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Abstract

In this article we consider a general model for phosphorus di�usion in silicon under extrinsic doping conditions�

At such high concentrations we have to include the charged species and the internal electric �eld of the crystal�

both of which can have profound e�ects on di�usion� In principle� this leads to a very large number of drift�

di�usion�reaction equations� one for each charge state of every species� plus one Poisson equation to describe

the internal electric �eld �in terms of the electron�hole concentration�� The number of equations can be re�

duced substantially by making additional assumptions on the distribution of charge states and local equilibrium

assumptions concerning the reaction terms� The resulting model turns out to be very interesting for numeri�

cal investigation� We solve the problem numerically in two space dimensions with the adaptive �nite element

program KARDOS and describe the numerical method used here to treat the resulting drift�di�usion�reaction

problem�

1 Introduction

At the heart of modern silicon technology lies the doping process, where impurity atoms
of higher or lower chemical valence as silicon, such as Arsenic, Phosphorus and Boron,
are introduced into a silicon crystal to influence its electrical properties. Such dopants
diffuse under high temperatures (900–1200C) with an unusual mechanism, the so-called
pair diffusion mechanism. A detailed and up-to-date description can also be found in [5].

Usually, dopant atoms occupy substitutional sites in the silicon crystal lattice, losing
(donors such as Arsenic and Phosphorus) or gaining (acceptors such as Boron) by this an
electron. We denote such substitutional defects by A. An “ordinary” diffusion mechanism
involving direct interchange with neighbouring silicon atoms turns out to be energetically
unfavourable, see [5]. Instead, the dopants diffuse by interacting with native point defects
called interstitials and vacancies, which we denote by I and V , respectively. Interstitials
are silicon atoms which are not placed on a lattice site and move through the crystal
unconstrained, and vacancies are empty lattice sites. Both can form mobile pairs with
dopant atoms, designated by AI and AV as depicted in the scheme below.
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There is no general consensus on the exact nature of the mechanism for pair mobility.
One way to visualize it is as follows: in the case of AI-pairs, an interstitial and a dopant
atom share a lattice site called an interstitialcy. The dopant can now “change partners”
by moving through an intermediate interstitial stage (denoted by Ai). On the other hand,
dopants and vacancies exhibit a certain affinity. So, a vacancy near a dopant moves around
this dopant quickly, and an occasional interchange between dopant and vacancy leads to
a random walk effect.

This “pair diffusion mobility” mechanism is supported by a majority of authors, see
for instance [3,7,11,17,18]; alternative models can be found in [8,9], where dopants are
admitted to diffuse. One minor alternative is to consider mobile interstitial dopants Ai as
the diffusing species rather than mobile pairs AI. However, as can be seen from the above
remark, this distinction makes no real difference, and, moreover, it has no meaning for the
treatment that follows, so we shall stick to the pair description here.

The paper is arranged as follows:
In the next section we formulate the derivation of a general model for dopant diffusion

following the ideas of [7] and [11]. Under extrinsic doping conditions we have to take into
account different charged states of the involved species, such as dopants, defects and created
pairs. This results in a large number of equations and consequently in many physical
parameters, which are usually unknown. In order to reduce the number of equations
we make assumptions concerning the distribution of the charge states and assume local
equilibrium in the chemical reactions. As we will see below, the resulting model consists
of five drift–reaction–diffusion equations, plus an elliptic equation for the electrical field.

In section three this system of equations will be treated numerically in two spatial
dimensions. The simulation of the present dopant diffusion model requires the numerical
solution of systems of time–dependent partial differential equations involving algebraic
equations as well. These problems belong to the class of complex problems due to highly
nonuniformity of information distributed in space and time. In such a situation adaptive
algorithms which have been a topic of continuing investigations during the last years are
often the only way to get an accurate solution with an acceptable amount of computational
time and memory requirement. In contrast to the widely used method of lines approach
we apply the adaptive Rothe method based on the discretization sequence first in time
and then in space [1,14]. This allows us to adapt the spatial discretization in each time
step employing directly a multilevel finite element solver [2,4]. The time discretization is
done by a linearly implicit method of Rosenbrock type with an automatic step size control.
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The whole algorithm was implemented in the program package KARDOS which is now an
efficient and robust code to simulate a wide range of complicated evolution problems.

2 Diffusion under Extrinsic Conditions

2.1 Formulation of the Model

As announced at the beginning, we will turn our attention to the case of extrinsic doping
conditions in the following, i.e., we will consider silicon crystals where

CA � ni ,

ni being the intrinsic carrier concentration and CA denotes the concentration of the dopant
in the crystal. This assumption forbids the neglect of the charges of dopants and pairs for
several reasons which will be clarified below.

The charge state of the species will be denoted by superscripts included in parentheses.
For the interstitials we consider the charge states

I�i� , i = −1, 0,+1 ,

and for the vacancies

V �j� , j = −2,−1, 0,+1,+2 .

The unpaired dopant on a lattice site, phosphorus in our case, has always the fixed charge
state A�q�, q = +1. So the pairs under consideration are

(AI)�q�i� and (AV )�q�j� .

Next, we state the set of reactions between the species and formulate the reaction rates R
(supplied with appropriate indices) in terms of concentrations Cz

Y , where Y = I, V , AI,
AV , A, and z denoting the charge state. We consider

• dopant–defect pairing:

A�q� + I�i� � (AI)�q�m�+ (m− i)n ,

Rim
A,I = kimA,IC

q
AC

i
I − k̃imA,IC

q�m
AI

(
n

ni

)m−i

, (2.1)

A�q� + V �j� � (AV )�q�r� + (r − j)n ,

Rjr
A,V = kjrA,VC

q
AC

j
V − k̃jrA,VC

q�r
AV

(
n

ni

)r−j

, (2.2)
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• defect recombination:

(AI)�q�i� + V �j� � A�q� − (i+ j)n ,

Rij
AI,V = k

�q�i�j
AI,V Cq�i

AI C
j
V − k̃

�q�i�j
AI,V Cq

A

(
n

ni

)−i−j

, (2.3)

(AV )�q�j� + I�i� � A�q� − (i+ j)n ,

Rji
AV,I = k

�q�j�i
AV,I Cq�j

AV C
i
I − k̃

�q�j�i
AV,I Cq

A

(
n

ni

)−i−j

, (2.4)

• Frenkel pairs:

I�i� + V �j� � −(i+ j)n ,

Rij
I,V = kijI,V C

i
IC

j
V − k̃ijI,V

(
n

ni

)−i−j

, (2.5)

• ionization of the defects:

I�i� � I�l� + (l − i)n ,

Ril
I = kilI C

i
I − k̃ilI C

l
I

(
n

ni

)l−i

, (2.6)

V �j� � V �k� + (k − j)n ,

Rjk
V = kjkV C

j
V − k̃jkI C

k
V

(
n

ni

)k−j

, (2.7)

• ionization of the pairs:

(AI)�q�i� � (AI)�q�l� + (l − i)n ,

Ril
AI = kilAIC

q�i
AI − k̃ilAIC

q�l
AI

(
n

ni

)l−i

, (2.8)

(AV )�q�j� � (AV )�q�k� + (k − j)n ,

Rjk
AV = kjkAVC

q�j
AV − k̃jkAVC

q�k
AV

(
n

ni

)k−j

, (2.9)

where m, l = −1, 0,+1, r, k = −2,−1, 0,+1,+2, and the k (supplied with the respective
indices) denote the forward reaction–rate constant, the k̃ the reverse ones.

For each of the charged species we can now establish the corresponding balance equation
taking into account the reaction terms (2.1)–(2.9). The fluxes for the mobile species, i.e.,
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for X = I, V, AI, AV, are defined in terms of the concentrations

Jz
X = −Dz

X

(
∇Cz

X + zCz
X∇ ln

(
n

ni

))
.

Since Jz
A = 0, we get the well known sytem of equations

∂Ci
I

∂t
+ divJ i

I = −
∑
m

Rim
A,I −

∑
j

Rji
AV,I −

∑
j

Rij
I,V −

∑
l

Ril
I +

∑
l

Rli
I , (2.10)

∂Cj
V

∂t
+ divJ j

V = −
∑
r

Rjr
A,V −

∑
i

Rij
AI,V −

∑
i

Rij
I,V −

∑
k

Rjk
V +

∑
k

Rkj
V , (2.11)

∂Cq�i
AI

∂t
+ div Jq�i

AI =
∑
m

Rim
A,I −

∑
j

Rij
AI,V −

∑
l

Ril
AI +

∑
l

Rli
AI , (2.12)

∂Cq�j
AV

∂t
+ divJq�j

AV =
∑
r

Rjr
A,V −

∑
i

Rji
AV,I −

∑
k

Rjk
AV +

∑
k

Rkj
AV , (2.13)

∂Cq
A

∂t
= −

∑
i,l

Ril
A,I −

∑
j,k

Rjk
A,V +

∑
i,j

Rij
AI,V +

∑
j,i

Rji
AV,I . (2.14)

The Poisson equation for the electrical field requires the balance of all charged species
including the electrons n and the holes p, which is

−UTΔ ln

(
n

ni

)
=
e

ε

(
−n+ p+ qCq

A +
∑
i

iCi
I +

∑
j

jCj
V

+
∑
i

(q + i)Cq�i
AI +

∑
j

(q + j)Cq�j
AV

)
, (2.15)

where UT = kBT/e is the thermal voltage, kB is the Boltzmann constant, T the absolute
temperature, ε denotes the dielectric constant and e is the elementary charge.

The just mentioned model consists of eighteen coupled equations containing a huge num-
ber of parameters. In order to reduce the parameters we introduce some conventional
assumptions. We do not consider “intermediate” charge states of the pairs here, that
means m = i and r = j in the reaction rates (2.1) and (2.2), respectively. Moreover, we
assume equilibrium concerning the ionization, i.e., we state that

Ril
I = 0, Rjk

V = 0, Ril
AI = 0, Rjk

AV = 0,

for all indices i, j, k, l. Consequently, we are now able to express each charge state in terms
of the neutral one. Especially for the interstitials we get

I�i� � I�� − in,

with the reaction rate
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R
�i�
I = kiI C

i
I − k̃iI C


I

(
n

ni

)−i

= 0,

leading to

Ci
I = Ki

I

(
n

ni

)−i

C
I , (2.16)

with the equilibrium constant Ki
I = k̃iI /k

i
I . For the remaining reactions (2.7)–(2.9) we

get with the same idea

Cj
V = Kj

V

(
n

ni

)−j

C
V , (2.17)

Cq�i
AI = Kq�i

AI

(
n

ni

)−i

Cq
AI , (2.18)

Cq�j
AV = Kq�j

AV

(
n

ni

)−j

Cq
AV , (2.19)

with the equilibrium constants Kj
V , K

q�i
AI and Kq�j

AV (note K
X = 1), the definition of which

in terms of forward and reverse reaction rates is obvious (the indices l and k vanish in the
equilibrium case).

Employing again the abbreviation X = I, V, AI, AV , summation over all charge states z
yields

CX =
∑
z

Cα�z
X =

∑
z

Kα�z
X

(
n

ni

)−z

Cα
X , (2.20)

where α = 0 for X = I, V , and α = q for X = AI,AV . Hence

Cα
X =

CX∑
zK

α�z
X

(
n
ni

)−z .

Using (2.16)–(2.19) we end up with

Cα�z
X =

Kα�z
X

(
n
ni

)−z

CX

∑
zK

α�z
X

(
n
ni

)−z . (2.21)

So, it is easy to compute from the total concentrations CI , CV , CAI , CAV each charged
state by means of the algebraic equation (2.21).

Next, the total flux is

JX =
∑
z

Jα�z
X = −

∑
z

Dα�z
X

(
∇Cα�z

X + (α+ z)Cα�z
X ∇ ln

(
n

ni

))
. (2.22)
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We substitute (2.21) in (2.22) to get after some calculation

JX = −AX(n)

(
∇CX + BX(n)CX∇ ln

(
n

ni

))
, (2.23)

with the definitions

AX(n) =

∑
zD

α�z
X Kα�z

X

(
n
ni

)−z

∑
zK

α�z
X

(
n
ni

)−z (2.24)

and

BX(n) =

∑
z (α+ z)Kα�z

X

(
n
ni

)−z

∑
zK

α�z
X

(
n
ni

)−z , (2.25)

Note that the averaged quantities AX and BX depend on the electrical field.

Finally, we can write the complete set of the state equations in terms of the total concen-
trations

∂CI

∂t
+ divJI = −

∑
i

Ri
A,I −

∑
j,i

Rji
AV,I −

∑
i,j

Rij
I,V , (2.26)

∂CV

∂t
+ divJV = −

∑
j

Rj
A,V −

∑
i,j

Rij
AI,V −

∑
i,j

Rij
I,V , (2.27)

∂CAI

∂t
+ divJAI =

∑
i

Ri
A,I −

∑
i,j

Rij
AI,V , (2.28)

∂CAV

∂t
+ divJAV =

∑
j

Rj
A,V −

∑
j,i

Rji
AV,I , (2.29)

∂Cq
A

∂t
= −

∑
i

Ri
A,I −

∑
j

Rj
A,V +

∑
i,j

Rij
AI,V +

∑
j,i

Rji
AV,I , (2.30)

and the Poisson equation

−UTΔ ln

(
n

ni

)
=
e

ε

(
−n + p+ qCq

A+BI(n)CI + BV (n)CV +

BAI(n)CAI + BAV (n)CAV

)
. (2.31)

Applying (2.21), summation over the reaction terms yields in terms of the total concen-
trations the following concrete expressions:

• dopant–defect pairing:
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��∑
i�−�

Ri
A,I =

∑
i k

i
A,I K

i
I

(
n
ni

)−i

∑
iK

i
I

(
n
ni

)−i
Cq

ACI −
∑

i k̃
i
A,I K

q�i
AI

(
n
ni

)−q−i

∑
iK

q�i
AI

(
n
ni

)−q−i
CAI

=: CI(n)Cq
ACI − C̃I (n)CAI , (2.32)

��∑
j�−�

Rj
A,V =

∑
j k

j
A,V K

j
V

(
n
ni

)−j

∑
j K

j
V

(
n
ni

)−j
Cq

ACV −
∑

j k̃
j
A,V K

q�j
AV

(
n
ni

)−q−j

∑
j K

q�j
AV

(
n
ni

)−q−j
CAV

=: CV (n)Cq
ACV − C̃V (n)CAV , (2.33)

• defect recombination:

��∑
i�−�

��∑
j�−�

Rij
AI,V =

∑
i

∑
j k

�q�i�j
AI,V Kq�i

AI Kj
V

(
n
ni

)−q−i−j

∑
iK

q�i
AI

(
n
ni

)−q−i ∑
j K

j
V

(
n
ni

)−j
CAI CV

−
��∑

i�−�

��∑
j�−�

k̃
�q�i�j
AI,V

(
n

ni

)−i−j

Cq
A ,

=: DV (n)CAI CV − D̃V (n)C
q
A , (2.34)

��∑
j�−�

��∑
i�−�

Rji
AV,I =

∑
j

∑
i k

�q�j�i
AV,I Kq�j

AV Ki
I

(
n
ni

)−q−i−j

∑
j K

q�j
AV

(
n
ni

)−q−j ∑
iK

i
I

(
n
ni

)−i
CAV CI

−
��∑

j�−�

��∑
i�−�

k̃
�q�j�i
AV,I

(
n

ni

)−i−j

Cq
A ,

=: DI(n)CAV CI − D̃I(n)C
q
A , (2.35)

• Frenkel pairs:

��∑
i�−�

��∑
j�−�

Rij
I,V =

∑
i

∑
j k

ij
I,V K

i
I K

j
V

(
n
ni

)−i−j

∑
iK

i
I

(
n
ni

)−i ∑
j K

j
V

(
n
ni

)−j
CI CV

−
��∑

i�−�

��∑
j�−�

k̃ijI,V

(
n

ni

)−i−j

,

=: EIV (n)CI CV − ẼIV (n) . (2.36)
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Reducing the numbers of parameters we follow the approach of [7], i.e., we express the
backward reaction–rate coefficients in terms of the forward ones and the equilibrium ratios
(Cq

A/CAI)
∗ and (Cq

A/CAV )
∗ as well as the concentrations of the equilibrium defects C∗

I

and C∗
V . These quantities will be specified below.

The averaged reverse reaction–rate constants for the dopant–defect pairings (2.32) and
(2.33) result in

C̃I(n) = CI(n)C∗
I

(
Cq

A

CAI

)∗
(2.37)

and

C̃V (n) = CV (n)C∗
V

(
Cq

A

CAV

)∗
. (2.38)

The defect recombinations (2.34) and (2.35) yield

D̃V (n) = DV (n)C
∗
V

(
CAI

Cq
A

)∗
, (2.39)

D̃I(n) = DI(n)C
∗
I

(
CAV

Cq
A

)∗
, (2.40)

whereas the reaction term of the Frenkel pairs (2.36) reads as in the intrinsic case

ẼIV (n) = EIV (n)C∗
I C

∗
V . (2.41)

The electrons n obey the Boltzmann statistics

n = ni exp

(
eψ

kB T

)
, (2.42)

ψ denotes the electrostatic potential. In analogy we have for the holes p

p = ni exp

(
− eψ

kB T

)
. (2.43)

From (2.42) and (2.43) it follows that ni = (np)�/� and

ψ = UT ln

(
n

ni

)
. (2.44)
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Using (2.37)–(2.44) we end up with the final system of equations in terms of the electro-
static potential, i.e.

∂CI

∂t
− div

[
AI(ψ)

(
∇CI + BI(ψ)CI∇

(
ψ

UT

))]
=

− CI(ψ)
(
Cq

ACI − C∗
I

(
Cq

A

CAI

)∗
CAI

)

−DI(ψ)
(
CAV CI − C∗

I

(
CAV

Cq
A

)∗
Cq

A

)
− EIV (ψ)

(
CI CV − C∗

I C
∗
V

)
, (2.45)

∂CV

∂t
− div

[
AV (ψ)

(
∇CV + BV (ψ)CV∇

(
ψ

UT

))]
=

− CV (ψ)
(
Cq

ACV − C∗
V

(
Cq

A

CAV

)∗
CAV

)

−DV (ψ)
(
CAI CV − C∗

V

(
CAI

Cq
A

)∗
Cq

A

)
− EIV (ψ)

(
CI CV − C∗

I C
∗
V

)
, (2.46)

∂CAI

∂t
− div

[
AAI(ψ)

(
∇CAI + BAI(ψ)CAI∇

(
ψ

UT

))]
=

+ CI(ψ)
(
Cq

ACI − C∗
I

(
Cq

A

CAI

)∗
CAI

)

−DV (ψ)
(
CAI CV − C∗

V

(
CAI

Cq
A

)∗
Cq

A

)
, (2.47)

∂CAV

∂t
− div

[
AAV (ψ)

(
∇CAV + BAV (ψ)CAV∇

(
ψ

UT

))]
=

+ CV (ψ)
(
Cq

ACV − C∗
V

(
Cq

A

CAV

)∗
CAV

)

−DI(ψ)
(
CAV CI − C∗

I

(
CAV

Cq
A

)∗
Cq

A

)
, (2.48)

∂Cq
A

∂t
=− CI(ψ)

(
Cq

ACI − C∗
I

(
Cq

A

CAI

)∗
CAI

)

− CV (ψ)
(
Cq

ACV − C∗
V

(
Cq

A

CAV

)∗
CAV

)

+DV (ψ)
(
CAI CV − C∗

V

(
CAI

Cq
A

)∗
Cq

A

)
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+DI(ψ)
(
CAV CI − C∗

I

(
CAV

Cq
A

)∗
Cq

A

)
, (2.49)

and the Poisson equation

εΔψ = −e
(
−2ni sinh(ψ) + qCq

A + BI(ψ)CI + BV (ψ)CV

+ BAI(ψ)CAI + BAV (ψ)CAV

)
. (2.50)

Now we have to supply equations (2.45)–(2.50) with boundary and initial conditions. The
conditions which complete our system of equations depend strongly on the concrete process
situation. A precise and for different situations elaborated description of these data can
be found in [11]. We assume an implanted dopant profile and take for the interstitials
and vacancies at the surface of the wafer the equilibrium concentrations CI = C∗

I and
CV = C∗

V . At all other boundaries homogeneous flux conditions are used. For the pairs
we simply have homogeneous flux conditions at all boundaries. The Poisson equation is
equipped with ψ = 0 at the bottom of the wafer and zero flux conditions otherwise.

Appropriate initial conditions for the system are given by

CI(�x, 0) = C∗
I (�x) and CV (�x, 0) = C∗

V (�x)

for the defects, as well as

CAI(�x, 0) = CB
AI and CAV (�x, 0) = CB

AV

for the pairs, where CB
AI and CB

AV are constant background dopings of order O(10�) for
instance. The phosphorus concentration is initially set to

Cq
A(�x, 0) = G(�x),

where G is a Gaussian profil (max�xC
q
A(�x, 0) � ni), which will be specified in the numerical

part.

We remark that Gaussian profiles are just rough approximations of the experimental
measured initial distributions of the dopants, since the channeling effects in the lower
concentration areas are not regarded, see [5]. Even the frequently used Pearson–IV–
distribution is too steep for lower concentration values.

2.2 The Equilibrium Concentrations

The formulations (2.37)–(2.41) of the reverse reaction–rate constants in terms of the for-
ward ones create the parameters(

Cq
A

CAI

)∗
and

(
Cq

A

CAV

)∗
.
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We examine as in [7] the dependence of these quantities on the electrostatic potential. We
use (2.32) and (2.37) to get under equilibrium conditions(

Cq
A

CAI

)∗
=

Cq
ACI

CAI C∗
I

.

From the intrinsic case, where n = ni, we get(
Cq

A

CAI

)∗

|n�ni
=

Cq
A|n�ni CI|n�ni

CAI|n�ni C
∗
I|n�ni

.

Dividing the last two equations gives(
Cq

A

CAI

)∗
=

(
Cq

A

CAI

)∗

|n�ni

CAI|n�ni
CAI

CI

CI|n�ni

Cq
A

Cq
A|n�ni

C∗
I|n�ni
C∗

I

.

The use of (2.20) results in(
Cq

A

CAI

)∗
=

(
Cq

A

CAI

)∗

|n�ni

∑
iK

q�i
AI∑

iK
q�i
AI

(
n
ni

)−i
.

An analogous expression can be obtained for
(
Cq

A/CAV

)∗
. The constant quantities

(
Cq

A/CAI

)∗
|n�ni

and
(
Cq

A/CAV

)∗
|n�ni

for the intrinsic conditions are well–known parameters.

From (2.20) we get expressions for the equilibrium constants

C∗
I = C∗

I|n�ni

∑
iK

i
I

(
n
ni

)−i∑
iK

i
I

, (2.51)

and

C∗
V = C∗

V |n�ni

∑
j K

j
V

(
n
ni

)−j

∑
j K

j
V

, (2.52)

where from (2.44) (
n

ni

)
= exp

(
ψ

UT

)
.

Therefore, the initial conditions of the defects result in

CI(�x, 0) = C∗
I (ψ(�x, 0)) and CV (�x, 0) = C∗

V (ψ(�x, 0)) ,

where we use the approximation

ψ(�x, 0) ≈ Arsinh

(
Cq

A(�x, 0)

2ni

)
.
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3 The Numerical Treatment

3.1 Numerical Method

The equations (2.45)–(2.50) are a special case of nonlinear reaction–diffusion problems of
the form

H(�x, t, �u) �ut = div (D(�x, t, �u) ∇ �u ) + �F (�x, t, �u,∇ �u) ,

�x ∈ Ω , t > 0,

0 = ξ�(�x, t, �u) , �x ∈ ∂ΩD ,

�nT D(�x, t, �u) ∇ �u = ξ�(�x, t, �u) , �x ∈ ∂ΩC ,

�u(�x, 0) = �u(�x) , �x ∈ Ω ,

(3.1)

where �u is the m-dimensional vector of dependent variables. This system is quite general
and may consist of parabolic and elliptic differential equations as well as ordinary and
algebraic equations when H or D are singular. The nonlinear vector F describes the
interaction of all components and allows us to include mild convection. Suitable initial
and boundary conditions have to be chosen.

In [13] a time–space adaptive method for the solution of (3.1) has been described in a
general setting. This approach aims at an efficient control of time and space grids in such
a way that the solution is as accurate as required by the user and the necessary work to
get such a solution is minimized.

In the following we first specify the functions involved in (3.1) for our case. Then we
recall some essential features of the applied adaptive approach. In the present application
the function �u is a vector of six unknowns:

�u = (CI , CV , CAI , CAV , C
q
A, ψ) . (3.2)

The matrix H is diagonal and constant, and has one zero entry

H = diag (1, 1, 1, 1, 1, 0) . (3.3)

Setting �d :=div (Dgrad�u) we get for the components of �d

di =

{
Di ∇ui +Mi∇ψ, i = 1, 2, 3, 4,
0, i = 5,
ε, i = 6.

(3.4)

where Di =Di(ψ) and Mi =Mi(ui, ψ) are the diffusion coefficients of the concentration
and the electrostatic potential ψ with respect to the ith equation. The dielectric constant
is denoted by ε. The vector F only depends on the solution vector �u. Due to the ψ–
dependence of C∗

I and C∗
V , which we deduced in (2.51) and (2.52), we have to include

nonlinear Dirichlet boundary conditions of the form ui−u∗i =0 for the CI and CV at the
surface of the wafer. Homogeneous Dirichlet and Neumann conditions are taken otherwise.
Note that no boundary conditions occur for Cq

A.
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The principle difficulties in numerically solving the above equations are the nonlin-
earities and the differential–algebraic structure making the system very stiff. Such prob-
lems request an implicit or semi–implicit time discretization. Applying a linearly implicit
method of Rosenbrock type with automatic step size control, we are able to integrate the
system efficiently. Within this approach, the approximate solution �un at time tn is con-
structed by a linear combination of the previous solution �un−� at time tn−� and different

intermediate values �Kn
j , j=1, · · · , s, namely

�un = �un−� +
s∑

j��

bj �K
n
j . (3.5)

We employ a third order method with s = 3 which has shown to give very satisfactory
results for stiff equations [12].

Defining �f(�u) := �d(�u) + �F (�u) we formally get a differential–algebraic system

H�ut = �f(�u) , �u(0) = �u .

The values �Kn
j , j=1, 2, 3, in (3.5) can now be determined by linear problems

(
1

γτn
H − Jf(�un−�)

)
�Kn
j = �f(�un−� +

j−�∑
i��

aji �K
n
i ) +

1

τn
H

j−�∑
i��

cji �K
n
i , (3.6)

where τn= tn��−tn and Jf denotes the Jacobian matrix ∂ �f/∂�u. The coefficients γ, aji,
cji, and bj are chosen such that the method reaches order three and has good stability

properties [19]. To get the right boundary conditions for each component of �Kn
j , the

Rosenbrock scheme must be also applied to the algebraic equations describing the solution
at the boundary. Note that the solution process for the intermediate values �Kn

j can be
done successively because the sums in the right–hand side of (3.6) extend to j−1 only.

The specific structure of the employed Rosenbrock method (3.5) allows us to construct
a solution of second order using a simple embedding strategy:

�u∗n = �un−� +

s∑
j��

b∗j �K
n
j , (3.7)

with a different set of coefficients b∗j . The difference between the two solutions ‖�un−�u∗n‖=:
εn represent satisfactory estimates the local error of the time discretization and can be
utilized to propose a new time step

τn�� =
τn
τn−�

(
TOLt εn−�

εn εn

)�/�

τn . (3.8)

This step size selection guarantees that the solution is computed with respect to a tolerance
TOLt prescribed by the user [10].
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The problems (3.6) equipped with boundary conditions have to be solved for each inter-

mediate value �Kn
j . In the spirit of full adaptivity we use a self–adaptive multilevel finite

element method. Replacing the solution space by an appropriate sequence of discrete
spaces with successively increasing dimensions, the size of the arising linear systems nec-
essary to achieve a prescribed accuracy in space can be drastically reduced with respect
to uniform methods [2].
The starting point of the finite element method is the weak formulation of (3.6). Let Ωh be
a permissible triangulation of Ω into triangles and let S�h consists of all continuous vector
functions the components of which are polynomials of first order on each triangle. Then
the finite element solutions �Kn

j,h ∈ S�h, j=1, 2, 3, have to satisfy the equations

(Ln
�Kn
j,h,

�φ ) = (�r n
j ,
�φ) ∀�φ ∈ S�h , (3.9)

where Ln is the weak representation of the differential operator at the left–hand side in
(3.6) and includes the boundary conditions. The vector �r n

j =�r n
j ( �Kn

�,h, . . .,
�Kn

j−�,h) stand
for the whole right–hand side of the jth equation in (3.6). The operator Ln is independent
of j, so that the method requires its calculation only once within each time step.
To determine where spatial refinements are necessary and coarse meshes are sufficient, we
compute a posteriori error estimates. The goal is to capture local discretization errors
involving all variables of the model equations. Here special engineering knowledge about
physical properties is not needed. We solve local Dirichlet problems on small subdomains
to get a posteriori error estimates. Let Qw be the set of all quadratic polynomials over w
which is the union of two triangles having one common edge. Local approximations �e n

j of

the spatial errors �Kn
j − �Kn

j,h are now computed with the basis functions of Qw. Imposing
homogeneous Dirichlet boundary conditions, the local approximate error related to one w
is represented by one degree of freedom at the midpoint of the corresponding edge

(Ln�e
n
j , �q ) = (�Rn

j , �q) ∀�q ∈ Qw , �x ∈ w ,

�en
j,h = 0 , �x ∈ ∂w ,

�Rn
j = �r n

j (�e
n
� + �Kn

�,h, · · · , �en
j−� +

�Kn
j−�,h)− Ln

�Kn
j,h .

(3.10)

Equipped with these local errors of the intermediate values �Kn
j , we can form error norms

by

‖�en‖ = ‖P �un−� +

�∑
j��

bj �e
n
j ‖ . (3.11)

The first contribution P �un−� results from the fact that within an adaptive approach the
grids for �un−� and �un in general are different. The fine grid components of �un−� cannot
be represented on those parts of the current grid where the latter is coarser than the grid
of the previous time step. So, we get an additional projection error P �un−�.

We can form both local and global error informations taking Ωh or w to compute the
norms in (3.11), for use in our adaptive mesh control algorithm. Local a posteriori error
estimates are employed to decide which elements to refine or to unrefine. For refinement
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a marked triangle is divided into four congruent triangles (’red’ refinement). After that
triangles with two or three refined edges are compulsorily refined ’red’; triangles with
only one refined edge are subdivided into two triangles (’green’ closure). These ’green’
elements are removed in a next refinement step to avoid bad geometric properties of the
triangulation. This refinement strategy is standard and used e.g. in the KASKADE
code [4]. Coarsening takes place only after an accepted time step before starting the
multilevel process. Employing the asymptotic behaviour of the local errors, we predict the
error after coarsening and remove elements whenever the predicted error is still above the
refinement barrier. Doing this we have the justified hope that the new region will be not
immediately refined in the next time step.
The aim of our mesh adaptation is to equilibrate the error until a final mesh is created in
which all elements have approximately the same error, and a global prescribed tolerance
TOLx is reached. The relationship between spatial and temporal accuracy is studied in
[14]. Given a prescribed tolerance TOL we set

TOLx = TOL/3.0 and TOLt = TOL/2.0 .

The linear systems are solved by the BICGStab–algorithm [20] preconditioned with an
ILU–method.

3.2 The Physical Parameters

We have solved the dopant diffusion process in two spatial dimensions on the rectangle

Ω = {�x = (x�, x�) ∈ R
� , 0 < x� < 10−�, 0 < x� < 10−�}

for t > 0, where the unit of measurement is given in cm. So, the wafer surface is at x� = 0
and the bottom is at x� = 10−�. The expansion of the computational domain guarantees
that the solution is not affected by the boundary condition at the bottom.

The implanted phosphorus concentration has been set initially to the Gaussian profile

Cq
A(�x, 0) = C̃q

A exp
(
−1

2

f(�x− �a)
σ�

)
,

where C̃q
A >> ni is the maximal value of the function, �a = (a�, a�) determines the position

of the profile, σ is the standard deviation and

f(�x− �a) = (x� − a�)
� +

1

4

(∣∣(|x� − a�| − b)
∣∣+ |x� − a�| − b)

)�
.

If b = 0, then we have the usual Gaussian profile, for b > 0 the maximum extends to a
whole line of length b in x�–direction. For the simulation we chose

σ = 0.027× 10−�cm, a� = 0.02× 10−�cm, a� = 0.5× 10−�cm, b = 1.0× 10−
cm.
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The model requires an enormous list of parameters. Most of them are essentially unknown
or at least controversial. The set of parameters we used in our simulations was taken from
[7] and [16] which we summerize in Table 1 and Table 2. The physical parameters listed
in Table 1 obey the well–known Arrhenius relation.

Parameter values for Arrhenius’ law

constant prefactor energy [eV]

DI|n�ni [cm
�s−�] 2.629× 10�� 4.436

DV |n�ni [cm
�s−�] 2.639× 10� 4.002

C∗
I|n�ni [cm

−�] 1.132× 10�� 1.377

C∗
V |n�ni [cm

−�] 1.642× 10�� 2.226

D
AI [cm

�s−�] 8.570× 10−� 1.720

D�
AI [cm

�s−�] 1.780× 10� 3.340

D�
AI [cm

�s−�] 4.128× 10−� 1.330

D−�
AV [cm�s−�] 6.123× 10� 2.550

D
AV [cm�s−�] 5.466× 10
 3.040

D�
AV [cm�s−�] 7.094× 10	 4.090

D�
AV [cm�s−�] 1.509× 10 1.840

D�
AV [cm�s−�] 1.509× 10 1.840

K
AI 1.000× 10 0.000

K�
AI 1.995× 10� 1.880

K�
AI 4.422× 10�� 3.020

K−�
AV 8.601× 10�� 3.260

K
AV 1.000× 10 0.000

K�
AV 9.501× 10�
 3.780

K�
AV 7.068× 10� 0.920

K�
AV 1.317× 10� 4.760

Table 1.

Note, for the point defects we used for all charge states the intrinsic diffusivities DI|n�ni
and DV |n�ni , which were obtained from experiments via gold diffusion.

The proportionality quantities Kz
I and Kz

V , taken from [16], satisfy

Kz
X = prefactor(z) exp

(
value(z) T

T + 636

)
exp

(
−energy(z)

kB T

)
,

where X = I, V and z denotes the charge states. Table 2 summerizes the precise values.
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constant prefactor value energy [eV]

K−�
I 0.754 0.868 0.185

K
I 1.000 0.000 0.000

K�
I 1.326 0.868 0.185

K−�
V 0.569 2.252 0.480

K−�
V 0.754 0.070 0.015

K
V 1.000 0.000 0.000

K�
V 1.326 2.557 0.545

K�
V 1.758 4.702 1.002

Table 2.

The forward reaction–rate constants krsX,Y and ksA,Y (X, Y = I, V, AI, AV and r, s denote
the charge states) may be expressed as

krsX,Y = 4πrc(D
r
X +Ds

Y ) exp

(
− Ers

X,Y

kB T

)
and

ksA,Y = 4πrc(DA|n�ni +Ds
Y ) exp

(
− Es

A,Y

kB T

)
.

Therein, rc denotes the capture radius, which was set equal to 5 Å. All the barrier energies
Ers

X,Y and Es
X,Y were taken to be zero, except for the Frenkel pair reaction, where we took

the value 0.3 eV. The effective intrinsic diffusion coefficient is well–known, i.e., due to [6]

DA|n�ni = 3.850× 10 exp

(
−3.660

kB T

)
.

In order to complete the discussion concerning the physical parameters, we set

(
Cq

A/CAI

)∗
|n�ni

= 3.129× 10�� exp
(−1.680

kB T

)
and compute

(
Cq

A/CAV

)∗
|n�ni from the relationship

DA|n�ni =
(
CAI/C

q
A

)∗
|n�ni

DAI|n�ni +
(
CAV /C

q
A

)∗
|n�ni

DAV |n�ni ,

the derivation of which can be found in [7]. Here, we set DAX|n�ni = D
AX , X = I, V .

The tabulated quantities are valid in our case over a temperature range of 900–1200C.
Thus the set of parameters is complete.

3.3 The Numerical Simulations

Next we present a series of numerical experiments.
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Fig. 1 represents the coarse initial grid of size 10−� × 10−� cm�, which will be adaptively
refined by the algorithm during the process as already described. Since the effects occurring
in the bulk are spred out around 1.0 μm from the wafer surface (the left hand part of the
domain), we cut the domain just for the graphical presentation of the results.

Fig. 1. Initial grid of size 10−� × 10−� cm�.

Fig. 2 contains the evolution of diffusion profiles of phosphorus at different time points.
Additionally the one dimensional cuts through the centre are shown in order to compare
the maximal values of the profiles with respect to time. The phosphorus profile shows
its typical “kink and tail” behaviour (anomalous diffusion of phosphorus), a phenomenon
about which a detailed discussion can be found in [18].

Fig. 3 illustrates the evolution of the defects. An interesting observation is that the total
concentrations of the defects grow very rapidly at the wafer surface. This results from the
high concentration of free electrons brought into the bulk by the high implanted phosphorus
concentration. Since the neutral portion of the defects becomes charged its concentration
decreases near the surface. On the other hand, the defects have to satisfy a Dirichlet
boundary condition at the surface, which is constant for the neutral portion during the
whole evolution, as can be seen in the picture. A steep gradient is generated in the
bulk near the surface, forcing new neutral defects (from somewhere) into the wafer in
order to compensate the loss of neutral defects. Thus, the concentrations of the neutral
defects, as can be seen in the picture, become constant (the constant is equal to the
intrinsic equilibrium value) everywhere in the wafer at time t = 1.0 × 10−� seconds.
As a consequence the total concentration grows at the very next moment at the wafer
surface. Let us remark at this point, that the just mentioned redistribution of the defects
could be regarded as a possible initial state of them, but then equipped with homogeneous
Neumann–conditions at the surface during the whole evolution of the species.

The change from “concave to convex” of the interstitial concentration, which occurs
around t = 10−
, produces steep gradients of the profile and therefore the adaptive algo-
rithm increases the grid points drastically in order to resolve this situation as can be seen
in Fig. 6.
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