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GLOBALLY CONVERGENT MULTIGRID METHODS FOR

POROUS MEDIUM TYPE PROBLEMS

RALF KORNHUBER�

Abstract. We consider the fast solution of large, piecewise smooth mini-
mization problems as typically arising from the finite element discretization of
porous media flow. For lack of smoothness, usual Newton multigrid methods
cannot be applied. We propose a new approach based on a combination of
convex minization with constrained Newton linearization. No regularization
is involved. We show global convergence of the resulting monotone multigrid
methods and give logarithmic upper bounds for the asymptotic convergence
rates.

1. Introduction

Let Ω be a polyhedral domain in the Euclidean space R
d . We consider the

minimization problem

u ∈ H : J (u) + φ(u) ≤ J (v) + φ(v) ∀v ∈ H(1.1)

on a closed subspace H ⊂ H1(Ω). For simplicity, we concentrate on H = H1
0 (Ω)

and d = 2. Other boundary conditions of Neumann or mixed type and the case
of three space dimensions can be treated in a similar way [3, 4]. The quadratic
functional J ,

J (v) = 1
2a(v, v) − �(v),(1.2)

is induced by a continuous, symmetric and H–elliptic bilinear form a(·, ·) represent-
ing a differential operator of second order and by a linear functional � ∈ H ′. H is
equipped with the energy norm ‖ · ‖ = a(·, ·)1/2. The convex functional φ of the
form

φ(v) =

∫
Ω

Φ(v(x)) dx,(1.3)
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is generated by a scalar convex function Φ : R → R ∪ {+∞}. Assuming Φ(z) = ∞
for all z < 0 and the local Lipschitz condition

|Φ(z)− Φ(z′)| ≤ C(|z|+ |z′|)|)|z − z′| ∀z, z′ ≥ 0(1.4)

with fixed C > 0, the functional φ is convex, lower semi–continuous and proper
(i.e. φ(v) > −∞ and φ �≡ +∞). As a consequence, (1.1) admits a unique solution
u ∈ H . Moreover, (1.1) can be rewritten as the variational inequality

u ∈ H : a(u, v − u) + φ(v)− φ(u) ≥ �(v − u) ∀v ∈ H(1.5)

or as the variational inclusion

u ∈ H : a(u, v)− �(v) ∈ ∂φ(u)(v) ∀v ∈ H,(1.6)

where ∂φ denotes the subdifferential of φ. See e.g. [7, 13] for further information.
Later on, we will additionally assume that the second derivative Φ′′(z) exists

and is locally Lipschitz for z > 0. We emphasize that Φ′′ may have no continuous
extension to z = 0.

As a typical example consider the porous medium equation

ρt = Δρm − f(ρ), ρ ≥ 0,(1.7)

with m ≥ 1, monotonically increasing absorption f and suitable boundary con-
ditions. After Kirchhoff type transformation u = K(ρ) := max{0, ρm} and im-
plicit time discretization the weak formulation of the resulting spatial problems
is given by (1.6). In this case, the scalar function Φ has to be chosen such that
∂Φ = (id+Δtf)(K−1(·)). Similar problems arise in a wide range of problems from
mechanics, physical and biological science, metallurgy, etc.

Let Tj be a given partition of Ω in triangles t ∈ Tj with minimal diameter of
order 2−j. The set of interior nodes is called Nj . Discretizing (1.1) by continuous,
piecewise linear finite elements Sj ⊂ H , we obtain the finite dimensional problem

uj ∈ Sj : J (uj) + φj(uj) ≤ J (v) + φj(v) ∀v ∈ Sj .(1.8)

Observe that the functional φ is approximated by Sj–interpolation of Φ(v), giving

φj(v) =
∑
p∈Nj

Φ(v(p))hp, hp =

∫
Ω

λ(j)p (x) dx,(1.9)

with Λj = {λ(j)p , p ∈ Nj} denoting the nodal basis of Sj . Observe that the discrete
energy J + φj is finite and continuous on the closed convex set Kj ⊂ Sj ,

Kj = {v ∈ Sj | v(p) ≥ 0 ∀p ∈ Nj}.
Of course, (1.8) is uniquely solvable and can be reformulated as the variational
inequality

uj ∈ Sj : a(uj , v − uj) + φj(v)− φj(uj) ≥ �(v − uj) ∀v ∈ Sj(1.10)

or as the variational inclusion

uj ∈ Sj : a(uj , v)− �(v) ∈ ∂φj(uj)(v) ∀v ∈ Sj .(1.11)

For convergence results we refer to [7, 13] and the bibliography cited therein.
In the sequel, we will concentrate on the fast solution of the discrete minimization

problem (1.8). It is clear that usual Newton techniques cannot be applied, because
the functional φj is not differentiable. If Φ is smooth on z > 0, then the Fréchèt
derivative φ′′j (v) exists for positive v ∈ Sj , but may not be uniformly Lipschitz on
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these functions. Hence, even for given coincidence set N •
j = {p ∈ Nj | uj(p) =

0}, Newton–multigrid methods in the spirit of Bank and Rose [1] or Deuflhard
and Weiser [5] as well as the nonlinear multigrid techniques of Hackbusch and
Reusken [8] are not applicable.

A common remedy is to use Newton-type iterations after some suitable regular-
ization of φj . Unfortunately, reasonable convergence speed then may have to be
paid by unacceptable discretization errors and vice versa.

In this paper, we introduce a completely new approach, extending recent mono-
tone multigrid methods [10, 11, 13] from piecewise quadratic functionals φ to the
piecewise smooth case. Monotone multigrid methods can be regarded as two-stage
iterations consisting of a globally convergent fine grid smoother Mj and a coarse
grid correction Cj that has to provide monotonically decreasing energy in order to
preserve global convergence. The basic idea for constructing Cj is first to choose a
neighborhood of the actual smoothed iterate in which Newton linearization can be
controlled by pointwise Lipschitz constants and then to constrain the coarse grid
correction to this neighborhood. In this way, our approach avoids any regulariza-
tion. As usual, we need a suitable damping of the Newton correction. Utilizing local
damping parameters for the local corrections (each one associated with a fixed node
on a fixed grid level), we get maximal effect of the coarse grid correction together
with global convergence.

The paper is organized as follows. We first investigate inexact variants of the
well-known nonlinear Gauß–Seidel smoother. Then, we provide a general framework
for constructing monotone coarse grid corrections and state a general convergence
result. On this background, we present standard and truncated monotone multi-
grid methods and prove logarithmic bounds for the asymptotic convergence rates.
Numerical experiments, illustrating the efficiency and robustness of the method can
be found in [12].

2. Inexact Gauß-Seidel Iteration

The well–known Gauß–Seidel method [7, 13] for the iterative solution of (1.8)
is based on the successive minimization of the discrete energy functional J + φj

in the direction of the nodal basis functions λ
(j)
pl , l = 1, . . . , nj = #Nj . The local

correction Tlw ∈ Vl = span{λ(j)pl } of some given w ∈ Kj is defined by

Tlw ∈ Vl : J (w + Tlw) + φj(w + Tlw)

≤ J (w + v) + φj(w + v) ∀v ∈ Vl
(2.1)

with straightforward modification for w /∈ Kj . In general, the solution Tlw of the
local problems (2.1) is not available in closed form. For this reason, we consider an
inexact Gauß–Seidel iteration defined as follows.

For given iterate uνj we compute a sequence of intermediate iterates wν
l according

to

wν
0 = uνj , wν

l = wν
l−1 + vνl , l = 1, . . . , nj ,(2.2)

with suitable approximations vνl ∈ Vl of Tlw
ν
l−1. Finally, the new iterate is given

by

uν+1
j = Mju

ν
j = wν

nj
.(2.3)

For notational convenience, the index ν will be frequently skipped in the sequel.
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Theorem 2.1. Assume that the corrections vl in (2.2) are chosen in such a way
that Mju

0
j ∈ Kj holds for all u0j ∈ Sj and

vl = ω(w)Tlw, ω(w) ∈ [ω0, 1] ∀w ∈ Kj(2.4)

is valid with some fixed ω0 ∈ (0, 1]. Then the inexact Gauß–Seidel iteration (2.3)
is globally convergent.

Proof. Proof. We will use the abbreviation J̄ = J + φj . Utilizing (2.4) and the
convexity of J̄ , we obtain the monotonicity

J̄ (wl) ≤ J̄ (wl−1 + ω0Tlwl−1) ≤ J̄ (wl−1), l = 1, . . . , nj .(2.5)

As a consequence, we get J̄ (uν+1
j ) ≤ J̄ (uνj ) ≤ J̄ (u1j) < ∞ for all ν ≥ 1. Since φj

is convex, lower semicontinuous and proper, there exist c, C ∈ R such that

φj(v) ≥ c‖v‖+ C ∀v ∈ Sj(2.6)

(cf. e.g. [6]). From (2.6) and from the boundedness of (J̄ (uνj ))ν≥1 we conclude that

the sequence (uνj )ν≥0 must also be bounded. Let (uνkj )k≥0 ⊂ Kj be a convergent
subsequence with limit u∗j ∈ Kj . We will show that u∗j = uj .

Observe that the estimate

�(Tlw)− a(w + Tlw, Tlw) + φj(w) − φj(w + Tlw) ≥ 0(2.7)

is resulting from the variational formulation of (2.1). Utilizing the monotonicity
(2.5), (2.7) and the convexity estimate

φj(w) − φj(w + ω0Tlw) ≥ ω0(φj(w) − φj(w + Tlw)),

we obtain

J̄ (uνkj )− J̄ (u
νk+1

j ) ≥ ω0(1−
ω0

2
)

nj∑
i=1

‖Tiwνk
i−1‖2.(2.8)

On the other hand, the triangle inequality, the Cauchy–Schwarz inequality and
(2.4) lead to

‖uνkj − wνk
l−1‖2 ≤ nj

nj∑
i=1

‖Tiwνk
i−1‖2, l = 1, . . . , nj.(2.9)

Since J̄ is continuous on Kj , we conclude from (2.8) and (2.9) that

wνk
l−1 → u∗j , k → ∞, l = 1, . . . , nj .

The monotonicity (2.5) yields

J̄ (u
νk+1

j ) ≤ J̄ (uνk+1
j ) ≤ J̄ (wνk

l ) ≤ J̄ (wνk
l−1 + ω0Tlw

νk
l−1) ≤ J̄ (uνkj )(2.10)

for each fixed l = 1, . . . , nj. Since J̄ and Tl are continuous on Kj , we can pass to
the limit so that

J̄ (u∗j ) = J̄ (u∗j + ω0Tlu
∗
j).

Moreover, the convexity of J̄ and (2.1) imply J̄ (u∗j ) = J̄ (u∗j+Tlu
∗
j). As Tlu

∗
j is the

unique solution of (2.1), we get Tlu
∗
j = 0. The same holds true for all l = 1, . . . , nj

so that u∗j must be a fixed point of the exact Gauß–Seidel iteration which is well-
known to have the unique fixed point uj. This concludes the proof.

Observe that condition (2.4) can be replaced by the energy reduction

J (w + vl) + φj(w + vl) ≤ J (w + ω0Tlw) + φj(w + ω0Tlw)(2.11)
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together with the additional assumption ‖vl‖ ≤ c‖Tlw‖.
Theorem 2.1 can be used as a stopping criterion for the iterative solution of (2.1).

To give an example, let us first reformulate (2.1) as the scalar inclusion

0 ∈ g(zl) = ∂Φ(w(p) + zl)hpl
+ allzl − rl(2.12)

where

zlλ
(j)
pl

= Tlw, all = a(λ(j)pl
, λ(j)pl

), rl = �(λ(j)pl
)− a(w, λ(j)pl

)

and ∂Φ is the set-valued subdifferential of Φ [6]. We will now describe a simple bisec-
tion method for the approximate solution of (2.12). First, let w0 = max{0,−w(p)}.
Now we have to distinguish three cases. Of course, zl = w0 is the exact solution,
if 0 ∈ g(w0). If g = sup g(w0) < 0, then it is easily checked that zl ∈ [z0, z0]
with z0 = w0 and z0 = −g/all > w0. Starting with [z0, z0], we continue bisection
until the new midpoint zi = (zi + zi)/2 satisfies 0 ∈ g(zi) or sup g(zi) < 0. Then

vl = ziλ
(j)
p has the property (2.4) with ω0 = 1

2 . In the remaining case inf g(w0) > 0
we first conclude w0 = 0. Then we proceed in a symmetrical way starting with
z0 = −w(p) < 0 and z0 = 0. Finally, it is clear that (w + vl)(pl) ≥ 0, giving
Mju

0
j ∈ Kj for all u0j ∈ Sj .

More sophisticated algorithms based on secant approximations or Newton lin-
earization can be constructed in a similar way.

3. Monotone Iterations

The (inexact) Gauß-Seidel iteration Mj , as introduced in (2.3), typically suffers
from rapidly deteriorating convergence rates when proceeding to more and more
refined triangulations. As a remedy, we consider so-called monotone iterations

ūνj = Mju
ν
j

uν+1
j = Cj ūνj

(3.1)

where the additional substep Cj is intended to accelerate the convergence speed.
Adopting multigrid terminology, Mj is called (fine grid) smoother, ūνj is a smoothed
iterate and Cj is called coarse grid correction.

Theorem 3.1. Assume that the smoother Mj satisfies the conditions of Theo-
rem 2.1 and that the coarse grid correction Cj has the monotonicity property

J (Cjw) + φj(Cjw) ≤ J (w) + φj(w) ∀w ∈ Kj .(3.2)

Then the iteration (3.1) is globally convergent.

Proof. Proof. Exploiting (3.2), the proof is almost the same as for Theorem 2.1.
For example, (2.10) now takes the form

J̄ (u
νk+1

j ) ≤ J̄ (Cj ūνkj ) ≤ J̄ (ūνkj ) ≤ J̄ (wνk
l−1 + ω0Tlw

νk
l−1) ≤ J̄ (uνkj ).

As a by-product we also get the convergence of the smoothed iterates

ūνj → uj ν → ∞.(3.3)

We emphasize that the coarse grid correction alone does not need to be convergent.
This gives a lot of flexibility in constructing Cj .
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4. Monotone Coarse Grid Correction with Local Damping

Recall that classical Newton multigrid methods cannot be applied to (1.8) for
lack of smoothness. In this section, we will derive constrained Newton multigrid
methods to be used as coarse grid correction Cj . Throughout the following, we
assume that

Φ ∈ C2(0,∞), Φ′′ is locally Lipschitz on (0,∞).(4.1)

For given smoothed iterate ūνj , we introduce the subset of regular nodes

N ◦
j (ū

ν
j ) = {p ∈ Nj | ūνj (p) > 0} ⊂ Nj .(4.2)

Consider some fixed p ∈ N ◦
j (ū

ν
j ). Then, as a consequence of (4.1), there exists a

neighborhood of ūνj (p)

0 < ϕ
ūν
j

(p) < ūνj (p) < ϕūν
j
(p),(4.3)

where the local Lipschitz condition

|Φ′′(z1)− Φ′′(z2)| ≤ Lν
p|z1 − z2| ∀z1, z2 ∈ [ϕ

ūν
j

(p), ϕūν
j
(p)](4.4)

holds with pointwise Lipschitz constant Lν
p > 0. At the remaining critical nodes

N •
j (ū

ν
j ) = Nj \ N ◦

j (ū
ν
j )

we set

ϕ
ūν
j

(p) = ϕūν
j
(p) = ūνj (p).(4.5)

Collecting these intervals for all p ∈ Nj , we introduce the neighborhood Kūν
j
of ūνj ,

Kūν
j
= {w ∈ Sj | ϕūν

j

(p) ≤ w(p) ≤ ϕūν
j
(p), p ∈ Nj} ⊂ Sj .

From the above definitions, we obtain the local representation of φj

φj(w) = φūν
j
(w) + const. ∀w ∈ Kūν

j
(4.6)

by the smooth functional φūν
j

φūν
j
(w) =

∑
p∈N◦

j (ūν
j )

Φ(w(p))hp, w ∈ Kūν
j
.(4.7)

Let us consider the constrained minimization of the smooth energy J + φūν
j

u∗j ∈ Kūν
j
: J (u∗j ) + φūν

j
(u∗j ) ≤ J (v) + φūν

j
(v) ∀v ∈ Kūν

j
.(4.8)

We will see later on that, for non-degenerate problems (1.8), uj ∈ Kūν
j
holds after

a finite number of iteration steps. In this case, our original non-smooth problem
asymptotically reduces to the constrained smooth problem (4.8). Moreover, the
convergence dist(uj,Kūν

j
) → 0, ν → ∞, which is an immediate consequence of

(3.3), suggests to improve the actual smoothed iterate ūνj by the (approximate)

solution of (4.8).
The main advantage of the constrained problem (4.8) is that Newton linearization

can be applied to the smooth energy J + φūν
j
. More precisely, we approximate

J + φūν
j
by the quadratic energy functional Jūν

j
,

Jūν
j
(w) = 1

2aūν
j
(w,w) − �ūν

j
(w) ≈ J (w) + φūν

j
(w) + const., w ∈ Kūν

j
,
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where the bilinear form

aūν
j
(w,w) = a(w,w) + φ′′ūν

j
(ūνj )(w,w)(4.9)

and the linear functional

�ūν
j
(w) = �(w)− φ′ūν

j
(ūνj )(w) + φ′′ūν

j
(ūνj )(ū

ν
j , w)

are resulting from Taylor’s expansion

φūν
j
(w) ≈ φūν

j
(ūνj ) + φ′ūν

j
(ūνj )(w − ūνj ) +

1
2φ

′′
ūν
j
(ūνj )(w − ūνj , w − ūνj ).

The solution of the resulting linearized problem

u∗j ∈ Kūν
j
: Jūν

j
(u∗j ) ≤ Jūν

j
(v) ∀v ∈ Kūν

j
(4.10)

is now approximated by one step of an extended underrelaxation as introduced
in [10]. More precisely, we chose the search directions μν

l ,

μν
l ∈ Sj , max

x∈Ω̄
μν
l (x) = 1, l = nj + 1, . . . ,mj ,

which may depend on the actual constraints Kūν
j
and define the corresponding

one-dimensional subspaces V ν
l = span{μν

l }. Then, we compute a sequence wν
l of

intermediate iterates according to

wν
nj

= ūνj , wν
l = wν

l−1 + ων
l v

ν
l , l = nj + 1, . . . ,mj ,(4.11)

where each local correction vνl is the solution of the obstacle problem

vνl ∈ Dν
l : Jūν

j
(wν

l−1 + vνl ) ≤ Jūν
j
(wν

l−1 + v) ∀v ∈ Dν
l(4.12)

with constraints Dν
l ⊂ V ν

l satisfying

0 ∈ Dν
l ⊂ {v ∈ V ν

l | wν
l−1 + v ∈ Kūν

j
}.(4.13)

In order to guarantee the monotonicity (3.2), the local damping parameters ων
l are

chosen such that

J (wν
l ) + φūν

j
(wν

l ) ≤ J (wν
l−1) + φūν

j
(wν

l−1).(4.14)

Finally, our monotone coarse grid correction with local damping is given by

Cj ūνj = wν
mν

j
= ūνj +

mj∑
l=1

ων
l v

ν
l .(4.15)

Details on extended relaxations can be found in the textbook [13]. For instance,
the convergence of the intermediate iterates

wν
l → uj ν → ∞(4.16)

can be shown in the same way as Corollary 2.3. We now derive a sufficient condition
for the local monotonicity (4.14). As usual, the index ν will be frequently suppressed
and we will use the abbreviation z+ = max{0, z}+.

Proposition 4.1. Let vl = zlμl be the solution of (4.12). Assume that ωl ∈ [0, 1]
and

ωl|zl| ≤ 2

{
|�ūν

j
(μl)− aūν

j
(wl−1, μl)| − Ll‖ūνj − wl−1‖2∞,l

aūν
j
(μl, μl) + Ll

(
‖ūνj − wl−1‖∞,l + ωl|zl|

)
}

+

(4.17)
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with local Lipschitz constant

Ll =
∑

p∈N◦
j (ūν

j )

Lp|μl(p)| hp(4.18)

and local maximum norm

‖v‖∞,l = max
p∈Nj∩ int supp μl

|v(p)|.(4.19)

Then the damped correction ωlvl satisfies the local monotonicity condition (4.14).

Proof. Proof. The assertion is trivial for zl = 0. Assuming zl �= 0, we introduce
the scalar function

g(ω) = J (wl−1 + ωvl) + φūν
j
(wl−1 + ωvl).

Obviously, (4.14) is equivalent to g(ωl) ≤ g(0). As g ∈ C2[0, 1], we can use Taylor’s
expansion to reformulate this condition as

0 ≤ ωl ≤ −2
g′(0)
g′′(τωl)

(4.20)

with suitable τ ∈ (0, 1). To obtain a lower bound for −g(0), we first state the
estimate

φ′ūν
j
(wl−1)(vl) ≤ φ′ūν

j
(ūνj )(vl) + φ′′ūν

j
(ūνj )(wl−1 − ūνj , vl) + Ll|zl|‖wl−1 − ūνj ‖2∞,l

which is a consequence of Taylor’s formula and the pointwise Lipschitz condition
(4.4). Moreover, we have �ūν

j
(vl) − aūν

j
(wl−1, vl) ≥ 0 because vl is the solution of

(4.12). Combining these estimates, we get the lower bound

−g′(0) = −J ′(wl−1)(vl)− φ′ūν
j
(wl−1)(vl)

≥ |�ūν
j
(vl)− aūν

j
(wl−1, vl)| − Ll|zl|‖wl−1 − ūνj ‖2∞,l.

(4.21)

Using

φ′′ūν
j
(wl−1 + τωvl)(vl, vl)

≤ φ′′ūν
j
(ūνj )(vl, vl) + z2l Ll

(
‖wl−1 − ūνj ‖∞,l + ω|zl|

)
the upper bound

g′′(τω) = J ′′(wl−1 + τωvl)(vl, vl) + φ′′ūν
j
(wl−1 + τωvl)(vl, vl)

≤ aūν
j
(vl, vl) + z2l Ll

(
‖wl−1 − ūνj ‖∞,l + ω|zl|

)(4.22)

is obtained in a similar way. Inserting (4.21) and (4.22) in (4.20), it is clear that
(4.17) implies (4.14)

We emphasize that only local properties (i.e. properties on supp μl) enter the
upper bound in (4.17).

As an alternative to local damping (4.11), one may formally set ωl ≡ 1 and
enforce the monotonicity (3.2) by global damping

uν+1
j = ūνj + ω̄

mj∑
l=1

vl, ω̄ ∈ [0, 1].(4.23)

However, upper bounds for ω̄ (cf. e.g. [1, 5]) typically deteriorate for increasing
global Lipschitz constant

L̄ = max
p∈Sm

l=1 int supp μl

Lp.
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Hence, for heavily varying Lp, global damping (4.23) is likely to provide very little
progress in comparison with the local strategy (4.11).

In order to avoid overflow in numerical computations, one may select the regular
nodes N ◦

j (ū
ν
j ) according to the more restrictive condition

N ◦
j (ū

ν
j ) = {p ∈ Nj | ūνj (p) > 0 and Lp < Lmax}(4.24)

with some given threshold Lmax > 0. This modification does not affect the above
considerations.

5. Standard Monotone Multigrid Methods

Assume that Tj is resulting from j refinements of an intentionally coarse tri-
angulation T0. In this way, we obtain a sequence of triangulations T0, . . . , Tj and
corresponding nested finite element spaces S0 ⊂ · · · ⊂ Sj . Though the algorithms
and convergence results to be presented can be easily generalized to the nonuni-
form grids, we assume for convenience that the triangulations are uniformly refined.
More precisely, each triangle t ∈ Tk is subdivided in four congruent subtriangles in
order to produce the next triangulation Tk+1. Collecting all nodal basis functions
from all refinement levels, we obtain the multilevel nodal basis ΛS ,

ΛS =
(
λ(j)p1

, λ(j)p2
. . . , λ(j)pnj

, . . . , λ(0)p1
, . . . , λ(0)pn0

)
,(5.1)

with mS = nj + · · ·+ n0 elements.
Using the abstract framework of the preceding section, we now specify the coarse

grid correction Cstd
j by selecting constant search directions

μν
l = λl = λ(kl)

pl
, l = nj + 1, . . . ,mj = nj +mS , ν ≥ 0.

As usual, the ordering is taken from fine to coarse. The constraints Dl, appearing
in the local problems (4.12), are given by

Dl = {v ∈ Vl | ψl
≤ v ≤ ψl},(5.2)

where ψ
l
, ψl ∈ Vl are obtained by quasioptimal monotone restriction as introduced

in [10]. In this way, we end up with a standard monotone multigrid method (cf. [10,
13]) for the approximate solution of the linearized problem (4.10).

In the light of Proposition 4.1, we finally choose local damping parameters

ωl = min

{
1,

{
2(|�ūν

j
(λl)− aūν

j
(wl−1, λl)| − LlB

2
l )

|zl|(aūν
j
(λl, λl) + Ll(Bl + |zl|))

}
+

}
(5.3)

for non-zero local corrections vl = zlλl obtained from (4.12). Denoting

‖vk‖∞ = max
x∈Ω

|vk(x)|,

the upper bounds

Bl =
l−1∑
k=1

ωk‖vk‖∞ ≥ ‖ūνj − wl−1‖∞,l(5.4)

are used to make ωl computable without visiting the fine grid. As a consequence,
Cstd
j can be implemented as a classical V–cycle with optimal numerical complexity.

Algorithmic details are reported in [12].
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Monotone iterations of the form

ūνj = Mju
ν
j

uν+1
j = Cstd

j ūνj

(5.5)

are called standard monotone multigrid methods with local damping. It is clear from
Theorem 3.1 and Proposition 4.1 that (5.5) is globally convergent, if the smoother
Mj satisfies the conditions of Theorem 2.1. We will now derive upper bounds for
the asymptotic convergence rates with respect to the local energy norm

‖v‖uj = auj (v, v)
1/2

with auj (v, v) defined according to (4.9).
The following lemma will serve as a basis for the rest of the exposition.

Lemma 5.1. Assume that the discrete minimization problem (1.8) satisfies the
non–degeneracy condition

�(λ(j)p )− a(uj , λ
(j)
p ) ∈ int ∂φj(uj)(λ

(j)
p ) ∀p ∈ N •

j (uj)(5.6)

and that exact Gauß–Seidel iteration (2.1) is used as smoother Mj.
Then there is a ν0 ≥ 0 such that

N ◦
j (u

ν
j ) = N ◦

j (ū
ν
j ) = N ◦

j (uj) ∀ν ≥ ν0.(5.7)

Proof. Proof. Note that

N ◦
j (u

ν
j ) = N ◦

j (ū
ν−1
j )

follows directly from (4.5). Hence, it is sufficient to show the second equality in
(5.7). It is clear that

N ◦
j (uj) ⊂ N ◦

j (ū
ν
j )

holds for sufficiently large ν, because the convergence ūνj → uj (see (3.3)) clearly

implies ūνj (p) > 0 if uj(p) > 0 and ν is large enough. It remains to show that
asymptotically

N •
j (uj) ⊂ N •

j (ū
ν
j ).

Let pl ∈ N •
j (uj) and compute wν

l = wν
l−1 + Tlw

ν
l−1 according to (2.2). Exploiting

(5.6) and the convergence wν
l → uj, we obtain

�(λ(j)pl
)− a(wν

l , λ
(j)
pl

) ∈ int ∂Φ(0) hpl

for sufficiently large ν. On the other hand, we get from (2.1) that

�(λ(j)pl
)− a(wν

l , λ
(j)
pl

) ∈ ∂Φ(ūνj (pl)) hpl
.

As ∂Φ is maximal monotone, these two inclusions imply ūνj (pl) = 0.
Note that (5.7) may be wrong, if inexact Gauß–Seidel smoothing is used.
In the following, we assume that the conditions in Lemma 5.1 are fulfilled and

that ν is large enough. Denote

K∗
j = {v ∈ Sj | N ◦

j (v) = N ◦
j (uj), |v(p)− uj(p)| < ε∗

2 , p ∈ N ◦
j (uj)},

with sufficiently small ε∗, say ε∗ = 1
2 minp∈N◦

j (uj) uj(p). Then, utilizing (5.7) and

the convergence of the intermediate iterates wν
l → uj (cf. (4.16)), we get

wν
l ∈ K∗

j , l = 1, . . . ,mj .(5.8)
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In the light of (5.7) and ūνj → uj, we can choose pointwise obstacles ϕ
ūν
j

, ϕūν
j
in

(4.3) such that, for all p ∈ N ◦
j (ū

ν
j ), the estimate

0 < ϕ∗ ≤ ϕ
ūν
j

(p) ≤ ūνj (p)− ε∗ < ūνj (p) + ε∗ ≤ ϕūν
j
(p) ≤ ϕ∗(5.9)

holds with fixed ϕ∗, ϕ∗ ∈ R. Hence, we can select pointwise Lipschitz constants Lν
p

such that

Lν
p ≤ L∗ ∀p ∈ N ◦

j (ū
ν
j )(5.10)

holds with L∗ independent of ν. Together with (5.7) and ūνj → uj (5.9) leads to

K∗
j ⊂ Kūν

j
.(5.11)

In particular, we have uj ∈ Kūν
j
. Combining (5.8) with (5.11), we finally get

wν
l ∈ K∗

j ⊂ Kūν
j

l = 1, . . . ,mj .(5.12)

In order to illustrate first consequences of this observation, note that the original
discrete problem (1.8) can be rewritten as the reduced smooth problem

uj ∈ S◦
j : a(uj , v) + φ′uj

(uj)(v) = �(v) ∀v ∈ S◦
j(5.13)

with φuj defined according to (4.7) and S◦
j given by

S◦
j = {v ∈ Sj | v(p) = 0, p ∈ N •

j (uj)} ⊂ Sj .

It follows from (5.12) that the standard monotone multigrid method (5.5) asymp-
totically reduces to an iterative method for the reduced smooth problem (5.13).
Moreover, the constrained minimization problem (4.8) turns out to be asymptoti-
cally equivalent to (5.13) so that, for large ν, the coarse grid correction Cstd

j becomes
an inexact Newton method.

Let us now proceed with two further auxiliary results.

Lemma 5.2. Assume the conditions in Lemma 5.1 are satisfied. Then, for each
ε > 0 there is a νε ≥ 0 such that

‖uj − ūνj ‖uj ≤ (1 + ε)‖uj − uνj ‖uj ∀ν ≥ νε.(5.14)

Proof. Proof. Let ν be large enough to ensure (5.8). Choose arbitrary p = pl ∈
N ◦

j (uj). Rewriting (2.1) in variational form, we obtain

a(wν
l , v

ν
l ) + Φ′(wν

l (p))v
ν
l (p)hp = �(vνl )

with vl = Tlw
ν
l−1. Inserting v = vνl in (1.11), we also get

a(uj , v
ν
l ) + Φ′(uj(p))vνl (p)hp = �(vνl ).

Now the mean-value theorem gives

a(wν
l−1 − uj , v

ν
l ) = −a(vνl , vνl )− Φ′′(w̃(p))(wν

l (p)− uj(p))v
ν
l (p)hp(5.15)

denoting w̃(p) = uj(p) + τ(wν
l (p) − uj(p)) with suitable τ ∈ (0, 1). Using (5.15),

straightforward computation leads to

‖wν
l − uj‖2uj

= a(wν
l − uj , w

ν
l − uj) + φ′′uj

(uj)(w
ν
l − uj, w

ν
l − uj) =

‖wν
l−1 − uj‖2uj

− ‖vνl ‖2uj
+ 2(Φ′′(uj(p)))− Φ′′(w̃(p)))vνl (p)(w

ν
l (p)− uj(p))hp.

As Φ′′ is locally Lipschitz, we get

|Φ′′(uj(p))− Φ′′(w̃(p))| ≤ L|wν
l (p)− uj(p)|
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with suitable L independent of ν. We have shown

‖wν
l − uj‖2uj

≤ ‖wν
l−1 − uj‖2uj

+ 2L|vνl (p)|(wν
l (p)− uj(p))

2hp.

Now the assertion follows from the equivalence of norms on finite dimensional
spaces.

Lemma 5.3. Assume that the conditions in Lemma 5.1 are satisfied and that the
pointwise obstacles ϕ

ūν
j

, ϕūν
j
and pointwise Lipschitz constants Lp are chosen such

that (5.9) and (5.10) hold, respectively. Assume further that non-zero corrections

vνl = zνl λl, λl = λ
(kl)
pl ∈ ΛS ∩ S◦

j , obtained from (4.12) have the property

‖vνk‖2∞ = o(‖vνl ‖∞), ν → ∞, k = 1, . . . l − 1.(5.16)

Then there is a ν0 such that the damping parameters ων
l defined in (5.3) reduce to

ων
l = 1 ∀ν ≥ ν0.

Proof. Proof. Let ν0 be large enough to guarantee (5.7), (5.9) and (5.10) for ν ≥ ν0.
First note that Lν

l then is uniformly bounded, say Lν
l ≤ L∗

l , for ν ≥ ν0, because
λl ∈ S◦

j .

Recall that the local constraints ψν

l
, ψ

ν

l appearing in (5.2) are generated by

successive quasioptimal restriction. Hence, utilizing (5.9) we can find ψ∗
l ∈ Vl,

independent of ν, such that

ψν

l
(pl) ≤ −ψ∗

l (pl) < 0 < ψ∗
l (pl) ≤ ψ

ν

l (pl) ∀ν ≥ ν0

holds for sufficiently large ν0 (see [10]). As a consequence, the local problems (4.12)
are reducing to variational equalities, if |vνl (pl)| < ψ∗

l (pl), i.e. if ν is large enough.
In this case, the solution vνl = zνl λl of (4.12) is given by

zνl =
�ūν

j
(λl)− aūν

j
(wl−1, λl)

aūν
j
(λl, λl)

.(5.17)

Let zνl �= 0. Then the lower bound

ων
l ≥ min

{
1,

2auj(λl, λl)

auj (λl, λl) + L∗
l

∑l
k=1 ‖vνk‖∞

(
1− (l − 1)L∗

l

∑l−1
k=1 ‖vνk‖2∞

|�uj (λl)− auj (wl−1, λl)|

)}

follows directly from (5.7) and (5.17). Using again (5.17) and the equivalence of
norms on finite dimensional spaces, we get∑l−1

k=1 ‖vνk‖2∞
|�uj (λl)− auj (wl−1, λl)|

=
l−1∑
k=1

‖vνk‖2∞
‖vνl ‖2uj

|zνl | ≤ c max
k=1,...,l−1

‖vνk‖2∞
‖vνl ‖∞

with constant c independent of ν. Now the assertion follows from (5.16) and the
convergence vνk → 0, ν → ∞.

Now we are ready to state the main result of this section.

Theorem 5.4. Assume that the conditions of Lemma 5.3 are satisfied. Let

‖v‖uj ≤ γj‖v‖ ∀v ∈ S◦
j .(5.18)

Then there is a ν0 = ν0(j) ≥ 0 such that the iterates produced by the standard
monotone multigrid method (5.5) fulfill the error estimate

‖uj − uν+1
j ‖uj ≤ (1− cγ−1

j (j + 1)−4)‖uj − uνj ‖uj ∀ν ≥ ν0.(5.19)
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with a constant c < 1 depending only on the ellipticity of a(·, ·) and on the initial
triangulation T0.

Proof. Proof. For the moment choose ν0 such that (5.7) is valid and the constrained
smooth problem (4.8) is equivalent to the reduced smooth problem (5.13) for ν ≥ ν0.
Consider the reduced linearized problem

u∗j ∈ S◦
j : auj (u

∗
j , v) = �uj (v) ∀v ∈ S◦

j .(5.20)

We subtract (5.13) from (5.20), use the mean-value theorem and insert v = u∗j −uj
to get the equality

‖u∗j − uj‖2uj
+ φ′′uj

(w)(ūνj − uj, u
∗
j − uj)− φ′′uj

(ūνj )(ū
ν
j − uj , u

∗
j − uj) = 0

where w ∈ S◦
j is defined by w(p) = ūνj (p) + ωp(u

∗
j (p) − ūνj (p)) with ωp ∈ (0, 1) for

all p ∈ Nj . Now the quadratic estimate

‖u∗j − uj‖uj ≤ c‖ūνj − uj‖2uj
(5.21)

with c independent of ν follows from (5.10) and from the equivalence of norms on
finite dimensional spaces.

A first consequence of (5.21) is the asymptotic equivalence of the constrained
linearized problem (4.12) with (5.20). Moreover, it follows from Lemma 5.3 and its
proof, i.e. from (5.17), that Cstd asymptotically becomes a linear subspace correction
method (cf. [14, 17, 18]) for the linear reduced problem (5.20). The subspaces Wk,
k = 0, . . . , j, are given by

Wk = span{λ(k)p ∈ ΛS ∩ S◦
j , p ∈ Nk}.

On all these subspaces the bilinear form auj (·, ·) is approximated by the non-
symmetric bilinear form bk(·, ·) representing the standard Gauß-Seidel smoother.
We now give an upper bound for the convergence rate of this linear iteration using
a general result of Neuß [15]. To this end, we have to check three properties.

As

auj (v, v) ≤ c

nk∑
i=1

auj (λ
(k)
pi
, λ(k)pi

)v(pi)
2 ∀v ∈ Wk

holds with a constant c depending only on the initial triangulation T0, we get the
smoothing property

auj (v, v) ≤ ωbk(v, v) ∀v ∈ Wk(5.22)

with some ω ∈ (0, 2) depending only on T0.
Let v ∈ S◦

j . Consider the splitting

v =

j∑
i=0

vk, v0 = I0v, vk = Ikv − Ik−1v,

induced by the modified interpolation operators Ik, defined by

(Ikv)(p) =

{
v(p) if λ

(k)
p ∈ S◦

j

0 else
.

We want to show that
j∑

k=0

bsk(vk, vk) ≤ Cγj(j + 1)2‖v‖2uj
(5.23)
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holds with a constant C depending only on T0 and on the ellipticity of a(·, ·). The
symmetric bilinear form bsk(·, ·) stands for the symmetric Gauß-Seidel iteration on
Wk. Indeed, (5.23) is a consequence of the estimate

bsk(vk, vk) ≤ c

nk∑
i=1

auj (λ
(k)
pi
, λ(k)pi

)vk(pi)
2

which holds for all vk ∈ Wk, of condition (5.18) and the results in section 5 of [14].
Finally,

auj (vl, vk) ≤ ω
1
2 bl(vl, vl)

1
2 bsk(vk, vk)

1
2 ∀vl ∈ Wl, vk ∈ Wk(5.24)

follows directly from the Cauchy-Schwarz inequality, (5.22) and the well-known
smoothing property of bsk(·, ·). Utilizing (5.22), (5.23) and (5.24), we now can apply
Satz 2.3.16 in [15] in order to get the asymptotic error estimate

‖u∗j − Cstdūνj ‖uj ≤ (1− cγ−1
j (j + 1)−4)‖u∗j − ūνj ‖uj ∀ν ≥ ν0(5.25)

with sufficiently large ν0.
To conclude the proof, we combine the estimates (5.14), (5.21) and (5.25) by the

triangle inequality in order to get the asymptotic error estimate (5.19).
We emphasize that (5.19) describes the worst case and can be easily improved

on suitable regularity assumptions. For example, let

sup
j=0,1,...

max
p∈N◦

j (uj)
Φ′′(uj(p)) ≤ const. <∞

and assume that the bilinear form a(·, ·) takes the form

a(v, w) =

∫
Ω

2∑
l,k=1

alk ∂lv ∂kw dx,(5.26)

with coefficients alk ∈ C1(Ω̄). Then, exploiting a sharpened Cauchy-Schwarz in-
equality instead of (5.24), we get the usual O(j−2)-estimate for hierarchical bases.
Further improvements can be made by using L2-like projections instead of the
modified interpolations Ik. We refer to [14, 16] for further information.

In our numerical computations as reported [12], we observed optimal conver-
gence rates with respect to the usual energy norm induced by a(·, ·). A theoretical
justification is subject of future research.

6. Truncated Monotone Multigrid Methods

The standard multigrid method relies on the condition that the coarse grid cor-
rection must not change the values of the smoothed iterate ūνj at the critical nodes
p ∈ N •

j (ū
ν
j ). Hence, only functions λl ∈ ΛS with the property

int supp λl ∩ N •
j (ū

ν
j ) = ∅(6.1)

actually contribute to the coarse grid correction. In comparison with the linear
selfadjoint case, this leads to a poor representation of the low frequency parts
of the error. In order to improve the convergence rates by improved coarse grid
transport, we will now modify all λl ∈ ΛS with the property (6.1) according to the
actual guess of the free boundary.

Following [10, 11, 12, 13], we define the modified basis functions

λ̃(k)p = T ν
j,kλ

(k)
p , p ∈ Nk,(6.2)
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by using the truncation operators T ν
j,k, k = 0, . . . , j,

T ν
j,k = ISν

j
◦ · · · ◦ ISν

k
.(6.3)

Here ISν
k
: Sj → Sν

k denotes the Sν
k –interpolation, and the spaces Sν

k ⊂ Sk,

Sν
k = {v ∈ Sk | v(p) = 0, p ∈ N ν

k } ⊂ Sk,(6.4)

are the reduced subspaces with respect to N ν
k = Nk ∩ N •

j (ū
ν
j ), k = 0, . . . , j. Sim-

ilar subspaces of Sj have been considered recently by other authors [2, 9, 14] in
connection with the coarsening of a given mesh.

Replacing the multilevel nodal basis ΛS by the actual truncation Λ̃ν
S ,

Λ̃ν
S =

(
λ(j)p1

, . . . , λ(j)pnj
, λ̃(j−1)

p1
, . . . , λ̃(j−1)

pnj−1
, . . . , λ̃(0)p1

, . . . , λ̃(0)pn0

)
, ν ≥ 0,

we can now derive a truncated coarse grid correction Ctrc by the same reasoning as
described in the previous section. More precisely, all non-zero elements of Λ̃ν

S are
now used as search directions

μν
l = λ̃l = λ̃(kl)

pl
, l = nj + 1, . . . ,mj = nj + m̃S , ν ≥ 0.

Local constraints Dl, as appearing in (4.12), are obtained from slightly modified
monotone restrictions (see [10, 12, 13]) and local damping parameters ωl are given
by a straightforward analogue of (5.3).

Monotone iterations of the form

ūνj = Mju
ν
j

uν+1
j = Ctrc

j ūνj

(6.5)

are called truncated monotone multigrid methods with local damping. Again, the
global convergence follows from Theorem 3.1 and Proposition 4.1.

Theorem 6.1. Assume that the conditions of Lemma 5.1 are satisfied and that

(5.18) holds. Assume further that non-zero corrections vνl = zνl λ̃l, λ̃l = λ̃
(kl)
pl ∈ Λ̃ν

S ,
obtained from (4.12) have property (5.16).

Then there is a ν0 = ν0(j) ≥ 0 such that the iterates produced by the truncated
monotone multigrid method (6.5) fulfill the error estimate

‖uj − uν+1
j ‖uj ≤ (1− cγ−1

j (j + 1)−4)‖uj − uνj ‖uj ∀ν ≥ ν0.(6.6)

with a constant c < 1 depending only on the ellipticity of a(·, ·) and on the initial
triangulation T0.

Proof. Proof. The proof is essentially the same as for Theorem 5.4. We only have
to establish a straightforward analogue of Lemma 5.3 and an error estimate of the
form (5.25) for the reduced linear iteration. Note that (5.22) and (5.24) still hold

if Wk is replaced by the larger space W̃k,

W̃k = span{λ̃(k)p ∈ Λ̃ν
S , p ∈ Nk}.

As functions v ∈ W̃k in general do not satisfy a strengthened Cauchy-Schwarz
inequality, further improvements of (6.6) are more difficult than in the standard
case. Nevertheless, we found much faster convergence for the truncated version in
our numerical experiments. We refer to [12, 13] for further information.
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