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Abstract 
Portable Standard Lisp (PSL), a dialect of Lisp developed at the University 

of Utah, has been implemented and optimized for the Cray 1 and Cray X-MP 
supercomputers. This version uses a new implementation technique that permits a 
step-by-step development of the PSL kernel. The initial Cray version was acceptable, 
although the execution speed of the PSL was not as fast as had been anticipated. 
Cray-specific optimizations were undertaken that in some cases provided a ten-fold 
speed improvement, resulting in a fast Lisp implementation. 

1 INTRODUCTION 

Research at the University of Utah toward developing a portable Lisp system re­
ceived impetus in 1979 when a model for a standard Lisp subset [11] was developed 
to make the REDUCE [8] symbolic algebra package more portable. This research 
effort has since produced progressively larger and more portable dialects of Lisp [6], 
the most recent of which is Portable Standard Lisp (PSL). 

The goals of the designers of PSL were to provide a uniform Lisp programming 
environment across a spectrum of machines, to produce a portable system com­
parable in execution speed to other non-portable Lisp systems, and to effectively 
support REDUCE on different machines. PSL has met these goals and has been 
distributed to over 700 sites world-wide on DECSystem-20s, VAXs running both 
UNIX'"1, and VMS, Apollos, Suns, IBM 370 class machines with CMS, Goulds, and 
the Apple Macintosh*"1. PSL has been ported to, but not currently distributed for, 
the HP IPC, HP 9000/320, and Silicon Graphics Iris. PSL is ready for distribu­
tion to Crays running the CTSS and COS operating systems. This wide range of 
machines demonstrates the ease with which PSL is transported. 

There are currently no other implementations of Lisp on the Cray supercomput­
ers, although there are several reasons to have Lisp available on such a machine. 
One is the ability to have symbolic programming environments on one of the fastest 
machines available. This would provide the capability of solving symbolic problems 
that would not be feasible to solve on smaller systems. There is also interest in the 
possibility of combining symbolic methods with some of the large numeric programs 
typical of supercomputers [2]. 

In this paper we continue with a discussion of the porting process used to imple­
ment PSL on the Cray, followed by a discussion of the tuning that was performed. 
We continue with a description of the process of instruction scheduling which pro­
vided further speed improvements. We then discuss some of the timing results, 
mention some initial work in vectorizing PSL, describe the implementation of a 
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Common Lisp subset on the Cray, and conclude with proposals for future work. 

2 P O R T I N G OF PSL 

PSL is implemented in PSL itself. Most of the code is written as vanilla PSL 
functions, while some parts are written in SYSLisp [1], a version of PSL that permits 
the allocation of and access to untagged data structures, construction of explicit 
pointers, etc. Since PSL is written in terms of itself, it is ported to a new processor 
through the use of the PSL compiler (a version of the Portable Lisp Compiler [5]). 
A running PSL compiler is modified into a cross-compiler (see Figure 1), so that 
instead of generating code for the current machine, it generates code for the target 
machine. The code denning the PSL system is then sent through the cross-compiler 
to create a PSL system that runs on the target machine. The compiler itself is then 
sent through the cross-compiler and added to the system on the target machine. 
Once that is accomplished, the cross machine is no longer required and the target 
machine can be used directly for further optimizations and enhancements. 
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PSL Kernel and Compiler in PSL 
(Cross Machine) 

1 
PSL System Independent Compiler 

Cray Code Generation Tables 
Cray Assembly Code Printer 

PSL Kernel and Compiler 
as Cray Assembly Language 

' • 

Cray Assembler 

' ' 
Kernel and Compiler Binary Files + 
Operating System Support Functions 

(Cray Fortran) 

' • 

Cray Linker 

' • 
PSL Kernel with Compiler 

(Cray) 

Figure 1: THE PSL PORTING PROCESS 
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Although conceptually simple, the porting process generally takes about six 
man-months to complete for each new target machine. The early phases of the 
process are involved with creating the cross-compiler [7]. Much of the compiler is 
system independent; however, parts must be customized for each target machine. 
The initial part of the PSL compiler translates PSL code into instructions for the 
Abstract Lisp Machine (ALM). The ALM is characterized as follows: 

1. Fifteen general-purpose registers, which are used for local computations and 
the passing of arguments to functions. The first register is used to return the 
value from the function. 

2. Stack frames that are used for saving return addresses and local variables, 
along with the results of intermediate calculations. 

3. Caller save model, in which each function saves any values to the stack frame 
that are needed after the call to another function. 

4. A set of about 50 instructions that defines the various operations of the ALM. 
Many are standard data movement, arithmetic operations, and function calls, 
while others are Lisp-specific (such as lambda binding for local variables). 

5. A set of addressing modes that vary in complexity from simple immediate 
operands to ca r and cdr. 

The ALM is a low-level instruction set closely related to register machines. In con­
trast, the Spice Lisp instruction set [18] is quite high-level, with primitives for direct 
manipulation of Lisp primitives and stack operations. The Symbolics Lisp machine 
also provides a high-level abstract machine with microcode support [16]. The low-
level model of the ALM is better for transporting the Lisp system to conventional 
machines, because the compiler can do optimizations such as register allocation, and 
the mapping process from ALM to the Target Machine (TM) is fairly simple. 

The process of translating from the ALM to the TM is performed through 
macro expansion. PSL uses the Lisp Assembly Program (LAP) format for both 
the ALM and TM instructions, which consists of an operator followed by one or 
more operands. Typical LAP format instructions are (ALM instructions are indi­
cated with a leading asterisk [*] on the operator symbol): 

Target machine instruction to move indirect register 1 into register 2. 
(MOVE (INDIRECT (REG 1)) (REG 2)) 

ALM instruction to add the Cdr of register 2 to register 1. 
(*WPLUS2 (REG 1) (CDR (REG 2 ) ) ) 
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Once the TM instructions have been generated, the compiler has three final 
phases: 

1. Assemble the TM instructions into binary code and save the code in memory 
for execution. This is used when compiling PSL code for immediate use. 

2. Assemble the TM instructions into binary code and save the code in a FASL 
(fast load) binary file for execution in some future PSL system. 

3. Directly translate the TM instructions into assembly language files. The as­
sembly language can then be assembled by the target machine and linked and 
loaded into the run-time system. 

The last phase is used when transporting the PSL kernel to the target machine. 
Thus, a cross-compiler is generated when the following steps are taken: 

1. Determine a mapping from the structure of the ALM into the TM (e.g., are 
the fifteen general-purpose registers represented, does the stack grow up or 
down, etc.). 

2. Write the macros that translate from the ALM instructions into a sequence of 
TM instructions. 

3. Translate from the TM LAP instructions into TM assembly instructions. This 
includes the generation of the preamble and postamble code that must be 
included with each assembly language file. 

3 THE TEST SERIES 

Before the Cray implementation, one of the problems with the transportation of PSL 
was that once the cross-compiler was built, the entire PSL kernel had to be compiled 
into target machine assembly code and assembled on the target machine. PSL 
without the compiler is approximately 10K lines of code, which expands into about 
125K bytes of assembled code space. This large amount of code makes implementing 
PSL for a new machine tedious and time consuming. Without a guarantee that the 
code being generated is correct, the debugging of this many lines of code can be a 
real nightmare. Also, once a bug fix has been determined, a complete regeneration 
of all of the files must be performed. Finally, the sheer number of bytes of assembly 
code being transported to the target machine can overwhelm many file transfer 
methods. 
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Our solution to this problem is the test series, which is a step-by-step approach 
to generating a PSL kernel. Each test embodies a small set of Lisp functionality 
which can be semi-independently tested and then combined into a full PSL kernel. 
Since each test is fairly small, the file transfer overhead is minimal. Also, each test 
is conceptually simple and makes debugging easier. When a test fails, generally the 
cross-compiler needs to be repaired, and the tests need to be performed again. The 
semi-independent nature of the testing is due to the "onion-skin" implementation. 
When the first test succeeds, its code is used as the kernel to test the next one. 
When that test succeeds, it is added to the kernel as a new layer and used in the 
next test and so on. This allows each test to use functions and features known to 
be correct from earlier tests and saves the effort required to implement new support 
functions for each test. Lisp is already a highly integrated environment and is quite 
amenable to layering functions in this way. 

There are two test series, the first with eight simple tests and the second with 
eleven tests that eventually result in a full PSL kernel and compiler. The first test 
series has just enough parts of the PSL kernel to verify the code generation routines, 
the assembly language constructs, and the interface to the target machine operating 
system (like character I /O, file I /O, terminating the task, signaling an error, etc.). 
These eight tests are: 

1. Attempts to verify that simple input/output ( I /O) of characters is working 
correctly, which can then be used in later tests to indicate the status of each 
test. 

2. Defines and tests the various Lisp print functions. 

3. Defines a mini-allocator to allocate Lisp structures, like lists, strings, and 
vectors. 

4. Defines a mini-read, which does not use scan tables and only supports a few 
of the data types (for example, no floating point numbers). 

5. Defines a mini-eval of most Lisp forms except it does not permit user defined 
functions. 

6. Defines a more extensive set of primitives to support the mini-eval from the 
previous test. These include lambda expressions, and user defined expr, f expr, 
nexpr, and macro functions. This is a complete model of PSL but has a 
restricted set of the PSL functions present. 

7. Defines a set of routines to test a minimal file-io package. 

7 



8. Defines the full garbage collector. 

Upon completion of the eighth test, a simple PSL kernel has been built. At this 
point we can be fairly confident that the cross-compiler is generating good code and 
can move on to the second test series. 

The second test series is more extensive in that it brings in the various parts 
of the PSL kernel in complete detail. When the tenth test is reached, a complete 
PSL kernel has been constructed. The eleventh test is then used to build the PSL 
compiler. This requires more customization for the target machine, because it must 
be able to assemble the TM LAP code into directly executable binary code. It must 
also be able to perform binary I/O and save generated binary code into loadable 
modules. Once accomplished, the compiler itself can be translated into a loadable 
module. At the end of the eleventh test, the compiler was included as a part of 
the PSL kernel. This results in a larger than necessary kernel since the compiler is 
a loadable module. Thus, the final step is to restore the kernel to the way it was 
at the end of the tenth test, and include the support from test eleven for reading 
binary files. 

4 THE CRAY PORT 

The Cray implementation began in June 1982, with the initial version running by 
July 1984. Much of the effort was part-time, requiring about 12 man-months, some 
of which was directed toward the design of the test series. The actual porting time 
was close to the six month estimate. 

The implementation began with the first decision to choose which machine should 
be used as the cross machine. Due to the cross bootstrap nature of the porting 
process, the ability to rapidly transport files between the cross and host machines 
is very important. Originally we chose a DECSystem-20 at the University of Utah 
as the cross machine and the Cray was located at the National Magnetic Fusion 
Energy Computer Center in California. The large "electronic distance" between 
these machines made the file transfer process painful. Eventually we moved to the 
development effort to a host VAX 11/780 running BSD UNIX'm at Los Alamos 
National Laboratory. This facilitated the effort as the VAX was connected directly 
to a Cray at Los Alamos, thus virtually eliminating the time required to ship files. 

The next step was to determine the mapping of the architecture of the ALM into 
the Cray. If the vector register capabilities of the Cray are ignored, the Cray is very 
RISC-like. There are few addressing modes and few computational registers, but a 
large number of cache-like extra registers (sixty-four 64-bit registers and sixty-four 
24-bit registers). The Cray word size is 64 bits, so we decided to represent a Lisp 
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item (tag and information part) in a single word. There was and still is quite a 
debate about whether one or two Lisp items should be packed into a single word. 
We chose speed at the expense of space and used one item per word. Another factor 
was that there was no other PSL implementation where more than one Lisp item 
could lit into a word. Although this type of design decision is characterized in a few 
PSL system constants, all of the code would have to be checked to verify that it was 
written properly and would not be confused by this new representation. 

The large number of registers made mapping the ALM registers into the Cray 
registers easy. Five of the eight S-registers (64-bit computational registers) were 
chosen to represent the first five ALM registers. The first S-register (SO) is special 
and mainly used for comparison operations, thus it was left alone. The remaining 
two registers were designated as temporaries and used by the macros that mapped 
from ALM instructions into TM instructions. The remaining 10 ALM registers were 
allocated to the bank of T registers (the sixty-four 64-bit cache registers). These 
registers may not be directly involved in a computation, but may be moved to the 
S registers in one clock cycle. Another T register was permanently assigned the 
value of NIL because it is used in so many comparisons. The eight A registers (24-
bit address registers) were allocated for temporary addressing calculations, and one 
was allocated as the stack pointer. All of the vector registers and their instructions 
were ignored because no direct relationship between them and the ALM instructions 
could be found. 

One major problem with the Cray port was the significant difference between the 
Cray's assembly language (CAL) and the standard LAP format. Nearly all other 
computers use an operator followed by operand format for their assembler, but the 
Cray is significantly different. CAL uses a semi-infix notation for its instructions, 
where the destination operand is the first element and the source operands are next, 
enumerated with infix operators. For example, the CAL instruction 

SI S2+S3 

adds the contents of register S2 to that of register S3 and stores the result in register 
S i . This "pseudo" infix form is quite different from prefix LAP format and from 
the assembly format used by other machines on which PSL was implemented. 

The solution of this problem required the introduction of an extra step in the 
translation process. The target machine instructions were written out as CAL 
macros that more closely match LAP format. These were then expanded by the 
CAL assembler into the standard CAL format. This trick permitted a more natural 
debugging environment because we were able to look at the generated macros and 
did not have to deal with the nonstandard CAL syntax. 

The previous example of CAL code introduces another interesting characteristic 
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of the Cray. It uses three-address instructions. The ALM instructions are all two-
address instructions; since all two-address instructions are subsets of three-address 
instructions, they did not present any initial problems. However, this was indeed 
a restriction because more efficient code could be generated for a three-address 
machine than for a two-address machine. We are currently exploring ways to take 
advantage of the three-address code with the EPIC compiler [10]. 

One final note that characterizes the Cray version of PSL from the previous 
versions is the extensive use of recursive ALM to TM macros. Previous PSL ver­
sions had used some recursion, but not as extensively as in Cray PSL. In many 
of the previous versions, most of these macro tables were written independently, 
where each ALM instruction carefully determined the various operand locations 
and generated the appropriate code to perform the requested operation. Thus, a 
*WPLUS2 instruction (which performs addition) would test to see if the arguments 
are in registers or in memory. In either case, appropriate but different code would 
be generated. Cray arithmetic instructions require the operand to be in registers, 
thus code must be generated to move the arguments into registers. The solution for 
the Cray was to carefully code the *M0VE ALM instruction so that it could move 
any possible operand to any possible location. Once this was accomplished, the 
other ALM macro could recursively invoke the *M0VE ALM instruction to place the 
operands in the appropriate locations, perform the operation, and move the result to 
the appropriate destination. This made writing each ALM expansion much simpler. 
For example, using the old technique, the ALM macro expansion for *WPLUS2 might 
appear as: 

Defines the ALM macro expansion table for addition. The first part 
of each form tests the type of the operands, and the second is the 
list of instructions. ARGONE refers to the first ALM operand, ARGTWO 
is the second, etc. 
(defcmacro ««plus2 

((SRegP SRegP) . (add ARGONE ARGTWO)) 
((SRegP ARegP) (move ARGTWO (reg s6) ) 

(add ARGONE (reg S6))) 
((ARegP SRegP) (move ARGTWO (reg a6)) 

(adda ARGONE (reg a6 ) ) ) 
((SRegP SmalllnumP) (move ARGTWO (reg S6)) 

(add ARGONE (reg S6))) 
... THERE ARE MANY MORE POSSIBLE OPERANDS 

The example demonstrates that this is a tedious process. Using the recursive 
technique, this could be written as follows (notice that this makes the code easier 
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to modify since there is only one actual generation of the CAL instructions ADD -
addition of S registers, and ADDA - addition of A registers): 

Defines the *WPLUS2 ALM macro using recursive expansion. 
The final clause without a predicates always succeeds. 
(defcmacro *wplus2 

((SRegP SRegP) (add ARGONE ARGTWO)) 
((ARegP ARegP) (adda ARGONE ARGTWO)) 
((SRegP AnyP) (*move ARGTWO ( rag s6 ) ) 

(*wplus2 ARGONE (reg S6) ) ) 
((ARegP AnyP) (*move ARGTWO (reg A6)) 

(*wplus2 ARGONE ( rag a 6 ) ) ) 
((AnyP SRegP) (*move ARGONE ( reg S6)) 

(*wplus2 ( reg S6) ARGTWO) 
(»move ( reg S6) ARGONE)) 

( (*move ARGONE ( reg S6)) 
(*move ARGTWO ( reg S7)) 
(*wplus2 ( reg S6) ( reg S7)) 
(*move ( reg S6) ARGONE)) 

Once the cross-compiler was successfully built, the next step was to try the var­
ious parts of the test series. Before we could perform the first test, some additional 
support code had to be written on the Cray to interface the cross-compiled code 
to Cray system functions; such as, I/O routines. Since Fortran is the high-level 
language of choice on the Cray, we used it to implement all of the operating system 
interface code. The only difficult part of this process was determining the appropri­
ate calling mechanism so that the generated CAL code could call Fortran code and 
coerce the data types between the two languages. Cray Fortran is fairly rich in its 
capabilities and made manipulation of the various data structures quite reasonable. 
The main goal of the first test is to verify that the Fortran code and the techniques 
for its interface are working. As the test series builds upon the previous tests, it is 
an absolute requirement that I /O work properly. 

The bootstrap process then continued through each of the tests until eventually 
a full PSL kernel was completed. Progress slowed at that point until the resident 
assembler could be defined and an interface to binary files could be implemented. 
Once those were accomplished, the initial version of Cray PSL was released and we 
turned our attention to further optimizations. 

While Cray PSL 3.2 was being optimized, a parallel effort was started in De­
cember 1985, at Konrad Zuse-Zentrum für Informationstechnik at Berlin to port 
the PSL 3.4 version to the Cray [13]. The ultimate goal was the creation of a 
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distributable Lisp version for the Cray Operating System (COS) and Cray's new 
UNIX*"1 style operating system UNICOS. PSL 3.4 is an enhanced version of PSL 
developed at the Hewlett Packard Laboratories. One of the major differences be­
tween PSL 3.4 and the previous versions is the concept of the micro-kernel. The 
task of the micro-kernel is to allocate the various data spaces (heap, stack, etc.) 
and then load the remainder of the kernel. The original PSL kernel was changed to 
be a set of independently compilable modules. The micro-kernel (about 1500 lines 
of Lisp code) is the only part that must be cross compiled and processed by the 
system assembler. This drastically reduces the size of the assembly language files to 
be shipped to the target machine. 

The first step in the process was to upgrade Cray PSL 3.2 with PSL 3.4 modules 
to produce a cross compiler for PSL 3.4. This enabled the use of the Cray itself as 
a cross compiling device. Soon afterwards PSL 3.4 was able to cross compile itself 
directly on a Cray. A complete rebuild of kernel currently takes less than 200 cpu 
seconds (as compared to the hours that it took on the Vax 780 using PSL 3.2). At 
the same time the operating system interface of PSL 3.4 was polished to better fit 
the Cray environment, which is characterized by a real address memory and a batch 
oriented command language. Added were libraries for load modules, a command 
language interpreter, catalog access and system specific diagnostic aids. 

Another important addition was a completely dynamic memory management 
system. In a virtual addressing environment, data areas can be luxuriously allocated 
because unused parts do not cost physical memory. Real addressing systems like the 
Cray require careful tailoring of sizes of the data areas according to the problem. 
Therefore dynamic management of these areas is necessary. The PSL 3.4 version 
is based on Cray's HEAP manager common to both COS and UNICOS (this has 
nothing to do with the Lisp heap), which permits the expansion and contraction of 
the executing image. The Lisp structures that have variable size are BPS (binary 
program space, which includes compiled programs and static arrays), Heap, Stack 
and Binding Stack (used for special variables). These structures are allocated in one 
huge data area provided by the operating system. This data area can be enlarged or 
shrunk upon request, with a fixed lower end. Since the Cray binary instructions are 
not easily relocatable after linkage, BPS starts on the lower end and can be altered 
in size. The other data areas follow and can be moved in memory. The heap is 
moved via garbage collector techniques, using a compacting garbage collector. Care 
must be taken with the special pointers into data areas which reside in the T or B 
registers and therefore they are not "seen" by the garbage collector. The PSL 3.4 
version automatically enlarges the code and heap areas when the amount of free 
memory is low; the stacks are not automatically enlarged. 
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5 TUNING THE IMPLEMENTATION 
Once PSL was successfully implemented, we ran a set of Lisp timing benchmarks 
developed by Gabriel [4]. The benchmarks were executed on the Cray, and the 
results were compared to their execution in PSL on other machines. As expected, 
the benchmarks ran more quickly on the Cray. However, all of the power of the Cray 
was not realized. For instance, translating from an ALM with 15 general-purpose 
registers to the Cray with its many special-purpose registers, was a complicated 
task; one that the initial implementation did not do well. Few of the T registers 
were used, the S register usage was not scheduled, and no vector registers were used. 

A major feature of the Cray architecture when determining optimizations is the 
large ratio between memory and register access time. On the Cray the ratio is about 
14 to 1, while on more conventional architectures the ratio is around 4 to 1. Since 
most of Lisp's internal activity is accessing memory, as much information as possible 
must be maintained in registers. The Cray provides block move instructions that 
permit movement of multiple words to or from memory at a cost of only one extra 
clock for each additional word. Therefore, optimizations that combine accesses 
into block movement are advisable for the Cray. Using this concept, we found 
a number of potential optimizations that attempt to use the registers instead of 
memory locations. 

Another interesting feature of the Cray architecture is that it is a very orthogonal 
machine. Many different versions of a few ALM macros were tried to see if a more 
efficient mapping could be determined (i.e., instructions like »FIELD which performs 
a bit field extraction). Nearly every different method tried resulted in exactly the 
same number of clock cycles. Although this inability to find "betterf" code sequences 
was disappointing, it demonstrates that the Cray architecture is highly orthogonal 
and really quite good. 

The first optimization involved moving the stack into registers. One thought 
was to move the entire stack into all of the vector registers (8 vectors, each with 64 
elements, each 64 bits wide), which would provide a much faster stack. However, 
there are no instructions for accessing a variable vector register or a variable register 
index; thus we could not implement a movable top-of-stack pointer. An idea along 
similar lines was to move the stack into the T registers (64 registers, 64 bits wide), 
but they also do not permit variable access to a register. The final solution was 
to allocate the current stack frame to a set of the T registers. Since all accesses 
to frame locations are performed using compile time constants, registers could be 
used effectively. For example, access to the first frame location could map into T20 
and the second frame location would be T21. Using the T registers, access to each 
frame location is performed in 1 clock cycle, instead of the 14 before. Offsetting this 
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advantage is that upon function entry and exit, the stack frame must be rolled to 
and from memory. However, this could be accomplished using fast block transfer. 
Another disadvantage is that the number of available T registers puts a limit on the 
size of a frame. This limit could be increased by using vector registers instead of T 
registers, but we have not found this necessary. 

A similar optimization was to keep heap pointers and other heavily used system 
implementation variables in T registers instead of memory locations (for example, 
the stack and heap boundary pointers were moved into the T registers). This and 
the previous stack frame optimization resulted in an improvement of approximately 
25% in speed. Because of the extra code required to move the stack frames to and 
from memory, the size of the code increased by about 10%. 

An important optimization in the garbage collector takes advantage of the Cray's 
large word size. PSL on the Cray uses a mark-and-sweep compacting collector. One 
feature of this scheme is that the collector must compute the distance that each word 
must be relocated, and then store that distance. Generally a separate relocation 
table is used to store this relocation distance for each segment within memory. On 
the Cray, a 64-bit word represents each Lisp item (a Lisp cons cell requires two 64-bit 
words). Cray PSL's tagging scheme allocates 8 tag bits and 24 pointer bits per item, 
leaving 32 bits left over. Since the maximum relocation distance can never exceed 
the addressing size, 24 of the 32 bits are used to store the relocation distance for 
each word. Eliminating the relocation table (and therefore the expensive memory 
references to it) doubled the garbage collection speed. 

An optimization that we have considered, but have not yet implemented, is to 
use the vector registers while performing garbage collection. During the marking 
and pointer adjustment phases, each of the primary data structures are scanned to 
find active data. The stack and symbol table are scanned in sequential order, so we 
could block move them into a vector register (64 words at a time) and then scan from 
the vector registers instead of memory. Since a random memory access requires 14 
clocks, while a block move to vector registers requires 2 clocks per access, we could 
reduce the access time for these structures by a factor of 7. 

Some operations on the Cray, such as integer division, are fairly difficult to 
implement directly in assembly language, and so were first implemented as calls to 
Fortran library routines. Some of these were implemented as in-line code. 

Table 1 shows the improvements in the Gabriel benchmarks resulting from this 
first set of optimizations. The benchmark programs are briefly described below. 

B O Y E R - a "theorem prover" emphasizing the use of "typical" Lisp structure 
manipulations; 
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Benchmark 
Original Optimized 

Original 
Optimized Benchmark Real Time in Seconds Original 
Optimized 

BOYER 
BROWSE 
DESTRUCT 
STAK 
PUZZLE 
TRIANG 

3.4 2.4 
8.4 6.0 
0.4 0.3 
1.1 0.9 
1.0 0.8 

14.4 12.7 

1.42 
1.40 
1.33 
1.22 
1.25 
1.13 

Table 1: Optimization results for PSL 3.2. 

B R O W S E - an "expert system" emphasizing the use of pattern-matching and of 
frames for knowledge storage; 

D E S T R U C T - a program emphasizing the use of destructive list operations such 
as r p l a c a and rplacd; 

STAK - a program that times function calls using fluid (special) binding; 

PUZZLE - a game implemented using many vector references; and 

T R I A N G - a board game benchmark. 

The authors at Konrad Zuse-Zentrum für Informationstechnik at Berlin incor­
porated these optimizations into their PSL 3.4 version and began a new round of 
optimizations. The first set began during the update of pattern tables to produce 
the 3.4 version. A number of enhancements were implemented, mostly by adding 
new open-coded functions. Open coding is an important aspect for machines with 
instruction pipelines (like the Cray). This is because any jump interrupts the in­
struction issue and requires an expensive load of instructions from memory, whereas 
the wasting of memory by additional inline instructions is acceptable with today's 
memory sizes. The most prominent example for open coding is the function cons, 
which is the workhorse of structural work. Open coded cons speeds up some pro­
gram parts by more than a factor of 10 and costs only about 10% in code size 
(measurement of REDUCE resulted in a 10.8% larger size with open-coded cons). 
Other open coded optimizations included special variable binding, function calling, 
exit handling (ca tch and friends), and arithmetic. Some of these open-coded opti­
mizations significantly improved the execution of the Gabriel benchmarks in areas 
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where the previous version was weak (for example, open coding the special variable 
access produced an eight fold improvement in execution time of the STAK test). 

The PSL 3.2 version which allocated the stack frame to a block of T registers is 
much better than conventional stack management in memory. However, the loading 
and restoring of the stack frame between memory and the T registers is one of the 
main bottlenecks. This observation lead to another refinement in PSL 3.4, with the 
objective to avoid memory operations wherever possible. Three additional cases are 
distinguished: 

1. If a function only uses the stack to save its return address, the T Registers 
are not used at all. The return address is saved by the function itself and the 
frame length is set to zero. 

2. If a function uses a small frame and this frame must not be saved, then an 
extra area of T registers is reserved for this purpose, which is never saved. 

3. In the case of an unusually large frame, the conventional stack technique is 
used. 

These optimizations helped to improve many small functions. 
The next set of optimizations required the addition of Cray specific passes to the 

PSL compiler. The fact that the PSL compiler is written in PSL and the internal 
structures used by the compiler are Lisp structures, made the implementation of 
these passes easy. The basis for the first pass optimization is the Cray's ability to 
overlap the execution of instructions. When one expensive instruction is executing 
(like a memory access instruction), many extra instructions may be executed in 
parallel while the expensive instruction is running. Thus, the extra instructions take 
no time to execute. The only caveat is that the extra instructions may not access any 
resources that are used in the expensive instruction (for example, if an instruction 
is reading into a register, none of the extra instructions may access the destination 
register). Another type of "instruction scheduling" (scheduling of instructions so 
some of their execution is "free") is mentioned in the next section. This first new 
pass processes the ALM instructions to rearrange the stack deallocation in order to 
find the best time to unload the stack frame. This required breaking some of the 
original PSL ALM instructions into smaller parts so they may be placed separately 
into the resulting function. The original PSL compiler deallocated the stack frame 
just prior to exit. Moving the deallocation back from the end as far as possible 
allows the memory operations to be overlapped with other instructions. 

Three additional passes which operate upon the TM instructions were also added. 
These passes regard the program as a whole and are not limited by the boundaries 
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Benchmark 
Original Opt. Orig. Opt. PSL 3.4 

Original 
Ovt.PSLZA Benchmark Real Time in Seconds Original 
Ovt.PSLZA 

BOYER 
BROWSE 
DESTRUCT 
STAK 
PUZZLE 
TRIANG 

3.4 2.4 0.9 
8.4 6.0 1.3 
0.4 0.3 0.1 
1.1 0.9 0.1 
1.0 0.8 0.7 

14.4 12.7 10.9 

3.56 
6.46 
4.00 
11.00 
1.42 
1.32 

Table 2: Optimization results with PSL 3.4. 

of ALM instructions. The types of optimizations that these passes perform include: 
loops are partially unrolled, multiple loading of the same item is suppressed (it 
performs a simple peephole optimization) and instructions are rescheduled to use 
overlapped processing wherever possible. 

All optimizations were motivated by the results of simultaneously developed 
diagnostic aids. Most important of them is the PSL interface to Cray's SPY feature. 
SPY interrupts a running program at very short regular time intervals and counts 
the interrupts per place. An arbitrary Lisp program can be supervised by SPY and 
the summary shows a very exact distribution of cpu consumption per Lisp function. 
This was the starting point for optimization steps in many cases and resulted in a 
32% to 1100% speed improvement in the benchmarks shown in Table 2. 

6 INSTRUCTION SCHEDULING 

The Cray processor architecture is based to a high degree on segmentation and 
pipelining. Scalar instructions using different data resources (registers, memory 
locations) can overlap their execution. Even if they use the same functional unit 
(e.g., doing integer add/subtract) their execution may be overlapped (one starting 
each clock period). Vector instructions can operate in parallel, if different functional 
units are used (they need their pipelining for the vector processing). 

The objective of instruction scheduling is to rearrange a given sequence of in­
structions so that maximum parallelism is used. An early approach only regarded 
the scalar LOAD instructions. A load takes about 14 clock periods (cp) depending 
upon the type of processor, while simple MOVEs, SHIFTs, integer ADDs, etc. take one 
or two cps. This early approach was unsatisfactory for several reasons: it was not 
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very systematic; it did not handle several simultaneous LOADs and there are addi­
tional "medium" weight candidates that are viable for scheduling, e.g. floating point 
arithmetic (ADD: 6 cps and MULTiply: 7 cps). 

A new approach now handles all instructions generated by the compiler. The 
algorithm works directly on the TM instructions as a preprocessor to the final as­
sembly. It operates in several steps: 

1. The basic blocks are initially determined.- A basic block is a section of code 
limited by "non movable" instructions like jumps, labels, etc. 

2. For each instruction in a basic block a node is built which describes the input 
and output resources of the instruction, its execution time and its functional 
unit requirements. Each node also includes links to other nodes and slots for 
local variables used during the selection process. 

3. The nodes are scanned for data flow dependencies. Each node is doubly linked 
to those nodes creating its inputs or using its output resources. The result 
is a directed graph completely representing the dependencies between the in­
structions. The graph establishes a partial ordering among the instructions. 
Each rearrangement of instructions (linear sequence) is a full ordering; it is 
a functionally correct variant of the original program, if and only if the full 
ordering is a superset of the partial ordering. 

4. During the selection process instructions are taken from the graph. A counter 
simulates the execution time of the target code on a clock period basis. The 
minimal elements of the graph, that is, the instructions with no (more) pre­
decessors, are candidates for selection in each step. The criterion for selection 
is 

(a) the earliest possible execution time (availability of resources and units), 
and 

(b) the weight of the instruction (its execution time and the weights of its 
successors). 

The number of cps needed is added to the actual cp counter and this value 
is propagated to the directly dependent nodes as "earliest time to execute." 
Afterwards the selected instruction and its links are removed from the graph 
and the operation is repeated. 

As an example, the following t e s t function 
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(defun t e s t (a b ) ( fun (caar a) ( caa r b ) ) ) 

compiles the parameters for fun into the following code: 

(move ( r eg a5) ( r eg 2 ) ) 
( load ( reg a5) ( reg a5)) 
( load ( reg 2) ( reg a5)) 
(move ( reg a2) ( reg 1)) 
( load ( r eg a2) ( reg a2)) 
( load ( reg 1) ( reg a2)) 

% parameter "b" t o address r e g . 
'/, f i r s t ca r t o address r e g . 
'/, second ca r t o parameter r e g . 
% parameter "a" t o address r e g . 
% f i r s t ca r t o address r e g . 
'/, second ca r t o parameter r e g . 

Analysis of this sequence reveals that the processor has to wait for memory before 
instructions 3 and 6 can begin. The dependency graph appears in Figure 2. Note, 
that there is a direct link from 1 to 3 (and 4 to 6) because 3 overwrites (Reg 2) 
which is input to 1. 
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The scheduler can completely intermix the two independent subgraphs resulting 
in the following code sequence: 

1: (move (reg a5) (reg 2)) 
2: (load (reg a5) (reg a5)) 
4: (move (reg a2) (reg 1)) 
5: (load (reg a2) (reg a2)) 
3: (load (reg 2) (reg a5)) 
6: (load (reg 1) (reg a2)) 

In this version, only instruction 3 has to wait. Instructions 2 and 5 load in parallel 
as do 3 and 6. In reality, some code preparing the linkage to "fun" is inserted 
after 5 to fill the 14 cps waiting time. The value of scheduling improves with larger 
functions, however in this example, if we replace fun with cons, the execution time 
with instruction scheduling is 75% of the time without scheduling. 

The algorithm used by the instruction scheduler itself is independent of the Cray 
architecture. It describes the processor as a set of abstract resources (individual 
registers, the memory) and devices (e.g., functional units). The node constructing 
functions are attached to the symbolic operation codes. They are table-driven for 
generally applicable instruction patterns and individually coded for special cases. 
The algorithm is described completely in [15]. 

7 TIMINGS 

Tables 3 and 4 illustrate the execution speed of PSL relative to that of other dialects 
of Lisp on the VAX 11/780. Since there are no other implementations of Lisp on 
the Cray, these tables provide some indication of the comparison of PSL with other 
dialects. These results are given for the same subset of benchmarks used in the 
previous section. These results however, are typical. An entry of "-" means that 
a benchmark was not able to execute in that dialect of Lisp at the time these 
figures were collected. These results seem to show that PSL is a very fast Lisp on 
"conventional" architectures. 

Once PSL was successfully implemented on the Cray, Gabriel's benchmarks were 
executed and the results were compared to their execution on other machines run­
ning PSL. Tables 5 and 6 summarize these results. 

Another interesting comparison might be to compare the Cray against a mi-
crocoded Lisp engine like the Symbolics 3600 with IFU. The numbers indicate that 
the Cray is between 10 and 23 times faster. 
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Benchmark INTERLisp VAXCL FRANZ Lisp PSL 
BOYER 53.3 32.4 71.5 41.3 
BROWSE 111.5 38.2 170.3 50.3 
DESTRUCT 5.4 4.1 13.7 3.9 
STAK 9.7 3.0 6.3 5.4 
PUZZLE 110.3 23.4 - 16.3 
TRIANG 1076.5 303.5 - 212.2 

Table 3: Various Vax 780 Lisp implementations with real time in seconds. 

Benchmark INTERLisp VAXCL FRANZ Lisp PSL 
BOYER 1.6 1.0 2.2 1.3 
BROWSE 2.9 1.0 4.5 1.3 
DESTRUCT 1.4 1.1 3.5 1.0 
STAK 3.2 1.0 2.1 1.8 
PUZZLE 6.8 1.4 - 1.0 
TRIANG 5.1 1.4 - 1.0 

Table 4: Various Vax 780 Lisp implementations with normalized execution times. 

Benchmark CRAY X-MP VAX 780 DEC-20 IBM 3081 
BOYER 0.9 41.3 23.6 4.6 
BROWSE 1.3 50.3 28.7 6.3 
DESTRUCT 0.1 3.9 2.4 -
STAK 0.1 5.4 2.7 1.7 
PUZZLE 0.7 16.3 15.9 1.5 
TRIANG 10.9 212.2 86.9 25.4 

Table 5: Various PSL implementations with real time in seconds 
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Benchmark CRAY X-MP VAX 780 DEC-20 IBM 3081 
BOYER 1.0 45.9 26.2 5.1 
BROWSE 1.0 38.7 22.1 4.8 
DESTRUCT 1.0 39.0 24.0 -
STAK 1.0 54.0 27.0 17.0 
PUZZLE 1.0 23.3 22.7 2.1 
TRIANG 1.0 19.5 8.0 2.3 

Table 6: Various PSL implementations with normalized execution times. 

CRAY X-MP PSL 3.4 0.96 
S-810 2.80 
Cray X-MP PSL 3.2 3.00 
DEC-20 22.50 
VAX 11/780 50.30 
HP 9836 65.30 
VAX 11/750 78.70 
APOLLO DN 320 80.40 

Table 7: REDUCE Timings in Seconds 

The REDUCE algebra system distribution includes a standard timing bench­
mark. Table 7 presents the time required for its execution on several different ma­
chines. All but the Hitachi S-810 implementation are based upon PSL [12]. The PSL 
3.4 improvements and development of the diagnostic feature were closely connected 
to the implementation of REDUCE on the Cray. The REDUCE test sequence was 
measured under SPY and gave hints for further optimizations to Cray PSL 3.4. The 
initial timing was about 1.7 seconds, while the optimized version now requires less 
than 1 second of cpu time. 

8 VECTORIZING PSL 

Vector instructions were introduced into PSL 3.4 in the summer of 1986. They 
were initially present only on the ALM instruction level. They were easy to add 
as ALM instructions because of the highly modular structure of PSL. The patterns 
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for generating the "new" instructions were written in Lisp and then collected in a 
separately loadable module. 

A two step approach was then undertaken to make vector operations available 
to the user. In the first step the vector operations were transformed on a one-to-one 
basis as open-coded functions. This made the vector instructions and vector registers 
directly available from the Lisp language level; the compiler simply expands them 
during its code generation pass. This permits a mixture of assembly type language 
(for vectors) and Lisp high level language (for control structures and scalar values) 
to be available for system programming. These operations were used for some Cray 
specific modifications to the kernel of PSL, mostly for comparisons, presetting initial 
values and move operations. 

For example a fast routine copying a storage area for the PSL kernel is now 
written as follows (note that Cray vectors have a maximum length of 64): 

Copy length words from the first address to the second. It 
first computes the size of the copy, then issues a vector ioad 
vector store instructions. 
(defun vector-copy (from t o length) 

( i f o r (from i 0 (- l eng th 1) 64) 
(do (vsetVL ( i f (> (- l ength i ) 64) 

64 
(- length i ) ) ) 

(vload (vreg 0) (+ from i ) 1) 
(vstore (vreg 0) (+ t o i ) 1 ) ) ) ) 

Of course, this language level is not adequate for the casual Lisp user. There­
fore, a second step was undertaken to provide direct high-level Lisp support of the 
vector operations. This can be accomplished for some of the Common Lisp sequence 
operations, which may be partially rewritten using the above style. An automatic 
transformation of user supplied code to vector instructions has been designed for 
the Common Lisp map function and for array references within do loops. These are 
accomplished with a special set of macros. Of course, this "autovectorization" is 
restricted to those operations which can be performed by vector hardware: arith­
metic and binary logic for uniformly typed data. Explicit and detailed declarations 
are necessary prerequisites. 

As an example of the automatic vector code generation, the following code com­
putes a linear combination of two vectors of floating points values. These values 
must be stored as untagged floats in a word vector. Note the use of instructions 
combining a vector and a scalar (the products in this example) and instructions 
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combining vectors with vectors. The scalars are expected as tagged floats and the 
access to the actual float is accomplished inline with the getmem expressions. 

(map (vec tor f l o a t ) i 
»'( lambda (x l x2) 

(+ (* a l x l ) 
(* a2 x2) )) vl v2) 

The macro generated intermediate LISP, annotated with comments is: 

(PROG (**L **D **I **R** **R G0147 G0148) 
(SETq **L (INF (GETMEM VI ))) take the vector length. 
(SETQ **R** (MKVEC (GTWRDS **L))) construct result vector. 
(SETQ **R (+ (INF **R**) 1)) set output pointer, 
(SETq G0147 (+ (INF VI) 1)) input pointers. 
(SETQ G0148 (+ (INF V2) 1)) 
(IFOR (FROM **I 0 **L 64) basic loop in 64-steps. 
(DO (PROGN 

(SETQ **D (+ (- **L **I) 1)) rest length of operation. 
(IF (> **D 64) 

(VSETVL (SETQ **D 64)) actual vector length. 
(VSETVL **D)) 

(PROGN 
(VLOAD (VREG 0) G0147 1) load operand. 
(VFTIMESS (VREG 1) (VREG 0) vector * scalar. 

(GETMEM (+ Al 1))) 
(VLOAD (VREG 2) GO148 1) load operand. 
(VFTIMESS (VREG 3) (VREG 2) vector * scalar. 

(GETMEM (+ A2 1)) 
(VFPLUSV (VREG 4) (VREG 1) (VREG 3)) vector + vector. 
(VSTORE (VREG 4) **R 1)) store result. 
(PROGN 
(SETQ **R (+ **R 64)) update pointers 
(SETQ G0147 (+ G0147 64)) 
(SETQ G0148 (+ G0148 64))))))) 

(RETURN **R**)) 

A detailed description of this example is included in [14]. Initial experiments 
with the FFT from Gabriel's benchmarks are encouraging; they signal a speedup of 
about a factor of 10. 
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9 PCLS 

One of the problems with Lisp has been the proliferation of numerous different Lisp 
dialects. The advent of Common Lisp (CL) [17] and the "band wagon" effect that 
it has started, has made it the Lisp dialect of the future. Our latest CL compat­
ibility package is the Portable Common Lisp Subset (PCLS) [9] which implements 
approximately 80% of the Common Lisp language. It is essentially a large applica­
tion program that runs on a version of PSL. Its transportation to a new machine 
requires the customization of a few files, along with some small enhancements to 
the PSL kernel. 

The Cray version of PCLS was recently completed and required about one man-
month of work, longer than the other versions of PCLS. This was due to the file name 
size restrictions of CTSS (8 characters) and the lack of a real directory structure. 
The CL pathname facility does not map well to this restricted structure and thus 
could not be used to solve the problem. PCLS consists of about 100 files scattered 
across six directories plus a number of scripts to help build the system. Many of 
the files explicitly load named modules, along with the build scripts and thus would 
require extensive rewriting to use the shortened names. We designed a file name 
mapping convention that would take the PCLS defined names and map them into 
the Cray names. This scheme worked well. 

One of the original goals of PCLS was to be able to run CL code as fast as 
PSL code on any implementation. This was accomplished using a number of system 
independent compiler source-to-source transformations. The system independent 
nature of these optimizations meant that no special optimizations were required. 
This has resulted in the Cray PCLS being just as fast as Cray PSL. 

10 SUMMARY AND F U T U R E W O R K 

PSL and more recently PCLS have been successfully implemented under CTSS and 
COS on the Cray. The use of the test series proved to be valuable and permitted an 
incremental approach to the development of the PSL kernel. It has helped to make 
PSL even more portable and helped to improve the implementation time on other 
machines. The idea of developing a working system as quickly as possible and then 
using it as the base to perform optimization experiments has been quite successful. 

Although the initial performance was acceptable, it was not as fast as we had 
expected. The many optimizations from movement of the top stack frame into regis­
ters, to hand-coding certain Lisp operations, to instruction scheduling, have resulted 
in a very fast Lisp. Using the Gabriel benchmarks as a guide, this implementation 
provides the fastest Lisp environment currently available. 
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Work on compiler extensions for higher level vector operations is continuing. 
They will generate the previously mentioned vector code from Common Lisp style 
sequence operations and do loops with array references based upon macro techniques 
[13]. These will be eventually incorporated into Cray PCLS. The ultimate goal is to 
provide a full Common Lisp which takes complete advantage of the unique features 
of the Cray supercomputer. 
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