words, different matrices can be decomposed in exactly the same way. In fact, such matrices
form equivalence classes as can be seen by considering the (column) intersection graph G(A) of an m x n-
matrix A as introduced by Padberg [1973]. G(A) has the set {1,...,n} of column indices of A as its node
set and there is an edge ij between two columns ¢ and j if they have a common nonzero entry in some
row. Applying this concept to the transposed matrix AT, we obtain the row intersection graph G(AT) of
A where two rows ¢ and j are joined by an edge ij if and only if they have nonzero entries in a common
column. But then the edges of G(AT) give rise to the inequalities (IP) (iii) and we have that for fixed j3
and x two matrices A and A’ have the same row intersection graph if and only if the corresponding integer
programs (IP) are equal.

The matrix decomposition problem is related to several other combinatorial optimization problems. First,
the problem can be interpreted in terms of the row intersection graph as a node separator problem. To see
this, let G(AT) = (V, E) and consider some block decomposition z. The set S := {i € V : 25:1 z? = 0}
of rows in the border is a node separator in G(A”) such that the graph obtained by deleting all nodes in S
and all its adjacent edges decomposes into at most [ parts, each of cardinality at most k. Conversely, each
node separator in G(A”T) with these properties gives rise to a block decomposition for (4,3, ). Various



node separator problems have been studied in the literature. Lengauer [1990] gives a survey and discusses
applications in VLSI design, Duff, Erisman, and Reid [1986] and Gallivan, Heath, Ng, Ortega, Peyton,
Plemmons, Romine, Sameh, and Voigt [1990] emphasize heuristic methods for use in computational linear
algebra. Lower bounds on the size of a node separator in a general graph are rather rare. The only results
we are aware of are due to Pothen, Simon, and Liou [1990] and Helmberg, Mohar, Poljak, and Rendl [1995],
who use Eigenvalue methods to derive non-trivial lower bounds on the size of a node separator for g = 2,
if lower bounds on the size of the blocks are imposed.

A second connection exists to set packing, and this relationship is two-fold. On the one hand, matrix
decomposition is a generalization of set packing, because feasible solutions (stable sets) of some set pack-
ing problem max{]lTx Az < L,z € {0,1}"}, A € {0,1}™*" correspond to solutions of the matrix
decomposition problem (AT, m,1) of the same objective value and vice versa. This shows that the ma-
trix decomposition problem is A/P-hard. On the other hand, we obtain a set packing relazation of the
matrix decomposition problem by deleting the block capacity constraints (ii) from the formulation (IP).
All inequalities that are valid for this relaxation are also valid for the matrix decomposition problem and
we will use some of them (namely clique- and cycle-inequalities) as cutting planes in our branch-and-cut
algorithm. Note, however, that the set packing relaxation allows assignment of all rows to any single block
and our computational experiments seem to indicate that these cuts are rather weak.

A close connection exists also to set covering via complementing variables. To see this we rewrite (IP),
substituting each capacity constraint (ii) by (K’:l) inequalities that sum over all subsets of cardinality x+ 1

of variables {a},...,a},} for some block b and each constraint in (i) by () inequalities that sum over all
pairs of variables in {z}, ... ,xf }. Replacing all variables 2 by 1—y?, one obtains the following set covering
problem:
m B
win 353
i=1 b=1
i) P+l >1, forbb/=1,...,8,b#0b and
fori=1,...,m;
(ii) nyzl, forb=1,...,0 and
(IP.) i€l

for I C{1,...,m} with |I| =k + 1;

(i) y?+yY >1, forbb'=1,....8, b#b and
fori,j=1,...,m, i # j such that
a;i; # 0 # aji, for some k € {1,...,n};
(iv) 0<yb<1, fori=1,....m, b=1,...,0;

(v) 9 integer, fori=1,....m,b=1,...,5.

This shows that the matrix decomposition problem is a (special) set covering problem. For the case of
two blocks, this formulation has been used by Nicoloso and Nobili [1992] for the solution of the matriz
equipartition problem. The matrix equipartition problem is the matrix decomposition problem for 8 = 2
and k = |m/2], plus the additional equipartition constraint

m m m m
1 2 . . 1 2
E z; = E xj, or,in complemented variables, E Y = E Yis
i=1 i=1

i=1 i=1

that states that the two blocks of the decomposition must have equal size.

3 Polyhedral Investigations

Associated to the IP-formulation (IP) of the matrix decomposition problem is the polytope
(1) P(A, B, k) := conv{z € R"*F . g satisfies (IP) (i) to (v)},

given by the convex hull of all block decompositions. We study in this section the structure of P(A, 3, k) to
derive classes of valid and facet defining inequalities for later use as cutting planes. We start by determining
its dimension.



3.1 Proposition (Dimension) P(A, 3, k) is full dimensional.

Proof. The vector 0 and all unit vectors e! € R™*# are feasible, i.e., are in P(4, 3, k), and affinely
independent. O
This means that the facets of P(A, 3, ) are uniquely determined up to a scalar factor (see Schrijver [1986]).
Two further easy observations are gathered in the following remark.

3.2 Remark (i) The non-negativity inequalities z?

b=1,....5

(i) All facet defining inequalities a”2 < « that are not non-negativity constraints satisfy a > 0 and a > 0.

> 0 are facet defining for all 4 = 1,... ;m and all

Remark 3.2 (i) is proven in the same way as Theorem 3.1 and Remark 3.2 (ii) is a consequence of the down
monotonicity of P(A, 3, k).

Facet-defining inequalities have another interesting property. Consider some vector z € R™*#  some
permutation o of the blocks {1,...,}, and define the vector € R™*# by

=b . .0(b)
T;=x; 7,

fori=1,...,mb=1,...,5. We will use in the sequel the symbol o(z) to denote the vector  that arises
from x by applying the block permutation o. Then o(x) = T is a feasible block decomposition if and
only if x is. This simple observation has two consequences. First, it implies that a”z < b is a facet of
P(A, B, k) if and only if its block-wise permutation o(a)”x < b is. Facets arising from each other via block
permutations can thus be viewed as forming a single class that can be represented by a single member.
Or, to put it in a more negative way, each facet can and will be “blown up” by block permutations to a
whole set of combinatorially essentially identical conditions. Second, the objective function of the matrix
decomposition problem is invariant under block permutation and thus the matrix decomposition problem
is dual degenerate (has multiple optima). Both dual degeneracy and the large number of permutable facets
cause difficulties in our branch-and-cut algorithm and we will have to control the number of cuts generated
and to handle stalling of the objective value.

The next two subsections list the results of our polyhedral investigations in the form of valid and facet
defining inequalities. We distinguish between inequalities a”2 < b that are invariant under block permu-
tations or, equivalently, have the same coefficients a? = a?l for all blocks b # b’ and row indices 7, and
block-discernible inequalities that do not have this property and distinguish different blocks. It will turn
out that most of the block-discernible inequalities will be inherited from the stable set relaxation of the
matrix decomposition problem, while the block-invariant constraints are related to an “aggregated” version
of the problem. In both subsections we want to assume x > 2, because otherwise the matrix decomposition
problem is a (special) set packing problem.

3.1 Block-Discernible Inequalities

We saw in Section 2 that we obtain a set packing relaxation of the matrix decomposition problem by
dropping the block capacity constraints (ii) from the integer program (IP). The column intersection graph
associated to the matrix IPjy ;) formed by the left-hand sides of the constraints (IP) (i) and (iii) has the
set of possible row assignments {1,...,m} x {1,...,8} as its node set. A (conflict) edge exists between
two assignments (i,b) and (j,b), if rows ¢ and j cannot be simultaneously assigned to the blocks b and
b, i.e., either if i = j and b # b or if i # j, b # V', and rows 7 and j have a common nonzero entry in
some column of A. We want to call this graph the conflict graph associated to the matrix decomposition
problem (A4, 3,x) and denote it by G.(A, 3). In formulas: G.(A, 3) = G(IPg),ai)). This graph allows us
to interpret the inequality classes (i) and (iii) of (IP) as clique inequalities of the set packing relaxation
corresponding to the matrix decomposition problem as also introduced by Padberg [1973].

3.3 Theorem (Clique) Let G.(4, ) = (V,E) and Q C V. The inequality
Z a:? <1
(i,b)eQ

is valid for P(A, 8,k) if and only if @ is a clique in G.(A, ). It is facet defining if and only if @ is a
maximal clique in G.(4, B).



Proof. The validity part is obvious. It remains to show that it is facet defining if and only if @ is a
maximal clique.

Suppose first that @ is not maximal but contained in a larger clique @’. But then Z(i b)eQ 2t < 1is the
sum of the inequality Z(i.b)eQ’ 2% < 1 and the non-negativity constraints > 0 for (i,b) € Q' \ @ and
cannot be facet defining.

Assume now that @ is maximal. We will construct a set of mf affinely independent block decompositions
for which the inequality is tight. |Q| such affinely independent vectors are the unit vectors e? with (i,b) € Q.
For each other assignment (j,0') € Q there exists some assignment (z,b) in @ that is not in conflict with
(7, V'), since @ is a maximal clique. Thus, the vector eg’.' + ef is the incidence vector of a feasible block
decomposition for which the inequality is tight. (Note that we assumed x > 2 at the beginning of this
section for the case b =¥’.) The resulting mf — |@| characteristic vectors obtained in this way plus the |Q)|

vectors constructed in the beginning are affinely independent. d

In the spirit of Theorem 3.3, (IP) (i) and (iii) are both clique inequalities and do not represent two different
types of inequalities. The separation problem for clique inequalities is a maximum-weight clique problem
and thus NP-hard, see Garey and Johnson [1979]. But some subclasses can be separated efficiently. One
such class that we use in our implementation are the two-partition inequalities

ng—i— ng,gl,

beB b'¢B

that are defined for all sets of blocks B C {1,...,8} and all pairs of non-disjoint rows ,j. Polynomial
separation of this class is by inspection: Given i and j, we examine for each block b the variables xf and x?.
If 2% > x?, we add b to the set B, otherwise to its complement. Note that for the case of two blocks (8 = 2),
the two-partition inequalities are exactly the inequalities (IP) (i) and (iii) and, moreover, these are already
all clique inequalities. In particular, separation of clique inequalities is polynomial for § = 2. In general,
maximal cliques in G.(4, ) are of the form {(i1,b1),...,(i3,bg)}, where the blocks by, k = 1,...,08 are
mutually different and the set of rows {iy,...,is} forms a clique in G(AT). Thus all maximal cliques in

G.(A, B) are of size S.

Another class inherited from the set packing relaxation are the cycle inequalities.

3.4 Theorem (Odd Cycle) If C is an odd cycle in G.(A, §), then the cycle inequality

> at<llol/2]

(i,b)eC

is valid for P(A, 5, k).

Analogously to the set packing case, see again Padberg [1973], the odd cycle inequality is facet defining
for its support if C is an odd hole (has no chords) and |C|/2 < k. These conditions are, however, not
necessary. Cycle inequalities can be separated in polynomial time using the algorithm of Lemma 9.1.11 in
Grotschel, Lovész, and Schrijver [1988].

Along the same lines as for the clique and cycle inequalities, the matrix decomposition polytope clearly
also inherits all other packing inequalities. But not only set packing, also set covering inequalities for (IP.)
can be applied (note that complementing variables preserves validity and dimension of the induced face),
see Nobili and Sassano [1989]. We do, however, not use any of them for our computations.

We close this section investigating the block capacity constraints (IP) (ii) which are not inherited from the
set packing polytope or the set covering polytope.

3.5 Theorem (Block Capacity) The block capacity constraint

m
E xf <k
i=1

is facet defining for P(A, 5, k) if and only if |y(i)| < m — k holds for every row i (where (i) denotes all
nodes adjacent to i in G(AT)).



Proof. We first show that the inequality is facet defining if the above mentioned condition holds. To this
purpose, let a”z < a be a valid inequality that induces a facet such that {z € P(A, B8,r)| > v, 2% = x} C
{z € P(A,B,k)|a"x = a}. We will show that the two inequalities are the same up to a positive scalar
multiplicative factor.

Define x by

b 1, f1<i<k, b =0
€T =
0, else.

x is a feasible block decomposition that assigns the first k rows to block b. x satisfies the block capacity
constraint with equality and thus a”’z = . Now observe that, for all 1 < i < k < j < m, the vector
T— ef —l—eg is also a feasible assignment that is tight for the block capacity inequality. It follows that a? =ab

J
forall 1 <4,j <m.

Now consider assigning some row j to a block b’ # b. By the assumption |y(j)| < m — k, there is a set R(j)
of k rows not adjacent to j. But then ZieR(j) e? and ZieR(j) el + elj’- are both feasible decompositions
that satisfy the block capacity constraint with equality and thus a?, = 0, completing the first part of the
proof.

It remains to prove the converse direction. If there is some row j with |y(j)| > m — &, the inequality
S xb + Y £b xé’. < k is valid. But then the block capacity constraint can be obtained by summing up

this inequality with Zb,# xé’., > 0, and therefore it cannot be facet defining. O

3.2 Block-Invariant Inequalities

We investigate in this section inequalities for the matrix decomposition polytope that are invariant under
block permutation. Consider for each block decomposition x the “aggregated” vector

B B
z(x) == (Zx?,...,Zm%) e R™.
b=1 b=1

z(x) only records whether the matrix rows are assigned to some block or not, but no longer to which block.
From a polyhedral point of view, the aggregated block decompositions give rise to an “aggregated” version
of the block decomposition polytope

P,(A, B,k) :=conv{z € R™ : thereis z € P(A, §,x) with z = z(z)}.

The aggregated polytope is interesting because any valid inequality Z:’ll a;z; < a for P,(A4, B, k) can be
“expanded” into an inequality > .., a; 2521 2t < « that is valid for P(A,3,x). All inequalities in this
subsection are of this type. Obviously, the expansion process yields inequalities that are invariant under
block permutations, hence the name.

From a computational point of view, block-invariant inequalities are promising cutting planes, because
the objective of the matrix decomposition problem can be written in terms of aggregated z-variables as
17z = lsz(m). Thus, a complete description of P, (A, 8, k) would already allow us to determine the correct
objective function value of the matrix decomposition problem and z-cuts will help to raise the lower bound
of an LP-relaxation.

The aggregated polytope P. (A, , k) provides a model of the matrix decomposition problem that rules
out degeneracy due to block permutations. While this is a very desirable property of the aggregated z-
formulation, its drawback is that it is already NMP-complete to decide whether a given vector z € {0,1}™
is an aggregated block decomposition or not. (It can be shown that this is a bin-packing problem.) Our
choice to use z-cuts within the z-model tries to circumvent this difficulty and combines the strengths of both
formulations. We remark that degeneracy problems of this type arise also in block-indexed formulations of
grouping problems in cellular manufacturing, where the difficulty can be resolved by means of alternative
formulations, see Crama and Oosten [1996].

We already know one example of an expanded aggregated constraint: Expanding the inequality z; < 1 for
the aggregated block decomposition polytope yields the block assignment constraint (IP) (i) Zbﬁzl bt <1
that we have analyzed in the previous subsection. More inequalities are derived from the observation that
adjacent rows (with respect to G(AT)) can only be assigned to the same block. A first example of this sort
of inequalities are the z-cover inequalities.



3.6 Theorem (2-Cover) Let G(AT) = (V,E) and let W C V be a set of rows of cardinality x + 1. Then,
the z-cover inequality

B
T
€W b=1
is valid for P(A,f, ) if and only if (W, E(W)) is connected (where E(W) denotes all edges with both
endpoints in W). It is facet defining for P(A, 3, ) if and only if for each row ¢ ¢ W the graph (W U
{i}, E(W U {i})) has an articulation point different from i.

Proof. The validity part is easy. Since |W| = k + 1, not all rows can be assigned to the same block. If
some rows of W are assigned to different blocks, there must be at least one row in W that is not assigned
because (W, E(W)) is connected. Conversely, if W is not connected one easily finds a partition of W into
two subsets that can be assigned to different blocks.

The proof that this inequality is facet defining if and only if for each row ¢ ¢ W the graph (W U{i}, E(W U
{i})) has an articulation point different from ¢ is analogous to the proof of Theorem 3.5. The condition
guarantees that if row 7 is assigned to some block, the assignment can be extended in such a way that s
rows from W can be assigned to at least two blocks. On the other hand, if the condition is not satisfied
for some j ¢ W, the inequality .y, U 2521 2% < k is valid, and thus the z-cover inequality cannot be
facet defining. O

In the set covering model, z-cover inequalities correspond to constraints of the form . . Zle yf >1
that have been used by Nicoloso and Nobili [1992] for their computations. The separation problem is to
find a tree of size k + 1 of maximum node weight. This problem has been studied by Ehrgott [1992] and
was shown to be NP-hard using a reduction to the node-weighted Steiner-tree problem.

The z-cover inequalities are induced by trees, but it is possible to generalize them for subgraphs of higher
connectivity.

3.7 Theorem (Generalized z-Cover) Let G(AT) = (V, E) and let W C V be a set of rows of cardinality
K+ k with k > 1. Then, the (generalized) z-cover inequality

B
Sy e

€W b=1

is valid for P(A, 8, k) if and only if (W, E(W)) is k-node connected. It is facet defining for P(A, 8, k) if
and only if for each row ¢ € W there exists some node cut N in (W U {i}, E(W U {i})) of cardinality k
with i ¢ N.

The proof of this generalization follows exactly the lines of the proof of Theorem 3.6. In our branch-and-cut

algorithm we restrict attention to the cases k =1 and k = 2.

Closely related to the z-cover inequality is the z-clique inequality. Here, we consider some node set W that
is not only k-node connected for some fixed k, but induces a complete subgraph. In this case the condition
for being facet defining slightly changes.

3.8 Theorem (2-Clique) If Q is a clique in G(AT), then the z-clique inequality
B
>t <
1€Q b=1

is valid for P(A4, 5, k). It is facet-defining if and only if |Q| > k + 1 and for each row i ¢ @ there exists a
set of rows R(i) C Q, |R(i)| = k, such that i is not adjacent in G(AT) to any node in R(3).

Proof. The inequality is clearly valid. To show that it is facet defining given the mentioned conditions,
let aTa < o define a facet such that

B
{z € P(A,ﬁ,n)|22x? =k} C{x € P(A,B k)a" "z =a}.

i€Q b=1



We will show that the two inequalities are the same up to a positive scalar multiplicative factor. To this
purpose, consider any k rows of . The block decomposition obtained by assigning these rows to some
block b is feasible and tight for the z-clique inequality. Since |Q| > k+ 1, we can use these solutions to show
that a? = ag’.' for all 4,j € Q and for all blocks b,b' € {1,...,3}. Assuming that for each row i ¢ @ there
exists a set of nodes R(i) C Q, |R( )| = K, that are not adjacent to ¢, we observe that for all ¥ # b, the
vectors R(i) €) band Y JER®) e + € are valid block decomposltlons that satisfy the z-clique 1nequahty

with equality. It follows that ai =0 for all i € Q, for all ¥’ # b, and even for all blocks ¥, since b was
arbitrary. This completes the first part of the proof.

If, on the other hand, @ has size less than or equal to x, we obtain from (IP) (i) that the left hand side of
the inequality is at most |@|. Thus, the inequality is redundant and cannot define a facet. Suppose now
the second condition is not satisfied, i. e., there is some j ¢ @Q such that j is incident to at least |Q| — k+1
nodes in . This implies that @ U {j} is at least (|Q| — k¥ + 1)-node connected. Theorem 3.7 states that
ZiEQU G Zle x? < k is valid and this implies that the z-clique inequality is redundant. |

The z-clique separation problem is again a max-clique problem and thus A/P-hard. In our implementation
we check easily detectable special cases like the following so-called big-edge inequalities

B
> Doai<n

i€supp(A.;) b=1

for all blocks b, where A.; denotes the j-th column of A and supp(A.;) its nonzero row indices. These
inequalities can be separated by inspection.

Another way to generalize the z-cover inequalities is by looking at node induced subgraphs that consist
of several components. This idea, that gives rise to the class of bin-packing inequalities, came up in
our computational experiments. Starting point is again a set of rows W that induces a subgraph of
G(AT) = (V,E). Suppose (W, E(W)) consists of I connected components of sizes (in terms of nodes)
ai,...,a;. We can then associate a bin-packing problem with (W, E(W)), 8, and & in the following way:
There are [ items of sizes a1, ..., a;, and 8 bins of capacity x each. The problem is to put all the items into
the bins such that no bin holds items of a total size that exceeds the capacity . If this is not possible, we
can derive a valid inequality for P(A, 3, k).

3.9 Theorem Let G(AT) = (V,E) and W C V be some subset of rows. If the bin packing problem
associated to (W, E(W)), 8, and k has no solution, the bin-packing inequality

5
o> ab< w1

ieW b=1

is valid for P(A, 5, k).

Proof. Consider some block decomposition z. If at least one row in W is not assigned to some block,
the inequality is obviously satisfied. Otherwise all rows that belong to the same (connected) component
of (W, E(W)) must be assigned to the same block. This yields a solution to the bin packing problem
associated to (W, E(W)), 8, and &, a contradiction. O

We do not know any reasonable conditions that characterize when the bin packing inequalities are facet
defining. Bin-packing separation is A/P-hard, see Garey and Johnson [1979].

Next we give another class of z-cycle inequalities that generalize the cycle inequalities of the set packing
polytope.

3.10 Theorem (2-Cycle) Let G(AT) = (V,E) and C C V be a cycle in G(AT) of cardinality at least
K + 1. Then the z-cycle inequality
St < c|
Z Y= k+1

1€C b=1

is valid for P(A, 3, k).



The z-cycle inequality is valid because at least every (k + 1)-st node cannot be assigned to a block. One
can also show that the inequality is facet defining for its support under certain rather restrictive conditions,
for example, if C' is an odd hole, |C| # 0 mod (x + 1), and the right-hand side is less than k. z-Cycle
separation can be reduced to the TSP and is thus A/P-hard.

Our next class of inequalities comes up in several instances in our test set.

3.11 Theorem (Composition of Cliques (COQ)) Let G(AT) = (V, E) and consider p mutually dis-
joint cliques Q1,...,Q, C V of size ¢ and ¢ mutually disjoint cliques P,...,P; C V of size p such that
|P,NQ;| =1foralli,j. Let W =UY_,Q;. Then, the following inequality is valid for P(4, 3, k):

B B
(2) Z Z{Ef < max Zmin{/ﬁrbsb} = Ol(p, q, Ba KJ)'

{reN? seN?:

W b=1 Sr=p, S sp=q} Ut
Proof. Consider a block decomposition x and let
7 o= {j: Zier 2t >1,5€{1,....,p}},
5,‘) 2 17] 6 {1""’Q}}|’

5 = Yiep @

for b =1,...,k. Because ); and P; are all cliques, we have that Zle Ty < p and Zbﬁzl 5p < . Since
|P; N Qj| =1 for all ¢, j it follows that ), x? <75, Thus,

YIDIEIS I

iEeW b=1 b=1ieW
B
< E min{ﬁ,?bgb}
b=1
B
< max g min{x, rpsp }
{reNP seN”. b—1
X r<p, 3] s<q}
B
= max g min{x, rpsp },
{reN? seN”: b—1
> re=p,30 sb=q}
showing the statement. |

The right hand side of (2) is quite complicated, and we do not even know whether it can be computed in
polynomial time. For § = 2 the right hand side looks more tractable:

B
(3) Z Z ab < max (min{k,rs} + min{x, (p — r)(¢ — s)}) .
i€EW b=1 X

0,.
0,

But we do not know a closed formula in this case either. An interesting special case is p = 2. Here the
graph (W, E(W)) consists of two disjoint cliques that are joint by a perfect matching. Suppose further
g < k < 2q. Then the right hand side of (3) reads

max{0, max (min{k, s} + min{x, ¢ — s}), min{x, 2¢} }
$=0,...,q
=max{0,q,k} = k.
In this case (2) turns out to be even facet defining if we require in addition that each node i ¢ W has at

most 2g — k neighbors in W, i,e., |v(i) " W| < 2¢ — k.

The development of our heuristic separation routine for COQ inequalities resulted in a slight generalization
of this class. The support graphs of the left-hand sides of these extended composition of clique inequalities
are COQs where some nodes have been deleted, the right-hand sides are left unchanged.
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3.12 Theorem (Extended Composition of Cliques (xCOQ)) Let G(AT) = (V, E) and consider p
mutually disjoint non-empty cliques Q1,...,Qp C V of size at most ¢ and ¢ mutually disjoint non-empty
cliques Pi,..., P, CV of size at most p such that

(i) |[PNQ;| <1foralli,jand

q

i) SN BnQl =Y 1P =Y 10
j=1

i=1 j=1 i=1

i.e., every element in one of the sets P; appears in exactly one of the sets Q; and vice versa. Let W = UY_, Q;.
Then, the following inequality is valid for P(A, 8, k):

g
(4) > at <alpq. B k).

€W b=1

Proof. The proof works by turning P,..., P, and Q1,...,Q, into a proper COQ by adding some nodes
that correspond to “artificial rows” and projecting the resulting inequality down to the original space of
variables.

Let

=Y > (11PN

=1 j=1

be the number of nodes that “miss” to turn Pp,...,FP; and Q1,...,Q, into a COQ and add a row 17 of
all ones to A for each of them to obtain a matrix A such that

A=A, i=1,....m and A =17, i=m+1,...,m+4.

Consider the matrix decomposition problem (4, 3, ). Its row intersection graph G(AT) contains G(AT)
as a subgraph and the additional artificial nodes in G(AT) are incident to every node of G(AT) that
corresponds to a row that is not all zero (except itself).

The sets Py, ..., P, and Q1,...,Q), are again cliques in G(AT). Associating each of the artificial nodes i =
m+1,...,m+ 9 to a different index pair ¢j such that |P, N Q;| = 0 and adding this node to both P;
and Q;, we can extend Py,..., P, and Q1,...,Q, to a COQ P1,...,P, and Q... ,Qp in G(AT) with
W= U§:1§j =WU{m+1,...,m+d}. Then, the COQ inequality

(5) sz a(p, g, B, k)

ieWw b=1
is valid for P(A, 3, k) and, of course, also for
PA,B,k)N{zb=0:i=m+1,...,m+6,b=1,...,8}.

Since the artificial variables in this polytope attain only values of zero, this remains true if one sets their
coefficients in (5) also to zero. But as this results in the desired extended COQ inequality (4) and

PA,B,r)N{zb =0: i=m+1,...,m+06, b=1,...,8} = P(A,B,k) x {0}°*7,
the theorem follows by a projection on the space of the original variables. |

The last star inequality that we present in this section is special in the sense that it is the only one with
non-0/1 coefficients. It was designed to deal with rows with many neighbors.

3.13 Theorem (Star) Let G(AT) = (V, E) and consider some row i € V with |y(i)| > x. Then the star
inequality

(Iv@)] —rk+1) Zx + Z Zm’jg

Jev(®)
is valid for P(A, 5, k).
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Proof. If i is assigned to some block b, then all rows in () can only be assigned to b, but at most k — 1
of them. The case where i is not assigned is trivial. O

The star inequality can be viewed as a lifting of the (redundant) inequality

B
S 34 < i)

jer (i) b=1

and we want to close this section with another simple lifting theorem for block-invariant inequalities with
0/1 coefficients.

3.14 Theorem (Strengthening) Let G(AT) = (V, E), W be a subset of V, and Y,y Zbﬁzl 2t < a be
a valid inequality for P(A, 8, k). If for some row j ¢ W the condition

(WA +r<a

holds, then EieWU{j} Zbﬁzl 2t < o is also valid for P(A, 3, k).

Proof. If j is assigned to some block b, the rows in {j} U~(j) can only be assigned to b, but at most  of
them. O

4 A Branch-And-Cut Algorithm

The polyhedral investigations of the last section form the basis for the implementation of a branch-and-cut
algorithm for the solution of the matrix decomposition problem. This section describes the four main
ingredients of this code: Separation and LP-management, heuristics, problem reduction, and searchtree
management.

4.1 Separation and LP-Management

We use all of the inequalities described in Section 3 as cutting planes in our algorithm. It will turn out
that some of them appear in large numbers. We thus opted for the following separation strategy: We try
to identify many inequalities using fast heuristics, but add only selected ones to the LP. More expensive
separation methods are used depending on their success.

We classify our separation routines according to their basic algorithmic principles: Inspection (enumera-
tion), greedy heuristics, other heuristics, exact polynomial methods, and “hybrid” methods (combinations
of exact and heuristic methods).

The most simple methods are used for big-edge, two-partition, and star inequalities: These classes can be
separated by simple inspection, the details for two-partition inequalities were already described in Section 3.

Clique, z-clique, and z-cover inequalities are separated using greedy heuristics. In the last two cases, these
methods start by sorting the rows of A with respect to increasing z-value, i.e., such that z(z);, > z(z);, >
.-+ > z(x);,,. Then the greedy heuristic is called m times, once for each row ;. In each call, i; is used
to initialize a tree/clique with respect to G(A”), that is iteratively extended greedily in the order of the
z-sorting of the rows until z;, becomes zero and the growing procedure stops. There is also a second variant
for z-cliques that is an adaptation of a similar routine by Hoffman and Padberg [1993]. Here we call the
greedy heuristic once for each column of A and initialize the clique with the support of this column. Having
detected a violated clique inequality in one of these ways, we lift randomly determined additional rows
with zero z-value sequentially into the inequality. This is done by applying the strengthening procedure
of Theorem 3.14 which in this case amounts to a further growth of the clique by randomly determined
rows of zero z-value. We tried to strengthen cover inequalities, but the computational effort was not
justified by the one or two coefficients that were usually lifted. But, as was already mentioned in Section 3,
we (heuristically) keep track of the connectivity of the growing graph. If the connectivity is 2 after the
graph reached size k + 1, we add another two-connected node if possible. Figure 2 gives more detailed
pseudocode for z-cover separation. Separation of clique inequalities is done using exactly the same routine
as for z-cliques, but applied to G.(A, ) with node weights given by the a-variables.
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z-cover separation
Input: z(x) € R™, G(AT)
Output: Node set T of a one- or two-connected subgraph of G(AT)

begin
sort z(z) such that z(x);, > 2z(x)i, > -+ > 2(x),,;
for k:=1tom
T+ {Zk},
connectivity < 2;
for j:=1tom
if j=kor~(i;)NT =0 continue;
if | T|=x+1and |y(i;)NT| =1 continue;
if |T| > 2 and |y(i;) NT| =1 connectivity < 1;
T« T U{ij};
if |T'| > k + connectivity break;
endfor;
endfor;
return 7' and connectivity;
end;

Figure 2: Separating z-cover inequalities with a greedy heuristic.

z-Cycle inequalities are separated in the following heuristic way. We look at some path P with end-nodes
u and v, where initially v and v coincide. In each iteration we extend the path at one of its end-nodes by
a neighbor w with maximal z(x),-value. Let j, be a column of A that connects w to the path P. Since
jw forms a clique in G(AT) there are additional nodes that can be potentially added to the path if the
support of j,, is greater than two, i.e., |supp(A.;,)| > 2. We store these additional nodes in a buffer which
will be exploited later in the heuristic. Now we test whether the new path P extended by w can be closed
to a cycle C that satisfies |C| > & and |C| # 0 mod (k + 1). This is done by looking for a column j of A
that contains both end-nodes of P (one of them w). supp(4.;) again forms a clique, and the additional
nodes in this clique together with the nodes in the buffer give the flexibility to add further nodes to the
cycle. This freedom is exploited in our routine. We try the procedure for several starting nodes u = v,
whose number depends on the success of the heuristic.

Separation of the composition of clique inequalities is not easy: We do not even know a way to compute
the right-hand side «a(p, ¢, 3, k) in polynomial time! But there are problems in our test set, e.g., pipex
(see Section 5.2), where compositions of cliques occur and there seems to be no way to solve this (small!)
problem without them. Our heuristic was developed to capture these cases. It lead to the development of
the more general class of extended COQ inequalities, which are easier to find. The idea is as follows.

Let us start with a composition of cliques Q1,...,Q, and Py, ..., P, as stated in Theorem 3.11. Suppose
that these cliques are contained in the columns 1,...,p,p+1,...,p+¢ of the matrix A, i.e., supp(4.;) 2 Q;,
i=1,...,p,and supp(A.;) D P, i=p+1,...,p+ ¢q. Consider a column/column-incidence matriz S of A
defined by
k, for ke {l: a; # 0 a;;} arbitrary, but fixed;
"7 N0, if ATA, =0,

i.e., s;j = k # 0if and only if columns ¢ and j intersect in some row & and in case there is no unique & we pick
an arbitrary, but fixed one. Suppose for the moment that all entries in the submatrix Sti . p1x{p+1,...p+q}
of S are mutually different, that is, there is no row index k that appears more than once. Then the
composition of cliques corresponds to the rectangle submatrix Sy1 . p1x{p+1,....p+q} Of S that is completely
filled with nonzeros: The rows that appear on the left-hand side of the COQ inequality (2) are exactly
those appearing in the matrix S{1. ,)1x{pt1,...p+q}- In other words, the node set W in (2) is W =
{sij: i=1,...,p,j =p+1,...,p+q}. Thus, given some vector z € R™*# the left-hand side of
(2)is Y8, Sopta 25:1 xgﬁ and a final calculation of the right-hand side allows to check for a possible

o j=p+l &b
violation of the inequality.
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Our heuristic tries to go the reverse direction: It identifies large filled rectangles in S and derives COQ and
xCOQ inequalities from them. There are three difficulties. First, a clique in a composition can not only be
a subset of a column of A, but any clique in G(AT). However, we have not incorporated this generality in
our heuristic, because we do not know how to select a promising set of cliques in G(AT). Second, columns
in A that form a composition of cliques may not appear in the right order: The rectangle identifies itself
only after a suitable permutation of S. In this case, we have to reorder the columns and rows of S. We
obtain a filled rectangle submatrix Syx s of S by starting with each of column j of S once, extend this
1 x| supp(A.;)| rectangle submatrix by columns that fit best in a greedy way, sort its rows lexicographically,
and consider all maximal filled submatrices in the upper left corner as potential COQ-rectangles. A third
serious problem arises when two columns of A intersect in more than one row. In this case the entries
of the matrix S are no longer uniquely determined and it can happen that the entries of the rectangular
submatrix Sy« under consideration are no longer mutually different. Then Sy ; corresponds no longer
to a composition of cliques and the inequality ZijeIxJ Zle xgij < 04(|I|7 |1, 8, n) is in general not valid.
But one can set duplicate entries in S to zero until, for every row k, there is only one representative s;; = k
left; denote the resulting matrix by S’. Then the sets

Qi :={si;: sj; #0,jeJ}, iel and  Pj:={sj;: sj; #0,i€l}, jeJ

of non-zero entries in the rows and columns of S’ form an extended composition of cliques and the corre-
sponding xCOQ inequality

B8
S S al <ail17],8.5)

k€im Srx y b=1

is valid for P(A, 5, k), where im Syxj = {si; : ij € I x J} denotes the set of row indices that appear in
the submatrix Sy« ;. The interesting feature of separating extended COQ inequalities instead of COQs is
that the generalization gives us the algorithmic freedom to handle multiple occurrences of rows in filled
rectangles of S and this is the key to a successful heuristic separation of an otherwise rigid structure. The
price for this, of course, is a reduced support in the left-hand side. To pay this price only when necessary,
we heuristically determine a column/column-intersection matrix S with a large variety of rows in im S. The
right-hand side itself is computed in amortized (pseudo-polynomial) time of O(8kn?) steps by a dynamic
program (for our tests 3 < 4 and x = O(n), and thus this effectively amounts to O(n?)).

The reader might have noticed that several degrees of freedom in this separation routine can be used to
search for rectangles with large z-value and this is what we would like to find. However, the running time
of the method is too large to apply it after each LP and when we did, we did not find additional cuts. We
thus call the routine only once, determine some promising COQs by combinatorial criteria, store them in
memory, and separate them by inspection.

To separate clique inequalities (for 8 > 2), we use an ezact branch-and-bound algorithm for the maximum
weight clique problem. Although in principle exponential, this algorithm works fast for the separation
problems coming up in our matrix decomposition instances because the maximum clique size is bounded
by 5. We have also tried to separate z-cliques exactly, but we never observed that additional cuts were
found: In the small examples, the greedy heuristic is good enough, while in the larger ones with high
capacities cliques of size k don’t seem to exist. Another exact, but this time polynomial, algorithm is used
to separate cycle inequalities: We apply the odd-cycle algorithm described in Lemma 9.1.11 in Grotschel,
Lovész, and Schrijver [1988].

Finally, a mixture of exact and heuristic ideas is used in a hybrid algorithm to separate the bin-packing
inequalities. We start by determining a node set W that can result in a violated inequality. A necessary

condition for this is

Z zZ(x); > |W|-1 < 1> Z(l — z(x);)

icw iew
and it is reasonable to construct W by iteratively adding rows that have a z-value close to one. We thus
sort the nodes with respect to increasing z-value and add them to W in this order as long as the condition
stated above is satisfied. This node set W induces a subgraph (W, E(W)) of G(AT) and we determine
the components of this subgraph. The resulting bin-packing problem (see page 9) is solved using an exact
dynamic programming algorithm (with a time bound).

In addition to these classical types of cutting planes we also use a number of “tie-breaking” inequalities to
cut off decompositions that are identical up to block permutations or give rise to multiple optima for other
reasons as a means to counter dual degeneracy and stalling. These inequalities are in general not valid for
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P(A, B, k), but for at least one optimal solution. The most simple kind of these cuts are the permutation

inequalities
m m
b b+1
Soat< YAl b=1...8-1,
i=1 i=1

stating that blocks with higher indices are of larger size. To break further ties, we supplement them with
inequalities stipulating that in case of equal sized blocks the row with the smallest index will be assigned
to the block with smaller index. These strengthened permutation inequalities read

m m k—1
1 1
a3 el N att <N Tal =1 B k=2,...,m— L
i=1 i=1 i=0

Iy, xb — Py xf“ < 0, the inequality is redundant, but in case of equality, the row with the smallest
index in blocks b and b 4+ 1 must be in block . The case k = m is left out because it yields a redundant

inequality. Both permutation and strengthened permutation inequalities can be separated by inspection.

Another idea that we use to eliminate multiple optima is based on the concept of row preference. We say
that row i is preferred to row j or, in symbols, i < j if

(i) S (j)

with respect to the row intersection graph G(A”). We may in this situation not know whether or not row i
or j can be assigned to a block in some optimal solution, but we can say that for any decomposition x
with z(z); =1, say xé’. = 1, either z(z); = 1 or we can get a feasible decomposition ' = x — e? + €? with
the same number of rows assigned. In this sense, row 4 is more attractive than row j. If we break ties on
row preference by indices (i.e., i < j < (i) ; Y7V (v(2) =~(j) ANi < 7)), row preferences induce a
partial order that we represent in a transitive and acyclic digraph

D(A) == (V. {(i,7) : 1 < 7})-

Since the number of row preferences tends to be quadratic in the number of rows, we thin out this digraph
by removing all transitive (or implied) preferences. The remaining row preferences are forced in our code
by adding the row preference inequalities

8 8
> al >N "ab for (i,5) with i < j.
b=1 b=1

The&e can 5()Illet1111e§ be theIlgtllelled tO
1 > Oor a b= - /13
1 — xj Y »

if we can be sure that rows 7 and j can not be assigned to different blocks in any decomposition. This will
be the case, for example, if i and j are adjacent in G(AT) = (V, E) or if both i and j are adjacent to some
third row k preferable to both of them (i.e., i < j, k <4, k < j, ik € E and jk € E). Once D(A) is set up,
row preference inequalities can be separated by inspection.

Our last separation routine uses a cut pool that stores all inequalities found by the hitherto explained
algorithms: The pool separation routine just checks all inequalities in the pool for possible violation.

The separation algorithms described in the previous paragraphs turned out to be very successful: Not
only block-discernible (permutable) inequalities like two-partitions are found in large numbers, also block-
invariant cuts like z-covers occur in abundance. Controlling the growth of the LP-relaxation is thus the main
goal of our separation and LP-maintenance strategy. We start with a minimal LP-relaxation containing
(besides the bounds) only the block assignment and block capacity constraints plus the § — 1 permutation
inequalities. The cuts that are separated by inspection, i.e., big-edge inequalities, star inequalities, tie-
breaking inequalities, and composition of clique inequalities are placed in a cut pool; they will be found by
pool separation. The separation algorithms are called dynamically throughout the course of the branch-
and-cut algorithm. After an LP is solved, we call the pool separation routine, followed by two-partition
inequality separation and a couple of heuristics: The z-cover heuristic is called as it is, but application of
the more expensive z-clique and z-cycle algorithms is controlled by a simple time- and success-evaluation.
This control mechanism is motivated by the observation that our test set fell into two groups of examples,
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where one of these routines was either indispensable or essentially did not find a single cut. We empirically
try to adapt to these situations by calling the separation routines only if their past success is proportional
to the running time, or more precisely, if after the first call

# of successful calls + 1 time spent in routine

# of calls total time spent in separation’

A call is counted as successful if a violated cut is found. If g > 2, there can be clique inequalities that
are not two-partition constraints and in this case we next call the exact clique separation routine, that
returns at most one cut. The branch-and-bound algorithm used there turned out to be fast enough to be
called without any further considerations. Finally, we separate bin-packing inequalities. To avoid excessive
running times due to the dynamic program, the routine is called with a time limit: The dynamic program
will be stopped if the time spent in bin-packing separation exceeds the cumulated separation time of all
other separation routines.

All violated cuts determined in this separation process are not added directly to the LP-relaxation, but
stored in a cut buffer first. This buffer is saved to the pool, and then a couple of promising cuts are
selected to strengthen the LP-relaxation. Our criteria here have an eye on the amount of violation and on
the variety of the cuts. Since inequalities of one particular type tend to have similar support, we restrict
the number of cuts per type and prefer to add inequalities of other types, even if they are not among the
most violated. To accomplish this we add the

# of cuts in cut buffer

# number of types of cuts

most violated cuts of each type to the LP-relaxation. We also delete cuts from the LP-relaxation if they
become non-binding by a slack of at least 1072, but keep them in the cut pool for a possible later pool
separation.

Another feature of our code that aims for small LPs is to locally setup the LP-relaxation prior to compu-
tation at any node of the searchtree. This means that when branching on some node v we store at each
of its sons a description of the last LP solved at v and of the optimal basis obtained. When we start
to process v’s sons, we set up this LP from scratch and load the associated (dual feasible) basis. In this
way, we continue the computation exactly at the point where it stopped and the LP will be the result of
a contiguous process independent of the node selection strategy. We have compared this approach to one
where the start-LP at each newly selected node is just the last LP in memory and this leads to larger LPs
and larger running times.

While these strategies were sufficient to keep the size of the LP-relaxation under control, explosive growth
of the cut pool was a serious problem in our computations until we implemented the following cut pool
management. We distinguish between disposable and indisposable cuts in the pool. Indisposable cuts are
inequalities that are needed to set up the LP-relaxation at some node in the searchtree yet to be processed
and all big-edge, star, and tie-breaking inequalities. All other cuts are disposable and can potentially be
deleted from the cut pool, possibly having to be recomputed later. In order to control the pool size we
restrict the number of disposable cuts in the pool by eliminating cuts that have not been in any LP for a
certain number of iterations. This number depends on the size of the pool and the ratio of disposable to
indisposable cuts.

The LPs themselves are solved with the CPLEX 4.0 dual simplex algorithm using steepest edge pricing, see
the CPLEX documentation CPLEX [1997].

4.2 Heuristics

Raising the lower bound using cutting planes is one important aspect in a branch-and-cut algorithm,
finding good feasible solutions early to enable fathoming of branches of the searchtree is another and we
have implemented several primal heuristics for our matrix decomposition code. Since different nodes in
a branch-and-bound tree correspond to different fixings of variables to zero or one, the heuristics should
respect these fixings to increase the probability of finding different solutions. Applied at the root node
where (at least initially) no variables are fixed, our methods can be seen as LP-based or pure combinatorial
heuristics for the matrix decomposition problem.

Our heuristics fall into three groups: “Primal” methods that iteratively fix block assignments, “dual”
methods that iteratively exclude assignments until decisions become mandatory due to lack of alternatives,
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and an improvement method that is applied as an “afterburner” to enhance the quality of the two groups
of opening heuristics.

The primal methods consist of a greedy algorithm and a bin-packing heuristic, both are LP-based. The
greedy algorithm starts by ordering the xf variables; with probability % a random ordering is chosen,
otherwise a sorting according to increasing z-value is used. The rows are assigned greedily to the blocks
in this order. This heuristic is similar in spirit to the popular “LP-plunging” method, i.e., the iterative
rounding of some fractional LP-value to an integer followed by an LP-reoptimization, but much faster. We
have also tried LP-plunging, but for the matrix decomposition problem the results were not better than
with the simple greedy method, while the running time was much larger. The bin-packing heuristic starts
by determining a set of nodes W that will be assigned to the blocks and used to set up a corresponding
bin-packing problem. In order to find a better decomposition than the currently best known with, say,
z* rows assigned, W should be of cardinality at least z* 4+ 1 and therefore we take the z* + 1 rows with
the largest z(x)-values to be the members of W. The corresponding bin-packing problem is set up and
solved with the same dynamic program that we used for the separation of the bin-packing inequalities; it
is also called with a time limit, namely 10 times as much as all other primal heuristics (that are very fast)
together. Clearly, we also watch out for better solutions that might be detected in bin-packing separation.

The dual methods also respect variable fixings, but are not LP-based. The idea behind them is not to
assign rows to blocks, but to iteratively eliminate assignments of “bad” rows. Suppose that a decision
was made to assign certain rows (assigned rows) to certain blocks, to exclude other rows from assignment
(unassigned rows), while for the remaining rows a decision has yet to be made (free rows). Removing the
unassigned nodes from the row intersection graph G(A”) leaves us with a number of connected components,
some of them larger than the maximum block capacity x, some smaller. Both variants of the dual method
will break up the components that are larger than the block capacity « by unassigning free rows until
no more such components exist. At this point, a simple first-fit decreasing heuristic is called to solve the
corresponding bin-packing problem. The two variants differ in the choice of the next bad row to remove.
Variant I chooses the free row in some component of size larger than s with the largest degree with respect
to the row intersection graph G(AT), variant II excludes assignment of a free row of some component with
size larger than k with the largest indegree with respect to D(A), or, in other words, the least preferable
row. We have also tried to use a dynamic program to solve the bin-packing problems, but it did not provide
better results in our tests.

Our improvement heuristic is a variation of a local search technique presented by Fiduccia and Mattheyses
[1982]. Given some block decomposition, it performs a sequence of local exchange steps each of the following
type. Some assigned row is chosen to be made unassigned opening up possibilities to assign its unassigned
neighbors. These assignments are checked and feasible assignments are executed. The details are as follows.
The heuristic performs a number of passes (10 in our implementation). At the beginning of each pass,
all rows are eligible for unassignment in the basic exchange step. Each row may be selected only once
for unassignment in each pass and will then be “locked”. Candidates for becoming unassigned are all
currently assigned and unlocked rows. These candidates are rated according to the number of possible new
assignments (computed heuristically) and we choose the one that is best with respect to this rating. As
a special annealing-like feature, the algorithm will also perform the exchange step if it leads to a change
of the current solution to the worse. If no exchange step is possible because all assigned rows are already
locked, the pass ends and the next pass is started.

The strategy to call the heuristics is as follows. The primal methods are called after each individual LP,
whereas the dual heuristics are called only once at each node in the branch-and-bound tree, because they
behave in a different way only due to changes in the variable fixings.

4.3 Problem Reduction

We use a couple of problem reduction techniques to eliminate redundant data. First we apply an initial
preprocessing to the matrix A before the branch-and-cut algorithm is initiated. The purpose of this
preprocessing step is to eliminate columns from the matrix A without changing the row intersection graph.
We first perform a couple of straightforward tests to identify columns that are contained in other columns
and can thus be deleted: We remove empty columns, then unit columns, duplicate columns, and finally by
enumeration columns that are contained in others.

These simple initial preprocessing steps are amazingly effective as we will see in the section on computational
results. In principle, the number of rows can be reduced also. For example, empty rows could be eliminated
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and later used to fill excess capacity in any block, duplicate rows or rows with just one nonzero entry could
be eliminated by increasing the capacity requirements of one of its adjacent rows. These reductions,
however, lead to changes in the IP model and affect all separation routines discussed so far so that we
refrained from implementing them.

In addition to this initial preprocessing we do local fixings at the individual nodes of the branch-and-bound
searchtree after each call to the LP-solver. Apart from reduced cost fixing and fixing by logical implication
(i.e., if 2¥ is fixed to one, a:?/ will be fixed to zero for all blocks b’ # b), we try to identify rows that cannot
be assigned to any block given the current state of fixings. To this purpose we look at all rows W that
are currently fixed for assignment to some block. We then check for each unassigned row ¢ whether the
subgraph (W U {i}, E(W U {i})) of G(AT) = (V, E) contains a component with more than x rows. If so,
row ¢ can be fixed to be unassigned.

4.4 Searchtree Management

Despite our efforts to understand the polyhedral combinatorics of the matrix decomposition problem, we
do not have a strong grip on the corresponding polytope and after an initial phase of rapid growth of the
lower bound, stalling occurs in the presence of significant duality gaps. We believe that —up to a certain
point— it is favorable in this situation to resort to branching early, even if there is still slow progress in
the cutting plane loop. In fact, we apply a rather “aggressive” branching strategy, splitting the currently
processed node if the duality gap could not be reduced by at least 10% in any 4 consecutive LPs. On the
other hand, we pause a node (put it back into the list of nodes yet to be processed) if the local lower bound
exceeds the global lower bound by at least 10%.

Branching itself is guided by the fractional LP-values. We first look for a most fractional z(z)-value. If,
e.g., z(x); is closest to 0.5 (breaking ties arbitrarily), we create 8 + 1 new nodes corresponding to the
variable fixings

B
x%:l,xf:l,...,xf:l, and in’:O.
b=1

In other words, we branch on the block assignment constraint corresponding to row i. The advantage of
this scheme is that it leads to only 8+ 1 new nodes instead of 2°-nodes in an equivalent binary searchtree.
If all z(x)-values are integral, we identify a row with a most fractional a-variable and perform the same
branching step. We have also tried other branching rules by taking, for instance, the degree of a row in
G(AT) into account, but the performance was inferior to the current scheme.

5 Computational Results

In this section we report on computational experiences with our branch-and-cut algorithm for the solution
of matrix decomposition problems arising in linear and integer programming problems. Our aim is to find
answers to two complexes of questions. First, we would like to evaluate our branch-and-cut approach:
What are the limits in terms of the size of the matrices that we can solve with our algorithm? What is
the quality of the cuts, do they provide a reasonable solution guarantee? Second, we want to discuss our
concept of decomposition into bordered block diagonal form: Do the test instances have this structure or are
most integer programming matrices not decomposable in this way? Does knowledge of the decomposition
help solving them? And do our heuristics provide reasonable decompositions that could be used within a
parallel LU-factorization framework or an integer programming code?

Our test set consists of matrices from real-world linear programs from the Netlib and integer program-
ming matrices from the Miplib. In addition, we consider two sets of problems with “extreme” charac-
teristics as benchmark problems: Some small matrices arising from Steiner-tree packing problems, see
Grotschel, Martin, and Weismantel [1996], and equipartition problems introduced in Nicoloso and No-
bili [1992]. The Steiner-tree problems are known to be in bordered block diagonal form and we wanted
to see whether our code is able to discover this structure. The equipartition problems, on the other
hand, are randomly generated. Our complete test data is available via anonymous ftp from ftp.zib.de
at /pub/Packages/mp-testdata/madlib or can be retrieved alternatively via world wide web at URL
ftp://ftp.zib.de/pub/Packages/mp-testdata/madlib/index.html.

In the following subsections, we report the results of our computations on the different sets of problems.
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Our algorithm is implemented in C and consists of about 36,000 lines of code. The test runs were performed
on a Sun Ultra Sparc 1 Model 170E and we used a time limit of 1,800 CPU seconds. The format of the
upcoming tables is as follows: Column 1 provides the name of the problem, Columns 2 to 4 contain the
number of rows, columns and nonzeros of the matrix to be decomposed. The two succeeding columns give
the number of columns and nonzeros after presolve. Comparing Column 3 with 5 and 4 with 6 shows
the performance of our preprocessing. The succeeding 5 columns give statistics about the number of cuts
generated by our code. There are, from left to right, the number of initial cuts (Init) including block
assignment, block capacity, big-edge, star, and tie-breaking inequalities (but not composition of clique
inequalities, although they are also separated from the pool), the number of z-cover (Cov), the number of
two-partition (2part), the sum of the number of bin-packing, cycle, z-cycle, clique, z-clique, and composition
of clique inequalities (BCC), and finally the number of violated inequalities separated from the pool (pool).
The following two columns (Columns 12 and 13) show the number of branch-and-bound nodes (Nod) and
the number of LPs (Iter) solved by the algorithm. The next eight columns give solution values. We do
not report the number of assigned rows, but the number of rows in the border, because it is easier to see
whether the matrix could be decomposed into block diagonal form (in this case the value is zero) or close
to this form (then the value is a small positive integer). Lb gives the global lower bound provided by the
algorithm. It coincides with the value of the upper bound Ub (next column) when the problem is solved
to proven optimality. Skipping two columns for a moment, the next four columns refer to the heuristics.
G, D1, D2 and B stand for the greedy, the dual (variant I and II), and the bin-packing heuristic. The
corresponding columns show the best solutions obtained by these heuristics throughout the computations
at the root node. If this value coincides with the number of rows of the matrix, all rows are in the border
and the heuristic failed. The two (skipped) columns right after Ub show which heuristic He found the
best solution after No many branch-and-bound nodes (1 means it was found in the root node, 0 means
that preprocessing solved the problem). The additional letter I indicates that the value was obtained by
a succeeding call to the improvement heuristic. BS means that the bin-packing separation routine found
the best solution, an asterisk * shows that the LP solution provided an optimal block decomposition. The
remaining five columns show timings. The last of these columns Tot gives the total running time measured
in CPU seconds. The first four columns show the percentage of the total time spent in cut-management
(Cm), i.e., local setup, LP-, cut-buffer, and pool-management, the time to solve the linear programs (LP),
the time of the separation algorithms (Sep), and the time for the heuristics (Heuw).

5.1 The Netlib Problems

The first test set that we are going to consider consists of matrices that arise from linear programming prob-
lems taken from the Netlib*. We investigated whether basis matrices corresponding to optimal solutions
of these linear programs can be decomposed into (bordered) block diagonal form. These bases were taken
from the dual simplex algorithm of CPLEX [1997]. Analyzing the decomposibility of such matrices gives
insight into the potential usefulness of parallel LU-factorization methods within a simplex-type solver. In
this context B reflects the number of processors that are available. We have chosen § = 4, since this is
somehow the first interesting case where parallelization might pay. As a heuristic means for good load
balancing we aim at equal-sized blocks and have set the capacity to x := w rounded up. We tested all
instances with up to 1,000 rows.

Table 1 shows the results of these experiments. The problems up to 100 rows are easy. The range of
100-200 rows is where the limits of our code become visible and this is the most interesting “hot area”
of our table: The problems here are already difficult, but because of the combinatorial structure and not
because of sheer size. The results for the problems with more than 200 rows are of limited significance,
because these matrix decomposition problems are large-scale and the algorithm solves too few LPs within
the given time limit. We can only solve a couple of readily decomposable large instances, but it is worth
noticing that a significant number of such instances exists: The difficulty of matrix decomposition problems
depends as much on the structure of the matrix as on the number of rows, columns, or nonzeros.

Let us first investigate the “dual side” of the results. We observe that we solve very few problems at the
root node (only 9 out of 77), and that the number of cuts is very large, in particular in the hot area of
the table. The reason for this is basically the symmetry of the problem, as can be seen from the pool
separation column (Pool) that counts, in particular, all violated tie-breaking cuts. Unfortunately, we don’t
see a way to get around this phenomenon, but we believe that the symmetry mainly prevents us from
solving difficult instances of larger size. The quality of the cuts is in our opinion reasonable, as can be seen

*Available by anonymous ftp from ftp://netlib2.cs.utk.edu/lp/data.
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from the size of the branch-and-bound tree and the number of LPs solved. It is true, however, that the
lower bound improves fast at first while stalling occurs in later stages of the computation although still
large numbers of cuts are found and the problem is finished by branch-and-bound. The same behaviour
has been reported for similar problems like the node capacitated graph partitioning problem discussed in
Ferreira, Martin, de Souza, Weismantel, and Wolsey [1994].

Investigating the “primal side”, we see that the greedy heuristic seems to be most reliable. The two dual
methods perform exactly the same and yield solutions of the same quality as the greedy. Bin-packing
is either very good (a rather rare event) or a catastrophe, but complements the other heuristics. If we
look at the quality of the solutions found at the root node as a measure of the method as a stand-alone
decomposition heuristic, the table shows pretty good results for the small problems. For the larger instances
the situation is a bit different. We detect larger gaps, see, for instance, scfxm1 or ship12s. In fact, we have
often observed in longer runs on larger examples that the best solution could steadily be improved and the
optimal solution was found late. A reason might be that the heuristics are closely linked to the LP-fixings
and essentially always find the same solutions until the branching process forces them strongly into another
direction. We believe (and for some we know) that many of the larger problems can be decomposed much
better than the Ub-column indicates and that there might be potential to further improve stand-alone
primal heuristics.

The answer to the final question whether LP basis matrices are decomposable into four blocks is ‘Yes’ and
‘No’. Some like recipe or standata are (only one row is in the border), others are not, for example israel:
98 out of 163 are in the border. The results leave, however, the possibility that larger LP-matrices, that
are generally sparser than small ones, can be decomposed better so that we can not give a final answer to
this question.

5.2 The Miplib Problems

In this test series we examine whether matrices arising from integer programs can be decomposed into
(bordered) block diagonal form. There are two applications here.

First, decomposing the original constraint matrix A of some general integer program can be useful to
tighten its LP-relaxations within a branch-and-cut algorithm. The structure of the decomposed matrix
is that of a multiple knapsack or general assignment problem, and inequalities known for the associated
polytopes (see Gottlieb and Rao [1990], Ferreira, Martin, and Weismantel [1996]) are valid for the MIP
under consideration. The first interesting case in this context are two blocks and we set 5 := 2. We used
K= (#L;)'LO‘G rounded up as the block capacity, which allows a deviation of 10% of the actual block

sizes in the decomposition.

Table 2 shows the results that we obtained for matrices of mixed integer programs taken from the Miplib!
and preprocessed with the presolver of the general purpose MIP-solver SIP that is currently under devel-
opment at the Konrad-Zuse-Zentrum. We again considered all instances with up to 1,000 rows.

The picture here is a bit different from the one for the linear programming problems. Since the number of
blocks is 8 = 2 instead of § = 4, the IP-formulation is much smaller: The number of variables is only one
half, the number of conflicting assignments for two adjacent rows is only 4 instead of 12. In addition, there
is much less symmetry in the problem. Consequently, the number of cuts does not increase to the same
extent, the LPs are smaller and easier to solve (the percentage of LP-time in column LP decreases). We
can solve instances up to 200 rows and many of the small ones within seconds. Note that § = 2, on the
other hand, leads to doubled block capacities. This means that it becomes much more difficult to separate
inequalities that have this number as their right-hand side and have a large or combinatorially restrictive
support like z-clique, bin-packing, or composition of clique inequalities, see column BCC.

On the primal side the results are similar to the Netlib instances, but the heuristics seem to perform a
little better for two blocks than for four.

How decomposable are the MIP-matrices? We see that not all, but many of the larger problems can be
brought into bordered block diagonal form (the small ones can not). Of course, there are also exceptions
like the air-problems which were expected to be not decomposable. Anyway, there seems to be potential
for the multiple-knapsack approach and further research in this direction, especially because there are only
very few classes of cutting planes known for general MIPs.

T Available from URL http://www.caam.rice.edu:80/~bixby/miplib/miplib.html.
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The second application of matrix decomposition to integer programming is a new branching rule. De-
composing the transposed constraint matrix will identify the variables in the border as linking variables
that are interesting candidates for branching. Since most MIP-codes create a binary searchtree, we try to
decompose these matrices into 5 := 2 blocks. As block capacity we use k := (#L;)'LO‘G rounded up to
obtain two subproblems of roughly the same size. The test set consists of all problems with up to 1,000
rows (1,000 columns in the original problem).

Table 3 shows the results of our computations. Surprisingly, the performance of our algorithm is not only
similar to the “primal” case, in fact it is even better! We can solve almost all problems with up to 400
rows. One reason for this is that MIPs tend to have sparse columns, but not necessarily sparse rows. Dense
columns in the transposed matrices (dense rows in the original ones) leave less freedom for row assignments,
there are fewer possibilities for good decompositions, and the LP-relaxations are tighter than in the primal
case.

For the reason just mentioned we expected that the transposed problems would be less decomposable than
the originals and it came as a surprise to us that the “dual” problems decompose nearly as well as the
primal ones. The transposed matrices have on average about 60 rows in the border in comparison to only
40 for the originals. But the percentage of rows in the border (i.e., the sum of the Ub column divided by
the sum of the rows column) is 18.4% (12.8%) in the primal and 20.6% (25.3%) in the dual case (the values
in parentheses count only instances that were solved to optimality). Note, however, that the dual values
are biased heavily by the (not decomposable) adrud instance. An explanation may be that many of these
problems contain a few important global variables that migrate into the border.

Name SIP without MAD SIP with MAD CPLEX

gap nodes time gap nodes time gap nodes time
bell3a | 96.6% 100000 236.0 | 67.9% 100000 288.2 | 0.0% 42446 54.9
bell3b - 100000 142.1 - 100000 120.3 | 3.8% 100000 120.6
bell4 100000 137.4| 2.1% 100000 164.5| 3.2% 100000 119.0

bell5 6.3% 100000 184.0 | 2.7% 100000 153.6 | 6.1% 100000 113.6
noswot - 100000  219.8 - 100000 195.2 | 10.3% 100000 228.1

maximum infeasibility branching

bell3a 0.0% 33350 92.1| 0.0% 55763 221.4| 0.0% 19100 108.9
bell3b | 0.0% 25909 308.4| 0.0% 25706 301.4| 0.0% 6537 70.8
bell4 1.5% 91240 1800.0 | 2.2% 96628 1800.0 | 0.0% 47001 710.5
bell5 0.1% 100000 806.4| 0.1% 100000 824.0| 0.1% 100000 586.9
noswot | 27.9% 63474 1800.0 | 20.9% 90743 1800.0 | 7.5% 43038 1800.1

strong branching

Table 4: Comparing integer programming branching rules.

We used optimal decompositions of transposed MIP matrices to test our idea to branch on variables in the
border first. The computations were performed using the above mentioned MIP-solver SIP. As our test set
we selected all problems that are not extremely easy (less than 10 CPU seconds for SIP) and that decompose
into bordered block diagonal form with a “relatively small” border: mod014, bell3a, bell3b, bell4,
bell5, noswot, blend2, vpml, vpm2, setlch, setlal and setlcl. Unfortunately, and contrary to
what we had expected, it turned out that mod014, blend2, vpml, vpm2, setlch, setlal and setilcl
have only continuos variables in the border that do not qualify for branching variables! All border variables
in noswot are integer, in the bell-examples 1 (2) out of 5 (6). We tried to extend the test set by
decomposing only the integer part of all these matrices but it failed, because the integer parts turned out
to have block diagonal form, i.e., no variables in the border.

For the remaining four bell* and the noswot example, we performed the following tests. The MIPs were
solved with SIP using four different branching strategies. Maximum infeasibility branching (i.e., branching
on a variable that is closest to 0.5) and strong branching (cf. Robert E. Bixby, personal communication)
are two standard branching strategies for solving mixed integer programs. The other two branching rules
result from extending these two methods by our idea of branching on a variable that belongs to the border
first. The limit of the computation was 1,800 CPU seconds or 100,000 branch-and-bound nodes, whatever
came first.

Table 4 summarizes our results. The version without MAD (MAD stands for the MAtrix Decomposition)
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uses the original SIP-code and the original branching rules, the MAD-version branches on a variable from
the border first. For comparison, we also list the results that can be obtained using CPLEX. The column
labeled gap reports the duality gap on termination (- means that no feasible solution was found).

The results are mixed. When strong branching is used CPLEX is overall best and SIP with MAD is basically
always worst (note that for example noswot the value of the LP-relaxation already provides the value of
the optimal integer solution and so the main difficulty here is to find a good feasible solution). If we branch
on a most infeasible variable the situation changes a bit in favour of SIP with MAD. In fact, there are
two examples where this strategy performs best in terms of the gap. Our limited tests can, of course, not
provide a definite evaluation of our idea to branch on border variables. But we think that the results show
that this idea might have the potential to become a good branching strategy for certain mixed integer
programming problems.

5.3 The Steiner-Tree Packing Problems

We also tested some problem instances for which we know in advance that they have bordered block
diagonal from. The problems are integer programming formulations for Steiner-tree packing problems, a
problem where in some given graph edge sets (so-called Steiner-trees), each spanning some given subset
of the node set, have to be simultaneously packed in the graph under capacity restrictions on the edges,
see Grotschel, Martin, and Weismantel [1996]. Unfortunately, our branch-and-cut algorithm performs very
bad on these examples, although we extended the time limit to 10,800 CPU seconds, see Table 5. One
reason for that might be that the rows that are supposed to be in the border have less nonzero entries than
those that are expected to be in the blocks. The heuristics and the LP solutions, however, tend to put the
rows into the border that have the most nonzeros entries. The “natural decompositions” result in borders
of sizes 22, 24, 71, and 82 for problems g353, g444, d677, and d688, respectively.

5.4 The Equipartition Problems

Our last test set consists of equipartition problems introduced by Nicoloso and Nobili [1992]. These have
been generated randomly prescribing a certain matrix-density. We have modified our code to handle the
additional equipartition constraint. The results are given in Table 6: We can solve all problems within 10
CPU seconds and, as was already known from Nicoloso and Nobili [1992], random matrices of this type do
not decompose well.

Summary and Conclusions

We have shown in this paper that it is possible to decompose typical linear and integer programming
matrices up to 200 and more rows to proven optimality using a cutting plane approach based on polyhedral
investigations of the matrix decomposition problem. It turned out that a substantial number, but not all,
LPs decompose well into four blocks, while even many MIPs, as well as some of their transposes, can be
brought into bordered block diagonal form with two blocks. We think that these results show a significant
potential for methods that can exploit this structure to solve general MIPs. Our decomposition heuristics
work well for small instances, but there is room for improvement for problems of large scale, in particular,
if more than two blocks are considered.
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