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Abstract. In this paper we present a self–adaptive finite element method
to solve flame propagation problems in 3D. An implicit time integrator of
Rosenbrock type is coupled with a multilevel approach in space. The pro-
posed method is applied to an unsteady thermo–diffusive combustion model
to demonstrate its potential for the solution of complicated problems.

1 Introduction

Many combustion phenomena are set up by time–dependent systems of PDEs
which have to be solved in three–dimensional domains. The solution of such
complex problems is still a grand challenge and requires the development of
highly efficient numerical methods. Adaptivity is an important and essential
means to drastically reduce the amount of work.
Adaptive finite element methods have been developed by the authors over
several years to solve problems with highly non–uniform solutions. The re-
liability of the algorithm has been demonstrated for a variety of real–life
chemical problems [8]. In [9] and [11] the application and implementation of
reaction–diffusion problems has been dealt. Various combustion systems are
solved in [10, 5].
To include more practically relevant problems we extended our approach to
the three–dimensional case. In this paper we demonstrate the flexibility of
the algorithm for a thermo–diffusive combustion problem governed by differ-
ent time scales and spatial non–uniformity. In all these cases adaptivity both
in time and space allows us to automatically adjust the time step and the lo-
cal spatial resolution in order to keep the numerical error below a prescribed
tolerance.
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2 The Thermo–Diffusive Model

In order to develop efficient adaptive techniques for 3D combustion simula-
tions it is of interest to consider flame propagation models which decouple
the reaction–diffusion process from the hydrodynamical flow. The thermal
reaction process is formulated for nondeformable materials of constant den-
sity. This leads to the well–known thermo–diffusive model which consists of
two nonlinear equations

Le Tt − ΔT = αDY exp

(
− δ

T

)
, (1)

Yt − ΔY = −DY exp

(
− δ

T

)
. (2)

Here, T is the dimensionless temperature, Y the concentration of a reactant
and Le is the Lewis number, the ratio of diffusivity of heat and diffusivity of
mass. The positive constants α (chemical heat release), δ (activation energy)
and D = Reδ/(αδ) (Damkohler number) with R being the reaction rate, are
special combustion numbers. This system describes a one–step reaction in
the presence of Arrhenius chemistry. The one–dimensional version of this
problem was investigated via activation–energy asymptotics in [7].
The above reaction–diffusion system allows us to study a whole ignition
process and the propagation of a reaction wave. Initially, the temperature
increases slowly during an induction period with relatively weak reaction.
Induction is followed by an extremely rapid development and growth of a
localized hot spot. A sharply focused temperature region appears in which
the concentration of the reactant is rapidly depleted. Then the reaction front
propagates through the system.

3 Numerical Algorithm

We present a time–space adaptive algorithm implemented in the program-
ming package KARDOS. For high values of δ, the problem is stiff and involves
additional non–uniformity in time (ignition) and space (wave propagation).
An accurate simulation of the combustion process therefore requires an im-
plicit time integrator with automatic adjustment of time steps and a dense
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moving computational mesh in the propagating flame region to resolve the
high gradients as well.
In contrast to the widely used method of lines approach, we first discretize in
time and then in space. This discretization sequence has the advantage that
the task of spatial adaptivity can be directly attacked by an efficient elliptic
solver [1, 3, 4].
For the time discretization we use one–step methods of Rosenbrock type that
are accepted to integrate stiff equations efficiently for moderate accuracy re-
quirements. Starting with the solution uk at time tk, the solution uk+1 at the
advanced time tk+1 = tk+τk is computed by the following linear combination
of uk and different intermediate stage values lj

uk+1 = uk +
s∑

j=1

bjlj , (3)

with suitable chosen real values for the coefficients bj. Each of these functions
lj is the solution of a linear elliptic problem. Replacing the coefficients bj in

(3) by different coefficients b̂j a second solution ûk+1 of inferior order can be
obtained. The difference ‖uk+1−ûk+1‖ =: εk satisfactorily estimates the error
introduced by the temporal discretization, and can be utilized to propose a
new time step

τk+1 =
τk
τk−1

(
TOLt εk−1

εk εk

)1/(p+1)

τk . (4)

Here, p is the local order of the solution ûk+1. This step–size selection guar-
antees an error control with respect to a desired tolerance TOLt [6].
The elliptic subproblems for the lj are discretized by an adaptive multilevel
finite element method. We consider conforming partitions of the computa-
tional domain Ω into tetrahedra. The weak solutions of the elliptic problems
are approximated in the finite dimensional space of piecewise linear contin-
uous functions. Starting with an initial mesh G0

k at time tk, we successively
improve the spatial discretization by local refinement until a prescribed tol-
erance TOLx is reached. Each tetrahedron where the solution is not accurate
enough, is refined into eight tetrahedra in such a way that the ratio of the
diameter and the radius of the largest interior ball of the new tetrahedra
remains uniformly bounded. Special closures are utilized to obtain a regular
triangulation after refinement [2].
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The necessary estimation process is based on local quantities computed as
approximate residuals on small subdomains employing quadratic finite el-
ements. Each of these domains is the union of all tetrahedra having one
common edge. Imposing homogeneous Dirichlet boundary conditions, the
local spatial error can be represented by only one degree of freedom at the
midpoint of the corresponding edge.
We end up with a nested sequence G0

k, G1
k, ..., Gn

k of triangulations. To
compute the solution uk+1 at time tk+1, we choose a new initial mesh G0

k+1

derived from Gn
k by coarsening. Degrees of freedom are only removed in such

regions where the local errors are small enough. If necessary this mesh is
again improved analyzing the new solution uk+1. For a more detailed de-
scription see [11].
The arising linear equations are solved iteratively by the BICGSTAB algo-
rithm [12] with ILU–preconditioning.

4 Numerical Results

We solved (1,2) on the domain Ω = {x = (x1, x2, x3) ∈ R3, 0 < x1, x2, x3 < 1}
for t > 0 with Le = 0.9, δ = 20, α = 1 and R = 5. The initial conditions
read

Y (x, 0) = T (x, 0) = 1.0 , x ∈ Ω .

Homogeneous Neumann conditions are applied for all points x on boundaries
with x1 = 0 or x2 = 0 or x3 = 0. Otherwise we use Dirichlet boundary
conditions, i.e.

Y (x, t) = T (x, t) = 1.0 for x1 = 1 or x2 = 1 or x3 = 1, t > 0 .

The hot spot is formed at (0, 0, 0) where the temperature jumps from 1 to
approximately 1+α.
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Fig.1: Time steps used by KARDOS

Fig.1 shows the evolution of the time steps used by KARDOS with a three–
stage Rosenbrock method of order three. The two different phases of the
integration process are clearly visible. During ignition t = 0, . . . , 0.23 the
time steps decreases. Afterwards the high speed of the flame forces a time
step not larger as 8E − 5.

Fig.2: Adaptive grids applied in the planes z=0.05, z=0.85 at t=0.235
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Fig.3: Cuts through the temperature (left: t=0.233, right: t=0.235)

Fig.2 shows the adaptivity in space: two adaptive grids are plotted with
respect to the planes z = 0.05 and z = 0.85 at t = 0.235. Due to the hot
spot at the origin the computational mesh is more refined in this region. A
sharp reaction front subsequently forms and propagates rapidly towards the
Dirichlet boundaries. Fig.3 reports cuts through the temperature along the
x–axis at two different times t=0.233 and t=0.235. They illustrate the good
spatial resolution of the reaction front.

Acknowledgement. The authors are indebted to P. Deuflhard for his con-
tinuing support of this project.

References

[1] F. A. Bornemann, 1991, An Adaptive Multilevel Approach to Parabolic
Problems, IMPACT Comput. Sci. Engrg. 2, 279–317

[2] F. A. Bornemann, B. Erdmann, R. Kornhuber, 1993, Adaptive Multi-
level Methods in Three Space Dimensions, Int. J. Numer. Meth. Engrg.
36, 3187–3203

[3] P. Deuflhard, P. Leinen, H. Yserentant, 1989, Concepts of an Adaptive
Hierarchical Finite Element Code, IMPACT Comput. Sci. Engrg. 1, 3–
35

[4] Erdmann, B., Lang, J., Roitzsch, R., 1993, KASKADE – Manual. Tech-
nical Report TR 93–5, Konrad–Zuse–Zentrum für Informationstechnik
Berlin, Germany

6



[5] Froehlich, J., Lang, J., 1996, Twodimensional Cascadic Finite Element
Computations of Combustion Problems, submitted to Comp. Meth.
Appl. Mech. Engrg.

[6] K. Gustafsson, Control theoretic techniques for stepsize selection in ex-
plicit Runge–Kutta methods, ACM Trans. Software 17 (1991) 533–554

[7] Kapila, A. K., 1980, Reactive–Diffusive System with Arrhenius Kinetics:
Dynamics and Ignition, SIAM J. Appl. Math. 39, 21–36

[8] Lang, J., 1996, High–Resolution Self–Adaptive Computations on Chem-
ical Reaction–Diffusion Problems with Internal Boundaries. Chem. En-
grg. Sci. 51, 1055–1070

[9] Lang, J., 1995, Two–dimensional fully adaptive solutions of reaction–
diffusion equations. Appl. Numer. Math. 18, 223–240

[10] Lang, J., Froehlich, J., 1995, Selfadaptive Finite Element Computation
of Combustion Processes, in R.W. Lewis and P. Durbetaki (eds.), Nu-
merical Methods in Thermal Problems, Pinderidge Press, Swansea, Vol.
9, 761–769

[11] Lang, J., 1996, Adaptive FEM for Reaction–Diffusion Equations, sub-
mitted to Appl. Numer. Math.

[12] van der Vorst, H. A., 1992, BI–CGSTAB: a Fast and Smoothly Converg-
ing Variant of BI–CG for the Solution of Nonsymmetric Linear Systems,
SIAM J. Sci. Statist. Comp. 13, 631–644

7


