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Telebus Berlin:
Vehicle Scheduling in a Dial-a-Ride System

Preprint SC 97-23 (April 1997)



Telebus Berlin: Vehicle Scheduling in a Dial-a-Ride System∗

Ralf Borndörfer† Martin Grötschel† Fridolin Klostermeier‡ Christian Küttner‡

Abstract. Telebus is Berlin’s dial-a-ride system for handicapped people that cannot use the public trans-
portation system. The service is provided by a fleet of about 100 mini-busses and includes aid to get in
and out of the vehicle. Telebus has between 1,000 and 1,500 transportation requests per day. The problem
arises to schedule these requests into the vehicles such that punctual service is provided while operation
costs should be minimum. Additional constraints include pre-rented vehicles, fixed bus driver shift lengths,
obligatory breaks, and different vehicle capacities.

We use a set partitioning approach for the solution of the bus scheduling problem that consists of two
steps. The first clustering step identifies segments of possible bus tours (“orders”) such that more than
one person is transported at a time; the aim in this step is to reduce the size of the problem and to make
use of larger vehicle capacities. The problem to select a set of orders such that the traveling distance of
the vehicles within the orders is minimal is a set partitioning problem that we can solve to optimality. In
the second step the selected orders are chained to yield possible bus tours respecting all side constraints.
The problem to select a set of such bus tours such that each order is serviced once and the total traveling
distance of the vehicles is minimum is again a set partitioning problem that we solve approximately.

We have developed a computer system for the solution of the bus scheduling problem that includes a
branch-and-cut algorithm for the solution of the set partitioning problems. A version of this system is in
operation at Telebus since July 1995. Its use made it possible that Telebus can service today about 30%
more requests per day for the same amount of money than before.

Keywords. Dial-a-Ride Systems, Set Partitioning

Mathematics Subject Classification (MSC 1991). 90B06, 90C10, 90B90

1 Handicapped People’s Transport in Berlin

Better accessibility of the public transportation system has become an important political goal for many
municipalities: They introduce low-floor busses, install lifts in subway stations, etc. But many handicapped

Figure 1: A Telebus picks up a customer.

and elderly people still have problems because they
need additional help, the next station is too far
away, or the line they want to use is not yet acces-
sible. Berlin, like many other cities, offers to these
people a special transportation service: The so-
called Telebus provides a door-to-door transporta-
tion and aid at the pick-up and the target point.
The system is financed by the Senate of Berlin’s
department for Social Affairs (SenSoz) and oper-
ated by the Berliner Zentralausschuß für Soziale
Aufgaben e.V. (BZA), an association of charitable
organizations. Figure 1 shows a Telebus picking up
a customer.

Telebus is a dial-a-ride system: Every entitled user
(currently about 25,000 people) can order up to
50 rides per month at the BZA’s telephone central.
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Figure 2: The Telebus System.

If the order is placed one day in advance, Telebus
guarantees to service the ride as requested, later
“spontaneous” requests are serviced as possible.
The advance orders, about 1,500 during the week
and 1,000 on weekends, are collected and sched-
uled into a fleet of mini-busses that are rented on
demand from charitable organizations and commer-
cial companies. These busses will pick-up the cus-
tomers at the desired time (modulo a certain tol-
erance) and transport him/her to the target; if re-
quired, the crew will provide aid to leave the apart-
ment, enter the vehicle, etc. This service is avail-
able every day from 5 am in the morning to 1 am
at night. Figure 2 gives a diagram of the Telebus
system.

�

�

0

5

10

15

20

25

30

82 84 86 88 90 92 94 96 Year

Customers in Thousands
Costs in Millions of DM

Figure 3: Development of Telebus.

Telebus was established 15 years ago and since then
the number of customers and orders increased con-
stantly. Until recently, the vehicle scheduling was
done manually by experienced planners that could
work out a feasible schedule in about 16 man-hours.
But when East Berlin’s handicapped people also
started to use the system after the reunification of
Germany, it was clear that the traditional way of
scheduling would not be able to cope with the pro-
jected additional demand. And the problem was
not only to come up with a feasible schedule: More
requests in a doubled area of service lead to rising
costs and put the system under a heavy pressure for
optimization. Figure 3 gives an impression of these
explosive developments; the numbers for the years
up to 1993 are taken from T 336 of the report of
Berlin’s audit division for the year 1994, the other
data was provided by the BZA.

Modern computer hard- and software was needed
to solve the scheduling problems of the BZA
and the Telebus-project, a cooperation between
the Konrad-Zuse-Zentrum für Informationstechnik
Berlin (ZIB), the BZA, and the SenSoz, was started
to develop it. The result of the project is a new
Telebus-computersystem, that supports and inte-
grates the complete sequence of operations at the

BZA: Ordering, vehicle scheduling, radio telephony, accounting, controlling, and statistics. The system
consists of a tool box of software modules, runs on a network of 20 MacIntosh PCs, and is in operation
at the BZA since 1995. Its use, together with a simultaneous reorganization of many parts of the Telebus
service, lead to

(i) improvements in service, for example, a reduction of the advance ordering period from three days in
1992 to one day today (needed for vehicle renting) or increased punctuality of the computer schedule
in comparison to the result of manual planning,

(ii) cost reductions, such that today about 30% more requests can be serviced for the same money as in
1992, and

(iii) simplifications of the work in the Telebus central.

A comparison of the number of requests and the costs for a month in 1994 before and in 1996 after the
installation of the system is shown in Figure 4.
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Figure 4: Results of the Telebus-project.

The heart of the Telebus-computersystem is the
vehicle scheduling module. This module is based
on mathematical optimization techniques that we
want to describe in this article. Our aim is to
show that methods of this kind can make a sig-
nificant contribution to the solution of real world
transportation problems: The results at Telebus
are of interest for similar dial-a-ride systems. It
goes without saying, however, that optimization
at Telebus did not only consist of a better vehi-
cle scheduling, but involved many other important
factors: Restructuring of the operation of the cen-
tral, negotiations with vehicle providers, and per-
sonal dedication (Ch. Küttner and F. Klostermeier,
in particular, worked for more than a year in the
Telebus central, drove on Telebusses, etc.). More
details on this consulting aspect of the project can
be found in Klostermeier and Küttner [1993] and
Borndörfer, Grötschel, Herzog, Klostermeier, Kon-
sek, and Küttner [1996] (both articles in German).

2 Vehicle Scheduling at Telebus

The most important task at Telebus is the daily construction of the vehicle schedule: The schedule deter-
mines both operational costs for vehicles and crews and customer satisfaction in terms of punctual service.
The vehicle scheduling problem (VSP) at Telebus can be stated in an informal way as follows:

(VSP)
Given a number of requests and a number of available vehicles, rent a suitable set of vehicles
and schedule all requests into them such that a number of constraints like punctuality and
labour regulations are satisfied and operational costs are minimum.

The aim of this section is to describe the VSP precisely and to introduce our set partitioning approach for
its solution. We start with a discussion of the VSP’s data, its constraints, and objectives.

The basis for vehicle scheduling are some number ν of vehicles of different types. Actually, a vehicle is in
this context not only a car, but always comes complete with a crew for a shift of operation: The BZA does
not rent vehicles, but shifts of operation of a car and a crew. Such a (manned) vehicle b, b = 1, . . . , ν, is
characterized by the following data:

(V)
(i) cb type (class): Teletaxi, 1- and 2-bus small or large

Ab = (Aw−chair
b , Aseat

b ) capacity: no. of wheelchair places and seats
(ii) gb group: type, depot location, shift

There are approximately ν = 100 busses available for renting. Vehicles can be distinguished by a type (or
class) and a group. There are five types: Teletaxis, small busses with one driver (1-bus), large 1-busses,
small 2-busses, and large 2-busses. The type is important for deciding whether a request can be serviced
by a particular vehicle: Teletaxis can transport only customers without or with folding wheelchairs, non-
folding wheelchairs require a bus, and staircase aid a bus with a crew of two. The type of a vehicle
determines also its capacity: Teletaxis can transport one handicapped customer and one non-handicapped
companion, small busses have a capacity of (2, 3), large busses of (3, 4). Capacity is a sub-parameter of the
type, but gets a symbol on its own for convenience of notation. Vehicles of the same type fall into groups,
that play a role for the construction of tours: A group contains vehicles that are indistinguishable in the
sense that they have the same type, are stationed at the same depot, and can be rented for identical shifts.

The vehicles will be used to service some number m of transportation requests. The following data is
associated to each request i = 1, . . . ,m:
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(R)

(i) vpick−up
i , vtargeti pick-up and target node

(ii) p(vpick−up
i ), p(vtargeti ) pick-up and target point

(iii) T (vpick−up
i ) = [t(vpick−up

i ), t(vpick−up
i )] interval of feasible times to arrive at pick-

up point

T (vtargeti ) := [t(vtargeti ), t(vtargeti )] interval of feasible times to arrive at target
point

(iv) tservice(vpick−up
i ), tservice(vtargeti ) service time at pick-up and target point

(v) Ci set of feasible vehicle types

(vi) ai = (aw−chair
i , aseati ) no. of wheelchairs and seats needed

Figure 5: Graph of Berlin.

There is a pick-up node vpick−up
i and a target node

vtargeti , that correspond to the pick-up and deliv-
ery events of a request. The pick-up and target
locations or points p(vpick−up

i ) and p(vtargeti ) of a
request are stored as nodes of a graph of Berlin
that is shown in Figure 5. The 2,510 edges of this
graph are labelled with average travelling times and
distances that we use to compute shortest routes
between its 828 nodes. In addition to this spatial
information, a request bears temporal data that is
measured in units of 5 minutes. There is an in-
terval of feasible pick-up times T (vpick−up

i ) that is
computed according to Telebus specific rules. The
rules try to find a compromise between punctual
service and more degrees of freedom for the vehicle
scheduling process. Currently, most requests have

T (vpick−up
i ) = t�(vpick−up

i ) + [−3, 3],
where t�(vpick−up

i ) is the time desired by the customer, i.e., the vehicle is allowed to arrive 3∗5 = 15 minutes
early or late. Similar, but more complex rules are used to determine a feasible time interval T (vtargeti ) to
arrive at the target; here, the shortest possible travelling time and a maximum detour time play a role.
Finally, some service time tservice(vpick−up

i ) and tservice(vtargeti ) is needed at the pick-up and the target
point. The amount of aid, the wheelchair, and other factors determine what kind of vehicles Ci (Teletaxi,
1-bus, or 2-bus) can or must be used, and the final load data ai gives the number of wheelchair places
and seats needed. An impression of the distribution of Teletaxi, 1-bus, and 2-bus can be obtained from
Figure 6, that shows a typical statistic of this kind.

Rules for feasible vehicle tours arise primarily from bus renting contracts and labour regulations for
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Figure 6: Telebus request pattern for june 1995.

bus drivers. Renting contracts are such that most
vehicles are available for shifts of 8 1

2 or 10 1
2 hours,

some others can be rented by the hour to cover
peaks of demand. The majority of renting is done
on a daily basis on demand, but vehicles can also
be rented on a long-term basis. Labour regula-
tions prescribe maximum driving hours and rules
for obligatory breaks. The current rule at Telebus
is that a break of 30 minutes has to be taken be-
tween the fourth and sixth hour of a shift. Two
other rules state that a feasible vehicle tour must
start and end at the vehicle’s depot, and that it is
not allowed to wait or make a break with a cus-
tomer “on board”.

The objective of the VSP is to minimize operational
costs, but the BZA seldom use this criterion in its
pure form. The reason is that the planned schedule
and the one that is really executed on the next day
differ significantly because of cancellations of re-
quests, spontaneous requests, vehicle breakdowns,
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and other unpredictable events. The BZA must safeguard against every day’s emergency situations and
does so by preferring “safer” plans at some extra cost. The main tool to do this is to introduce components
into the objective that aim at schedules of a safer type; we will come back to this point in the discussion
of the set partitioning model.

Our solution approach for the VSP is based on the concept of a cluster of requests. A cluster or, in BZA
terminology, an order, consists of a set of requests that are advantageously serviced in a simultaneous
way. It corresponds to a maximal subtour such that the vehicle is never empty: The subtour starts with
an empty vehicle picking up a first customer, services the requests of the cluster, and becomes empty for
the first time when the last customer leaves the vehicle at his/her target. This results in a “simultaneous
service” of the requests in the cluster in the sense that, while one customer is transported, at least one other
person is picked up or transported to his/her target. Figure 7 shows a number of clusters: Collections,
insertions, simple and continued concatenations.

1 2

3 4
5 6 7

8 9
10 11

12

I

II III

IV V

I collection with common target point
II insertion
III collection with common pick-up point
IV concatenation
V continued concatenation

Figure 7: Cluster types at Telebus.

Clusters can be used to decompose the vehicle scheduling process into two phases: A clustering phase that
combines requests to clusters and a subsequent chaining phase that builds tours as sequences of clusters.
The flavour of clustering is that of a local optimization to make use of larger vehicle capacities, while
chaining must deal with constraints for the feasibility of complete tours, like depot locations, breaks, and
shift lengths. The advantage of this approach is that it gets easier to construct tours from a comparably
smaller number of orders in an nonoverlapping way, the disadvantage is that a hierarchical planning process
in steps will generally yield suboptimal solutions.

To use this approach, it makes sense to describe a cluster c as follows:

(C)

(i) Sc := (v1, . . . , vl) sequence of serviced pick-up and target nodes

(ii) T pick−up
c := [tpick−up

c , t
pick−up
c ] interval of feasible times to arrive at first pick-up

point

T target
c := [ttargetc , t

target
c ] interval of feasible times to end service at last target

point
tc total time to service cluster completely

(iii) Cc set of feasible vehicle types

The subtour corresponding to a cluster is given by a sequence of pick-up and target nodes Sc that will
be serviced in this order. More precisely, if vj = vpick−up

i is a pick-up node, the vehicle will drive to the
corresponding location and pick-up the customers complete with service, if vj = vtargeti is a target node,
the vehicle will go to the target location and service the customer. A cluster sequence Sc must, of course,
satisfy a couple of constraints: The initial node v1 must be a pick-up node, the terminal node vl a target
node, each node can appear at most once, each target node must be preceeded by the pick-up node of the
same request and vice versa, and the sequence must describe simultaneous service, i.e., either there is only
one request (l = 2) or there is another node between any request’s pick-up and target node. An important
observation is that the cluster sequence determines the operation of the vehicle completely: Since it is not
allowed to wait with a customer “on board”, the vehicle either drives to the next node or the crew provides
service. This means that the total time tc to service the cluster is constant and that the service of the
complete cluster can be shifted as a block over some feasible interval of time. Thus, there is a maximal
interval T pick−up

c of feasible times to arrive at the first pick-up node of the cluster and a corresponding
interval of feasible end times, and these have the property

tc = ttargetc − tpick−up
c = t

target
c − t

pick−up
c .

The sequence of serviced requests determines also the possible types of vehicles Cc: These depend on the
most “demanding” vehicle type of the requests and the maximum number of occupied wheelchair places
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and seats needed.

Vehicle tours are the last structure that misses, and just as a cluster can be described as a sequence of
request nodes, a tour k can be seen as a sequence of clusters:

(T)

(i) Sk := (c1, . . . , cl) sequence of serviced clusters

(ii) T pick−up
k := [tpick−up

k , t
pick−up
k ] interval of feasible times to start service of the first

cluster

T target
k := [ttargetk , t

target
k ] interval of feasible times to end service of the last

cluster
tk total time to service tour completely

(iii) k vehicle

A tour k consists of a sequence of clusters Sk that are serviced in the given order. To deal with depot
locations, breaks, and shift lengths we also allow for additional pull-in, break, and pull-out clusters. Pull-in
clusters will prescribe a starting location and time of a tour, break clusters an obligatory break between
the fourth and sixth hour of service of a tour, and pull-out clusters model again depot locations and
maximum shift lengths. Pull-in and pull-out clusters will fix the possible times to begin and end a tour,
but we nevertheless introduce the time windows T pick−up

k and T target
k for later use in our tour construction

algorithm. Additional parameters give the total time to service a tour, i.e., the shift length, and the vehicle.

What is a good way to do the clustering? In principle, one would like to construct a set of clusters that
will result in the construction of a good set of tours — later. We try to approximate this goal using
secondary criteria like the travelling distance or the time within the clusters. We are thus lead to consider
the clustering problem to construct a set of clusters, such that each request is contained in exactly one
cluster and some objective, like the sum of the internal travelling distances, is minimal. Given a decision
for a set of clusters, the chaining problem can be stated in a similar way. This time, we want to construct
a set of tours, such that each cluster is serviced by exactly one tour, such that there are enough vehicles of
the required types and groups, and such that operational costs or a similar objective becomes minimal.

Both questions can be modeled as a set partitioning problem

min cTx
Ax = 1l
x ∈ {0, 1}n,

(SPP)

where A ∈ {0, 1}m×n is a 0/1-matrix and c ∈ R
n
+ is a positive cost function.

In the clustering case, row i of the matrix A corresponds to request i, and each column A·j of A to a feasible
cluster: The entry aij is equal to one if cluster j services request i and zero else, the objective cj denotes,
for example, the internal travelling distance or time within the cluster. Then, the feasible solutions x of
the integer program (SPP) are in one-to-one correspondence to sets S of clusters such that each request is
contained in exactly one cluster via the relation xj = 1 ⇐⇒ j ∈ S and the optimum solution x� of (SPP)
corresponds to the best such combination.

In the chaining case, the rows correspond to the clusters selected in the clustering step, the columns to
tours, and the objective to some cost criterion associated to a tour like, for example, operation costs. The
only additional point to consider is that the model as just stated does not respect vehicle availabilities:
The tour matrix A contains for each vehicle all possible tour-columns that this vehicle can service, and it
is possible that a solution of (SPP) will use a vehicle more than once. Considerations to prevent this lead
to additional constraints of the form ∑

j∈J(k)

xj ≤ 1 or
∑

j∈J(k)

xj = 1,

where J(k) ⊆ {1, . . . , n} denotes the set of tours serviced by vehicle k. These inequalities fit into the
set partitioning model: They give rise to additional rows that correspond to vehicles instead of requests
(possibly introducing additional columns as well, that correspond to slack variables).

A set partitioning model is well suited for the VSP, because it allows a correct treatment of constraints and
objectives that do not arise from individual components of a tour, but from a tour as a whole. Break rules,
for instance, are observed by constructing only such tour-columns for the chaining SPP that correspond
to tours with feasible breaks. If operation of a vehicle at night incurs additional costs, we can modify
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the objective accordingly. Or we can penalize “packed tours” that operate at full capacity because delays
are more likely and try to produce safer schedules at some additional cost. A second advantage is that a
correct tour matrix A already guarantees that all feasibility constraints are satisfied such that the selection
of the best set of tours can be done in a second step on an abstract level: If the rules for feasible tours
change, the cluster or tour matrix changes, but a solver for set partitioning problems will still be useful.
This makes the approach particularly useful to analyze different scenarios of operation.

Our clustering and chaining approach to the VSP using set partitioning can now be stated as follows:

• Clustering

(i) Cluster generation to construct all possible clusters and set up the clustering SPP.

(ii) Cluster selection to solve the clustering SPP to select a best set of orders such that each request
is contained in exactly one order.

• Chaining

(iii) Tour generation to construct a set of feasible tours and set up the chaining SPP.

(iv) Tour selection to solve the chaining SPP and thus choose a best set of tours.

The approach requires an implementation of three modules: a cluster generator, a tour generator, and a
set partitioning solver. Our cluster generator is based on complete enumeration. It turned out that there
are usually about 100,000 to 250,000 legal clusters in a typical VSP that can be produced in a couple of
minutes. The corresponding set partitioning problems are of a size that can be solved to near or proven
optimality using branch-and-cut algorithms and it is possible to do this in the Telebus case. The number
of possible tours in the chaining problem is, however, much larger, and we can neither compute nor store
all of them. We have nevertheless chosen to use the same branch-and-cut algorithm as for the clustering
problems in the chaining instances, and we must thus restrict the set of considered tours to a (small) subset
of, say, 50,000 possible tours that we construct in a heuristic way. It turned out that the chaining SPPs are
computationally much harder than the clustering ones, and we cannot solve them to optimality. But our
tour optimization still yields significant savings in operational costs of about 10% in comparison to what
we can achieve with heuristic chaining methods.

Our set partitioning clustering and chaining approach is a static variant of the methods discussed in
Cullen, Jarvis, and Ratliff [1981], that solve a sequence of dynamically generated set partitioning problems
in both the clustering and the chaining phase using column generation techniques, or Desrosiers, Dumas,
Ioachim, and Solomon [1991], that use dynamic programming techniques in a column generation algorithm
for the clustering problem. An overview on related techniques and pointers to the extensive literature on
vehicle routing problems can be found in the survey articles Desrochers, Desrosiers, and Soumis [1984] or
Desrosiers, Dumas, Solomon, and Soumis [1995].

3 Cluster Generation

The aim of the cluster generation step is to enumerate all possible clusters. As was pointed out in the
previous Section 2, we will ignore feasibility conditions for complete tours like breaks, depot locations, and
shift lengths for the moment, i.e., we ignore all information related to vehicle groups. Different vehicle
types (Teletaxi, small and large 1- and 2-bus), however, give rise to different possible clusters. We can
deal with this parameter by enumerating the clusters for each of the five types separately. For ease of
exposition, we can thus assume that there is only one type of vehicles that can service all requests.

A way to enumerate all possible clusters in a systematic way is to consider the operation of the vehicle
in a cluster as the result of a sequence of decisions to pick-up or deliver a next customer, or, in other
words, to add a next node to the cluster sequence. Each time this is done, the vehicle must drive to the
corresponding node and pick-up or deliver the customer, before the next decision can be taken.

The possible states of the vehicle can be recorded in terms of cluster subsequences

S = (v1, . . . , vl),

where each node vj denotes a pick-up or delivery node of some request. We adopt the convention that a
vehicle in state S has just serviced the last pick-up or delivery node vl. More information on the vehicle
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can be derived from this basic state description. First, there is the set of yet unserviced pick-up nodes

R(S) := {vpick−up
i : ∃vj = vpick−up

i , 	 ∃vj = vtargeti }.
The customers of the unserviced requests are sitting in the car that has at state S a total load of

a(S) :=
∑

vpick−up
i ∈R(S)

ai.

Since it is forbidden to wait with a customer on board, the total time since service of the sequence S began
is independent of the precise starting time and amounts to

t(S) :=
l∑

j=1

t(vj−1, vj) + tservice(vj),

where t(vj−1, vj) denotes the time to drive from node vj−1 to node vj and where v0 := v1 such that
t(v0, v1) = 0. Depending on the time intervals associated to the nodes in S, the service of the complete
sequence S may be shifted back or forth over a certain feasible time interval. This results in intervals of
feasible times

T pick−up(S) and T target(S)

to start service of the sequence and to end service at the currently last node vl. Since the total service
time t(S) is a constant, we have that these intervals have the same length and, in fact,

T pick−up(S) + t(S) = T target(S).

We will discuss in a second how T pick−up(S) and T target(S) can be computed iteratively.

With this terminology, we can devise a simple algorithm to enumerate all possible clusters. We start by
setting S to an initial state

S := (vpick−up
i ).

Then,

R(S) = {vpick−up
i } request i is not yet serviced

a(S) = ai customers and companions of request i are in the car

t(S) = tservice(vpick−up
i ) the total time spent to service the cluster was used to pick-

up request i

T pick−up(S) = T (vpick−up
i ) service of the cluster can start whenever i is eligible for

pick-up

T target(S) = T (vpick−up
i ) + t(vpick−up

i ) service of the cluster ends in the same interval shifted back
the serviced time t(vpick−up

i )

We can now decide for the next node to service and this decision will lead to a transition to a new state. In
general, a state transition from a state S to a state S′ servicing an additional node vl+1 servicing request i
looks as follows:

S′ := (v1, . . . , vl+1) the new node vl+1 is added to the cluster
subsequence

R(S′) =

{
R(S) ∪ {vl+1} if vl+1 = vpick−up

i

R(S) \ {vl+1} if vl+1 = vtargeti

a request is serviced or there is another
customer to be serviced

a(S′) =

{
a(S) + ai if vl+1 = vpick−up

i

a(S)− ai if vl+1 = vtargeti

customers and companions of request i
enter/leave the car

t(S′) = t(S) + t(vl, vl+1) + tservice(vl+1) total time to service the cluster goes up
by time to drive from vl to vl+1 and to
service vl+1

T target(S′) = ((T (S) + t(vl, vl+1)) ∩ T (vl+1)) + tservice(vl+1) possible times to complete service of
vl+1 are as follows: service at vl ends
in T (S), the vehicle arrives at vl+1 in
T (S) + t(vl, vl+1), but feasible times are
in T (vl+1), time tservice(vl+1) passes until
the request is serviced

T pick−up(S′) = T target(S′)− t(S′) the time interval to start service of the
cluster is possibly reduced
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We will denote this state transition by
S′ := S ← vl+1.

Not all states that we can produce in this way are feasible or correspond to a cluster. Conditions for a
feasible state S for some vehicle k are

a(S) < Ak the load does not exceed the vehicle’s capacity
T pick−up(S) 	= ∅ all customers can be picked up in time
T target(S) 	= ∅ all customers can be delivered in time

Other feasibility conditions are that a state S must contain a node only once and that each target node
must be preceded by the corresponding pick-up node and vice versa. A state that does not satisfy all of
these conditions is called infeasible. The state corresponds to a cluster c when R(S) becomes empty; such
a state is called terminal. In this case, we can set

Sc := S
T pick−up
c := T pick−up(S)

T target
c := T target(S)

tc := t(S).

(The vehicle type was fixed at the beginning of this Section by assumption.)

void dfs (state S, digraph D)

{
if (infeasible (S) || eliminated (S)) return;

if (terminated (S)) output (S);

// service next request

for all feasible transitions vk+1 ∈ γ+(vk)
dfs (S ← vl+1, D);

}

void cluster (digraph D=(V,A))

{
for all pick-up nodes vpick−up

i ∈ V

dfs (initial (vpick−up
i ), D);

}

Figure 8: Generic Cluster Generation.

A simple algorithm to enumerate all pos-
sible clusters is to consider all possible
initial states and, starting from these,
to recursively do all possible state tran-
sitions. The recursion stops when a ter-
minal or infeasible state is reached, the
terminal states are returned.

Most state transitions, however, will im-
mediately lead to infeasible states, and
some effort must be spent to filter these
out. We do this using a transition di-
graph D = (V,A), whose vertices are the
pick-up and target nodes. There is an
edge from node u to v if

(T (u) + tservice(u) + t(u, v)) ∩ T (v) 	= ∅,
that is, if there is some feasible time to
arrive at u, service u, drive to v, and ar-
rive there at a feasible time. Since the
target time interval T target(S) of some
state S with terminal node vl is always
a subset of T (vl) + tservice(vl), only the
heads δ+(vl) of the arcs that go out from
vl qualify as candidates for feasible tran-
sitions.

Other states that must turn infeasible contain unserviced pick-up nodes vpick−up
i such that the correspond-

ing target nodes can no longer be reached in time. An easy criterion to detect this is

maxT (vtargeti ) < minT (S) + t(vl, vtargeti ),

that is, when it is impossible to arrive at the target node of the unserviced request i in time even if we go
there immediately. One can work out more elaborate state elimination criteria, but for Telebus, this one
proved to be efficient enough.

C-type pseudocode for our generic recursive procedure to enumerate all clusters (for a fixed vehicle type)
is given in Figure 8. The procedure searches in a depth-first way starting from all possible initial states.
digraph is a data structure to store the transition digraph, and D=(V,A) is this digraph as produced
somewhere else. state is a data structure for cluster subsequences that contains the data items discussed
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in this Section. infeasible, eliminated, and terminal are boolean functions that check a state for
infeasibility, whether it can be eliminated, or is terminal as described above. initial is a function that
returns an initial state corresponding to a pick-up node, output saves the cluster associated to a terminal
subsequence to some medium.
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Figure 9: Clustering Requests.

Our procedure for cluster enumeration at Telebus
is very simple: We do not use a dynamic program,
and our state space elimination criteria are straight-
forward. There are two reasons why this algorithm
is successful for the Telebus instances. One is the
ratio of service time, transportation time, and max-
imum detour time at Telebus. Service of a request
takes about 30 minutes on average: 5 minutes pick-
up service, 20 minutes driving, and another 5 min-
utes of service at the target. Since a customer is
not satisfied if his transportation takes more than,
say, 15 minutes longer to pick-up or drop some-
body else, it is often just not possible to service
more than two requests simultaneously. A second
reason is that BZA rules do not accept all clusters
as produced by the above generic cluster generation
routine. In fact, there is a catalogue of “legal” clus-
ters at Telebus, consisting of collections, insertions,
concatenations, and continued concatenations of a
maximum “depth” (currently at most 3). We use
more restrictive derivatives of the generic routine to
produce the legal clusters and these are, of course,
less than what the generic routine would yield.

The cluster generators routines usually produce,
depending on the requests, the complete set of
100,000 to 250,000 legal clusters in a couple of min-
utes. The resulting set partitioning problems are
large-scale, but computationally not difficult in the
sense that one can find near or proven optimal so-
lution in about the same time. Optimizing the in-
ternal travelling distance of the vehicles within the
clusters, one obtains a reduction of about 20% in
comparison to individual transportation, while the
number of orders is up to 40% less than the number
of requests. Figure 9 gives a graphical impression
of these reductions.

4 Tour Generation

The aim of the tour generation step is to produce feasible vehicle tours as sequences of clusters. The
basic flavour is similar to cluster generation where service nodes are replaced by complete clusters. But
where clustering had an eye on local optimization and ignored tour feasibility conditions, vehicle group
information like depot locations, break rules, and shift lengths must be considered in tour construction.
Another difference is that while it is not allowed to interrupt the service of cluster, it is not only legal, but
often advantageous to wait between service of two clusters.

We deal with different vehicle groups by constructing the tours for vehicles of each group separately and
will assume in the remainder of this section that we have fixed a depot location, the shift length, and the
vehicle type similar to what we did in cluster generation. We can then also assume that all clusters can be
serviced by the vehicles of the group under consideration.

Again analogous to cluster generation, our approach to chaining is to iteratively build tours as sequences
of clusters, but with an additional eye on tour feasibility criteria , and represent the possible states of a
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vehicle in terms of a tour subsequence of serviced clusters

S = (c1, . . . , cl);

the interpretation of state S is that the vehicle has just completed service of the terminal cluster cl.

The main difference between clustering and chaining is the additional consideration of driver breaks and
shift lengths. Both criteria are in terms of total elapsed time since the start of the tour: The shift length
simple sets an upper bound to this value, the break rule prescribes an obligatory break of 30 minutes
between the fourth and sixth hour of work. Our approach to get control over the total time is simply to
consider all possible times when a tour can start separately. All possible times means in this case every
quarter of an hour, because 15 minutes is the minimum accounting unit of the vehicle providers.

We can model the different possibilities of pull-in times tpullin to start a tour by means of a “pull-in” cluster
cpullin with

Scpullin = (vpick−up
pullin , vtargetpullin ) pull-in cluster (starts and) ends at the depot location

T pick−up
cpullin

= [tpullin, tpullin] pull-in time of tour

T target
cpullin

= T pick−up pull-in time of tour,
tcpullin = 0 no service

that represents the start of a vehicle tour and will be used to initialize the cluster sequence of the tour. The
pull-in cluster contains two service nodes with service time zero, that point to the depot location. There is
a unique feasible pick-up time such that the pull-in cluster fixes the starting time of a tour. An analogous
pull-out cluster is supposed to terminate the tour. Its service time intervals are chosen to model the shift
length, i.e., for an 8 1

2 hour shift we would have

T pick−up
cpullout

= T target
cpullout

= T pick−up
cpullin

+ 8.5 ∗ 12
(an hour contains 12 units of 5 minutes).

When the starting time tpullin of the tour is fixed, breaks can be modelled by a break cluster cbreak with

Sc = ∅ no pick-up and target node

T pick−up
cbreak

= tpullin + [4, 5.5] ∗ 12 feasible time interval to start break

T target
cbreak

= tpullin + [5.5, 6] ∗ 12 feasible time interval to end break
tcbreak = 6 duration of break

(6 ∗ 5 = 30 minutes). that has to be serviced by the tour. We adopt here the convention that an empty
cluster sequence results in a standstill of the vehicle at its current location. Our goal is to construct all
cluster sequences that start at a fixed pull-in cluster, contain the fitting break cluster, and end at the
corresponding pull-out cluster.

An algorithm for this must derive and update only a single data item from a state S, the interval

T target(S)

of feasible times to end service of the last cluster in the tour subsequence, and even here only the earliest
such time ttarget(S) is relevant, because one can always wait arbitrarily long to service the next cluster.

The algorithm starts in a (fixed) initial pull-in state

S = (cpullin)

with
T target(S) = T target

cpullin
= [tpullin, tpullin].

We can now decide for a next cluster to service, add this to the tour cluster subsequence, and so on. In
general, we will be in a state S = (c1, . . . , cl) and decide to service a next cluster cl+1. This results in a
state transition to the new state S′ with

S′
c = (c1, . . . , cl+1) cl+1 is the new terminal cluster

T target(S′) = (T target(S) + [t(cl, cl+1,∞]) ∩ T pick−up
cl

+ tcl feasible times to end service of cluster cl+1

are as follows: service of cluster cl ends in
T target
cl

, t(cl, cl+1) is needed to drive from cl

to cl+1, one possible waits, feasible times to
start service of Cl+1 are T pick−up

cl+1 , it takes

another tcl+1 to service cl+1,
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where t(cl, cl+1) is the time needed to drive from the terminal node of cl to the initial node of cl+1. We
denote this state transition by

S′ = S ← cl+1.

Feasibility conditions for a state are
T target(S) 	= ∅

and that each cluster is contained only once. A feasible state that contains the pull-in cluster under
consideration as the initial cluster, the corresponding break cluster cbreak, and the terminal cluster cpullout

is called terminal.

The aim of tour generation is in this terminology to enumerate all terminal states. A simple algorithm to
do this is to consider all possible initial pull-in states, to recursively examine all feasible state transitions,
and to output all encountered terminal states.

To make this approach work we want to consider only transitions that do not immediately lead to infeasible
states because of incompatible service times. A necessary condition for the existence of a feasible transition
from some cluster u to another cluster v is

(T target
u + [t(u, v),∞)) ∩ T pick−up

v 	= ∅,
i.e., it is possible to service u, drive to the initial node of v, possibly wait, and start service of v at a feasible
time. We can store this set of possible follow-on clusters in another transition digraph D = (V,A) that has
an arc from cluster u to v if this condition holds. Then, γ+(u) is the set of possible follow-on clusters for a
cluster u. But different from the situation in cluster generation, the number of possible follow-ons is very
large: An hour in the future every cluster is eligible!

Elimination criteria for states that cannot lead to a terminal state focus on the break and pull-out cluster.
If it is no longer possible to make a feasible break because

minT target(S) > tpullin + 6 ∗ 12
or pull-out is no longer possible because

minT target(S) + t(cl, cpullout) > tcpullout ,

we can forget about state S.

The generic program for tour enumeration that results from these consideration is so similar to the cluster
generation routine that we refrain from giving more detailed pseudocode here.

As we have already pointed out, the combinatorial situation for tour generation differs from the clustering
scenario because the number of possible follow-on clusters is much higher. In fact it is not possible to
produce all possible vehicle tours in this way, and the reason is not that the routine wouldn’t work fast
enough, but that the output is simply so big that there is no hope of even storing it. Also, the majority
of tours obviously consists of rather inefficient tours, such that an optimal plan will contain only a few of
them — which does of course not release us from trying to find “the right ones”.

Since our set partitioning solver is a branch-and-cut code, we decided to reduce the solution space by
producing only a “promising” set of tours that hopefully combine to a good vehicle schedule. Our tour
generation routines are modifications of the above generic procedure that produce tours along heuristic
strategies that we have developed in cooperation with the BZA. All of these heuristics work very fast and
together they can also be used as a stand-alone vehicle scheduling module (in fact, this was a first stage of
installation of the Telebus-computersystem at the BZA).

The x best neighbors heuristic tries to produce “good” tours by applying the generic enumeration algorithm
to a restricted transition digraph where the outdegree of each cluster, i.e., the number of follow-on clusters,
has been limited to some value (we use x = 2 and x = 3). The x surviving neighbors of each cluster are
chosen with respect to local criteria, like “nearest clusters”.

The tour-by-tour greedy heuristic tries to work in a slightly more global way by iteratively producing a
feasible tour. It selects an initial pull-in state and adds “best fitting” clusters (including the break) until
the pull-out state is reached. The serviced clusters are removed from the transition digraph, the next tour is
started, and so on. This heuristic tends to produce “good” tours at the beginning and yields unsatisfactory
results at the end when only far-out or otherwise unattractive clusters are left. Tour-by-tour produces
complete vehicle schedules.
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Time-sweep also constructs a complete schedule by scanning the clusters in some order. In every step, the
next cluster is assigned to a best fitting tour (that is eventually created), until all clusters are scheduled.
We use the natural orderings in time (from morning to evening and from evening to morning), and a
“peaks-first” variant, that tries to smooth out peaks of demand and link the resulting subtours.

A hybrid time-sweep greedy heuristic performs a time-sweep, but always adds not only one, but some x
best neighbors to a tour.

Of a similar flavor is the assignment heuristic, that subdivides the time interval into slots of half an hour,
and constructs an assignment of the subtours (possibly starting new ones) to the follow-on clusters of the
next slot.

A set of other methods imitates the hand-planning methods that were in use at the BZA earlier. These
methods partition the requests by hours and city districts. Doing a time sweep from morning to evening,
one looks at densities of requests in districts and hours and tries to concentrate vehicles in or near regions
of high demand.

These methods can produce vehicle schedules that are already significantly superior to a comparable hand
planning. We use them in this way and to set up chaining set partitioning problems with up to 100,000
columns. These IPs turned out to be computationally much harder than the clustering instances. A
possible explanations is that clusters have a local nature and do not interact much, while tours extend over
much larger time periods and service areas and thus exert more influence on each other. So we cannot solve
the chaining set partitioning problems to optimality, but we nevertheless obtain significant reductions in
operational costs of about 10% in comparison to what we can achieve by only using the chaining heuristics.
There is, of course, even more potential for cost reductions if a better column generation method would be
used.

5 Set Partitioning

The third module of our vehicle scheduling system for Telebus consists of a branch-and-cut algorithm
to solve large-scale set partitioning problems. High-level pseudocode for the algorithm is shown in Fig-
ure 10. We will now quickly state our branch-and-cut terminology and discuss then some aspects of our
implementation.

The algorithm uses a branch-and-bound enumeration scheme for solving set partitioning problems that is
based on considering a subproblems

min cTx
Ax = 1l
−x ≤ l
x ≤ u
x ∈ {0, 1}n,

(SPP(l, u))

of the original problem, where the lower and upper bounds l and u are 0/1-vectors. The original problem
reads in this notation SPP(0, 1l), and a subproblem is formed by setting some of the upper bounds to zero,
such that the corresponding variables are fixed to zero, and some of the lower bounds to one, that is, fixings
of variables to one.

The scheme computes for each subproblem SPP(l, u) a lower and an upper bound

z(l, u) ≤ z�(l, u) ≤ z(l, u) = cTx(l, u)

on the optimal objective value z�(l, u): The lower bound is derived from the LP-relaxation QSPP(l, u),
the upper bound and a corresponding feasible solution x(l, u) are computed by a heuristic to be discussed
later; when the heuristic fails, we have z(l, u) = +∞ and x(l, u) is “undefined”.

Subproblems are useful to search the solution space of SPP(0, 1) in a divide-and-conquer way. The technique
involves a rooted binary searchtree T , whose nodes are subproblems SPP(l, u). The tree is initialized to
consists only of the root node SPP(0, 1l) and by setting z(0, 1l) := −∞ and z(0, 1l) := +∞, i.e., no lower and
upper bounds for SPP(0, 1l) are know in the beginning. The algorithm works the root node by improving
z(0, 1l) and z(0, 1l) and labels the root as being processed. If this step results in z(0, 1l) = z(0, 1l), the
problem is solved and x(0, 1l) is the optimal solution. Otherwise, a branching step is taken to subdivide the
problem into two subproblems SPP(l1, u1) and SPP(l2, u2), that become the sons of the root node. The
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subdivision must be done in such a way that the optimal solution for the root problem is contained in one
of the two subproblems, in formulas:

min{z�(l1, u1), z
�(l2, u2)} = z�(0, 1l).

Since the subproblems are restrictions of the father problem, their lower bounds are at least as large and
we can initialize them

z(l1, u1) := z(l2, u2) := z(0, 1l)

with the father’s lower bound. In general, the algorithm picks an unlabelled node v, works, and labels it.

// initialization
read problem;
initial preprocessing;
set up searchtree;

// branch-and-bound loop
while (∃ unlabelled subproblem) {

select and label unlabelled subproblem;

// LP-plunging heuristic
set-up local LP-relaxation;
do {

solve LP-relaxation;
if (integral) {

update z(T );
break;

}
set some fractional variables to integer values;
out-pivoting;
preprocessing;
in-pivoting;

}
while (!infeasible);

// cutting-plane loop
set-up local LP-relaxation;
do {

solve LP-relaxation;
if (integral) {

update z(T );
break;

}
if (fathomed) break;
out-pivoting;
preprocessing;
in-pivoting;
separation;
LP-management;

}
while (progress);
branch;

}
output z(T );

Figure 10: Branch-and-cut algorithm.

Either the node can be solved, or a branching
step is taken adding two new unlabelled subprob-
lems as the sons of v to the tree. To guarantee
finiteness of this process, the branching process
is done in such a way that each subproblem has
at least one stricter bound than its father. This
results in one more variable fixed, and after a fi-
nite number of steps all variables are fixed and
the subproblem is trivially solved.

To save work, the algorithm maintains a global
upper bound

z(T ) = max
SPP(l,u) unlabelled node of T

z(l, u),

which is the value of the best solution encoun-
tered in any of T ’s subproblems. The bound
can be used to fathom subproblems that cannot
contain a better solution than the currently best
know because

z(l, u) ≥ z(T );

such nodes can be labelled immediately and will
then not be considered any further.

This standard branch-and-bound algorithm
leaves a lot of freedom to implement its generic
subroutines. We will explain some aspects of our
algorithm in the following subsections.

5.1 Searchtree

The generic branch-and-bound algorithm does
not specify the rule to choose the next unlabelled
node. We use the so-called best-first rule, that
chooses the node with the smallest lower bound,
i.e., the node that has most potential for pos-
sible improvement of the global upper bound.
The smallest lower bound is also called the global
lower bound

z(T ) = min
SPP(l,u) unlabelled node in T

z(l, u).

The best-first choice potentially raises the global
lower bound and thus decreases the duality gap

z(T )− z(T ),

which is a measure of the global progress of the
algorithm.
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Best-first requires that we can jump from one problem in the searchtree to any other. Our implementation
uses a local setup procedure to do this, that simply generates the complete LP-relaxation of a subproblem
from scratch. This looks like a time consuming operation at first sight, but the method has advantages
when additional cutting planes are used and redundant parts of the problem are removed by preprocessing
techniques: Redundant parts for one subproblem are not necessarily redundant for others such that removed
parts have to be restored, and similar actions are necessary if different sets of cutting planes are used in
the subproblems. Removing and reinserting parts of a subproblem’s description, however, takes about the
same time as a set-up form scratch.

The method to derive lower bounds z(l, u) for the subproblems of the branch-and-bound tree is to solve
the LP-relaxation

min cTx
Ax = 1l
−x ≤ l
x ≤ u

(QSPP(l, u))

of the integer program (SPP) and a crucial point is that this has not to be done from scratch every time.
Rather, the dual simplex method allows to use the optimal solution of the father’s LP-relaxation as a dual
feasible starting basis for the LP-relaxations of its sons and often only a few iterations are needed to recover
primal feasibility and thus optimality. To benefit from this favorable behavior, we store these optimal basis
for later use as starting basis.

A last point to specify is the branching rule that we use to subdivide a subproblem into two smaller
problems. We mainly use Ryan and Foster [1981]‘s rule and strong branching, see CPLEX [1995], that
perform on our instances in a similar way.

5.2 Cutting Planes and LP-Management

The LP-relaxations of the subproblems can be strengthened by adding various types of globally valid cutting
planes, see, e.g., Balas and Padberg [1976]. We use clique inequalities and simultaneously lifted odd-cycle
inequalities of the associated set packing polytope, see Padberg [1973], and a class of set covering inequalities
that arise from an associated set packing problem via “complementing” and “aggregating” variables, see
Borndörfer [1997]. Clique inequalities are separated both heuristically and by an exact branch-and-bound
algorithm, cycle inequalities are separated using the exact polynomial algorithm of Grötschel, Lovász, and
Schrijver [1988] and a Chvátal-Gomoroy simultaneous lifting procedure, and the covering inequalities by
heuristic procedures. Details of these methods are discussed in Borndörfer [1997].

Working on a subproblem means to iteratively solve and strengthen the LP-relaxation by adding violated
cutting planes until the subproblem is either solved, fathomed, or some other stopping criterion is satisfied
and we branch. In our implementation, we use the duality gap

z(l, u)− z(l, u)

as a measure of progress of the cutting plane loop and continue as long as this gap is reduced by 10% in
every three successive iterations.

We also remove rows from a subproblem’s LP-relaxation, because the time to solve LP-relaxations of set
partitioning problems increases with the number of rows of the constraints matrix. Another important
point in a branch-and-cut framework is that more rows also tend to produce more fractional variables in
the LP solution. To reduce running time and get a more integral solution, it is thus important to remove
redundant cutting planes from a subproblem’s description and we do this heuristically when the slack
exceeds 10−3. Each subproblem involves thus a different subset of all cutting planes that we have found
somewhere throughout the course of the algorithm and if we want to be able to reproduce a subproblem
exactly in the local set-up step, we must maintain a global pool of all cutting planes. An advantage of this
method is that the computation on invocation of a subproblem becomes independent of the history of the
branch-and-bound algorithm.

The LPs themselves are solved using the CPLEX dual steepest edge simplex algorithm, see CPLEX [1995].
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5.3 Problem Reduction and Pivoting

Significant speed-ups for the solution of the LP-relaxations of the subproblems can be achieved by removing
redundant parts like columns of variables that are fixed to zero or one, or rows that intersect columns
that are fixed to one. Such fixings do not only arise from branching decisions, but also from the logical
structure of a set partitioning problem, and preprocessing is the use of simple techniques to detect such
redundancies. Preprocessing techniques for set partitioning problems are know to be highly effective, and
our code uses a concept of repeated problem reduction that applies preprocessing techniques after each
individual LP-solution. Repeated preprocessing of a similar type has been used by Atamturk, Nemhauser,
and Savelsbergh [1995] for a Lagrangian heuristic for SPPs, but the technique does not seem to have been
tried in a branch-and-cut framework before.

The preprocessing techniques that we use include know ones from the literature, like elimination of duplicate
columns and rows, fixing of singletons, elimination of columns that are neighbors of a variable fixed to one,
dominated rows, and some new ones. These procedures must be applied several times, because elimination
of dominated rows can lead to more duplicate columns, etc. Our preprocessor performs another pass as
long as it detects redundancies.

An important point in a dual simplex framework is the proper linking of preprocessing and LP-solving:
Preprocessing must not destroy dual feasibility of the basis, because otherwise we would have to solve the
LP essentially from scratch. The consequence is that we are not allowed to remove fixed basic variables and
we cannot remove redundant nonbasic rows. The desire to remove such redundant parts of the problem
nevertheless leads to some algorithmic consequences that we explain now.

Dual feasibility of the basis forces us to distinguish between fixings and eliminations of variables. Fixing
is the setting of bounds of variables, elimination involves a real removal of data from memory. Our
preprocessor works only with fixings, a subsequent elimination removes all fixed non-basic variables and all
detected redundant basic rows from memory. In this way, we combine a maximum of problem reduction with
maintenance of the basis’s dual feasibility. Nevertheless, one would like to remove all detected redundancies
from memory, and this leads to the consideration of pivoting techniques. The aim of these techniques is
simply to perform a number of (degenerate) pivots to move from one optimal basis to an alternative one,
such that all fixed variables are nonbasic, all detected redundant rows are basic (have their slack/artificial
variable in the basis), and all of these redundancies can be eliminated. A pivoting technique that is
implemented in CPLEX is the in-pivoting of rows with zero dual multiplier into the basis. It unfortunately
turns out that most of the (known) redundant rows have nonzero duals and the reason is that fixed variables
tend to proliferate in the basis: Often more than 30% of the basis consists of “junk” of this type, inhibiting
removal of the same number of rows. Fixed variables can also be pivoted out of the basis using dual simplex
steps, and we are grateful to Robert E. Bixby that we have access to a version of CPLEX that provides
this novel out-pivoting routine. Application of the procedure usually leads to a faster problem reduction,
but out-pivoting is not cheap: It requires one dual pivot for each fixed variable. One thus has to compare
the benefits of eliminating large numbers of fixed variables by a consequently large number of pivots with
the possibly few simplex iterations required to solve the next LP without prior pivoting. Eliminations,
however, are inherited by all offspring problems and our computational experience is that out-pivoting is
worth its price.

5.4 Primal Heuristics

We use the popular LP-plunging heuristic to generate upper bounds and feasible solutions for a subproblem
in the searchtree. This heuristic solves the LP-relaxation of a subproblem, fixes some fractional variables
to integer values, and iterates, until the solution becomes integral or the problem infeasible. Our algorithm
does not have a separate implementation of this routine, but simply uses the main cutting-plane loop in
a “primal mode” where separation is turned off. This results in particular in iterative preprocessing after
each fixing decision, and this results in a fast reduction of the problem size. The heuristic is nevertheless
expensive: A sequence of LPs has to be solved, and the elimination of (the largest) parts of the associated
data forces a subsequent second local setup of the subproblem to initiate the cutting-plane loop. We thus
call the heuristic only once at the invocation of a new subproblem.

16



6 Computational Results

In this section we report on computational experiences with our vehicle scheduling system. Our aim is
to discuss two complexes of questions. Our first and main goal is to evaluate the usefulness of our set
partitioning approach for the solution of VSPs at Telebus. Does clustering lead to savings in internal
travelling distance? Does tour optimization lead to better results than our heuristics? Second, we want to
look at the performance of our software modules for Telebus instances. What is the size of the problems
that we can solve in reasonable time? What is the quality of the solutions?

To answer the second question, we ran our branch-and-cut algorithm on a test set of Telebus clustering and
chaining problems. It is not interesting to provide performance data for the cluster and tour generators,
because there is no computational bottleneck in these procedures. Our branch-and-cut code is implemented
in C and consists of about 1 MB of source code in 140,000 lines, the LP-solver is the CPLEX Callable Library
V4.0, CPLEX [1995]. All test runs were made on a Sun Ultra Sparc 1 Model 170E, the code was compiled
with the Sun cc compiler using the switches -fast -xO5, and we used a time limit of 7,200 CPU seconds.
The format of the upcoming tables is as follows. Column 1 gives the name of the problem, columns 2-4
contain the size of the problem in terms of the number of rows, columns, and nonzeros. The next three
columns give the number of rows, columns, and nonzeros after the initial preprocessing of the problem
at the root node. Comparing columns 2-4 to columns 5-7 shows the performance of our preprocessing.
The next three columns give solution values. z reports the value of the global lower bound. This number
coincides with the global upper bound z, when the problems is solved to proven optimality. Otherwise, we
are left with a duality gap that we report in percent of the global upper bound, i.e., the gap is computed
as (z − z)/z. The following five columns gives information about the performance of the branch-and-cut
algorithm. There are, from left to right, the number of in- and out-pivots (Pvts), the number of cutting
planes (Cuts), the number of simplex iterations to solve the LPs (Itns), the number of LPs solved (LPs),
and the number of branch-and-bound nodes (B&B). The next five columns show timings: The percentage
of the total running time spent in problem reduction (PP), pivoting (Pvts), separation (Cuts), LP-solution
(LPs), and the heuristic (Heu). The last column gives the total running time in CPU seconds.

Our first set of test problems consists of 14 clustering problems for the weeks of April 15–22, 1996, (v0415–
v0421) and the already well-known week September 16–22, 1996, (v1616–v1622) that we used to produce
most of the diagrams in this article. The first five problems of each data set correspond to the weekdays
Monday to Friday, the last two show a significantly smaller number of rows (= requests) and belong to the
weekend. The two test sets were generated with different parameter settings of the cluster generator.

In April 1996, rules for legal clusters were very restrictive: Continued concatenations and insertions were not
allowed, maximum detour time was small, etc. The cluster generator found thus only relatively few feasible
clusters and the clustering SPPs are small. Moreover, most of the legal clusters provide simultaneous service
of very few requests: The average number of nonzeros per column is a little above two for four days of the
week, the three larger instances have a higher average because they contain many clusters for a couple of
large collective requests, but the remainder of the problem has the same characteristic. This means that
individual clusters do not interact a lot, the problem sort of decomposes and becomes easy. And in fact:
The initial call to the preprocessor is very successful, in particular the number of rows is reduced by more
than 50%. This trend continues in the branch-and-cut phase: All problems are solved to proven optimality
in at most 3 minutes, and we can see from the pivoting (Pvts) and preprocessing (PP) columns that the
problem is basically solved by iterative preprocessing. In particular, the high number of out-pivots shows
that variables could be fixed in large numbers and the sizes of the problems were reduced very fast.

In September 1996, rules were much more liberal: The clustering problems contain, for example, continued
concatenations of a depth of up to 6. Consequently, there are much more possibilities for feasible clusters,
the instances are larger, contain about 4 NNEs per column, and there is more overlap. This time, the initial
preprocessing is still successful, but the number of rows is reduced far less than in the first test set. And
in fact, the instances turn out to be harder in the sense that we cannot solve them to proven optimality
as fast: In fact, there are three instances that we cannot solve completely within our time limit of 7,200
CPU seconds. Looking at the performance of the algorithm, we see that pivoting and preprocessing need
most of the time, but are successful (remember that every pivot indicates a fixed variable). However,
even though we find a significant number of cutting planes, the quality of the cuts does not suffice to
prevent the algorithm from extensive branching, as can be seen from the B&B column. All of this effort
is, however, only spent in proving the optimality of a solution of very good quality. To show this, we have
run the algorithm another time with a time limit of 2 minutes, and we see that satisfactory solutions can
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be obtained in this period.

The clustering results are satisfactory in the sense that more or less independent of the parameter settings
clusterings of proven optimality or with very good quality guarantee can be computed in short time,
considering the complete solution space of all legal clusters.

We have used the clusterings that we computed in the previous test runs to set up the corresponding
chaining problems as well. The April instances (t0415–t0421) contain duplicate rows for clustered requests
and have thus the same number of rows as the corresponding clustering instances, the optimization criterion
was operational costs, in the September instances (t1716–t1721) only the bus clusters were chained, the
optimization criterion was travelling distance. Chaining rules were again more strict for April and the
resulting instances are not very large in terms of columns and NNEs. Looking at the preprocessed instances
(with the duplicate rows removed), however, the average number of NNEs is already larger, indicating a
more complicated combinatorial structure. This can also be observed for the September instances: Here,
our preprocessor cannot even remove a single row in any of the instances. Although the preprocessed
instances are not large, they turn out to be computationally difficult. In contrast to what is usually
reported about real world set partitioning problems, there is a large duality gap between the value of the
LP-relaxation and the best know integer solution. In fact, even the duality gaps on termination of the
algorithm as reported in column Gap are significant, in the case of the September instances even big. Most
of the computational effort is spent in the heuristic, because the iterative preprocessing doesn’t reduce the
problems a lot in the early rounding steps. But even if we subtract this time completely, the algorithm
performs comparably few iterations: The number of LPs is rather small and the same holds for the size
of the searchtree. The reason for this is that the LP-relaxations of the chaining problems are harder to
solve, as can be seen by looking at the average number of simplex iterations per LP (column Itns divided
by column LPs).

Heuristics Integer Programming
Day Requests Clusters Tours Cluster Tours

No. No. km DM DM No. km DM
Mo 1439 1167 10909 66525 60831 1011 10248 55792
Tu 1619 1266 11870 71450 67792 1106 11291 62696
We 1603 1253 12701 74851 68166 1107 11813 61119
Th 1612 1276 12697 74059 68271 1121 11821 64863
Fr 1560 1242 12630 71944 63345 1080 11757 61532
Sa 938 748 9413 45842 47736 676 8561 41638
Su 859 703 8850 42782 44486 620 8243 38803∑

9630 7655 79070 447453 420627 6721 73734 386443

Table 2: Comparing vehicle schedules.

Although the chaining step does not provide near optimal solutions, tour optimization is still valuable.
Table 2 shows the results of a comparison of different vehicle scheduling methods for the week September
16–22, 1996. Column 1 gives the day of the week and column 2 the number of requests. The next three
columns show the results of a heuristic vehicle scheduling using our cluster and tour generators as a stand-
alone optimization module. There are, from left to right, the number of clusters obtained from a heuristic
clustering, the internal travelling distance within these clusters, and the costs of a vehicle schedule based
on this clustering. Skipping column 6 for the moment, we can compare these numbers with the results that
we obtained using the set partitioning approach. Column 7 gives the number of clusters obtained in this
way, column 8 the corresponding internal travelling distance, and the last column the costs of the vehicle
schedule that was obtained by chaining the optimal set of clusters and solving the resulting chaining SPP
approximately. Column 6 that we just left out gives the costs of a vehicle schedule that was constructed
heuristically from the optimal clustering. Roughly speaking, these number show that an optimal clustering
reduces the number of requests about 10% better than what we can achieve heuristically. Heuristic chaining
based on optimized clusters results in vehicle schedules that are about 5,000 DM per day cheaper than a
pure heuristic approach, while chaining optimization can save another 5,000 DM per day.
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7 Summary

We have presented in this paper a set partitioning approach to vehicle scheduling in a dial-a-ride system
for handicapped people. The results show that it is today possible to solve vehicle scheduling problems
for systems of this size in a satisfactory way. In the Telebus case, the use of modern computer technology
and mathematical programming techniques resulted in improvements in service quality and simultaneous
significant cost reductions. We think that such results can lead to a renewed interest in dial-a-ride systems
for use not only as a special purpose system for handicapped people, but as a component of the public
transport to service areas or times of low demand.
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