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Abstract

The (implicit) midpoint scheme, like higher order Gauss-collocation schemes, is algebraically
stable and symplectic, and it preserves quadratic integral invariants. It may appear particularly
suitable for the numerical solution of highly oscillatory Hamiltonian systems, such as those
arising in molecular dynamics or structural mechanics, because there is no stability restriction
when it is applied to a simple harmonic oscillator. Although it is well-known that the midpoint
scheme may also exhibit instabilities in various stiff situations, one might still hope for good
results when resonance-type instabilities are avoided.

In this paper we investigate the suitability of the midpoint scheme for highly oscillatory,
frictionless mechanical systems, where the step-size k is much larger than the system’s small
parameter ε, in case that the solution remains bounded as ε → 0. We show that in general one
must require that k2/ε be small enough, or else, even the errors in slowly varying quantities
like the energy may grow undesirably (especially when fast and slow modes are tightly coupled)
or, worse, the computation may yield misleading information. In some cases this may already
happen when k = O(ε). The same holds for higher order collocation at Gaussian points. The
encountered restrictions on k are still better than the corresponding ones for explicit schemes.

1 Introduction

Classical discretization methods for differential equations typically find pointwise-accurate approx-
imate solutions when the number of discretization steps taken is not too large and when the size
of the discretization steps is smaller than any scale of the differential problem. In this work, how-
ever, we consider situations in which there may be a large number of non-small discretization steps
taken. In such cases, dictated by necessity of computational feasibility in many applications (e.g.
molecular dynamics, fluid flow), a lot more attention must be paid, not only to choosing appropriate
discretization schemes but also to investigating the quality and meaning of the obtained results.

It is well-known that symplectic and time-reversible discretization schemes possess particularly
attractive properties when applied over a long time1 to Hamiltonian systems [22, 12]. Much attention
has been paid recently in this context to the (implicit) midpoint scheme and some of its variants; see,
e.g. [25, 10, 14] (see also [5] for a different orientation). The midpoint scheme, and more generally
Gauss-collocation schemes, are algebraically stable, symplectic [22], and they preserve quadratic
integral invariants [8]. They may appear particularly suitable for the numerical solution of highly
oscillatory systems [11], although it is known that these schemes may also exhibit instabilities in
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1More specifically, one must consider Nk � 1, where k is the discretization step-size and N is the number of

discretization steps needed.
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various stiff situations [10, 17, 1, 2]. However, whereas for the usual, highly damping stiff initial
value problem better alternative schemes exist (e.g. [13]), no clear winners are known for the highly
oscillatory case.

It may be argued that when computing approximate solutions to a complicated problem it is
better to get a clearly unstable computation (where the approximate solution blows up or behaves
otherwise unphysically) than to compute a wrong solution which looks physical – in the latter
situation the user may receive no direct warning, and may be led to wrong conclusions regarding
the object of the simulation. We show in this paper that, unfortunately, slowly varying quantities
may be approximated by wrong, slowly varying quantities when a system with highly oscillatory
solution components is approximated by a discretization scheme with a step-size k, unless k2/ε is
small enough, where ε is the fast scale of the differential system. In some instances, k = O(ε) is
required. Moreover, if k2/ε is not small then significant error growth may be experienced when fast
and slow modes are coupled by a non-constant transformation. The midpoint scheme is still among
the more robust choices, but its imperfections, coupled with its implicitness, make the choice of
“best” scheme and the interpretation of computational results more involved.

To be concrete, consider the initial value problem for the friction-free mechanical system (0 ≤
t ≤ T )

q̇ = p (1.1a)

ṗ = −gradV (q)− ε−2GT g(q) (1.1b)

where q are the generalized positions of the bodies, p the generalized momenta, V and g are known
potential functions of moderate size, G(q) = ∂g

∂q , and 0 < ε � 1 is the small parameter. It is
well-known that the constancy in time of the Hamiltonian

H(q, p) =
1

2
pT p+ V (q) +

1

2ε2
g(q)T g(q) (1.2)

is an integral invariant of this ODE system.
The presence of strong potentials introduces highly oscillatory solution modes. If the amplitude

of such modes is large then to achieve a pointwise accurate approximate solution one must choose
k ≤ c1ε, where c1 is a constant such that each oscillation is reseolved by the mesh. It is better then
to choose an explicit Verlet scheme (which is a staggered midpoint scheme, see §3) than one of the
implicit variants of midpoint. But if the solution sought is bounded as ε → 0 then we want to be
able to choose 0 < ε � k � 1. Now there is no hope to accurately recover rapidly varying solution
quantities (i.e. quantities with O(ε−1) derivatives), but one still hopes to accurately recover slowly
varying quantities, such as the Hamiltonian, assuming that k is small enough with respect to this
slow variation. The slow variation of the Hamiltonian often implies that fast modes are only O(ε) in
magnitude, and thus it may not be necessary to have k ≤ c1ε for the sake of accuracy in the slowly
varying quantities.

Let us rewrite (1.1) as an index-1 DAE,

q̇ = p (1.3a)

ṗ = −gradV (q)−G(q)Tλ (1.3b)

ε2λ = g(q) (1.3c)

We distinguish between two cases; which of these occurs depends on the initial conditions.

1. The exact solution satisfies2

|g(q)| = O(ε2) .

2We denote, for any vector x, |x| =
√
xT x.
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In this case |λ| = O(1) in (1.3). (This case is considered, e.g., in [11, 19].) In the passage to
the limit, ε → 0, we obtain the reduced system

q̇ = p (1.4a)

ṗ = −gradV (q) −GTλ (1.4b)

0 = g(q) . (1.4c)

2. The exact solution satisfies
|g(q)| = O(ε) .

The balance in powers of ε in (1.1) is achieved with |p| = O(1), |ṗ| = O(ε−1). This case is
more prevalent in molecular dynamics calculations (although Case 1 occurs as well). Here we
obtain |λ| = O(ε−1) in (1.3c) and the passage to the limit is less clear. The limit DAE may
turn out to be (1.4) (as in Examples 3.1 and 3.2) or it may be different, incorporating an O(1)
correcting potential term (as in Example 3.3).

Whether or not (1.4) defines the correct reduced solution, it turns out that O(k2/ε) errors in
slowly varying quantities are unavoidable in general when the midpoint scheme is applied. There are
two sources for this. One is already apparent when considering the error in the adiabatic invariant
in a linear oscillator with a slowly varying frequency. (If the frequency is constant then the energy
constancy is a quadratic invariant which is reproduced exactly by the midpoint scheme.) We analyze
this error in §2.2 and explain its misleadingly regular form. The same type of error appears later in
§3, in a more involved example.

The other source of error is more generic and may generate very large errors. When the solu-
tion variables in (1.1) contain coupled fast and slow components such that the decoupled form is
simple enough that the midpoint scheme performs well when discretizing it directly, the decoupling
transformation from the given system to its decoupled form may still yield O(k2/ε) errors in the
discretization scheme when the non-decoupled form is discretized. These errors may induce insta-
bility. We prove in §2.3 a restricted stability condition for a linear example: starting from a pair of
uncoupled fast and slow linear oscillators, for which midpoint stability can be proved, a smooth and
well-conditioned coupling transformation yields a formulation whose direct midpoint discretization
results in large errors which may grow rapidly in t unless the stability restriction is satisfied. The
explanation must then be in the misrepresentation of the continuous transformation by the discrete
one (cf. [2, 1, 5]).

All of the examples in §3 exhibit this phenomenon, and it is demonstrated and discussed further
in that section. We show that unstable midpoint calculations which get worse as k is increased for
a fixed ε can be easily encountered (i.e., this is not an esoteric phenomenon). The methodology for
creating such examples is simple and it is demonstrated in Examples 3.1 and 3.2 which are related
to the linear Example 2.2.

Apparent instabilities in midpoint calculations with large k for this class of problems have been
observed in practice. Some explanation has been given in terms of resonance phenomena [17, 23].
Such explanations may suggest, however, that the step size k may be judiciously increased to avoid
resonance spots – an unlikely cure. The difficulties we highlight here are present also for linear
problems and for discretization schemes which attempt to avoid resonance instabilities.

The midpoint scheme preserves the energy only when the energy expression is at most quadratic
(see [8, 3]). Straightforward projection schemes, which correct the midpoint scheme, say, at the end
of each step to preserve H , typically lose symplecticity and even time-reversibility. In [6] we propose
a method which preserves the energy and retains time-reversibility. We embed the Hamiltonian
system in a projected DAE and propose a specially modified midpoint scheme for DAEs of pure
index 2. When this scheme is applied to the projected DAE a time-reversible scheme is obtained.
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Unfortunately, however, our scheme and other similar ones do not perform well for highly oscillatory
systems, because the projected DAE is very difficult to solve with a large step size. Imposing energy
conservation by the discrete scheme adversely affects its ability to handle highly oscillatory nonlinear
problems when k > ε.

We summarize our experience as follows. Consider (1.1) again, with fast and slow modes clearly
separable. In case that the correct smooth manifold is only O(ε2) – or even O(ε) – away from the
reduced solution manifold of (1.4), and if ε is really small, so that this difference is tolerable as an
error, then solving (1.4), e.g. using SHAKE or RATTLE (see [15] and references therein) or one of
the more general stabilization techniques [4], may be the most efficient way to proceed. On the other
extreme, there are faster, explicit schemes such as (3.8) if we are willing to use k ≤ c1ε. Away from
these possibilities, e.g. if the limit DAE is not known and choosing a large k is desirable for efficiency
reasons, the midpoint scheme and other implicit variants may have something to offer. But caution
must be exercised when they are used. In particular, as ε/k → 0 all implicit Runge-Kutta schemes
with a nonsingular coefficient matrix tend to approximate (1.4), so if the limit DAE is different from
(1.4) (as in Example 3.3) then some misleading calculations may arise; moreover, energy-preserving
variants [6, 20, 9] do not help in such circumstances, and caution dictates simply taking k ≤ c2ε
then, where typically it is still possible to choose the constant c2 such that c2 > c1.

2 Highly oscillatory linear problems

Consider an ODE system

ẏ = f(y) 0 ≤ t ≤ T. (2.1)

Using a discretization with a step-size k, the midpoint scheme reads

yn − yn−1 = k f(
yn + yn−1

2
). (2.2)

This is a simple, symmetric, symplectic 2nd order implicit Runge-Kutta scheme. It is an instance
of collocation at Gaussian points, with one collocation point per step. Gauss-collocation schemes
also preserve quadratic integral invariants and possess symplecticity and algebraic stability [13, 3]:
writing such an s-stage scheme in the usual Runge-Kutta notation

c A
b

we have
mij = biaij + bjaji − bibj = 0, i, j = 1, . . . , s.

2.1 Linear oscillator

Consider the harmonic oscillator equations in the highly oscillatory case 0 < ε � 1,

q̇ = p (2.3)

ṗ = −ε−2q

where q and p are scalar dependent variables. The exact solution for the initial conditions p(0) =
β, q(0) = 0 is

q(t) = εβ sin(ε−1t), p(t) = β cos(ε−1t) .

The Hamiltonian
H(q, p) = p2/2 + ε−2q2/2
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is conserved along solutions. Applying now a step of an s-stage Runge-Kutta scheme, denote by
(s-vectors) q̂ and p̂ the corresponding approximations obtained for the solution at the stages between
tn−1 and tn = tn−1 + k. We easily obtain

(
I −kA

kε−1A εI

)(
q̂
p̂

)
= O(ε) .

Assuming that the coefficients matrix A is nonsingular (which holds, e.g., for all Gauss and Radau
collocation as well as for all DIRK schemes [13]) we immediately obtain for the intermediate stages
that

q̂ = O(ε2/k), p̂ = O(ε/k).

Comparing this with the exact solutions, we conclude that the approximation obtained for the
intermediate stages may be good for β = O(ε/k) but it is O(1) away in p̂ for β = 1, say, when
ε/k � 1. The error at pn is then O(1) as well. Note that the error in the variable q can be neglected
in appropriate circumstances, due to the small amplitude of the oscillations in q(t), even though the
relative error is O(1). The mesh values pn may oscillate or not, but in any case they will be wrong
in absolute value, as ε → 0. For Radau collocation the mesh points are also internal stages, so
qn = O(ε2/k), pn = O(ε/k). Then the solution corresponds to the exact solution subject to entirely
different initial conditions, which may be particularly misleading.

Now, symmetric Runge-Kutta schemes are P-stable [19]. Moreover, for the midpoint scheme
the Hamiltonian H is conserved exactly, because it happens to be a quadratic invariant. Hence we
obtain a very stable scheme for any step-size k which may, however, produce wrong, physically-
looking solutions.

Note the marked difference between the harmonic oscillator equations and the classical “test
equation”

ẏ = −ε−1y .

For the latter, a simple scheme like backward Euler (or more generally, Radau collocation) produces
the exact solution as ε/k → 0, regardless of the initial condition.

2.2 Linear oscillator with slowly varying frequency

Let us now modify the oscillator (2.3) by introducing a time-dependent, slowly-varying change in
frequency; namely

q̇ = ω2(t)p (2.4)

ṗ = −ε−2q

where ω(t) > 0, 0 ≤ t ≤ T . For example, take

ω(t) = 1 + t .

The modified system is still Hamiltonian with energy

H(q, p, t) = ω2(t)p2/2 + ε−2q2/2 .

Since the energy is now time-dependent, it is no longer a first integral. However, there exists an
adiabatic invariant

J(q, p, t) = H(q, p, t)/ω(t) = ω(t)p2/2 + ε−2ω−1(t)q2/2

(see, e.g., [16]) such that, for ε small enough,

[J(t)− J(0)] /J(0) = O(ε)
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(a) Initial conditions q(0) = 0, p(0) = 1
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(b) Initial conditions q(0) = 1, p(0) = 0

Figure 2.1: Error in adiabatic invariant vs. α = k2

4ε : midpoint in solid line, 3-point Gauss collocation
in dashed line

over a time interval of length
T = c1 e

c2/ε ,

1 > c1, c2 > 0 appropriate constants depending on ω(t) [24, 18]. In particular, starting from
p(0) = β, q(0) = 0, J is bounded in terms of β and varies smoothly for 0 ≤ t ≤ 1 and ε small
enough. Note that J is proportional to the ratio of total energy and frequency of the oscillator.

Let us now numerically integrate the equations by the implicit midpoint scheme with a step-size
k � 1 and possibly ε/k � 1. Since energy is no longer a first integral, nothing immediate can
be said a priori about the numerically computed solutions (that they will be wrong in pointwise
absolute value is clear, but we hope that less is needed for the accurate computation of slowly
varying quantities). Still, one might expect that the adiabatic invariant J will be approximately
conserved by the midpoint scheme.

Example 2.1 We have calculated the solutions for the midpoint approximation of (2.4) for various
values of ε and k, measuring

ΔJ = max
0≤t≤1

|J(t) − J(0)|/J(0)

starting from the initial values yielding (a) J(0) = H(0) = 0.5, and (b) J(0) = H(0) = 0.5ε−2.
We have found that the error in the adiabatic invariant depends (for ε and k small enough) only
on the ratio of k to ε/k, in the manner that Figure 2.1 indicates. In particular, the error in the
(slowly varying) adiabatic invariant remains large if k2 � ε, even as k → 0. A similar phenomenon
is observed for higher order Gauss collocation schemes. To illustrate the different behavior of the
energy H(t) and the adiabatic invariant J(t), we plot both for k = 0.01 and k2/ε = 0.1 in Figure 2.2.

�

Let us now give an explanation for the phenomenon observed in Example 2.1. Define

α =
k2

4ε
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Figure 2.2: Adiabatic invariant J(t) (solid line) and energy H(t) (dotted line) vs. time t .

and consider the midpoint equations

(qn − qn−1)/k = ω(tn−1/2)
2(pn + pn−1)/2

(pn − pn−1)/k = −ε−2(qn + qn−1)/2 .

Let un := (−1)nε−1qn, vn := (−1)n+1pn (cf. [2] and references therein). Note that the Hamiltonian
H , and therefore also the adiabatic invariant J , satisfy

H(qn, pn, tn) = H(εun, vn, tn), J(qn, pn, tn) = J(εun, vn, tn) .

For the new variables we get

(un + un−1)/k = −ε−1ω(tn−1/2)
2(vn − vn−1)/2

(vn + vn−1)/k = ε−1(un − un−1)/2 .

Multiplying both equations by k/2 and rearranging we get

(un + un−1)/2 = −ω(tn−1/2)
2α(vn − vn−1)/k

(vn + vn−1)/2 = α(un − un−1)/k .

Now observe what approximation we get as k → 0 for a fixed α. In fact, this is again the midpoint
scheme(!) applied to the “ghost ODE”

−ω2(t)αv̇ = u

αu̇ = v

or,

ü = −(ω(t)α)−2u . (2.5)

The features of u and v therefore depend in the limit only on α (and of course ω). Whenever α � 1,
the modified system (2.5) describes again a highly oscillatory system with slowly varying frequency.
Its frequency is

ω̂(t) = (ω(t)α)−1
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and its Hamiltonian is
Ĥ(u, v, t) = (ω2(t)α)−1u2/2 + α−1v2/2 .

Thus the corresponding adiabatic invariant is

Ĵ(u, v, t) = ω−1(t)u2/2 + ω(t)v2/2

and so, similarly to the original problem formulation, we obtain

[
Ĵ(t)− Ĵ(0)

]
/Ĵ(0) = O(α)

over a time-interval
T̂ = ĉ1e

ĉ2/α ,

1 > ĉ1, ĉ2 > 0 appropriate constants, provided that α is not too large. When α � 1 the ghost ODE
clearly indicates that |u̇| = O(α−2) and |v̇| = O(α−1), hence u(t) ≈ u(0), v(t) ≈ v(0). So, for α � 1
(and ε � 1), ΔĴ reaches an asymptote depending only on the initial values (as well as ω and T , but
no longer on α).

Finally note that
Ĵ(un, vn, tn) = Ĵ(ε−1qn, pn, tn) = J(qn, pn, tn) .

This completely explains the results recorded in Fig. 2.1.

2.3 Coupling effects

Let us generate a simple linear example where a midpoint discretization with a large step size results
in an unstable numerical process. We give a precise condition for this instability to occur.

Example 2.2 We start with an uncoupled pair of fast and slow linear oscillators,

u̇ = v (2.6a)

v̇ = −
(
ε−2 0
0 1

)
(u − ū) (2.6b)

where u(t), v(t) and the given constant vector ū each have two components. The fast linear oscillator
is for u1, v1, and it is separated from the slow oscillator (for u2, v2), even though we write them
as a system. The midpoint scheme is therefore stable for any step size k > 0 and it reproduces the
(quadratic) energies for the fast and the slow oscillators.

Next, we apply the following standard, time-dependent linear transformation:

u = Qx, v = Qy,Q(t) =
(

cos t sin t
− sin t cos t

)
, K = Q̇TQ =

(
0 −1
1 0

)
. (2.7)

This yields the coupled system

ẋ = y +Kx (2.8a)

ẏ = −QT
(
ε−2 0
0 1

)
Q(x− x̄) +Ky , (2.8b)

where x̄ = QT ū.
Now consider the midpoint scheme applied to the coupled linear system,

k−1(xn − xn−1) = yn−1/2 +Kxn−1/2 (2.9a)

k−1(yn − yn−1) = −QT
n−1/2

(
ε−2 0
0 1

)
Qn−1/2(xn−1/2 − x̄n−1/2) +Kyn−1/2, (2.9b)

8



where we denote, e.g., xn−1/2 = xn+xn−1

2 , and similarly for any other mesh quantity, and Qn−1/2 =
Q(tn−1/2).

Numerical experiments clearly indicate that the approximate solution remains bounded for α < 1,

but increases rapidly in t for α > 1 (to recall, α = k2

4ε ). Choosing values for ū and the initial data as
in Example 3.1 the results are similar to those in Table 3.5 and Figure 3.2 and are therefore omitted
here. �

We now prove that the midpoint scheme indeed becomes unstable for α > 1, if α is bounded away
from 1 (say α ≥ 1 + δ for some small positive δ), for the discretization (2.9). Denote un = Qnxn,
vn = Qnyn, un−1/2 = un+un−1

2 , etc. The matrix function Q is orthogonal at each t, all of its even
derivatives are scalar multiples of one another, and all of its odd derivatives are scalar multiples of
one another. Taylor expansions of Qn about Qn−1/2 or of Qn−1/2 about Qn thus become particularly
tractable. We have, e.g.,

Qn−1/2(xn − xn−1)/k = k−1(un − un−1)(1 − k2/8 +O(k4)) +Kun−1/2(1 +O(k2))

Qn−1/2xn−1/2 = un−1/2(1− k2/8 +O(k4)) +
k

4
K(un − un−1)(1 + O(k2)) .

Note also that Qn−1/2 commutes with K. Multiplying the discretized equations for x and for y each
by Qn−1/2 we obtain

k−1(un − un−1) = vn−1/2 +
k

4
K(vn − vn−1) + . . .

k−1(vn − vn−1) = −
(
ε−2 0
0 1

)
(un−1/2 − ū+

k

4
K(un − un−1)− k2

8
un−1/2) + . . .

where the terms in (. . . ) are majorized by the ones listed.
The transformed discretized equations above consist of a midpoint discretization of the uncoupled

system (2.6) plus additional terms. Because the midpoint discretization of (2.6) is stable and well-
behaved, the crucial question is the effect of these additional terms, in particular in the equation
involving ε−2. There we have

εk−1(v1,n − v1,n−1) = −ε−1(u1,n−1/2 − ū1) + αk−1(u2,n − u2,n−1) + αu1,n−1/2/2 + . . .

Similarly, for u2 we have

k−1(u2,n − u2,n−1) = v2,n−1/2 + αεk−1(v1,n − v1,n−1) + . . .

and substituting this into the previous expression we get

εk−1(v1,n − v1,n−1) = (1 − α2)−1[−ε−1(u1,n−1/2 − ū1) + αv2,n−1/2 + αu1,n−1/2/2 + . . . ]

Consider values of α which are bounded away from α = 1. (If α = 1, additional terms must be
considered.) We see that the method becomes unstable when α > 1, because then the leading-order
eigenvalue pair corresponding to the fast oscillator in (2.6) switches from imaginary to real, with
both signs present. Experiments for ε small confirm that indeed the midpoint scheme is found
unstable for all values of α > 1 tried for this simple problem.

Note that if we generalize the coupling transformation (2.7) to

Q(t) =
(

cosωt sinωt
− sinωt cosωt

)

for any constant 0 ≤ ω � k−1, the stability condition can be easily proved to be

α < ω−1, or k < 2

√
ε

ω
.
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So, as ω is decreased from 1 to 0 the stability restriction gradually eases off. On the other hand,
as ω is increased smaller step sizes are required for stability. Note also that the eigenvalues of the
linear problem (2.8) are purely imaginary for all ω (!) Attempts to use these eigenvalues as a telltale
sign for instability in the discretized problem (see, e.g., [26]) totally fail here.

3 Examples of coupled harmonic oscillators

In this section we examine in detail the performance of the midpoint scheme (and occasionally also of
higher order Gaussian collocation schemes) on three simple nonlinear examples. All three examples
involve difficulties which can be associated with the coupling of rapidly varying and slowly varying
oscillators. Example 3.3 involves, in addition, also difficulties associated with those analyzed in
Example 2.1.

Example 3.1 We consider a simple stiff spring pendulum, first in polar coordinates. The equations
of motion are

ṙ = pr (3.1a)

ṗr = −ε−2(r − r0) + p2φr
−3 (3.1b)

φ̇ = r−2pφ (3.1c)

ṗφ = −(φ− φ0) (3.1d)

where r is the radius and φ is the angle of the pendulum. This is a Hamiltonian system with the
Hamiltonian

H =
1

2
[p2r + r−2p2φ + (φ− φ0)

2 + ε−2(r − r0)
2] . (3.2)

For ε � 1, the system is clearly highly oscillatory in the variables (r, pr). In our numerical
experiments we used φ0 = π/4, r0 = 1, and initial data r(0) = r0, φ(0) = φ0, pr(0) = 1√

2
,

pφ(0) = − 1√
2
, which yield |r − r0| = O(ε) for the exact solution.

In the limit ε → 0, the reduced equations of motion for the slowly varying variables (φ, pφ) are
simply given by

φ̇ = r−2
0 pφ

ṗφ = −(φ− φ0) .

The system (3.1) can therefore be viewed as consisting of two loosely coupled linear oscillators (the
coupling is nonlinear, though), one fast and one slow. It is not difficult to extend the results stated
in §2.1 to this case. Thus we expect no stability difficulties and an accurate recovery of H by
the midpoint scheme, provided that the step size k is small enough for the slow variables, even if
k2/ε � 1.

We now consider discretization of (3.1) by the implicit midpoint scheme. The results for various

values of the step-size k, the parameter ε, and α := k2

4ε , can be found in Table 3.1. Here ΔEF and
ΔES are defined by

ΔEF = max
t∈[0,5]

|EF (0)− EF (t)|

and
ΔES = max

t∈[0,5]
|ES(0)− ES(t)|

where

EF (t) =
1

2
[p2r + ε−2(r − r0)

2]
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scheme s k ε α = k2

4ε ΔEF ΔES ΔE
1 0.1e-1 0.1e-2 0.25e-1 0.35e-3 0.35e-3 0.19e-6
3 0.1e-1 0.1e-2 0.25e-1 0.35e-3 0.35e-3 0.14e-6
4 0.1e-1 0.1e-2 0.25e-1 0.35e-3 0.35e-3 0.10e-6
1 0.1 0.1e-2 0.25e+1 0.34e-3 0.34e-3 0.10e-5
3 0.1 0.1e-2 0.25e+1 0.35e-3 0.35e-3 0.21e-6
4 0.1 0.1e-2 0.25e+1 0.31e-3 0.31e-3 0.20e-6
1 0.1 0.1e-5 0.25e+4 0.46e-9 0.46e-9 0.29e-11
3 0.1 0.1e-5 0.25e+4 0.27e-8 0.27e-8 0.30e-10
4 0.1 0.1e-5 0.25e+4 0.46e-8 0.46e-8 0.55e-10

Table 3.1: Example 3.1 – maximum error in the energy using collocation at s Gaussian points for
the (almost) decoupled system (3.1): fast components, slow components and total energy.

is the energy in the fast variables (r, pr) and

ES(t) =
1

2
[r−2p2φ + (φ − φ0)

2]

is the energy in the slow variables (φ, pφ). Note that ΔES = O(ε) and ΔEF = O(ε) for the analytical
solution. We also calculate

ΔE = max
t∈[0,5]

|H(0)−H(t)|

(which equals 0 for the analytical solution) for the Hamiltonian H defined in (3.2). We list results
for collocation schemes at s Gaussian points. The midpoint scheme corresponds to the case s = 1.
The results in Table 3.1 are excellent, and no dependence on α is noticed. Note that the accuracy
in ΔE improves here as ε is decreased with k held fixed and larger. This is because H in (3.2) is
“closer” to being quadratic.

Next, we transform the problem to Cartesian coordinates q and corresponding momenta p = q̇,
where r(q) = |q| = √

q21 + q22 and φ(q) = arccos (q1/|q|). The transformed Hamiltonian is

H(q, p) =
1

2
[pT p+ (φ(q) − φ0)

2 + ε−2(r(q) − r0)
2]

and the corresponding equations of motion are

q̇ = p (3.3a)

ṗ = −(φ(q) − φ0)∇φ(q) − ε−2(r(q) − r0)∇r(q) . (3.3b)

Note that the conjugate momenta satisfy pr = ∇r(q)T p and pφ = r2∇φ(q)T p. It can be directly
verified that

∇r(q) =
1

r
q, ∇φ(q) =

1

r2
(−q2, q1)

T =
1

r2
Kq.

Hence
p = GT pr +BT pφ = pr∇r + pφ∇φ

(Note that BGT = 0.) The corresponding initial data used in our numerical experiments are q(0) =
1√
2
(1, 1)T , p(0) = (1, 0)T .

In the limit ε → 0, the reduced equations of motion in cartesian coordinates are given by the
constrained system

q̇ = p

ṗ = −(φ(q) − φ0)∇φ(q) −∇r(q)λ

0 = r(q) − r0 .

11
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Figure 3.1: Errors in total energy for ε = 0.1e − 3, α = 2.5 and T = 20, using midpoint for
Example 3.1 in Cartesian and polar coordinates. The error in Cartesian coordinates eventually
grows unacceptably. .

step-size k ε α = k2

4ε ΔEF ΔES ε−1ΔES ΔE α−1ΔE
0.1e-1 0.1e-2 0.25e-1 0.48e-2 0.35e-3 0.35 0.45e-2 0.18
0.1e-1 0.2e-3 0.125 0.22e-1 0.71e-4 0.36 0.22e-1 0.18
0.1e-1 0.1e-3 0.25 0.42e-1 0.34e-4 0.34 0.42e-1 0.17√
10e-2 0.1e-2 0.25 0.42e-1 0.34e-3 0.34 0.42e-1 0.17√
5e-2 0.1e-2 0.125 0.22e-1 0.35e-3 0.35 0.22e-1 0.18

0.1e-1 0.1e-2 0.25e-1 0.48e-2 0.35e-3 0.35 0.45e-2 0.18
0.5e-2 0.25e-3 0.25e-1 0.45e-2 0.89e-4 0.35 0.44e-2 0.18
0.1e-1 0.1e-2 0.25e-1 0.48e-2 0.35e-3 0.35 0.45e-2 0.18
0.2e-1 0.4e-2 0.25e-1 0.59e-2 0.14e-2 0.36 0.45e-2 0.18
0.1e-1 1 0.25e-4 0.15 0.15 0.15 0.62e-5 0.25
0.1e-1 0.1e-1 0.25e-2 0.40e-2 0.35e-2 0.35 0.45e-3 0.18
0.1e-1 0.1e-5 0.25+2 0.13e+3 0.19e-4 0.19e+2 0.13e+3 0.50e+1

Table 3.2: Example 3.1 in Cartesian coordinates – maximum error in the energy using midpoint:
fast components, slow components and total energy.

We now consider the discretization of (3.3) by the implicit midpoint rule. The results for various

values of the step-size k, the parameter ε, and α := k2

4ε , can be found in Table 3.2. These results
suggest that, provided that ε � α � 1, ΔE = O(α) while ΔES = O(ε). This implies also ΔEF =
ΔE −ΔES = O(α).

For α = 25 (and interval length T = 5) an instability is suggested. The error grows rapidly as
T is increased. The instability does not occur only for isolated values of α, unlike a resonance-type
phenomenon. The error in the total energy for α = 2.5 and T = 20 is plotted in Figure 3.1.

In Tables 3.3 and 3.4 we list results for similar experiments where instead of using the midpoint
scheme we have used collocation at 3 and 4 Gaussian points, respectively. These results show a
significant improvement in accuracy for both schemes, provided that ε � 1 and α � 1. Note that
ΔES = O(ε). When α is large, these schemes too do not perform well and instabilities start to
develop.

Let us consider the two possibilities for arriving at an approximate solution for the problem
in Cartesian coordinates, starting from the polar coordinate formulation (3.1). One possibility is
to discretize (3.1) and then transform the obtained values pointwise from the polar variables to

12



k ε α = k2

4ε ΔEF ΔES ΔE
0.1e-1 0.1e-2 0.25e-1 0.36e-3 0.35e-3 0.10e-4
0.1e-1 0.2e-3 0.125 0.14e-3 0.70e-4 0.67e-4
0.1e-1 0.1e-3 0.25 0.29e-3 0.35e-4 0.26e-3
0.1e-1 0.25e-4 1.0 0.41e-2 0.83e-5 0.41e-2
2
√
10e-2 0.1e-2 1.0 0.45e-2 0.33e-3 0.42e-2√
10e-2 0.1e-2 0.25 0.64e-3 0.35e-3 0.29e-3√
5e-2 0.1e-2 0.125 0.40e-3 0.33e-3 0.79e-4

0.1e-1 0.1e-1 0.25e-1 0.36e-3 0.35e-3 0.10e-5
0.5e-2 0.25e-3 0.25e-1 0.91e-4 0.88e-4 0.34e-5
0.1e-1 0.1e-2 0.25e-1 0.36e-3 0.35e-3 0.10e-4
0.2e-1 0.4e-2 0.25e-1 0.14e-2 0.14e-2 0.81e-5
0.1e-1 1 0.25e-4 0.15 0.15 0.2e-14
0.1e-1 0.1e-1 0.25e-2 0.35e-2 0.35e-2 0.22e-8
0.1e-1 0.1e-4 0.25e+1 0.29e-1 0.32e-5 0.29e-1

Table 3.3: Example 3.1 in Cartesian coordinates – maximum error in the energy using collocation
at 3 Gaussian points: fast components, slow components and total energy.

k ε α = k2

4ε ΔEF ΔES ΔE
0.1e-1 0.1e-2 0.25e-1 0.35e-3 0.35e-3 0.48e-5
0.1e-1 0.2e-3 0.125 0.10e-3 0.71e-4 0.31e-4
0.1e-1 0.1e-3 0.25 0.15e-3 0.35e-4 0.11e-3
0.1e-2 0.25e-4 1.0 0.18e-2 0.86e-5 0.18e-2
2
√
10e-2 0.1e-2 1.0 0.22e-2 0.34e-3 0.19e-2√
10e-2 0.1e-2 0.25 0.49e-3 0.35e-3 0.15e-3√
5e-2 0.1e-2 0.125 0.40e-3 0.35e-3 0.51e-4

0.1e-1 0.1e-2 0.25e-1 0.35e-3 0.35e-3 0.48e-5
0.5e-2 0.25e-3 0.25e-1 0.91e-4 0.88e-4 0.25e-5
0.1e-1 0.1e-2 0.25e-1 0.35e-3 0.35e-3 0.48e-5
0.2e-1 0.4e-2 0.25e-1 0.14e-2 0.14e-2 0.15e-5
0.1e-1 1 0.25e-4 0.15 0.15 0.3e-14
0.1e-1 0.1e-1 0.25e-2 0.35e-2 0.35e-2 0.11e-10
0.1e-1 0.1e-4 0.25e+1 0.11e-1 0.30e-5 0.11e-1

Table 3.4: Example 3.1 in Cartesian coordinates – maximum error in the energy using collocation
at 4 Gaussian points: fast components, slow components and total energy.
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step-size k ε α = k2

4ε ΔEF ΔES ε−1ΔES ΔE α−1ΔE
0.1e-1 0.1e-2 0.25e-1 0.22e-1 0.36e-3 0.36 0.21e-1 0.85
0.1e-1 0.2e-3 0.125 0.11 0.72e-4 0.36 0.11 0.90
0.1e-1 0.1e-3 0.25 0.23 0.36e-4 0.36 0.23 0.93√
10e-2 0.1e-2 0.25 0.23 0.37e-3 0.37 0.23 0.92√
5e-2 0.1e-2 0.125 0.11 0.36e-3 0.36 0.11 0.90

0.1e-1 0.1e-2 0.25e-1 0.22e-1 0.36e-3 0.36 0.21e-1 0.85
0.5e-2 0.25e-3 0.25e-1 0.22e-1 0.89e-4 0.36 0.22e-1 0.86
0.1e-1 0.1e-2 0.25e-1 0.22e-1 0.36e-3 0.36 0.21e-1 0.85
0.2e-1 0.4e-2 0.25e-1 0.23e-1 0.14e-2 0.36 0.22e-1 0.87
0.1e-1 1 0.25e-4 0.15 0.15 0.15 0.40e-4 0.16e+1
0.1e-1 0.1e-1 0.25e-2 0.57e-2 0.35e-2 0.35 0.21e-2 0.85

Table 3.5: Example 3.1 transformed by a time-dependent orthogonal transformation from polar
coordinates – maximum error in the energy using midpoint: fast components, slow components and
total energy.

discrete values for q and p. Since the transformation is well-conditioned and the results in Table 3.1
are accurate, we obtain an accurate approximation for the problem in Cartesian coordinates even
for very small ε and large α. But the other possibility, of transforming the problem first to (3.3)
and then discretizing by the same method, does not work so well. Thus, the main source of error
in Tables 3.2–3.4 can be interpreted as arising from the inaccurate reproduction by the numerical
discretization of the coupling transformation from (3.1) to (3.3). Indeed, this transformation depends
on the solution and as such is time-varying, giving rise in general to O(k2) discrepancies (cf. §2.3
and [5, 2]). For (3.1b) we have then the approximation

−ε−2((rn + rn−1)/2 +O(k2)− r0) = −ε−2((rn + rn−1)/2 + εO(ε−1k2)− r0)

(recall that r(q) = r0 +O(ε) in this example). Hence we see that perturbations of size O(ε−1k2) can
be introduced into the midpoint discretization of (3.1). If these perturbations are large and depend
unfavourably on the solution then the scheme for (3.3) may become unstable, as we proved in §2.3
for a simpler, linear example. This also typically causes difficulties in the Newton iterations for the
nonlinear problem.

The construction of the example where the midpoint method does not perform adequately for
large α is simple, but general. Other simple coupling transformations may be harmful as well. For
instance, consider the linear time-dependent transformation (2.7) of Example 2.2. This gives for x
and y the system

ẋ = QT
(1 0
0 r−2

)
Qy +Kx (3.4a)

ẏ = QT

(
−ε−2(r(x) − r0) + pφ(y)

2r(x)−3

−(φ(x) − φ0)

)
+Ky . (3.4b)

The results listed in Table 3.5 exhibit similar phenomena for this transformed system as for the
problem in Cartesian coordinates. A plot of the error in total energy H is given in Figure 3.2 for
α = 1.25, T = 20 and ε = 0.1e− 3.

�

Example 3.2 Qualitatively similar results are obtained when we replace the potential V = 1
2 (φ−φ0)

2

by the potential V = −q2 in (3.2). This example was considered in [11, 14, 19]. The expression for
the fast energy EF (t) remains the same as in Example 3.1, while the slow energy becomes

ES(t) =
1

2
r−2p2φ − q2 .
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Figure 3.2: Errors in total energy for ε = 0.1e−3, α = 1.25 and T = 20, using midpoint for Example
3.1 in linearly-transformed and polar coordinates. The error in the transformed problem eventually
grows unacceptably.

The results, and their explanations, are sufficiently similar to those in Tables 3.1–3.4 so that we omit
reproducing them in this writeup. Note that the fast and slow variables here are r and φ respectively,
as in the previous example, with q2 = r sin(φ) in the expression for ES. The corresponding equations
of motion in (r, φ)-coordinates are given by

ṙ = pr

ṗr = −ε−2(r − 1) + sin(φ) + p2φr
−3

φ̇ = r−2pφ

ṗφ = r cos(φ)

Hence in the fast variables we essentially have again a linear harmonic oscillator.
Note that the Jacobian of the linearized problem in Cartesian coordinates has been observed to

have large O(k2/ε) eigenvalues for this example [19, 26]. This is usually a good indication of potential
trouble which, however, does not form a proof of instability, does not always raise an alarm when
there is trouble (e.g. Example 2.2 with α > 1), and does not offer a methodology for generating such
examples.

Next, we vary the initial conditions so as to correspond to Cases 1 and 2 in the Introduction. So
we choose as initial values (keeping also r0 = 1)

• (i) q = (1, 0), p = (0, 0)

• (ii) q = (1− ε, 0), p = (0, 0).

The solution for case (i) is smooth to our working accuracy, and the initial energies are EF (0) =
ES(0) = 0. Also, for the exact solution, ΔES = O(ε2) and r(t) − r0 = O(ε2). In contrast, for case
(ii) EF (0) = 0.5 (indeed, clearly ∂EF

∂r = ∂H
∂r = O(ε−1) when |r − r0| ≥ ε) and, as in the previous

examples, there is a rapid oscillation of magnitude and frequency O(ε) on top of a smooth solution
curve. In particular, ΔES = O(ε) and r(t)−r0 = O(ε). Finally, we increase the integration interval
to T = 20, to allow instabilities, if there are any, to develop even for the smooth case (i).

The results are listed in Tables 3.6 and 3.7. For the midpoint scheme in case (ii) we again
observe ΔE = O(α), for k, ε and α small enough. For case (i) this also seems to hold, but less
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k ε α = k2

4ε (i)ΔE (i)ΔES (ii) ΔE (ii) ΔES

0.1 0.1e-2 0.25e+1 0.30e+5 0.27e+1 0.46e+5 0.23e+2
0.5e-1 0.1e-2 0.63 0.20 0.94e-3 0.50 0.32e-2
0.25e-1 0.1e-2 0.16 0.12e-1 0.24e-3 0.15 0.32e-2
0.125e-1 0.1e-2 0.39e-1 0.82e-3 0.63e-4 0.39e-1 0.31e-2
0.1e-2 0.1e-2 0.25e-3 0.41e-6 0.49e-5 0.25e-3 0.30e-2
0.1 0.1e-3 0.25e+2 0.50e+6 0.41e+2 0.36e+7 0.40e+2
0.25e-1 0.1e-3 0.16e+1 0.37e+3 0.32e-1 0.20e+7 0.11e+2
0.125e-1 0.1e-3 0.39 0.76e-1 0.59e-4 0.36 0.35e-3
0.1e-2 0.1e-3 0.25e-2 0.35e-5 0.42e-6 0.25e-2 0.30e-3

Table 3.6: Example 3.2 – maximum error in the energy for cases (i) and (ii) using midpoint: total
energy and slow energy.

k ε α = k2

4ε (i)ΔE (i)ΔES (ii) ΔE (ii) ΔES

0.2 0.1e-2 0.10e+2 0.26e+7 0.23e+5 0.11e+6 0.15e+3
0.1 0.1e-2 0.25e+1 0.11e-5 0.19e-5 0.21 0.28e-2
0.5e-1 0.1e-2 0.63 0.49e-8 0.43e-5 0.69e-2 0.30e-2
0.25e-1 0.1e-2 0.16 0.34e-10 0.45e-5 0.50e-3 0.30e-2
0.125e-1 0.1e-2 0.39e-1 0.15e-10 0.45e-5 0.58e-4 0.30e-2
0.1e-2 0.1e-2 0.25e-3 0.28e-11 0.45e-5 0.18e-9 0.30e-2
0.1 0.1e-3 0.25e+2 0.36e+8 0.24e+4 0.40e+9 0.56e+7
0.25e-1 0.1e-3 0.16e+1 0.20e-8 0.35e-7 0.49e-1 0.30e-3
0.125e-1 0.1e-3 0.39 0.15e-8 0.45e-7 0.26e-2 0.30e-3
0.1e-2 0.1e-3 0.25e-2 0.54e-9 0.45e-7 0.41e-6 0.30e-3

Table 3.7: Example 3.2 – maximum error in the energy for cases (i) and (ii) using collocation at 3
Gaussian points: total energy and slow energy.

clearly so. When α is too large the solution quality is poor, or the nonlinear (Newton) iterations
do not converge in most time steps. For the higher order Gauss collocation schemes the errors are
smaller for α small enough, but when α is not small the solution quality is poor here too. We have
not detected for this example the qualitative difference between the schemes suggested in [11, 14], viz.,
we have not found that higher order Gauss collocation converge while the midpoint scheme diverges
as k → 0 with α held large enough and fixed, as t is increased.

Finally, the error in the total energy for α = 1.5625 and T = 20 with the initial values of Example
3.1 is plotted in Figure 3.3. While the error for the polar formulation remains small (even though
the decoupling between fast and slow variables is not as “clean” as in Example 3.1 [19]) the error
for the Cartesian formulation grows large. The error does not explode, though – the pattern is more
complex. More typically in our calculations, Newton’s method ceases to converge when the errors
become large (e.g. if we try ε = 1.d− 5 with the same α). No convergence or accuracy problems are
detected for the polar formulation using also more stringent values of ε and α. �

Example 3.3 A more complex situation arises for the stiff “reversed” pendulum [7], where the
radius r(t) is the slow variable and the angle φ(t) is the fast variable. We use the same notation
(hence also the same transformation between polar and Cartesian coordinates), constants and starting
values as for Example 3.1.

The Hamiltonian in polar coordinates is now

H(p, q) = E(r, φ) =
1

2
[p2r + r−2p2φ + ε−2(φ − φ0)

2 + (r − r0)
2] . (3.5)
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Figure 3.3: Errors in total energy for ε = 0.1e − 3, α = 1.5625 and T = 20, using midpoint for
Example 3.2 in Cartesian and polar coordinates. The error in Cartesian coordinates becomes large
and grows like a staircase.

The equations of motion are

ṙ = pr (3.6a)

ṗr = −(r − r0) + p2φr
−3 (3.6b)

φ̇ = r−2pφ (3.6c)

ṗφ = −ε−2(φ− φ0) . (3.6d)

For ε � 1, the system is clearly highly oscillatory in the variables (φ, pφ). The essential analytical
difference between this example and the previous two is that here

GGT = ∇φT∇φ = r−2

which varies slowly in t (because r is a slow variable), whereas before we had GGT = ∇rT∇r ≡ 1.
It transpires that in the limit ε → 0, the reduced equations of motion for the slowly varying variables
(r, pr) are given by [21, 7]

ṙ = pr

ṗr = −(r − r0) + cr−2 .

Note the correcting force term F = cr−2, where c is an appropriate constant determined below.
The fast system can be considered as a harmonic oscillator (2.4) with slowly varying frequency

ω ∼ r−1. The relevant energy is EF (t) = 1
2 [r

−2p2φ + ε−2(φ − φ0)
2]. The corresponding adiabatic

invariant is

J(t) :=
EF (t)

r−1(t)
= r(t)EF (t)

which is preserved up to O(ε) terms. Thus, as we let ε → 0,

EF (t) = r−1(t)J(0)
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k ε α = k2

4ε ΔJ α−1ΔJ ΔES αε−1ΔES ΔE
0.1e-1 0.1e-2 0.25e-1 0.69e-2 0.28 0.69e-2 0.17 0.57
0.1e-1 0.2e-3 0.125 0.41e-1 0.33 0.29e-3 0.18 0.51
0.1e-1 0.1e-3 0.25 0.77e-1 0.31 .78e-4 0.19 0.40
0.1e-1 0.1e-3 0.25 0.77e-1 0.31 .78e-4 0.19 0.40√
50e-3 0.1e-3 0.125 0.43e-1 0.34 0.15e-3 0.18 0.51√
10e-3 0.1e-3 0.25e-1 0.73e-2 0.29 0.71e-3 0.18 0.60

0.1e-2 0.1e-4 0.25e-1 0.74e-2 0.30 0.71e-4 0.18 0.60
0.2e-2 0.4e-4 0.25e-1 0.73e-2 0.29 0.28e-3 0.18 0.60
0.4e-2 0.16e-3 0.25e-1 0.73e-2 0.29 0.11e-2 0.18 0.60
0.2e-2 0.1e-4 0.1 0.33e-1 0.33 0.18e-4 0.18 0.64
0.2e-2 1 0.1e-5 0.11 0.11e+6 0.15 0.15e-6 0.38e-6
0.1e-3 0.1e-2 0.25e-5 0.92e-4 0.37e+2 0.17 0.42e-3 0.77e-3
0.1e-4 0.1e-2 0.25e-7 0.92e-4 0.37e+4 0.17 0.42e-5 0.77e-5
0.1e-1 0.1e-5 0.25e+2 0.57 0.23e-1 0.37e-9 0.92e-2 0.26e+1
0.1 0.1e-5 0.25e+4 0.60 0.24e-3 0.44e-15 0.11e-5 0.27e+1

Table 3.8: Example 3.3 – maximum errors for the reversed pendulum using midpoint: polar coordi-
nates.

and, since the time average of p2φ satisfies

r−2(t) 〈p2φ〉(t) = EF (t)

(the time average is taken over an interval long compared to ε and short compared to 1), the p2φ term
in the slow part can be eliminated by means of

〈p2φ〉(t) = r(t)J(0) .

This yields the desired correcting force with c = J(0). For the chosen initial conditions, we have
J(0) = 0.5.

In Table 3.8 we list results using the midpoint scheme to discretize (3.6), for various values of

the step-size k, the parameter ε, and α := k2

4ε . Here ΔES, ΔJ , and ΔE are defined by

ΔJ = max
t∈[0,5]

|J(0)− J(t)| ,

ΔES = max
t∈[0,5]

|ES(0)− ES(t)| ,

and
ΔE = max

t∈[0,5]
|E(0)− E(t)|

where ES(t) = p2r/2 + 1/2(r− r0)
2 = E −EF is the energy in the slow variables (r, pr) (without the

correcting potential energy term!) and J(t) is the above defined adiabatic invariant corresponding to
the fast variables. The exact solution satisfies ΔJ = O(ε) (cf. §2.2).

The midpoint results recorded in Table 3.8 are significantly worse than those in Table 3.1. They
clearly suggest that when k > ε and α is not large, ΔJ = O(α), and ΔES = O(ε/α) = O(ε2/k2).
The total energy error is much larger than in Tables 3.1 and 3.2, and advises what sort of errors
can be expected without the special effects of almost quadratic invariants. For these calculations,
ΔEF = ΔE −ΔES ≈ ΔE. The basic reason for this additional complication is that the fast linear
oscillator (3.6c)-(3.6d) has a slowly varying frequency. This is explained in §2.2 (cf. Example 2.1).

Perhaps the most troubling aspect of the results recorded in Table 3.8 is the behaviour of ΔES

when ε � k. The indicated behaviour may well suggest to an unaware scientist that ΔES → 0 as
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k ε α = k2

4ε ΔJ α−1ΔJ ΔES αε−1ΔES ΔE
0.1e-1 0.1e-2 0.25e-1 0.72e-2 0.29 0.69e-2 0.17 0.57
0.1e-1 0.2e-3 0.125 0.53e-1 0.42 0.29e-3 0.18 0.70
0.1e-1 0.1e-3 0.25 0.13 0.54 .78e-4 0.19 0.96
0.1e-1 0.1e-3 0.25 0.13 0.54 .78e-4 0.19 0.96√
50e-3 0.1e-3 0.125 0.54e-1 0.43 0.14e-3 0.18 0.70√
10e-3 0.1e-3 0.25e-1 0.75e-2 0.30 0.71e-3 0.18 0.60

0.1e-2 0.1e-4 0.25e-1 0.75e-2 0.30 0.71e-4 0.18 0.61
0.2e-2 0.4e-4 0.25e-1 0.75e-2 0.30 0.28e-3 0.18 0.61
0.4e-2 0.16e-3 0.25e-1 0.75e-2 0.30 0.11e-2 0.18 0.60
0.2e-2 0.1e-4 0.1 0.34e-1 0.34 0.18e-4 0.18 0.58
0.2e-2 1 0.1e-5 0.11 0.11e+6 0.15 0.15e-6 0.25e-6
0.1e-3 0.1e-2 0.25e-5 0.92e-4 0.37e+2 0.17 0.42e-3 0.77e-3
0.1e-4 0.1e-2 0.25e-7 0.92e-4 0.37e+4 0.17 0.42e-5 0.77e-5

Table 3.9: Example 3.3 – maximum errors for the reversed pendulum using midpoint: Cartesian
coordinates.

ε → 0. In actuality, ΔES ≈ 0.17 for the exact solution when ε is small, as the numerical results using
k < ε clearly indicate; ΔES does not shrink because ES does not include the correcting potential.
When ε � k, however, we get the approximation pφ = O(ε/k) at internal stages (recall §2.1), so
p2φr

−3 = O(ε2/k2) in (3.6b). In (3.6a)-(3.6b) we get (erroneously) an O(ε2/k2) perturbation of a
linear oscillator whose energy is ES, explaining the computed results for ΔES. In short, the effect
observed here is that the correcting force is approximated to 0 as ε/k → 0, yielding a plausible-looking
yet wrong result! 3

Next we consider the problem in Cartesian coordinates. The Hamiltonian here is

H(q, p) =
1

2
[pT p+ ε−2(φ(q) − φ0)

2 + (r(q) − r0)
2]

and the equations of motion are

q̇ = p (3.7a)

ṗ = −ε−2(φ(q) − φ0)∇φ(q) − (r(q) − r0)∇r(q) (3.7b)

In the limit ε → 0 we get the (nonobvious) DAE

q̇ = p

ṗ = −(r(q) − r0)∇r(q) − J(0)r−2∇r(q) −∇φ(q)λ

0 = φ(q)− φ0

which contains the correcting force term F = J(0)r−2.
We now consider discretization of (3.7) by the implicit midpoint scheme. The results are listed

in Table 3.9. Not surprisingly, the error behaviour is more complicated here than in Table 3.8 or in
Table 3.2, although there is certainly no additional accuracy. The results for ES are still misleading,
as in Table 3.8. The errors recorded in Table 3.9 are generally close to the corresponding ones in
Table 3.8. This closeness breaks down, though, when α is increased further and coupling effects take
over. For α > 1 we did not obtain convergence at all steps for the nonlinear Newton iteration when
discretizing (3.7); in contrast, no such problem was observed for (3.6).

For this problem, then, reliability requires using k = O(ε). Next, we set k ≤ ε and calculate
solutions using the midpoint scheme, as well as the Verlet scheme. The latter can be viewed as

3It may be argued that the error in total energy issues a warning that smooth quantities may not be approximated
well here. This is true, but note that J is still approximated much better, and that ΔES appears to have a regular
shape when ε � k, despite the large error in energy.
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method k ε α = k2

4ε ΔJ ΔES ΔE
midpoint 0.1e-1 0.1e-1 0.25e-2 0.11e-2 0.14 0.72e-1
Verlet 0.1e-1 0.1e-1 0.25e-2 0.19 0.19 0.22
midpoint 0.1e-2 0.1e-2 0.25e-3 0.11e-3 0.14 0.72e-1
Verlet 0.1e-2 0.1e-2 0.25e-3 0.19 0.19 0.22
midpoint 0.1e-2 0.1e-1 0.25e-4 0.93e-3 0.17 0.77e-3
Verlet 0.1e-2 0.1e-1 0.25e-4 0.13e-2 0.17 0.15e-2
midpoint 0.1e-3 0.1e-2 0.25e-5 0.92e-4 0.17 0.77e-3
Verlet 0.1e-3 0.1e-2 0.25e-5 0.12e-2 0.17 0.15e-2

Table 3.10: Example 3.3 – maximum errors for the reversed pendulum using midpoint and Verlet.

a staggered midpoint scheme: for the partitioned system (1.1) one discretizes (1.1a) centred at
tn−1/2 = (tn + tn−1)/2 and (1.1b) centred at tn,

qn − qn−1

k
= pn−1/2

pn+1/2 − pn−1/2

k
= grad V (qn) + ε−2GT g(qn)

yielding the usual 3-point scheme, 4

qn+1 − 2qn + 2qn−1 = −k2[grad V (qn) + ε−2GT g(qn)] . (3.8)

This scheme is explicit (because the Hamiltonian is separated) and has a stability restriction when
applied to a linear oscillator (2.3), requiring that

k ≤ 2ε . (3.9)

There is no such requirement for the midpoint scheme, despite the closeness between these two
discretizations.

The results are listed in Table 3.10. The midpoint results for ΔES are no longer misleading. For
k = 0.1ε the listed total error using the midpoint scheme is only slightly better than the (cheaper,
explicit) staggered midpoint scheme, but the error in J is smaller. For k = ε the errors in both total
energy and in J are much smaller using the midpoint scheme, indicating its potential attraction
despite the possible setbacks for α not small. �
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