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Folkmar A. Bornemann 

An Adaptive Multilevel Approach to 
Parabolic Equations I. 

General Theory and ID-Implementation 

Abst rac t 

A new adaptive multilevel approach for parabolic PDE's is presented. Full 
adaptivity of the algorithm is realized by combining multilevel time dis­
cretization, better known as extrapolation methods, and multilevel finite 
element space discretization. In the theoretical part of the paper the exis­
tence of asymptotic expansions in terms of time-steps for single-step methods 
in Hubert space is established. Finite element approximation then leads to 
perturbed expansions, whose perturbations, however, can be pushed below a 
necessary level by means of an adaptive grid control. The theoretical presen­
tation is independent of space dimension. In this part I of the paper details 
of the algorithm and numerical examples are given for the ID case only. The 
numerical results clearly show the significant perspectives opened by the new 
algorithmic approach. 
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1 Introduction 

A fundamentalidea for supporting the development of robust, reliable and 
efficient software is adaptivity. Whereas in the field of ordinary differential 
equations adaptive techniques are by now standard and much progress due 
to recent research has been made in the field of stationary partial differential 
equations (cf. [11] and the literature given herein), the area of adaptivity in 
time-dependent partial differential equations, as parabolic equations, is still 
quite open, see e.g. the survey-article about parabolic Galerkin methods by 
DUPONT [13]. 

Nearly all approaches for the numerical solution of parabolic equations sep­
arate the discretization of time and space both in theory and in compu­
tations. One usually develops the theory assuming one discretization (outer 
discretization) to be carried out first, which leads to a so-called semi-discrete 
problem. After investigating the thus arising type of problem one continues 
to perform the second discretization (inner discretization), ending up with 
a fully discrete scheme. As long as one uses time-independent uniform or 
quasi-uniform space grids and fixed time steps, the sequence of discretiza­
tions (first space then time or vice versa) does not matter. This kind of 
approach is well analyzed (THOMEE [25] for Galerkin-methods in space). 
However, for highly non-uniform grids, possibly varying in time, and adap­
tive time steps the sequence of discretizations does indeed matter. In addi­
tion, the inner discretization can be carried out most easily using adaptive 
methods, whereas one may run into trouble for the outer discretization. 

As an illustration consider the method of lines. Discretization in space first 
leads to a block system of ordinary differential equations (ODE's), which 
can be solved by the available variable-step, variable-order methods very 
efficiently, which means the inner problem is solved accurately and efficiently 
- however, ignoring the PDE context. But after all one is interested to 
solve the parabolic problem, so one has to consider errors introduced by the 
mesh, which one cannot expect to be uniformly small for all time-layers. In 
the ID case BlETERMAN/BABUSKA [5, 6, 7], who use Galerkin method in 
space, constructed an a-posteriori error estimator for the parabolic problem 
to overcome this difficulty. At certain times, fixed in advance, they decide 
whether they have to produce a new mesh (regridding) according to that 
estimator. MlLLER/MlLLER [21] optimize the grid in a finite element method 
while integrating the ODE's - "moving finite elements", thus ending up with 
a differential-algebraic system." This approach is intimately tied with a fixed 
number of space nodes - at least, within each outer time step. If a dramatic 
change of the number of degrees of freedom is required they also have to 
regrid. Controlling of the complex error propagation introduced by fixing 
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the mesh or the number of nodes over long time layers is difficult and might 
be nearly impossible in the nonlinear case. Regridding at fixed times may 
in general be "too late". Adaptivity here would call for a second time-step 
control mechanism (when to regrid) - the first being implemented in the 
ODE-package. 

For this reason the other discretization sequence, first time then space, seems 
to be clearly preferable, and is chosen here. With that sequence it is practi­
cable to perform a multilevel matching of the inner and the outer discretiza­
tion, which involves solution of the inner problem up to an accuracy matched 
with the accuracy of the outer problem. The top levels consist in a low order 
single-step discretization in time with extrapolation in Hilbert space, which 
yields variable time steps and variable orders controlled by the problem up 
to a given accuracy. The occurring elliptic subproblems will be solved by 
multilevel methods, which produce the adequate individual space-meshes in 
order to assure an accuracy required by the time discretization. 

In Section 2 we analyze the error-term of a single-step time discretization in 
Hilbert space in some detail. Since the involved operators have an unbounded 
spectrum, the known proof techniques need an extension. By virtue of the 
Dunford-Taylor integral calculus the operator case can be reduced to the 
case of a single scalar ODE containing some parameter A varying over the 
whole spectrum of the operator under consideration. This scalar case has 
been fully analyzed by LUBICH[18]. Our main result, Theorem 2.7, carefully 
traces the role of inconsistent and non-smooth initial data. We also give 
an example to show, that our estimates are sharp in a certain sense. This 
example shows quantitatively that in transient phases the Crank-Nicolson 
scheme is inferior compared to the implicit Euler. 

In Section 3 we use the just derived asymptotic expansion to establish a semi-
discrete time-step control in Hilbert space. Thus the algorithm produces 
time-steps which really belong to the Hilbert space problem. An adaptive 
space discretization perturbs the semi-discrete algorithm. As we show, this 
perturbation can be adaptively pushed below a level indicated by the time-
stepping mechanism. The thus derived fully discrete multilevel scheme treats 
the elliptic solver as a black-box, which has to obey several features. 

In Section 4 the black-box is specified for the ID case. We show that a certain 
FEM method has the required features. Challenging numerical examples are 
included. 
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2 Single-Step Time Discretization in Hilbert Space 

2.1 Preparations and Notation 

In this paper temporally homogeneous parabolic initial-boundary value prob­
lems are studied: 

a ) ^ ^ - + A(x, D)u(t, *) = / ( * ) ; xeü, t €]0,T] 

b) u(t,x) = 0; xedÜ, te]0,T] (2<1) 

c) u(0,x) = u0(x) ; i G f i . 

Here A(x, Z)) denotes a strongly elliptic operator of second order: 

A(x,D)= £ (-l) l" lD"(a' ,a(a:)Dff) . (2.2) 
o<W.kl<i 

It is well known, that - provided dCl and the coefficients apa fulfill certain 
conditions of smoothness - problem (2.1) possesses a solution 

ueC~(]0,T], Hl(tl)) (2.3) 

continuously depending on 

/ e i r ^ n ) , u0eL2(ü). (2.4) 

Equation (2. La) holds then in the sense of distributions, (2. Lb) in the sense 
of the trace operator and (2.1.c) as a LMimit. 

Since we will study the error due to discretization in time of problem (2.1) by 
a linear single-step method, it is enough to consider the homogeneous case 
/ = 0: Simply subtract the stationary solution v € #o (^ ) °^ A(x,D)v — f 
and observe, that this commutes with discretization in time. 
By A let us denote the following unbounded operator on L2(D,): 

(2.5) 
A : DA:=H2(n)r\H*(Sl) C L2(Ü) —> L\ü) 

(Au)(x) := A(x,D)u(x) for u € DA . 

We assume that A is positive: There is a c > 0, that 

$l(Au, u)L2(n) > c(u, u)i,2(n) for u 6 DA . (2.6) 

Since A is a closed operator, relation (2.6) together with the Lax-Milgram 
lemma implies that A is maximal accretive and invertible, i.e. 

0 6 p(A). (2.7) 
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Theory of elliptic operators shows that the numerical range 
Q(A) = {(Au,u)Li(n)\u e DA} lies in a sector: 

0(A) C E,> for some tf € [0,TT/2[ . (2.8) 

Here S,j denotes 
E , , : = { z e C | | a r g z | < t f } . 

Thus A is m-sectorial with vertex 0 and semi-angle 1? and —A generates 
therefore a holomorphic semigroup of contractions. 

(For definitions and proofs KATO [16] p.279 f. and 492 f.) 

2.2 The Single-Step Methods 

Linear single-step schemes for discretization in time define a rational ap­
proximation r(z) to the exponential e_ z for complex z. For our purposes we 
restrict ourselves to A(ß)-stable methods, i.e. 

\r(z)\ < 1 for z G E,j . (2.9) 

The method is called to be of order p > 1, if 

\r(z)\ = e~z + 0(zp+1) for E* 9 z -> 0 . (2.10) 

Definition 2.1 

We distinguish between different types of A(t?)-stable methods: 

Type (I): |r(oo)| < 1 
Type (II): r(z) = a (1 - <y/z + 0{l/z*)) for E„ 3 z -+ oo . 

Here \cr\ = 1 , 7 > 0 . 

Remark 2.2 

A(i9)-stable methods of type (I) sometimes are called strongly A(i?)-stabie. 

Examples of j4(7r/2)-stable methods of type (I) are the sub- and subsub-
diagonal Pade-approximations ( W A N N E R / H A I R E R / N 0 R S E T T [26]) like the 
implicit Euler scheme, examples of j4(x/2)-stable methods of type (II) are 
the diagonal Pade-approximations like the implicit trapezoidal rule (Crank-
Nicolson scheme). 

For later purposes we collect some properties of these methods: 
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Lemma 2.3 

Let r(z) be the stability function of an j4(tf)-stable single-step method of 
order p, 0 < i? < TT/2. Let 0 < i?0 < d. 

a) For 0 < K < 1 there is a TJ(K) > 0, such that 

\r(z)\<\e-*2\ iovze^, |z| < 7?(/c) . (2.11) 

b) For methods of type (II) there is for 0 < K < 7 a £(«;) > 0, such that 

|r(*)| < | C - > ' | f o r z G E , , 0 , \z\ > ((*) . (2.12) 

c) For methods of type (I) there is for 77 > 0 a (̂77) < 1, such that 

\r(z)\<p(r,) iorzeXto, \z\>V. (2.13) 

Proof. 

a) 

b) 

r(z) 
o — KZ i»-<1-'*)* + o ( ^ 1 ) | 

= | l - ( l - « ) 0 + O ( 2 2 ) | 
< 1 for appropriate small z G E,>0 since tf0 < ""/2 

r(*) 
D-lt/z 

= |e-(T«)/* + C?(l/Z2)| 

= | l - ( 7 - « ) / ^ + 0 ( l / z 2 ) | 
< 1 for appropriate big z G S^0 since tf0 < ?r/2 , 

c) follows easily from the maximum principle for analytical functions. • 

2.3 Asymptotic Expansions of Single-Step Methods when Ap­
plied to y' = — Ay with X varying in a Sector 

The usual results for asymptotic expansions of the error of single-step meth­
ods applied to the scalar 

y'=-\y, y(0) = l (2.14) 

hold for A varying in a compact set. But since we desire to apply Dunford-
Taylor integrals over pathes like £?E,> we are interested in A to vary over the 
whole sector E,j. This case is studied in the following lemma. 
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Lemma 2.4 

(LUBICH [18], Lemma 6.3) Given an A(i?)-stable method of order p with 
stability function r(z) and 0 < t?0 < t? < x/2 . For z € Stfo an asymptotic 
expansion holds 

r(z)n = e~nz [l + Pp{nz)z» + . . . + PN(nz)zN] + RN+i(n, z) . (2.15) 

Here the Pj are polynomials of degree j — p + 1 , -Fj(O) = 0 and the remainder 
satisfies 

|ÄJV+i(«,*)| < C7|e—"**JV+1| , (2.16) 

for given 0 < K < 1, provided that \z\ < T)(K) from Lemma 2.3. 

Proof. Let 0(1, m) denote a function g(z, w) whose Taylor expansion with 
respect to z has the form 

g{z,w) = g0(w)zl + ... + gk(w)z'+k + Gk+1(z,w) , (2.17) 

where gi(w) denote polynomials in w of degree < m. 

We proof the following: 

Given an iteration-procedure 

Vo = 1 
2/n+i = r(z)yn + a(z,nz)e~ 

(2.18) 

with the approximation property 

e-
z-r(z)-a(z,w) = ö{j + l,j-p). (2.19) 

There is an improved iteration-procedure 

Vo = 1 
J/n+i = r(z)yZ + a*(z,nz)e-

(2.20) 

with the following update of property (2.19) 

t~z - r(z) - a*(z,w) = 0(j + 2,j + l-p) (2.21) 

such that the difference between the two iteration-procedures is given as 

y*n = yn - e-nzP(nz)zi . (2.22) 

Here P(w) denotes a polynomial of degree < j — p + 1 with P(0) = 0. 
Furthermore we get the error-estimate 

K ~ e~nz| < C\e-Knzzj+11 . (2.23) 
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Equipped with that construction we can start an induction with the single-
step scheme as the iteration-procedure, i.e. a(z,w) = 0 and j = p. Each 
improved iteration-procedure will give a further term in the asymptotic ex­
pansion; we end this at j = N. Estimate (2.23) gives the assertion about 
the remainder term. The approximation property (2.21) is needed to replace 
(2.19) in the induction. 

To end up at this construction, combination of (2.18), (2.20) and (2.22) gives 
the formal expression 

a*(z,w) = a(z,w) + zi[r{z)P(w)-e-zP(z + wj\ (2.24) 

with an unknown polynomial P(w). This will now be determinated by re­
quirement (2.21): From (2.19) we get by interpretation of the O-term 

e-' - r(z) - a{z,w) = zj+1Q(w) + 0(j + 2, j - p) , (2.25) 

where Q(w) is a polynomial of degree ; — p. Inserting (2.24) and (2.25) in 
(2.21) gives 

e~z - r(z) - a*{z, w) = zj[zQ(w) - r(z)P{w) + e~zP(z + w)] 

+0{j + 2,j-p) 

= z>[z(Q(w) + P'(w)) + (e~* - r(z))P(w) 

+ö(2,j-p)] + ö(j + 2,j-p) 

which is ö(j + 2, j — p + 1) if we choose 

P(w) = - / Q(s)ds . (2.26) 
Jo 

It remains to prove (2.23): Using Lemma 2.3.a we get for the z under con­
sideration 

\y:-e-nz\ < E l r Wr^" ( H 1 ) 2 -H^ h - f l" (^^-1 
k=0 

< £;\e-K(n-k)z\\e-k*\zj+2Qk(kz)\ . 
Jt=0 

< \e-Knzz'+2\f^\e-^-^kz\\Qk(kz)\ 
k=0 

where the Qk(-) are polynomials of degree < k — p +1. Now we can estimate 
as follows 

£\e-^kz\Qk(kz)\ < Ct±\e-Skz\ 

< Cl 

1 - e-
s*z 

< Cil'&z 

< C3/\z\ 
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for some 8 e]0,1 — «[. 

This gives |y; - e~nz\ < CA\e-Kn'zi+1\. • 

Remark 2.5 

A totally different proof of Lemma 2.4 for r(z) = 1/(1 + z), i.e. the implicit 
Euler, together with an explicit recurrence relation for the polynomials Pj(-) 
in that case may be found in [8]. 

2.4 Asymptotic Expansion for Abstract Cauchy Problems with 
m-sectorial Operators 

Let A be a linear m-sectorial unbounded operator with vertex 0 in a Hilbert 
space H with semi-angle i?0j i-e. Q(A) C S^0, 0 < i?o < 7 r /2. We also 
assume that 0 £ p(A). 

It follows that for a > 0 the fractional power Aa can be defined. The 
corresponding domains of definition 

Ha:=DAa (2.27) 

equipped with the norm 

||u||a := ||Aau|| for u <E Ha = DA« (2.28) 

now define a scale of Hilbert spaces Ha (cf. PAZY [22], p. 195 f.). Note that 
Ho = H and the embedding Ha «-* Hp is continuous for a > ß. This scale 
enables us to emphasize the role of inconsistent and non-smooth initial data 
uo of the abstract Cauchy problem 

u'(t) + Au(t) = 0,t£]0,T] 
u{0) = u0eH. [Z-^} 

If we denote by U(i) the holomorphic semigroup generated by —A, the solu­
tion of (2.29) is given as 

u(t) = U(t)u0 . (2.30) 

A single-step method with stability function r(z) generates a discrete semi­
group 

UT(t) := r(rA)n , (2.31) 

where r = t/n denotes the time-step. The result of applying the single-step 
method up to the time t is given by 

uT(t) := Ur(t)u0 . (2.32) 



The idea is now to apply the Dunford-Taylor integral operational calculus: 
It gives us the possibility to represent the term <p(A), where <p(-) is a certain 
scalar function, as an integral with scalar applications of <p only: 

v(A) = <p(oo)I+-^-j<p{z){zI-A)-xdz, (2.33) 

cf. e.g. [12], Section VII.9. 

The following lemma essentially estimates such integrals to get an estimate 
for I I ^ T A ) ! ! / ; ^ / / ) . In addition it contains a neat trick to get <p(z) — y>(oo) 
into play: 

Lemma 2.6 

(LE ROUX [17]) 

Let (f be a continuous function on the sector E,?, 0 < t?o < t? < 7r/2, which 
is holomorphic in the interior of S^. If for some constant R > 0 and two 
continuous functions yx and <̂ 2 from IR+ to IR+ the following estimates hold 

M * ) | < ¥>i(M) for z G E ^ , \Z\<R (2.34) 

\tp{z) - <p(oo)\ < <pi(\z\) for z e Stf , \z\ > R , (2.35) 

we get a constant C such that 

( Ä + ^ )b (oo) | } +|V(oo)| 

dr 

r (2.36) 

+ 

for all r > 0. 

Proof. This lemma is essentially from LE ROUX [17], with the difference 
that we replaced A in (2.36) by TA. This is possible since A is involved only 
in two estimates in the proof from [17]: 

. \\A(I + A)-*\\C{H,H)<1 

. \\(zl - A)->\\C{H,H) < j ^ p j for z G T , 

T a certain path. But we have 

| |ri4(/ + TA)-1 | | iC(H IH)<l (2.37) 
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since TA is also maximal accretive. For z G T w e estimate 

| |(2/ - T A ) " 1 \\C{H,H) = ^-(z/rl-A^Wc^H) 

1 C 1 C 
(2.38) 

Td--dQ\z\/T 0 - t f o M 

since also Z /T € T. • 

Applying this ideas to the error-term 

UT(t)-U(t) 

yields the main result of this section: 

Theorem 2.7 

Given an A(t9)-stable method of order p with 0 < i?0 < $ < f /2, there exists 
an asymptotic expansion 

Ur(t) -U{t) = Ep(t)r
p + Ev+l(t)T*+l + ... + EN(t)rN + EN+1(t;r) . (2.39) 

For the linear coefficient operators Ej(t) the following estimate holds: 

ll^iWIk*..*) < Cr"*-- ' ' ) , a > 0 . (2.40) 

The remainder operator Ü7JV+I(£;T) allows for r < 1 and for a > 0 the 
following estimate 

\\EN+1(t; r)\\c(Ha,H) < Ca ( ^ . " - ( " - n ) ) ^ ! + €a{t. r ) ) ? ( 2 > 4 1 ) 

where the perturbation ea(t\ r ) depends on the type of the method: 

Methods of type (I): 
e . ( t ; T ) = 0 (2.42.1) 

In this case estimate (2.41) also holds for a = 0. 

Methods of type (II): 
ea(t;T) = T2o/ta . (2.42.II) 

The constant Ca is independent of t and T. 
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Proof. We combine Lemma 2.4 and Lemma 2.6. The scalar asymptotic 
expansion of Lemma 2.4 suggests to set: 

Ej(t) := PjttA^Uit) (2.43) 

and 
N 

EN+i(t\ T) := UT{t) - U(t) - E Ejity . (2.44) 

Here the P,(-) denote the polynomials of Lemma 2.4, explicitly given as 

j-P+i 

Pj(*) =•• E 4*" • (2-45) 
fc=i 

For UQ € Ha and a < j + 1 we may estimate for the coefficient operators: 

i -P+i 

IWKII < E Kl**||A*+'z/(*)«o|| 
i-p+1 

= E WI^IIA^'-^OA-iioll 
i-p+i 

< Ci E \4\tk-t-{k+j-a)\\Aauo\\ 
k=l 

< C a f - ' | | t io | | . , 

which is (2.40) in that case, whereas in the case a > j + 1 we get 

\\Ej(t)vo\\ < C i + i%o| | i+ i 

< Ca<||«o||« , 

since Ha «—> Hj+i is continuous. The remainder-term is more difficult to 

estimate and here Lemma 2.6 gets into play: 

First we study the case 0 <ct < N + 1. 

The scalar function under consideration is: 

<p(z):=RN+1{n,z)z-a. (2.46) 

One easily sees 

||^iv+i(i;T)|U(//a,i/) < T°\\<P(TA)\\CWO , (2-47) 

which explains the appearance of the term z~a in (2.46). Putting K = 1/2 
and R := T)(K) from Lemma 2.4, we may set as first majorizing function 

Vi(r) := C3e-5 n c O 8 , , • r r N + 1 - 0 , , (2.48) 
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since Lemma 2.4 states, that 

b ( z ) | < ¥>i(M) for z e Stf and |z| < R . (2.49) 

The integral occurring in the relevant estimate (2.36) is now established as: 

h •= / <Pi(r)— 
Jo r 

< Cz r rN-Qe-?ncos*rdr 
J° ,oo (2-50) 

< CAna-N~x / e-"pN-adp 
Jo 

= c4 r(N-a+iy ~a 

nN+l ' 

with the usual gamma function T. 

To define the second majorizing function (fi we have to distinguish several 
cases: 

The case a = 0 and methods of type (I): 

Since for that case in general <p(oo) ^ 0 we have to estimate 

\<p(z)-<p(oo)\ < £ | /> - (n*y C -~ | + | e — | + |r"(z) - r « ( o o ) | . (2.51) 
i=p 

Since the exponential function damps polynomial increase we may estimate 
for z e S ^ 

\Pj(nz)z>e-nx\ < Cse-sncoa*W . (2.52) 

The second summation-term of (2.51) can be factorized as follows 

T J - l 

rn(z) - rn(oo) = (r(z) - r(oo)) £ rj (z)^-1^ (oo) . (2.53) 
j=o 

Since r is holomorphic in E,$ we may estimate 

\r(z) - r(oo)| < C6 / |z | for |z| > R . (2.54) 

Lemma 2.3 c) together with (2.53) and (2.54) implies: 

|r»(z) - r»(oo)| < C7/\z\ • npn~l , 0 < p = />(Ä) < 1 

< Cs/I^l • /)" for some /? < pi < 1 . 

Thus we choose as second majorizing function 

<P2(r) := C9 (e-t»«"*r + ^ ) . (2.56) 

(2.55) 
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The corresponding integral may be estimated as follows: 

dr r°° dr 

h := JR Mr)T 

- c»\h —r-*"1-*/» ?) (2'57) 

Finally we observe 

b(oo) | = |r»(oo)| < p" < C „ ^ (2.58) 

where p = /?(i?) is taken from Lemma 2.3 c). 

Lemma 2.6 now states 

1 TN+1 

\WA)\\c(H,H) < C i 2 ^ r = Ci2pvTT , 

that is (2.41) for a = 0 and Co = 0. 

Case a > 0: 

Here we have v>(°°) = 0 and therefore 

\(p(z) - <p(oo)\ = \<p(z)\ 

( N _ ) (2.59) 

Lemma 2.3 b) and c) together with (2.52) enforces us to choose as second 
majorizing function 
for methods of type (I) 

4" 
whereas for methods of type (II) 

VY = C13 (r-"e-i
nco8*r + r-apn) , (2.60.1) 

ipW = Ci4(r-ae-inco8*r + r-ae-*^) . (2.60.II) 

The corresponding integrals 

/ < • > = / " „ < > * , (2.61) 
JR r 

are estimated as 

lin<C^ (2.62.1) 
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and 

4'" <c*{£» + »-)• P-«2-») 
Lemma 2.6 gives 

IT AH-1 

rQ\WA)\\c(HtH) < Ca \-^f + ea(t;r) 

i.e. (2.41). 

Now let a > N + 1. 

For those a we observe since r < 1 : 

ea(*; r) < rQ < <«in(i,a-(Ar+i))TiV+i ? (2.63) 

that means the first term in (2.41) is dominating. 
For JV + 1 < a < iV + 2 we estimate as follows 

\\EN+1(t;r)\\£iHa<H) < | | ^ + i (0IU( / / a ,H)r N + 1 

+\\EN+2(t)\\c(Ha,H)TN+2 

+ \\EN+3(t;T)\\C(Ha,H) 

< CQ (t°-(N+l)T
N+1 + r - (N+2) T ^+2 + ta-(N+3)TN+3 + ^ r )) 

<3Ca(t»-(N+VTN+l + ea(t;T)) , 

that is (2.41). 
Finally for a > N + 2 we get with (2.63) 

\\EN+1(t;T)\\C(Ha,H) < Ma\\EN+l(t;r)\\c{IfN+2tH) 

< 4MaCN+2tr
N+1 

< iMaC^^^-^^T^ + ea^T)) , 

where Ma denotes the continuity-constant of the embedding Ha *-* #w+2- • 

Remarks 2.8 

1. A quite different proof of Theorem 2.7 for the implicit Euler runs along 
the lines of the proof of Theorem 2.13 from BORNEMANN- [8], using the 
recurrence relation for the Pj(-) mentioned in Remark 2.5. 
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2. The estimate (2.41) has in the case N — p — 1 several forerunners: 

• For strongly A(i))-st&ble methods (methods of type (I)) and a = 0 
it is Theorem 1.2 of LE ROUX [17]. 

• For the implicit trapezoidal Rule (Crank-Nicolson-scheme) and 
a = 1, a = 2 it is Lemma 3.1 of AUZINGER [1]. 

3. Theorems like Theorem 2.7 may be used to justify extrapolation in 
the method of lines. There one approximates A by an A& and solves 
problem (2.29) for A& and is interested in estimates independent of A. 
Consult AUZINGERJI] about that context. 

4. Related questions are estimates for the fully-discrete Galerkin-approxi-
mation of parabolic equations. Theorem 2.7 yields in the case N = p — 1 
and a = 0 immediately Theorem 2.1 of B A K E R / B R A M B L E / T H O M E E 

[4], who are dealing with selfadjoint A . Cf. also chapter 7 of THOMEE 
[25]. Observing that our Ha is identical with their H2a, Theorem 2.7 
yields their Theorem 2.4 and allows a sharpening of their theorem for 
diagonal Pade-approximations. 

5. Also related is Theorem 4.1 of LUBICH [20] on certain approximations 
of the inverse Laplace transform based on multistep methods. We note 
that the resolvent map R(X; —A) of —A is the Laplace transform of the 
semigroup U{t) generated by — A. This fact is reflected by the same 
approximation term ta~p r p in his Theorem 4.1 and our Theorem 2.7 
with N = p—1, observing that we can put \i — 1 +a in (1.5) of LUBICH 
[20] since 

\\R(K-A)\\c{Ha,H) < M ^ 

for A £ -£tf0. 

We close this section by showing that in general the exponents of t and n in 
(2.41) for small t are sharp. This will be done for the implicit Euler and the 
implicit trapezoidal rule by means of an 

Example 2.9 

Consider the heat equations on Cl = [0, n] with homogeneous Dirichlet bound­
ary conditions imposed. This means 

A = "~5?' ^ = #2(M)n#o([o,*D 
H = L2(Sl). 
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We use the following family of functions as initial data 

1 
^ = E l T 7 ^ s i n ( f c - ) - (2-64) 

k=i 

As shown in BORNEMANN [8], p. 28, we have 

W € Ha & ti > a . (2.65) 

I. Implicit Euler applied to (2.29) with u0 = <p# , i? > 0. 

Theorem 2.7 shows 

\\Ei(i;r)w\\L7 < CQta/n for 0 < a < r? < 2 . (2.66) 

On the other hand we have Parseval's equality 

I|£I(*;T)HI1* = I t M * ; r ) | 2 ^ , (2.67) 

where 

^KTTF;)"-6""' (268) 

denotes the scalar error-term for the eigenvalue k2. Using the following 
inequality, which is proven in the appendix, 

(l + -) " - e - x > ^ ~ 2 x f o r z > 0 , n E|N (2.69) 

we derive from (2.67) 

kH2 - O I . 2 * 1 

In 
•e-2k2i 

= C2J2—^-e 
fc=i u 

Now choose K €ti that 

fc=i 
oo £7-4i?^4 

fc=i 

Jfci-H** 
(2.70) 

(K + l)2 

which is possible for 0 < t < 1. 

We thus get from (2.70) 

1 < t < \\K2 , 

K L7-4tf 1 

l | £ i ( ' ; r ) ^ | | l a > C 3 E 
£ n* ( / f + 1)8 

tf8-4* 1 
> c4 ( * + l ) 8 * 2 (2.71) 

1 1 
> C5-

n* 

K** n2 

16 



Altogether we have 

\\Ei(tm>T)<p4\\& > C6- for 0 < t < 1 . (2.72) 

Comparison with (2.66) shows, that the exponents of t and 1/n are sharp for 
small t. 

II. Implicit trapezoidal rule applied to (2.29) with u0 = <p# , i? > 0. 

Theorem 2.7 shows 

ll^a(«; r)<p4v < C a t" ( i + - L ) for 0 < a < tf < 3 . (2.73) 

On the other hand we have Parseval's equality 

1 
||£2(*;r)^|L2 = -£|efc(*; r)p £1+4* ' 

where 

ek(t;T) = 
1 _ £ r \ n 

1 + ^ 
— e 

- *»« 

(2.74) 

(2.75) 

denotes the scalar error-term for the eigenvalue k2. We make use of the 
following two inequalities, for which proofs may be found in the appendix: 

1 - — 
2n. 1 + — ' ~ 1 ~ 2n. 

Iain7 

! + T 
XT 

2Ü5 

(2.76) 

for 0 < x/2n < 1 and 

Insertion in (2.74) gives 

" > e"4 '3 for 1 < n < & • (2.77) 

Jfc2<2n/< 

Jk«t3 

(1 + ^4) \ x T 1 2 ^ / 
1.1+41? ^ ^ i.l+4tf 
K k>2n/Vt K 

(2.78) 
Now we choose K € IN that 

1 J_ 
(ÜT + l ) 2 < ' ~ K2 ' 

which is possible for 0.. < t < 1. 
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We thus get from (2.78) 

\\E2(t;T)v42
Li>C2{ 

K U l - 4 i ? / 6 1 

J f e = l 

Altogether we get 

j |&(«;i>4i» 2: ̂ i * ( ^ + i ) for 0 < ( 

(2.79) 

< 1 . (2.80) 

Comparison with (2.73) shows, that the exponents of t and 1/n are sharp for 
small t. m 

2.5 Appendix: Proofs of inequalities (2.69), (2.76) and (2.77) 

For sake of completeness we include proofs of these inequalities. 

Inequality (2.69): 

We have 

-K)" * £(' n'. 
(n — k)\nk J k\ 

tk 

h + E I" 2n fc>2 (n-jfc)!nfcy it! 

> — for n > 2 , i > 0 , 
2n 

since we have 1 > n! = ( i _ I ) ( i _ * z i ) 
(n-k)\nk { nh"K n >' 

Inequality (2.81) trivially holds for n = 1. 

Since | ^e~ ' < 2e - 2 < 1 for t > 0 , n > 1, we thus get 

(l+t/n)-n > 
,-t 

2n 1 - g-e-* 2n 

> «"'(l + fee-1) 
which is (2.69). 

(2.81) 
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Inequality (2.76): 

For 0 < x/2n < 1 we get 

LtiV = sH'itm) 
. i -&y 

> e*n(*/2n+I(£)3) 

= e »"•' 

> ex 1 + 12n2 

Thus we get for those x, n: 

l _ . £ - \ n i 

1 + — / - 1 4- -*-* A T 2n / x ^ 12^? 
1 - jfe 

1 4- -£-* 1 ~ 12J? 

which is inequality (2.76). 

Inequality (2.77): 

For 4 < 4n2 < x we have 

x/2n > 4n2/2n > 2 , 

thus 
1 - — 

2n 1 + — 
I T 2 n 

_ e - n l ° 8 f ^ T 

Comparison of power series shows 

2 + 1 2 1 
log 

z - l ~ z l -
Y for 2 > 1 

Observing (2.83), insertion of (2.85) in (2.84) gives 

1 — — 
Z 2n 1 + — 1 ~ 2n 

4 n a 1 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

> e *^ 

> e - 4 / 3 for those n, a; . 

With a different proof technique one can in fact replace e~V3 by the sharp 

value 1/3. • 
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3 The Multilevel Algorithm for Parabolic Equa­
tions 

3.1 Time-step Control in Hilbert-space 

In this section we describe a semi-discrete algorithm for the solution of the 
parabolic problem (2.1): 

We use the implicit Euler discretization in time and control time-step and 
order of the method by extrapolation following the ideas of DEUFLHARD [9] 
for ODE's. 

The main purpose of this section will be to show, that the usual results for 
extrapolation-methods with some modification still hold in L2(Vt), instead 
of some IRn. Also the fully-discrete algorithm has to simulate the time-step 
and order control of the semi-discrete - in order to obey the requirements of 
the continuous problem. 

The common idea of extrapolation is: 

The algorithm suggests an outer time-step T > 0 for which 

UH ~ uTi(T) , (3.1) 

the implicit Euler discretization with time-step r,- = — as introduced in 
chapter 2 are computed for a given sequence of increasing n :̂ 

J F = { n i , n 2 , . . . } . (3.2) 

Since in limit u(T) — ur-o(T), we extrapolate the values (Un,.. . ,£4i) to 
r = 0, getting an approximation from which we hope, that it is better than 
the U{\. This will be made precise now. We compute the interpolation 
polynomial with values in L2(Cl) 

Pjk(r) = e0 + e1T + ... + e ^ r * " 1 , (3.3) 

e 0 , . . . , efc_x £ i 2 ( 0 ) , such that 

Pjk(ri) = Uix for i = j , j - 1 , . . . , j - k + 1 . (3.4) 

This can be done in L2(Cl), since the ej are determinable as linear combina­
tions of the UH as we will see later on. Now extrapolation to the limit r J. 0 
consists in using 

Ujk := Pjk{0) = e0 GL 2 ( f i ) . (3.5) 
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The values Ujk can easily be computed in the extrapolation table 

i \ 
6/21 —• 1*22 

I i \ (36) 

Uki —* ... Kk,k-i —* Ukk 

using the Aitken-Neville algorithm: j > 2 

Uik=U»-l + %&-Ui~\*~1 > * = 2 j , (3.7) 
n j ' - *41 

which can be performed in L2(Q). 

Now we want to get an idea of the error \\u(T) —Ujk\\L2(si)- This is done by 
the following 

Theorem 3.1 

For u0 € Ha , a > 0 we have 

ejk := \\u(T) -Ujk\\e{a) < 7i42™h<a'*+1> , (3.8) 

where asymptotically 

Jjk = [nj-k+i • • • nj]~xCTot9C , (3.9) 

CToep the Toeplitz-constant associated with T and C depends on the problem. 

Proof. Follows as usual from Theorem 2.7. For instance take the proof of 
Theorem II. 9.1 in [15]. • 

Remarks 3.2 

1. In our example from the end of Section 2.4 we get for the inconsistent 
initial data 

<Pi/4(x) = — — 

that \\Ujk - u(T)\\L2{n) = 0(T^4~e) for arbitrary small e > 0. 

2. Since one implicit Euler step increases the consistency (<p G Ha => 
UT(T) G Ha+i) we have, by Theorem 2.13, after some basic time-steps 

H ^ - « ( r ) | | L S ( n ) < 7 ^ T f c + 1 , 

which means that we achieved the full and maximal order. 
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By these remarks and the fact that in general 7j* decreases for increasing k 
we see, that the assumption 

«i.fc+1 < Ptjk , P < 1 (3.10) 

is reasonable. As in DEUFLHARD [9] Section 1.2 we are thus led to the 
subdiagonal error criterion 

ejfc+i.Jt = ||£4+i,A; — Z4+I ,H-I | | =: [e*+i,fc]«d (3-11) 

as a reasonable estimator. 

Convention 3.3 

A single quantity in square brackets denotes a computable estimator for this 
quantity. 

The basic time-step for achieving a prescribed tolerance TOL in line j + 1 
of the extrapolation table is now given as 

TOT ^ l/min([a],fc+l) 
T i + 1 J : = l r r T, (3.12) 

T the present basic time-step. The estimator [a] will be explained in Section 
3.5. 

«3.2 The Fully Discrete Case: The Multilevel Concept 

Now we have to approximate the elliptic problems arising by each implicit 
Euler step: 

U1+TAV} = u° + rf 

Since we want to use extrapolation in i 2 ( 0 ) we are interested in global ap­
proximations with controllable error. One natural choice in view of irregular 
boundary geometries are finite element methods. 
If we do that, we get instead of (3.6) the perturbed extrapolation table 

i 
: ••• (3.i4) 

\ 
Uk\ + Ski —>• ••• Ukk + hk , 
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where the 8j\ are produced by the successive solution of the elliptic problems 
and the 8jk with k > 1 are the propagated errors in the table. 

Notation: 
Üjk:=Ujk + 8jk. (3.15) 

Since the problem-oriented time-step mechanism (3.12) is connected with 
the semi-discrete estimator [cjt+i,fc]sd we are naturally forced to achieve two 
things: 

I. A fully discrete estimator [cfc+i,Jt] with 

II. A control of 6k+i,k+i, so that 

£4+i,jt+i is a tolerable approximation. 

This leads to the following concept: Assuming the existence of estimators 
[8k+hk], [8k+hk+1], [8k+lik -8k+hk+1], which will be constructed in the next 
section, we get from the estimate 

[e*+i,*:]sd < ||Z4+i,Jfc -Z4+i,M-i|k2(n) (3 16) 
+ ||<5fc+U - £*+i,*+i ||i2(fi) 

the fully-discrete estimator 

fot+i,*] : = 11^4+i.Jfc — ^Jk+i.jfc+i ||z,2(n) + ßfc+i,Jfc - ^ik+i.i+i] , (3-17) 

a completely computable quantity. It is reasonable to ask for 

a) [8k+hk],[8k+lMl] < TOL/2 

b) [ek+hk] < TOL. 

We also have to replace (3.12) by 

TOL ^ 1/min(W.*+1) 

(3.18) 

Tj+u = ( J ^ J ] T . (3.12') 
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3.3 Perturbation of the Extrapolation table 

Here we construct computable [Sjk\. This is done in two steps. 

First step: Replay to the 8j\. 

Since our extrapolation is linear, we get 

i=i-k+i 

where the coefficients ß)k only depend on the chosen subdividing sequence 

T. 

Thus we can define 

[6jk]:= t \fik\M (3-2°) 

and analogously [6k+i,k — f̂c+i.Jfe+i]- Requirement (3.18.a) can therefore be 
replaced by 

[Sjr] < ajTOL (3.21) 

where the coefficients a£ can be computed once at the beginning, only de­
pending on T. This coefficients can be optimized if the amount of work for 
the computation of Uj\ is known. 
Second step: Required errors of the elliptic solver. 

For building the extrapolation table up to row fc, we have - according to 
(3.21) - to compute the Üj\ with error not exceeding ajfTOL. This is done 
by solving j elliptic problems, the implicit Euler steps. The i'th produces its 
own error Ä,- and the exact problem propagates the previous error A;_! by 
the propagation operator 7r, thus leading to 

A,- = Ä,- + *rAi_i . (3.22) 

The role of 7r, however, can be controlled: 

Lemma. 3.4 

Making the general assumptions of Section 2, we have 

I M I < 1 . (3-23) 

Proof. This follows easily from the m-accretivity of A. • 

Assume that we use a reliable elliptic solver. It is started with the required 
accuracy c and produces solutions together with an estimate [A] of the error 
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which was made. By using that we get from (3.22) and (3.23) 

| |Ail | i»<n)<;e. (3.24) 

The requirement (3.21) thus yields 

c := -U^TOL (3.25) 

as accuracy for the elliptic solver in the implicit Euler steps leading to Uj\ 
for an extrapolation table up to row k. This is the fundamental connection 
between the time-control mechanism (extrapolation table) and the space 
discretization. The elliptic solver has to choose the space mesh relative to 
the requirement (3.25). 

Finally we have 
[Äil]:=:[Ä1] + . . . + [Ä i ] . (3.26) 

The coefficients a* are shown in Table 1 for T = {1 ,2 ,3 , . . .} , the harmonic 
sequence, optimized with respect to the amount of work formula which will 
be mentioned in Section 4. 

aj = 1.67i0-l 
a? = 1.18io-l 
af = 1.22l0-l 
of = 1.62io-l 

ai = 1.67io-l 
af = 4.67io-2 
a^ = 2.3210-2 
aj; = I.6I10-2 

al = 5.65x0-2 
a\ = 1.35io-2 
ai=5.4510-3 

a\ = 1.92io-2 
a\ = 4.02x0-3 a| = 6.50xo-3 

Table 1: Coefficients oq up to row k = 5 

3.4 The order control mechanism 

As in DEUFLHARD [9] we control the "order", that means here the row in the 
extrapolation table, in addition to the time-step. Relation (3.12') supplies 
us with step-size guesses Tj+ij for convergence of Wy+ij, that means the 
algorithm expects Mj+ij to be near to the solution within the given tolerance. 
As in [9] we define 

Wi+W := 7j^—Aj+1 (3.27) 

the normalized work per unit step, where Aj+i measures the amount of work 
required to obtain £/ ,+ l i j+ 1 . But this will surely depend on the work required 
by the elliptic solver to solve its problem with accuracy e given in (3.25). 
But this e does not only depend on ,;', the row of the table, but also on k, 
the final row, to which the table will be build up. 
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Thus we should replace (3.27) by 

introducing Aj+1 as the amount of work required to obtain WJ+IJ+I in a table 
up to Ukk- These A*j+1 will depend on the chosen elliptic solver. An example 
is given in the next chapter for the ID case. On this basis we can actually 
determine an optimal column index q by 

wSi,9 = ,_rn ^iili- (3-28) 

Knowing this q, we certainly use the step-size guess Tq+iig for the next basic 
time-step and expect convergence in the vicinity of q. 

In order to get a reliable code, avoiding pseudo-convergence and related un­
desirable things, which occur in practice, one has to implement three devices 

• convergence monitor 

• order window 

• a device for possible increase of order greater than q , 

see for instance DEUFLHARD [10]. 

This can be achieved by comparing the actual behavior in the table with an 
information-theoretic standard model derived in [9]. Here the measure of 
input-information is the number of Hilbert-space problems which have to be 
approximated. Thus we get rij as the quantity of information contained in 
14j\. Because of the dependency of the final row, we have to change the order 
window of [9]: The error criterion (3.18.b) and the monitoring conditions of 
[9] are only tested for j in the range of 

q-l<j <q• 

In all other details the step-size and order control of [9] can be taken without 
change. 
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3.5 The consistency-estimator 

The last missing point for a complete description of the algorithm without 
specifying the elliptic solver remains to be an estimator for a, the consistency 
of the last approximation u(t): 

u(t) € Ha , a maximal. 

We start assuming as much consistency we need, that means 

[a]>tart = U + l . (3-29) 

If the estimated [a] is seriously too large we will get far too large time-step 
guesses by (3.12') and therefore a step-size reduction with redoing of the 
step. Now take the largest possible k, for which with respect to the old 
time-step T0id as well as to the new time-step rnew error estimates [ejt+i.^oid 
respectively [et+i.jfcjnew are available. By Theorem 3.1 we have 

a ) lcfc+l,fcJold - (-'-'old ( 3 3 0 ) 

O) ICjt+l.fcJnew — O J n e w > 

that means 

min(a, * + 1) « ^ ^ V (3-31) 

leading to the reasonable 

/ l o g ( ^ ^ ' d ) \ 
H n c w ~ m i n l [ a ] o l d , lo7^A 1 ( 3 " 3 2 ) 

The log-quotient will be in reasonable behaving cases positive, because of 

Tnew < T0id. If not, we do best by trying 

[ « U := Hoid/2 . (3.33) 

If we have no step-size reduction and redoing of a step, we have to consider 
an increase of a since each implicit Euler step increases a by one: 

Hold —* m i n t J w + 1 , [a]oid + 1) =: [a]„ew • (3-34) 
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4 Algorithmic Details in the ID Case and Numer­
ical Examples 

In the last section we treated the elliptic solver mainly as a black box. In 
fact we required only two things 

1. The elliptic solver is started with a required accuracy e, and gives global 
solutions together with an error estimate [Ä], which is necessary to 
realize estimate (3.24). 

2. The amount of work A|+ 1 as occurring in (3.27') should be computable. 

Another feature should also be required: 

In order to realize the first requirement, it is reasonable to use an adaptive 
FEM-method. This will mainly contain the following three modules: 

• error-estimator 

• linear solver 

• refinement-strategy 

Since we are dealing with an one-parameter family of elliptic problems 

u + rAu = f (4.1) 

we have to require: 

3. The performance of the error-estimator and linear solver should be 
independent of r , especially should work in the vicinity of r = 0. 

4.1 Time-Step Independent Elliptic Error Estimation and Amount 
of Work Principle 

Here we restrict ourselves to selfadjoint elliptic operators in one space dimen­
sion. 

The difficulty for constructing r-independent error estimators lies in the fact, 
that we get a break-down of #o(fi)-ellipticity as r J. 0 for our bilinear form 

Br(u, v) := (u, v)L2 -f TO(U, v) (4.2) 

associated with the elliptic problem (4.1). In this case we get a transition 

Ritz-projection ——• L2-projection. 
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So we are led to localize the problem in order to construct an error estimator, 
i.e. we solve on the subintervals of the mesh the same elliptic problem with 
imposing the actual FEM-approximation as Dirichlet boundary condition. 
This should give a reasonable local error estimator. Surely the local problems 
will not be solved exactly, but it is enough to solve them with higher accuracy 
using quadratic elements. 

The author used in [8] norms, which are extensions of those introduced by 
B A B U S K A / O S B O R N E [2] for the purely elliptic case, in order to get results 
in the light of the third requirement of the introduction to this section. An 
example is the following norm, which will occur in the main result about the 
error estimator. 

Definition 4.1 

Let r > 0. We take a subdivision A (mesh) of / := [a, b]: 

a) A := {0 = x0 < xi < ... < xn = b} 

b) hj := Xj - Xj-X ; Ij :=)XJ.UXJ{ , j = 1 , . . . , n (4.3) 

c) Sj := (hj + hj+1)/2 ; j = l , . . . , n - l . 

For u 6 H*(I) let 

\MlA--=\Ml + Z6Mzi)\2 (4-4) 

and define H^ to be the completion of HQ(I) with respect to this norm. 

In the norm || • ||O,A something like a discrete L2-norm on the mesh A is 
coupled to the L2(J)-norm. 

We note that on the family 5 A the norms || • ||o and || • ||0,A are uniformly 
equivalent in the sense 

M« | |o < H k * < MMIo for a11 u € S* , (4-5) 

ki, k2 positive constants independent of A. This is essentially relation (4.3.c) 
of [2], but can be shown in our case, linear elements, by direct computation. 

Some conclusions which can be drawn from results of [8] are: 

1. We have quasi-optimality of the FEM-approximation UA with respect 
to the || • ||O,A norm independent of r : 

||u - WA||O,A ^ C ij1! \\u ~ Vllo,A , (4.6) 

C independent of A and r . Note that for r > 0 and / 6 L2 we have 
u € Hl{I) C H%. 
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2. Adequate adaptive meshes can be characterized as follows: 

C 
v€5& " ' ""' n 
mf Wu-tpWo^K-, (4.7) 

C fairly independent of u, n the number of degrees of freedom. Note 
that with /A. the interpolation operator and a quasi-uniform mesh A 
we get by (4.6) 

\\u — «A||O,A < C\\u — I&U\\0IA 

= C | | U - / A U | | 0 

< Ch2\\u\\2. 

3. On those adequate meshes we get 

| | t x - U A . | | „ , A < ^ , (4-8) 

C fairly independent of A and r . 

This justifies our 

Basic amount of work principle 4.2 

Adaptive solution of an elliptic problem from family (4.1) with accuracy e 
needs 

n = C/y/e (4.9) 

degrees of freedom, C fairly independent of T and A. 

Next we describe the error estimator. For j = l , . . . , n consider the local 
elliptic problems 

a) Wj + TAWJ = / on / , 
3 (4.10) 

b) WJ(XJ-I ) = uA(xj_i) , Wj{xj) = UA(XJ) . 

Relation(4.10.b) means that 

< J i : = w , - « A G ^ ( / ; ) (4.11) 

and a weak formulation of (4.10.a) is therefore with 

e := u — «A (4-12) 
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the equation 

BT(wj, v) = BT(e, v) for every v € H^Ij) . (4.13) 

Let Sf C Hl{Ij) be the space of quadratic finite elements on the grid 
{xj_i,(xj_i + Xj)/2iXj}, and Wj € Sf the FEM-approximation of Wj on 
/_,-, that means 

Br(\bh<p) = BT{e,ip) = (/,ip) - Br{u±,<p) for all <p € Sf . (4.14) 

These Wj are computable. 

Our computable local error estimator is now 

[Vj}-= \\ujWojj , J = l , . . . , n (4.15) 

and the global one 

M:=(f>;]2) • (4-!6) 

For relations between [77] and 77 := ||e||o,A we have to introduce a local 

(semi-)norm: j = 1 , . . . , n. 
For u 6 # £ set 

H U / , := Nil* + IM«(*i-i)2 + "(*i)2) • (4-!7) 
The main result of [8] about the elliptic error estimator is: 

Theorem 4.3 

The following local and global estimates hold 

a ) [Vj] < KVi := K\\u-uA\\oAJj 

b) [77] < Kn := ü r | | t i - « A | | 0 l A. 

Here K denotes a positive constant independent of A and r . 

(4.18) 

4.2 The Refinement Strategy and the Linear Solver 

• The refinement strategy. 
Since we are equipped with local error indicators rjj, we are able to 
build a refinement strategy: 

refine /,- if rjj > cut . 

The heuristic (4.8) asks for a nearly equidistributed error. In order to 
achieve that, we determine "cut" following BABUSKA/RHEINBOLDT 
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[3]: We use a simple heuristic prediction scheme to forecast what may 
happen to r\j if Ij is subdivided. Locally we may assume 

Vj = Cjh? as hj -> 0 . (4.19) 

Suppose Ij was generated by subdividing I°ld with local error Tjfd obey­
ing (4.19). The T)J-value after dividing Ij will be thus approximately 

ir = 4s- (4-2°) 
Clearly now, we should refine only those elements Ij which have an 
j/j-value above the largest predicted new 77-value in the next mesh: 

cut := max?7?ew 

j J 

• The linear solver. 
Since we treat the ID case here, the stiffness-matrix M is tridiagonal. 
So linear equations can be solved by direct Gauss-elimination without 
pivoting in 0(n) simple operations. 

However, the global stiffness-matrix M needs not to be assembled: It 
is enough to know the local stiffness-matrices AP associated to i j using 
a fronting algorithm. 

4.3 Realization of Extrapolation 

The elliptic-solver produces a first column of the extrapolation table as fol­
lows: 

Wn € SAl 

In order to extrapolate we consider the common mesh 

A = U Aj . (4.21) 
j=i 

Surely we have Uj\ € 5 A , which in practice is done by linear interpolation 
between the nodes since Uj\ is linear there. Now we can do the extrapolation 
in the coefficient vector of the nodal basis for A. 

In 2D case (4.21) does not work, because the such defined A will in general 
not be a triangulation. So we have to require that there exists a triangulation 
A, that 

Uj\ € SA , j = ! , . . . ,& . 
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This is a requirement on the Aj. In this case we will call the Aj compatible. 

In practice this can be achieved as follows: 

First we have the triangulation Aa for Un. We set A1 := Ax . 

Given A' , j = 1 , . . . , k — 1 we construct A J + 1 and A J + 1 as follows: 

The necessary refinement for Aj+i is done using the tree for A J , possible 
extending that tree. This extended tree will be A J + 1 , so that AJ and A J + i 
are subtrees of A J + 1 . That means, we have 

and 

In the same step we compute the coefficients for Un,.. ,,Uj+iti in the nodal 
basis of S&j+i by linear interpolation of the nodal basis representation of S&i. 

As the above A we get Afc, for which by construction 

Uj\ G SAk , ;' = 1 , . . . , k . 

Also we have by construction the Uj\ in the nodal basis representation of 
S&k. In this basis the extrapolation will be performed. 

This efficient method should also be used in the ID case. Numerical experi­
ence shows that the method is also preferable for stability reasons. 
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4.4 Numerical Examples 

The program KASTIX (KASkade TJme-dependent with extrapolation) is a 
realization of the algorithm described in this paper. The ID elliptic solver is 
written in analogy to the adaptive multilevel 2D elliptic solver KASKADE 
[11, 23, 24]. It is written in the language C [8]. 

All numerical experiments of this paper were made using double precision 
arithmetic on a SPARC-stationl+. 

One should note, that there are no parameters which had to be fitted to the 
examples. 

The notation used to describe the experimental results has been introduced 
earlier in this paper or is self-evident, with the exceptions of 

CPU = computing time in seconds on a SPARC-stationl+, 

[N)WOrk = XX n o- °f nodal-points of time-step j)/r,- / J^l/r,- 1 , 

[-Njmem — I X) n o - °^ nodal-points of time-step j j /no. of time-steps , 

Nmax = maximum number of nodal-points for a time-layer . 

The mean-values [iV]„,orJfc and [iV]mem are chosen to equidistribute the number 
of nodal-points with respect to the same effort of work resp. memory. These 
are sensible choices with respect to variable order which has the goal of 
minimized work. The choice of a time-mean like in [7] would over-weight 
points of higher-order time-layers. 
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Example 1. Rise of a traveling wave from a trivial solution. This model 
problem was created in order to examine how KASTIX handles with sudden 
events. It consists in a traveling wave which suddenly travels through the 
space-interval. 

The solution of the problem is 

u(t, x) = -0 .5 tanh(40(x - 10* + 6)) . 

Figure 1: Traveling wave solution (Example 1). 

At time t = 0.59 the wave enters the interval / = [0,1], travels with speed 
v = 10 through it and leaves it at time t — 0.71. The PDE actually solved 
numerically is the scalar heat equation with a convection term 

ut = uxx - 10ur + / ; t > 0, x 6 [0,1] , 

where / , the initial data at t = 0, and the Dirichlet boundary conditions 
were set that u(t,x) is the solution. 

Figure 1 shows the computed solution at the time-layers chosen by the algo­
rithm. The problem was run until time t = 1. 
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Figure 2: The mesh-development (Example 1). 

Figure 3: Behavior of the error-estimator (Example 1). 

TOL time-
steps 

max. 
order 

[N]Work [N] 
mem 

lymax L°°([0,T},L'V)) 
norm of true-error 

CPU 

* I O - ^ 
10 - 3 

10~4 

78 
94 

134 

2 
3 
4 

35 
108 
389 

30 
109 
430 

49 
315 

2335 

2.73io - 3 
2.33io-4 
4.05io - 5 

11 
71 

720 

* run represented in Figs. 1-3 
Tabie 1: KASTIX: performance for variable order (Example 1) 

For higher orders we get [N]work < [N]mem, which nicely reflects our choice 
of order to optimize the amount of work. 
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Example 2. Two counter-traveling waves. This model problem has been pro­
posed by BlETERMAN/BABUSKA [7] to examine the behavior of the adaptive 
mesh generation when two waveforms, having different front widths and di­
rections and speed of travel, collide and pass through each other. The solution 
of this problem is 

u = uW + u<2> , 

where 

uW(i, x) = 0.25(1 + tanh(100(x - 10*))) , 
uW(t,x) = 0.25(1 + t a n h ( 8 0 ( l - x - 30*))) ; 

Figure 4: The two counter-traveling waves (Example 2). 

u^ moves towards x = 1 at speed v = 10 and u^2\ whose front width is 
25% larger than that of u^\ moves towards x = 0 at speed v = 30. At 
time t = 0.025 the waves collide, almost extinguishing each other. The PDE 
actually solved numerically was the scalar heat equation 

ut = uxx + f;t>0,xe [0,1] , 

where / , the initial data at t = 0, and the Dirichlet boundary conditions 
were set that u(t,x) is the solution. 
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Figure 4 shows the computed solution at the time-layers chosen by the algo­
rithm until time t = 0.07. 
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Figure 5: Mesh-development for the two waves (Example 2). 

Figure 5 clearly shows that the time-step is chosen automatically with respect 
to that traveling wave which possesses the larger signal-velocity. 

«fl 
•or 

2 10"* 2 10"* 

i o - : i i o - : i < ESTIMATED 

10--

ö Oil o!2 oia , o:*, 

tim« ( « E-01) 
ois ols o!7 

Figure 6: Behavior of the error-estimator (Example 2). 
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TOL time-
steps 

max. 
order 

[N]w„k mem " m a t 
norm of true-error 

CPU 

*io-a 86 2 53 50 81 4.6510 - 3 32 
io-3 98 3 163 203 507 3.9410 - 4 247 

5-10-4 130 3 218 261 731 1.63io-4 426 
2•IO"4 175 3 408 488 1256 6.93io - 5 1169 

10~4 87 4 949 1244 3201 5.1410 - 5 2358 

* run represented in Figs. 4-6 
Table 2: KASTIX: performance for variable order (Example 2) 

Once more we get for higher orders [N]work < [N]mem, which nicely reflects 
our choice of order to optimize the amount of work. We also observe that the 
number of time-steps is nearly constant and drops when the next order in the 
time discretization is activated, which is a known advantage of extrapolation-
methods for ODE's. This occurs here since we have no stationary-phases as 
in the other examples. 

Finally we study the effect which results if we fix the order of the time dis­
cretization at order 2, in which case we still can control time-steps adaptiyely. 

TOL time-
steps 

[N]w„rk [N] mem JVmax 
norm of true-error 

CPU 

io-a 92 54 51 84 4.64io - 3 36 
IO"3 414 138 128 247 8.4210 - 4 418 

5•IO"4 632 207 188 407 7.14io-4 953 
2•10~4 1114 298 271 712 3.50 1 0 -4 2490 

10"4 >1084 , — fail — > 2 . 1 4 1 0 - 4 >4104 

Table 3: KASTIX: performance for fixed maximum order 2 (Example 2) 

We observe a drastic increase of time-steps, which leads to more CPU-time 
and, which is more serious, to more need of storage for the solution-data. 
We also see that [N]work > [N]mem, which had to be expected. Moreover the 
large number of time-steps yields an error-propagation, which the algorithm 
is not able to trace. Thus we get global errors exceeding the tolerance TOL, 
if TOL < 10 - 3 . For TOL = 10"4 the propagation gets too much influence, 
so the algorithm even fails. Thus beside other advantages the variable order 
case appears to be more reliable. 

TOL variable order fixed order factor 
no. of points no. of points of save 

io-* 4300 4692 1.09 
IO"3 19894 52992 2.66 

5•10"4 33930 118816 3.50 
2•IO - 4 85400 301894 3.54 

TaWe 4: Array storage comparison (Example 2) 
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Example 3. Point-source. This model problem, which is essentially a ID 
version of Example 1 in ERIKSSON/JOHNSON [14], has been proposed by the 
author in [8] to test the time-stepping procedure. We solve the homogeneous 
heat equation with the following approximate 6-function as initial data: 

tio(s) = 250exp(-250x2) . 

The Dirichlet boundary conditions are chosen to model on J = [0,2] the 
evolution of UQ on the whole real axis. 

Figure 7: Evolution of point-source, time in log-scale (Example 3). 

Because of the exponentially decay of the solution as shown in Figure 7 one 
expects an increase of the time-step according to a power-law, which really 
occurs automatically in the performance as shown in Figure 8. 

Figure 8: Automatic increase of the time-step (Example 3). 

41 



10«. 

to, 

h 

l i o - ' i 

10-"; 

io-" 

10-. 

iälfl}! : :::!{:{jj:i:i:i:M-i = ' H '' 

: : : 

i . i . i . i . i ; i ; i 

10«. 

to, 

h 

l i o - ' i 

10-"; 

io-" 

10-. 

iälfl}! : :::!{:{jj:i:i:i:M-i = ' H '' 

j | ; : ! . j ! ; 
: 

• 

10«. 

to, 

h 

l i o - ' i 

10-"; 

io-" 

10-. 

0 i 
space 

Figure 9: Mesh-development for the point-source (Example 3). 
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Figure 10: Behavior of the error-estimator (Example 3). 

TOL time-
steps 

max. 
order 

[WW* [N] mem ™max L~([0,r],^U)) 
norm of true-error 

CPU 

* 5•10-1 

5•10-2 

5•IQ"3 

36 
111 
186 

2 
2 
3 

59 
141 
888 

32 
96 

311 

135 
804 

2601 

9.82Xo - 2 
2.08io - 2 
1.27io - 3 

3 
28 

236 

* run represented by Figs. 7-10 
Tabie 5: KASTIX: performance for variable order (Example 3) 

In this case the solution runs into the stationary zero-solution. Thus the 
algorithm chooses very early the low order 2 in time. This causes [N]work > 
[N]mem here. 
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