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Abstract

The paper is motivated by the need for a fast robust adaptive multi-
grid method to solve complex Helmholtz eigenvalue problems arising
from the design of optical chips. A nonlinear multigrid method is de-
veloped, which can be regarded as an extension of a previous adap-
tive Rayleigh quotient minimization method for selfadjoint Helmholtz
eigenproblems. Since the complex Helmholtz operator is just a com-
pact nonselfadjoint perturbation of a selfadjoint operator, linear al-
gebra techniques like Schur decomposition can be extended from the
finite dimensional case. The efficiency of the derived adaptive nonlinear
multigrid method is illustrated by computations for a technologically
relevant integrated optics component containing Multi Quantum Well
Layers.
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1 Introduction

Eigenvalue problems for differential equations occur in many branches of sci-
ence and engineering such as quantum mechanics, chemistry, acoustics, or
optics. There are two basic approaches to be distinguished

(I) the discrete eigenproblem approach: this approach decouples the dis-
cretization of the differential equations including boundary conditions
(which comes first) and the numerical solution of the arising sparse lin-
ear algebra eigenproblem for given fixed, usually large dimension (which
comes second),

(II) the continuous eigenproblem approach: this approach combines the dis-
cretization and the numerical solution of a sequence of linear algebra
eigenproblems with increasing dimension, performed by some adaptive
multilevel or multigrid method.

For approach (I), there exists a large variety of well-established algorithms -
see e.g. the recent survey paper by van der Vorst and Golub [27] or the
textbook by Saad [24]. Among the most popular algorithms for large sparse
nonselfadjoint eigenproblems are the Arnoldi-type method due to Sorensen
[26] as realized in the software package ARPACK or the Lanczos-type method
with look-ahead strategies due to Freund et al. [9]. Half-way towards the
continuous approach lie multigrid or domain decomposition methods, when
applied to the fixed dimension eigenproblem. Among the latter are the linear
(multiplicative) multigrid method of Hackbusch [13], the preconditioned
linear (additive) multigrid method due to Bramble et al. [2], the nonlinear
multigrid method of Mandel and McCormick [19, 20], and the domain
decomposition method due to Chan and Sharapov [4]. The first of these
methods is constructed to apply to both the selfadjoint and the nonselfadjoint
case, whereas the other methods are restricted to the selfadjoint case.
For approach (II), the above mentioned multigrid methods can, in principle,
be implemented in their nested form. If, in addition, the construction of the
successive nested grids is based on a-posteriori discretization error estimators
or, at least, on error indicators, then the term adaptive multigrid method is
justified. Examples of this kind have been worked out by Deuflhard et
al. [6] as a modification and extension of the nonlinear multigrid method
[19, 20] or by Leinen et al. [17] as a hierarchical basis implementation of
the preconditioned linear multigrid method [2]. In [6], the nonlinear multigrid
method has been shown to be more robust for relatively coarse grids than
the linear multigrid method - a feature, which is essential within adaptive
implementations. For the design of optical chips, which has been treated in
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[6], the restriction to selfadjoint eigenproblems means, that only losslessmedia
could be modeled. It is the purpose of the present paper to get rid of this
unrealistic restriction.

In the subsequent Section 2, a short description of the challenging problem
class of component design in integrated optics is given, which motivated the
present development. In particular, the necessity of an adaptive robust multi-
grid method for the nonselfadjoint multiscale Helmholtz eigenproblem is em-
phasized. In Section 3, the continuous eigenproblem approach is revisited in
view of the well-established knowledge about the numerical solution of large
nonselfadjoint eigenproblems in linear algebra. This leads to the idea of a
Schur decomposition of the complex Helmholtz operator. On this basis, Sec-
tion 4 deals with the construction of the nonlinear multigrid method for this
eigenproblem as an extension of the method presented in [6] for the selfadjoint
case. Finally, in Section 5, the performance of the herein developed algorithm
is illustrated by the numerical treatment of a Multi Quantum Well (MQW)
laser structure, which is out of the class of challenging problems introduced
in the preceding Section 2. A more elaborate presentation of the contents of
this paper will be given in a forthcoming (German) thesis [10].

2 A Challenging Problem Class: Design of In-

tegrated Optics Components

Integrated optical components like semiconductor lasers, optical switches and
filters are essential parts of modern fiber-optical networks. In general, these
components are built again from sub-components. Optical waveguides are
used to connect the various sub-components or they work as optical com-
ponents themselves. Therefore, from the very beginning of integrated optics
in the early seventies, the design of optical waveguides has been a central
task. The analysis of optical waveguides is based on the knowledge of their
eigenmodes and propagation constants. As an example, consider a typical in-
tegrated optical chip (Figure 1). The optical beam propagates in z-direction.
The geometry of the chip itself is regarded as invariable (i. e. of infinite
length) in this direction. The lateral confinement of the intensity distribution
is caused by the rib-like structure above the beam. The task is to find modes
that exhibit an intensity distribution invariant in z-direction and with finite
lateral extension. This leads in a natural way to an eigenvalue problem, which
will be derived here.

We start from the well-known time-harmonic Maxwell equations for the elec-
tric and magnetic fields E and H, respectively, in isotropic, nonmagnetic and
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Figure 1: Typical integrated optical chip.

sourceless media with permittivity ε, permeability μ, conductivity σ and the
optical angular frequency ω:

curlH = (iωε+ σ)E, divH = 0,

curlE = −iωμH, div εE = 0 .

Taking the curl of the first equation to eliminate the electrical field via the
third equation, employing the definition of the vectorial Laplace operator Δ
applied to twice continuously differentiable vector valued functions V

ΔV = grad (divV)− curl curlV

and using the divergence condition forH shows that the magnetic field satisfies
the vector Helmholtz equation

−ΔH − ω2ε̃μH = ∇ log ε̃× curlH . (1)

Here we have introduced the complex permittivity ε̃ = ε − iσ/ω. In the
problem class under consideration the variation of ε̃ is in general very weak,
therefore the term on the right-hand side of (1) can be neglected. We obtain
a simplified version of (1)

−ΔH − ω2ε̃μH = 0 .

Now we fix the 3D cartesian coordinate system as shown in Figure 1. In
cartesian coordinates the vectorial Laplace operator simplifies to the usual
scalar one, applied to each coordinate independently. Further, because the
vectorial coupling term has been neglected, we do not need to differentiate
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between the vector components of H. Let H(x, y, z) be any component of the
vector H(x, y, z). Then, for each H , we have the scalar Helmholtz equation

−ΔH − ω2ε̃μH = 0 . (2)

This equation may be regarded as a scalar approximation of the field descrip-
tion given by the full Maxwell’s equations. The modes to be determined will
come out of the separation ansatz

H(x, y, z) = u(x, y)e−ikz

in terms of a lateral amplitude function u(x, y) and a complex propagation
constant k. With the imaginary part �(k) = 0 the propagation is loss-
free, for �(k) < 0 the mode is damped, for �(k) > 0 it is amplified. The
real part �(k) represents the phase velocity and determines the lateral con-
finement of u(x, y). If �(k) becomes larger than some cut-off value kc, we
have lim(x,y)→∞ |u(x, y)| �= 0 and therefore that mode will not be confined to
bounded region around the waveguide. For the physical problem under inves-
tigation, however, we need to know the modes with bounded support. This
means, that we have to look for modes in the region �(k) ≤ kc, i. e. for the
modes with lowest real parts.
Finally, inserting the above separation ansatz into (2) yields the eigenproblem
for the example under consideration: determine functions u(x, y) and complex
numbers k such that

−Δu(x, y)− ω2ε̃μu(x, y) = −k2u(x, y) .

For the subsequent investigation we slightly extend this example to the gen-
eral Helmholtz eigenproblem: given a piecewise continuous, complex valued
function f(x, y), find eigenfunctions u(x, y) and eigenvalues λ such that

−Δu(x, y)− f(x, y)u(x, y) = λu(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω .
(3)

In view of a numerical treatment, this type of eigenvalue problems exhibits
three main difficulties:

• The geometry and the material jumps of the optical semiconductor de-
vices lead to multiscale ratios of up to 103.

• The eigenvalue problem is nonselfadjoint, if losses or gain are included
in the model - which is the realistic case.

• Clusters of neighboring eigenvalues may occur, mainly due to geometri-
cal symmetries, and must be resolved (sometimes to a relative accuracy
of the eigenvalues down to 10−6 or 10−8).
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3 Schur Decomposition of the Complex Helm-

holtz Operator

In general, the numerical discretization of (3) leads to a large algebraic eigen-
value problem. For the algebraic problem, canonical matrix decompositions
like the Jordan decomposition and the Schur decomposition are used to con-
struct numerical algorithms. The purpose of this section is to establish an
appropriate decomposition for the continuous case.

The general approach to solving eigenproblems of the considered type is to
determine invariant subspaces of small dimension. It is known from the per-
turbation analysis of matrices [12], that an invariant subspace, spanned by
sensitive eigenvectors, may nevertheless be insensitive to perturbations in the
given matrix, if the corresponding cluster of eigenvalues is separated. This
insight suggests a simultaneous computation of eigensolutions.

For the representation of invariant subspaces we need suitable bases. It is
natural to choose these bases as subsets of bases of the entire space. In the
finite dimensional case there are two obvious choices.

The first is in terms of eigenvectors. For selfadjoint problems it is well known
that the eigenvectors form an orthonormal basis of the underlying space. How-
ever, for nonselfadjoint problems this property can not be guaranteed. But
from the Jordan canonical decomposition we know that the set of eigenvec-
tors supplemented with possibly arising generalized eigenvectors is complete.
This canonical form possesses an enormous meaning in theoretical analysis,
e. g. stability analysis etc. Unfortunately, the numerical determination of
this basis may be and often is ill-conditioned. The reason for this occurrence
is that the set of diagonalizable matrices is dense in the set of all matrices,
and hence small perturbations of a defective matrix may effectively destroy
its Jordan form.

The alternative choice is based on the Schur canonical decomposition. Since
this involves a unitary similarity transformation of a given matrix to an upper
triangular matrix, the computation of the corresponding orthonormal basis is
well-conditioned. Such a reduction is always possible and forms the foundation
of many commonly used algorithms for solving the general eigenproblem. We
conclude that the knowledge of the Schur vectors as an orthonormal basis
related to a given matrix is an essential prerequisite for the construction of
numerical algorithms.

We now turn to a discussion of the continuous problem (3). When passing
from the finite to infinite dimensional case, two questions arise naturally. The
first question concerns the structure of the spectrum. Since in the present
case the region Ω and the function f under consideration are bounded and
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Dirichlet boundary conditions are prescribed, we know that the spectrum is
discrete. The second question to be studied is whether there exists a basis of
(generalized) eigenfunctions or Schur functions or a combination of both (like
the block diagonal decomposition in the algebraic case). In the selfadjoint case
the minimax principle of Courant shows the existence of an orthonormal
basis of eigenfunctions. In the nonselfadjoint case, however, the structure is
more complicated. It can be shown that any union of orthonormal bases of
invariant subspaces forms a basis of the whole space. The resulting basis,
however, need not to be orthonormal. For this reason, a careful analysis is
included here.
In what follows, we will consider the eigenvalue problem (3) in its variational
form. Let Ω be an open, bounded, and connected subset of R2 , and f ∈
L∞(Ω). Then problem (3) reads as follows: Determine eigenfunctions u ∈
H1

0 (Ω) \ {0} and eigenvalues λ ∈ C , such that

a(v, u) = λ (v, u) ∀v ∈ H1
0 (Ω) (4)

holds. The sesquilinear form a(·, ·) is defined by

a(v, u) = (∇v,∇u)− (v, fu) , (5)

and the inner product (·, ·) is the usual L2 product

(v, u) =

∫
Ω

v(x, y)u(x, y) d(x, y) .

For selfadjoint eigenvalue problems, i. e. for real valued functions f , we have
an equivalent formulation of the eigenproblem by means of the well-known
Courant minimax principle

λj = min
Wj⊂H1

0 (Ω)
dimWj=j

max
u∈Wj\{0}

R(u) = R(uj), j = 1, 2, . . . , (6)

in terms of the Rayleigh quotient

R(u) =
a(u, u)

(u, u)
.

In this case the eigenfunctions are known to form an orthonormal basis of
L2(Ω).
For the nonselfadjoint case there exists a completeness result due to Kats-
nelson [15], which we want to recall briefly here. For this purpose we will
construct the natural representation operator of the sesquilinear form a(·, ·).
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Consider the grad term in (5) first. From the representation theorem of
Friedrichs [22] we know that there exists a unique linear, selfadjoint, and
positive operator L : DL → L2(Ω) with domain DL dense in L2(Ω), such that
the relation

(∇v,∇u) = (v, Lu) ∀u ∈ DL, v ∈ H1
0(Ω)

holds. Next, from the theorem of Frechét-Riesz we represent the second
right hand term in (5) as

(v, fu) = (v,Mu) ∀u, v ∈ L2(Ω) .

The operatorM : L2(Ω) → L2(Ω) is linear and continuous, since f is bounded.
Hence the representation operator A : DA → L2(Ω) of the sesquilinear form
a(·, ·) is simply given by A = L−M with domain DA = DL. In lieu of (4) we
may therefore investigate the alternate eigenvalue problem

Au = λu ,

where u ∈ DA \ {0} and λ ∈ C . Now we are ready to apply the basic

Theorem 1 (Katsnelson [15]). Let T be a closed operator in a Hilbert
space H, L a positive selfadjoint operator in H with discrete spectrum and
domain DL ⊂⊂ DT , and A = L+T . Let for some p, 0 < p ≤ 1, the following
conditions be satisfied:

1. The operator L
p�1
2 TL

p�1
2 is bounded.

2. lim n→∞ n · μ−p
n < ∞,

where μ1 ≤ μ2 ≤ . . . is the sequence of all eigenvalues of the operator L.
Then the spectrum of the operator A is discrete, and the set Λ = {λn}∞n=1

of all eigenvalues of the operator A can be subdivided into finite subsets Λk,
such that the system {Sk}∞k=1 of spectral subspaces of the operator A which
correspond to the subsets Λk forms a basis for the space H, which is equivalent
to an orthogonal base.

We identify p = 1, T = −M and DT = H = L2(Ω). The operator T is con-
tinuous with domain L2(Ω) and hence closed and bounded. Moreover, L has
a compact and selfadjoint inverse. From spectral theory [8] we thus have the
discreteness of the spectrum of L−1 and hence of L. The domain DL is com-
pactly embedded in L2(Ω), and the asymptotic behaviour of the eigenvalues
of L is described by the following formula of Courant and Hilbert [5]:

lim
n→∞

n

μn

=
|Ω|
4π

,
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where |Ω| is the area of the bounded region Ω. Therefore, from Theorem 1 we
know that any v ∈ L2(Ω) can be uniquely expanded in a series of the form

v =
∞∑
k=1

vk ,

where vk ∈ Sk.
So far, we can represent any function from L2(Ω) in terms of the invariant
subspaces of the operator A. The relation between a basis of subspaces and
a vector basis is established by the following

Lemma 2 (Gohberg, Krĕın [11], p. 344). If the sequence of subspaces
{Sk}∞k=1 is a basis of the space H equivalent to an orthogonal one, then any
sequence {uj}∞j=1, obtained as the union of orthonormal bases of all the sub-
spaces Sk, is a basis of the space H equivalent to an orthonormal one.

Next, we consider the restriction Ak of A on the invariant subspace Sk. This
mapping is an endomorphism that is a linear mapping from S k into itself.
The subsets Λk are given by Λk = {λ ∈ σ(A) : tk−1 < �(λ) ≤ tk} in terms
of a sequence {tk}∞k=1 with tk < tk+1, t0 = −∞ and tk → ∞. Since these
subsets are all finite and every eigenvalue of A has finite multiplicity, the
dimension dk = dim(Sk) of Sk is finite. Hence we can represent Ak by some
(dk×dk)-matrix. Via the Schur decomposition [12] of this matrix, we can find
an orthonormal basis {uk,l}dkl=1 of Sk such that the equations

Auk,l = λk,luk,l +

l−1∑
m=1

τk,mluk,m, l = 1, . . . , dk,

and the inequalities �(λk,1) ≤ . . . ≤ �(λk,dk) hold. Using Lemma 2, we see
that the sequence

{u1, u2, . . . } = {u1,1, . . . , u1,d1 , u2,1, . . . , u2,d2, . . . } ,

obtained from the above determined bases {uk,l} of Sk by renumbering, is a
basis of L2(Ω). In a similar way, the corresponding eigenvalues are renumbered
such that

{λ1, λ2, . . . } = {λ1,1, . . . , λ1,d1 , λ2,1, . . . , λ2,d2, . . . }

and

�(λ1) ≤ �(λ2) ≤ . . . → ∞ .
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We thus arrive at the relation

Auj = λjuj +

j−1∑
k=kj

τkjuk

for the basis {uj}∞j=1, where 1 ≤ kj ≤ j and kj ≤ kj+1.

Remark 1. Although the basis {uj}∞j=1 is the union of finite dimensional
orthonormal bases, this basis itself is not necessarily orthonormal. The equiv-
alence to an orthonormal basis {wj}∞j=1 means that there exists a continuous
and bijective linear transformation B : L2(Ω) → L2(Ω) with uj = Bwj for
all j ∈ N . The deviation of the basis {uj}∞j=1 from an orthonormal basis is
measured by the condition number

κ = ‖B‖‖B−1‖ .

This quantity measures a characteristic spectral property of the operator A
and does not describe the particular behaviour of certain eigensolutions.

Summarizing, we get for the variationally formulated problem the following
theorem, which will serve as the starting point for our construction of a nu-
merical algorithm.

Theorem 3. Let the region Ω ⊂ R2 be bounded and the function f : Ω → C

be an element of the function space L∞(Ω). Then there exists a basis {uj}∞j=1

of L2(Ω), such that the relation

a(v, uj) = λj (v, uj) +

j−1∑
k=kj

τkj (v, uk) ∀v ∈ H1
0 (Ω) ,

with 1 ≤ kj ≤ j and kj ≤ kj+1, holds. For the eigenvalues λj we have the
inequalities �(λ1) ≤ �(λ2) ≤ . . . → ∞.

With these careful considerations, we are now perfectly legitimated to pose
the continuous eigenproblem exactly like algebraic eigenproblems.
For selfadjoint problems, i. e. for real valued functions f , the basis {u j}∞j=1

is orthonormal. It consists only of eigenfunctions, i. e. all τkj vanish. In the
nonselfadjoint case we will refer to the functions uj as Schur functions. If we
do not distinguish between these two cases, the functions uj are called eigen-
solutions. In contrast to the finite dimensional nonselfadjoint case, where the
Schur decomposition is based on a totally orthonormal basis, in the continuous
case, we obtain only a partially orthonormal system.



10

Finally, we look at the sensitivity of the eigensolutions with respect to per-
turbations in f . Using Theorem 3, we can carry out a perturbation analysis
just as for matrices [12]. As in the finite dimensional case, the sensitivity of
eigensolutions is dependent on one hand upon the spectral gap of the inter-
esting eigenvalues from the remaining part of the spectrum, and on the other
hand upon the condition of the underlying basis {uj}∞j=1 of L2(Ω). As in the
finite dimensional case, the invariant subspace spanned by sensitive eigensolu-
tions can be insensitive, if only the corresponding eigenvalues are sufficiently
separated from the rest of the spectrum. We will therefore attack the eigen-
problem by the computation of invariant subspaces, that is by simultaneous
computation of several eigensolutions corresponding to eigenvalue clusters.

4 Adaptive Nonlinear Multigrid FEM

From now on we will consider the eigenproblem in the following variational
form: Determine functions uj ∈ H1

0 (Ω) \ {0} and values τkj ∈ C satisfying

a(v, uj) =

j∑
k=1

τkj (v, uk) ∀v ∈ H1
0 (Ω) , (7)

where τjj = λj and j = 1, . . . , q (q is the number of desired eigensolutions).
As discussed in Section 2, we are interested in those eigenvalues with lowest
real parts. The subspace spanned by the corresponding eigensolutions may
be viewed as a subset of the invariant subspace S1 (see Theorem 1). Hence
the functions uj form an orthonormal system in L2(Ω).
Discretization of (7) by finite elements leads to the generalized matrix problem

AU = BUT , (8)

wherein the system matrix A and the mass matrix B are sparse (N × N)-
matrices defined as

A =
(
a(vm, vl)

)
m,l=1,... ,N

and B =
(
(vm, vl)

)
m,l=1,... ,N

.

The functions vl are the basis functions of the finite element space Vh ⊂ H1
0 (Ω)

with N = dim(Vh), the subscript h is a meshsize parameter indicating the
underlying triangulation of the region Ω. By definition, B is selfadjoint and
positive definite. The matrices U and T are the matrices of unknowns. The
matrix U is a full (N × q)-matrix consisting of the coefficients of the discrete
eigensolutions uj,h ∈ Vh with respect to the basis functions vl, whereas the
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matrix T is an upper triangular (q × q)-matrix formed by the approximate
values τkj,h.
Upon using the Cholesky factorization B = R∗R, we may rewrite problem (8)
in standard form

CX = XT , (9)

where C = R−∗AR−1 and X = RU . From the Schur decomposition of matri-
ces we know that there always exists a unitary (N × q)-matrix X , such that
(9) holds and the diagonal of T consists of the q desired approximate eigenval-
ues λj,h with lowest real parts. We see that the functions uj,h, formed by the
coefficients from the solution U = R−1X of equation (8), are an orthonormal
system in Vh with respect to the scalar product in L2(Ω).
After these preliminaries, we now turn to the description of multigrid methods
for the discrete problem (8). Any of these methods needs a hierarchy of
meshes, say a sequence of triangulations. In view of the difficulties arising
in the problem class (as described at the end of Section 2), we construct a
sequence of meshes by adaptive mesh refinement. For convenience, we will
restrict our attention to conforming elements only, which means

Vh0 ⊂ Vh1 ⊂ . . . ⊂ Vhlmax
⊂ H1

0 (Ω) .

4.1 Selfadjoint case

For the convenience of the reader we start with a brief outline of our German
paper [6], which treats the selfadjoint case only. In this case, the matrix T
reduces to a real diagonal matrix Λ. Without loss of generality, we can choose
all eigenfunctions to be real valued. Thus we have to solve

AU = BUΛ , UTBU = I ,

where A, B, U are real and Λ is diagonal.
First, we want to describe a generalization of the Rayleigh quotient multi-
grid minimization of Mandel, McCormick [19, 20] to invariant subspace
computation. As all multigrid methods, this method consists of two parts,
the smoothing algorithm and the coarse grid correction procedure. For both
parts, the discrete analogue of the Courant minimax principle (6) provides
the foundation. The task is to find the q minimal stationary points of the
Rayleigh quotient in a subspace of RN , spanned by vectors u1, . . . , uq and
vectors p1, . . . , pr. This is equivalent to the computation of the q lowest
eigenvalues of the projected problem(

V TAV
)
Q =

(
V TBV

)
QΛ , QT

(
V TBV

)
Q = I (10)
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with V =
(
u1 · · · uq p1 · · · pr

)
. Here the vectors uj are eigenvector ap-

proximations whereas the vectors pk denote search directions. In the smooth-
ing process the vectors pk are formed in our case by generalized conjugate
gradients corresponding to the approximate eigenvectors. In the coarse grid
correction procedure the vectors pk come from the coordinate representation
of the coarse grid basis functions with respect to the fine grid basis functions,
which form the prolongation matrix P from the coarse to the fine grid.
As for the smoothing algorithm we apply the simultaneous conjugate gradient
method of Döhler [7]. The significant feature of this method is the simulta-
neous determination of the conjugate gradients by solving a Sylvester equation
(in contrast to the procedures suggested e. g. by Longsine, McCormick
[18] or Sartoretto et al. [25], where the search directions are computed
sequentially). For reasons of clarity, we omit iteration subscripts.

Algorithm 1. Smoother/Selfadjoint Eigenproblem

• Initialization:

∗ given a (N × q)-matrix U with

UTBU = I

UTAU = ΛU = diag
(
λ1 · · · λq

)
∗ set P = G = −(AU − BUΛU)

• Iteration:

∗ set V =
(
U P

)
∗ solve (10) with eigenvalue order λ1 ≤ . . . ≤ λq < λq+1 ≤ . . . ≤ λ2q

∗ set
(
U P

)
= V Q

∗ compute G = −(AU −BUΛU )

∗ determine X from

XΛU − ΛPX = P T (AG−BGΛU)

with ΛP = P TAP = diag
(
λq+1 · · · λ2q

)
∗ set P = G+ PX

A theoretical convergence analysis of this method is a recent research topic,
see e. g. Knyazev [16]. Numerical experience, however, shows that the
convergence rates depend not only on the spectral gap, which is unavoidable,
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but also on the meshsize h of the underlying triangulation of the region Ω,
which is certainly undesirable. One idea to overcome the mesh dependence is
to apply linear preconditioning, i. e. to replace the gradient G in Algorithm
1 by

G = −C−1(AU − BUΛU) ,

where C−1 is an approximate inverse of the (possibly shifted) system matrix
A(+μB). For an exposition of this method, especially in conjunction with
linear multigrid methods, see for example Jung et al. [14], Bramble et
al. [2] and Leinen et al. [17]. An alternative approach is the nonlinear
multigrid method presented in this subsection.
The final result of [6] is, that the computation of the coarse grid corrections
in the nonlinear multigrid method can be performed also with the help of
an eigenvalue problem of the form (10). As mentioned above, the vectors pk

are the columns of the prolongation matrix P which describes the transition
between the coarse and the fine grid. If the dimension of the finite element
space corresponding to the coarse grid is equal to n, then the coarse grid
correction eigenvalue problem is of dimension q+n � N . Since this correction
problem is of the same type as the original problem, we can solve it using the
same fine grid-coarse grid scheme. The resulting multigrid V-cycle is then
given in

Algorithm 2. Multigrid V-cycle/Selfadjoint Eigenproblem
[Ul,Λl] = MGM(Al, Bl, Ul,Λl, l)

1. presmoothing using Algorithm 1: Ul → Ũl, Λl → Λ̃l

2. coarse grid correction: Ũl → Ûl, Λ̃l → Λ̂l

• compute Al−1 = V T
l AlVl and Bl−1 = V T

l BlVl, where in case

∗ l = lmax: Vl =
(
Ũl Pl

)
∗ l < lmax: Vl =

(
Ũl

0
Pl

)
• if

∗ l > 1: [Ul−1,Λl−1] = MGM(Al−1, Bl−1,

(
I
0

)
, Λ̃l, l − 1)

∗ l = 1: solve

A0U0 = B0U0Λ0

UT
0 B0U0 = I
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• set Ûl = VlUl−1, Λ̂l = Λl−1

3. postsmoothing using Algorithm 1: Ûl → Ul, Λ̂l → Λl

The matrices Al and Bl are the (augmented) system and mass matrix cor-
responding to the triangulation with meshsize h l. The matrix Ul (with q
columns) and the diagonal matrix Λ l are the matrices of unknowns. For
l < lmax, the matrices Ul are initialized, such that each current eigenvector
approximation gets the coefficient 1, whereas each coarse grid search direction
gets the coefficient 0. The matrix Pl is the prolongation matrix for the inter-
polation between the meshes with sizes hl and hl−1. The number of pre- and
postsmoothing steps, i. e. the number of iterations in Algorithm 1, is chosen
empirically, say ν ∈ {1, 2, 3}. Summarizing, the multigrid procedure is then
given as

Algorithm 3. Multigrid Procedure/Selfadjoint Eigenproblem

• Initialization:

∗ given a (N × q)-matrix U with U TBU = I, UTAU = Λ

• Iteration:

∗ while ‖AU − BUΛ‖diag(B)�1 > tol: [U,Λ] = MGM(A,B, U,Λ, lmax)

An important feature of this multigrid method is its monotonicity. To see this
note that the matrices Al−1 and Bl−1 can be expressed as

Al−1 = W T
l AWl , Bl−1 = W T

l BWl

with Wl = VlmaxVlmax−1 . . . Vl+1Vl. This means, that in every step and at every
stage of the above algorithm we solve a projected eigenvalue problem of the
form (10). As shown in Döhler [7], the matrix U = WlQl−1 formed by the
solution of this problem gives the minimal value of the functional

F (U) = trace
(
(UTBU)−1(UTAU)

)
(11)

with respect to all possible choices U ′ = WlQ
′
l−1. Hence the sequence of

functional values decreases monotonically in every step and at every stage
of the algorithm. Especially, the algorithm for a single vector (q = 1) re-
covers the monotone Rayleigh quotient multigrid minimization of Mandel,
McCormick [19, 20].
Since the functional (11) is bounded from below, the sequence is always conver-
gent. This property is the reason for the numerical robustness of the method.
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First optimal complexity results for a variant of the described method (with
a different smoothing procedure) were given by McCormick [21] and Cai
et al. [3]. A simple, but illustrative numerical comparison (1D) between
this method and the multigrid method of Hackbusch [13] in the context of
adaptive meshes may be found in [6], which shows that the above method
is more robust. A proof of optimality, which is different from [3], has been
suggested by Chan, Sharapov [4] in connection with domain decomposition
methods.

Remark 2. Numerical experiments show that the convergence speeds up sig-
nificantly, if we replace the simple gradient G in Algorithm 1 by a modified
gradient with Jacobi preconditioning. This means, that the matrix G is now
computed by

diag(A)G− diag(B)GΛU = −(AU − BUΛU) .

This choice of gradient corresponds to a basis transformation, adapted to each
iteration vector, in the underlying finite element space. In correspondence
with Algorithm 2 we use this formula for l < lmax only for the computation of
rows with index greater than q. The rows of G with index less or equal q are
set to zero.

4.2 Nonselfadjoint case

We are now ready to construct a multigrid method for the nonselfadjoint case.
Starting point is our basic formulation (8) for the computation of an invariant
subspace. From the analysis in Section 3 we know that we can represent this
subspace in terms of an orthonormal basis, i. e. we have to solve the problem

AU = BUT , U∗BU = I .

The structure of this general problem is the same as for the special selfadjoint
case, except that Λ is now replaced by T . Forced by this similarity, we expect
that the principal structure of the selfadjoint algorithm can be maintained in
the nonselfadjoint case.
The essential idea is to replace the projected eigenvalue problems (10) of the
selfadjoint algorithm by projected Schur problems of the form(

V ∗AV
)
Q =

(
V ∗BV

)
QT , Q∗(V ∗BV

)
Q = I . (12)

The matrix V here consists of approximate Schur vectors uj and additional
vectors pk which are chosen analogously to the selfadjoint case.
The smoothing algorithm for the nonselfadjoint multigrid method then reads:
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Algorithm 4. Smoother/Nonselfadjoint Eigenproblem

• Initialization:

∗ given a (N × q)-matrix U with U ∗BU = I, U∗AU = TU , where TU

is upper triangular with eigenvalues �(λ1) ≤ . . . ≤ �(λq)

∗ set P = R = −(AU − BUTU )

• Iteration:

∗ set V =
(
U P

)
∗ solve (12) with �(λ1) ≤ . . . ≤ �(λq) < �(λq+1) ≤ . . . ≤ �(λ2q)

∗ set
(
U P

)
= V Q

∗ compute R = −(AU − BUTU)

∗ determine X from

XTU − TPX = P ∗(AR− BRTU)

with TP = P ∗AP upper triangular

∗ set P = R + PX

The sorting of the eigenvalues in each iteration step needs a careful consid-
eration, since we have to sort the diagonal elements of an upper triangular
matrix. Our implementation applies an algorithm given by Ruhe [23]. Since
the matrices TU and TP are upper triangular with disjoint spectra, the solution
of the Sylvester equation for the determination of X is easy.

Remark 3. Note that this algorithm is not based on a minimization princi-
ple. Nevertheless, numerical experiments support the expectation that it has
also some smoothing property. In fact, the method may be interpreted as a
kind of one step block Arnoldi algorithm.

The associated multigrid V-cycle may be derived along the lines of 4.1, merely
replacing the eigenvalue problems in Algorithm 2 by appropriate Schur prob-
lems.

Algorithm 5. Multigrid V-cycle/Nonselfadjoint Eigenproblem
[Ul, Tl] = MGM(Al, Bl, Ul, Tl, l)

1. presmoothing using Algorithm 4: Ul → Ũl, Tl → T̃l

2. coarse grid correction: Ũl → Ûl, T̃l → T̂l
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• compute Al−1 = V ∗
l AlVl and Bl−1 = V ∗

l BlVl, where in case

∗ l = lmax: Vl =
(
Ũl Pl

)
∗ l < lmax: Vl =

(
Ũl

0
Pl

)
• if

∗ l > 1: [Ul−1, Tl−1] = MGM(Al−1, Bl−1,

(
I
0

)
, T̃l, l − 1)

∗ l = 1: solve

A0U0 = B0U0T0

U∗
0B0U0 = I

• set Ûl = VlUl−1, T̂l = Tl−1

3. postsmoothing using Algorithm 4: Ûl → Ul, T̂l → Tl

The meaning of the arising matrices is the same as in Algorithm 2. Finally,
we end up with the following multigrid procedure:

Algorithm 6. Multigrid Procedure/Nonselfadjoint Eigenproblem

• Initialization:

∗ given a (N × q)-matrix U with U ∗BU = I, U∗AU = T

• Iteration:

∗ while ‖AU −BUT‖diag(B)�1 > tol: [U, T ] = MGM(A,B, U, T, lmax)

Since we can write the matrices Al−1 and Bl−1 according to

Al−1 = W ∗
l AWl , Bl−1 = W ∗

l BWl ,

where Wl = VlmaxVlmax−1 . . . Vl+1Vl, this method is an orthogonal projection
method. In the case of a selfadjoint problem it reduces to the algorithm of
4.1. The theoretical investigation of this method and, in particular, any proof
of optimal complexity is an open topic for future research.

Remark 4. As for selfadjoint problems we observe a considerable improve-
ment of the convergence rates, if we replace the residue matrix R in Algorithm
4 by the modified matrix determined by

diag(A)R− diag(B)RTU = −(AU − BUTU ) .

Again, for l < lmax, only the rows with index greater than q are considered.
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5 Numerical Results

For the illustration of the performance of our multigrid procedure (Algorithm
6) we return to the integrated optical structure shown in Figure 2. The per-
mittivity is complex valued and parameter dependent in the Multi Quantum
Well (MQW) layers (the narrow stripes in the zoom of Figure 2), complex
valued in the metal layer, and real valued otherwise. The exact parameters of
the structure are technologically relevant and therefore not documented here.
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SiN
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n−InP
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P
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�
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�
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Figure 2: Cross section of an integrated optical structure with zoom.

In a first experiment, we were interested in the two eigenvalues with lowest
real part and their corresponding Schur functions. A difficulty of this problem
was to find a proper starting triangulation. Since we must resolve the very
thin MQW layers with normally sized triangles, the coarsest mesh (shown in
Figure 3 a) consists of 2515 nodes and 4956 triangles. For the construction of

(a) (b)

Figure 3: Starting and final triangulation.
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Figure 4: Contour plots of |u1|2 and |u2|2.

the hierarchy of meshes we use a nested iteration technique in connection with
a usual error indicator. The final triangulation with 15246 nodes and 30396
triangles reached after 6 refinements is given in Figure 3 b. As suggested in
[1], the numerical experiments have been performed with a common tolerance
tol = 10−3 for all multigrid levels. The whole computation with a MATLAB
program took 16 minutes on a SUN ULTRA 1 workstation. The coarsest grid
problems were solved with the usual Block Arnoldi procedure (see e. g. Saad
[24]). Contour plots for the resulting Schur functions on the final mesh are
represented in Figure 4. The convergence history of the full multigrid run is
given in Table 1.

Grid 1 2 3 4 5 6

Inner points 2564 2888 3987 5536 9422 15152
MG Iterations 3 3 4 4 4 4

Table 1: Number of inner points and number of multigrid iterations per grid.

In a second experiment, we carried out a parameter study to demonstrate
the dependence of the eigenvalues on the imaginary part of the permittivity
in the MQW layers. We computed eigensolutions for the parameter values
α = 0, 0.25, 0.5, 0.75, 1 corresponding to the four eigenvalues with lowest real
part - see Figure 5. The two lowest eigenvalues from the above computation
are marked with arrows. This type of diagram is of technological interest.
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Siemens AG, Corporate Research and Development, Munich for stimulating
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Figure 5: Dependence of the eigenvalues on the imaginary part of the permit-
tivity in the Multi Quantum Well layers.
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