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Abstract

We present a family of nonlocal transparent boundary conditions
for the 2D Helmholtz equation. The whole domain, on which the
Helmholtz equation is defined, is decomposed into an interior and an
exterior domain. The corresponding interior Helmholtz problem is
formulated as a variational problem in standard manner, representing
a boundary value problem, whereas the exterior problem is posed as an
initial value problem in the radial variable. This problem is then solved
approximately by means of the Laplace transformation. The derived
boundary conditions are asymptotically correct, model inhomogeneous
exterior domains and are simple to implement.
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1 Introduction

The numerical simulation of wave propagation in integrated optics or fiber
optics devices is one of the central tasks in the design and optimization of
effective components. Fortunately, many structures like waveguides or tapers
can be modeled based on a uni- or bidirectional wave propagation. Simu-
lation tasks of this kind can be solved by a number of different methods,
most prominent here are the various types of Beam Propagation Methods
(BPM). The central idea of BPM’s, from its origin, has been to solve the
scalar Helmholtz equation approximately by a reformulation of the bound-
ary value problem as an initial value problem. This concept is close to the
working principle of those optics components, which are characterized by a
well defined direction of propagation. Some problems, however, require sim-
ulation tools which are able to take into account arbitrary directions of wave
propagations. For such type of problems it is natural to go back to the scalar
Helmholtz equation

Δu(x, y) + n2(x, y)k2
0u(x, y) = 0, u ∈ H1(Ω), (1)

defined on some bounded domain Ω. Here n(x, y) denotes the refractive index
geometry of a given structure, k0 is the wavenumber defined by k0 = 2π/λ,
and λ is the wavelength in vacuum. Equation (1) poses an elliptic boundary
value problem. In order to solve it, one needs the incident field along the
whole boundary together with suitable boundary conditions. Ideally, these
boundary conditions should lead to the same solution u(x, y) on Ω, as the one
obtained by solving the Helmholtz equation on the whole, infinite domain.
Exactly this idea has been proved to be of great practical relevance in simula-
tion of grating structures [1]. As another example consider the configuration
given in Fig. 1. The incident light, guided by a waveguide, is reflected by a
small dielectric mirror. The dimensions of the mirror are such that besides
the reflection refraction and diffraction occurs, too. This example will serve
throughout the paper as model problem.

An alternative choice is to solve the corresponding time-dependent wave
equation by means of a finite-difference-time-domain (FDTD) method. This
approach has been shown to be successful for a general class of structures
[2]. It is advantageously, if the response with respect to an arbitrary time-
dependent input is analyzed. In the problem class under consideration, how-
ever, where a time-harmonic incident wave is given, it is more efficient to solve
the problem directly in its time-harmonic form. The central problem aris-
ing here is to construct transparent boundary conditions for general smooth
boundaries and to find a suitable formulation of the interior problem, which

1



waveguide

Ω reflecting
object

Ωi

e

Figure 1: Typical configuration of a reflection problem

allows for a direct implementation of these boundary conditions. Concern-
ing the Helmholtz equation with homogeneous exterior domains, there are a
large number of proposals to derive suitable boundary conditions. First, and
most important, are the Sommerfeld-like boundary conditions based on Som-
merfeld’s famous asymptotic boundary condition, [3], ∂ru− in0k0u = o(r1/2).
Then there are the nonlocal Dirichlet-to-Neumann boundary conditions for
separable coordinate systems [4] and [5], the family of corresponding local
and asymptotic approximations [6], infinite element methods [7] and the var-
ious kinds of boundary element methods [8]. However, if the exterior domain
becomes inhomogeneous, e. g. by an embedded waveguide (Fig. 1), these
methods do not longer work. For such cases Goldstein [9] offers a so-
lution by constructing transparent boundary conditions valid on a part of
the whole boundary. This part of the boundary contains the position where
the waveguide hits the boundary and the area surrounding the waveguide.
In Fig. 1 this would be the left, vertical part of the boundary. The corre-
sponding boundary conditions are obtained by an eigenmode decomposition
of the waveguide assuming Dirichlet boundary condition at the ends of the
cut interval.

Our approach is different from these methods. It is based on the numeri-
cal methods developed for the time-dependent Schrödinger equation [10, 11].
It supplies a family of asymptotic correct boundary conditions for a large
class of interior domains with smooth boundaries and possibly inhomoge-
neous exterior domains. The main idea is to write the interior problem as a
variational problem in standard manner, representing a boundary value prob-
lem, whereas the exterior problem is posed as an initial value problem in the
radial variable. This exterior problem is similar to the exterior problems
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discussed in conjunction with the Schrödinger equation in [10, 11]. There-
fore we can apply the techniques derived there to construct the transparent
boundary conditions by means of the Laplace transformation.

2 Variational Formulation

In standard fashion, we obtain the variational form of (1) by multiplication
with a test function v ∈ H1(Ω) and integration by parts

−(∇v,∇u) + (v, n2k2
0u) = −

∫
Γ

nv∇u ds u, v ∈ H1(Ω), s ∈ Γ .

Here Γ denotes the boundary and (v, u) =
∫
Ω
v̄u dxdy. The function u(s), s ∈

Γ, may be considered as a superposition of incoming and outgoing waves,
u(s) = uin(s) + uout(s). Suppose a boundary operator b̃(s) is given, which
relates the normal derivative to the boundary values as

n(s)∇uout = b̃(s)uout,

with n(s) the outward normal vector. Then it follows

n∇(uin(s) + uout(s)) = n∇uin(s)− b̃uin(s) + b̃u(s) .

With the reformulation of the boundary operator b̃(s) in its variational form,

b(v, u) =

∫
Γ

v̄(s)b̃(s)u(s) ds v ∈ γ
(
H1(Ω)

)
,

γ the trace operator γ : H1(Ω) → L2(Γ), we end up with the following
variational problem: find u ∈ H 1(Ω), such that

a(v, u) + b(v, u) = −
∫
Γ

v̄n∇uin ds+ b(v, uin)

for all v ∈ H1(Ω). Once the continuous variational formulation is obtained,
the restriction to the finite dimensional finite element space Vh ⊂ H1(Ω)
yields, in the standard way, the corresponding discrete problem

(A+B)u = r .

The matrix A is the conventional finite element system matrix of the Helm-
holtz equation, the matrix B is the discrete version of the boundary operator
and realizes the transparency of the boundary. B acts only on the boundary
nodes. The right hand side vector r contains the information about the
incident wave.
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Figure 2: Discretization of the problem. The interior domain is discretized
using triangles. The exterior domain is discretized only in the tangential
coordinate. Along the rays the solution is approximated semi-analytically.

3 Semi-discretization of the exterior domain

The central question is, how to derive the discrete boundary operator B. To
this end, we discretize the whole problem as it is shown in Fig. 2. The trian-
gulation of the interior domain domain supplies a polygonal approximation
Γh of the smooth original boundary Γ. The boundary nodes of the trian-
gulation are placed exactly at the boundary Γ. Note that Γh is in general
not smooth. Now, the exterior domain is semi–discretized as it is exemplarily
shown in Fig. 2. Each boundary node is connected with a point at infinity by
ray-like straight line. These rays are not allowed to intersect each other. This
way, the exterior domain is decomposed into a finite number of segments.

Fig. 3 displays one segment cut from the whole domain. This subdomain
is bounded by the vertical line x = 0 and the two lines

y1(x) = y10 − a1x

y2(x) = y20 + a2x, with a1 + a2 ≥ 0 .

In order to obtain the discrete variational form of the Helmholtz equation
in the exterior domain, (1) is multiplied with a test function v(x, y) and
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Figure 3: Definition of y1(x) and y2(x) as continuation of the boundary nodes

integrated by parts. Suppose the integration is performed between the points
P1 = (x1, y1) and P2 = (x2, y2), i. e. , along the transversal coordinate. The
corresponding equation for this special integration path is∫ P2

P1

v̄(x, y)∂2
xu(x, y) dy +

∫ P2

P1

v̄(x, y)∂2
yu dy +

∫ P2

P1

v̄(x, y)n2k2
0u dy = 0 .

(2)

Next we approximate the unknown function u(x, y) in the exterior subdo-
main by means of functions ũ1(x, y1(x)) = u1(x) and ũ2(x, y1(x)) = u2(x)
defined along the lines y1(x) and y2(x) and appropriate ansatz functions
v(x, y). Corresponding to finite element discretization of the interior domain
we choose

v1(x, y) =
y2(x)− y

h(x)

v2(x, y) =
y − y1(x)

h(x)

h(x) = y2(x)− y1(x) .

Next, we define the discrete approximation of u(x, y) in the subdomain be-
tween y1(x) and y2(x), which we will denote by uh(x, y) ,

uh(x, y) = v1(x, y)u1(x) + v2(x, y)u2(x) .
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The unknown functions u1(x) and u2(x) are solutions of a system of ordi-
nary differential equations, which we will derive in the following. To this
end, we will investigate (2) term by term. In order to simplify the nota-
tion we will abbreviate the path integration

∫
v̄u dy by (v, u) and the partial

derivatives ∂xu(x, y) by ux etc. Replacing u(x, y) by uh(x, y) and choosing
v ∈ {v1(x, y), v2(x, y)}, we obtain the local finite element matrix correspond-
ing to the first term of (2)∫ P2

P1

v̄(x, y)∂2
xu(x, y) dy −→

(
(v1, v1) (v1, v2)
(v2, v1) (v2, v2)

)
︸ ︷︷ ︸

M(x)

(
u1xx

eu2xx

)
+

2

(
(v1, v1x) (v1, v2x)
(v2, v1x) (v2, v2x)

)
︸ ︷︷ ︸

Mx

(
u1x

u2x

)
+

(
(v1, v1xx) (v1, v2xx)
(v2, v1xx) (v2, v2xx)

)
︸ ︷︷ ︸

Mxx(x)

(
u1

u2

)
. (3)

A straightforward computation yields the local element matrices

M(x) =
h(0) + (a1 + a2)x

3

(
1 1

2
1
2

1

)
(4)

Mx =
1

6

(−2a1 + a2 2a1 − a2
−a1 + 2a2 a1 − 2a2

)
Mxx(x) =

a1 + a2
3(h(0) + (a1 + a2)x)

(
2a1 − a2 −2a1 + a2
a1 − 2a2 −a1 + 2a2

)
.

Note that the matrix Mx does not depend on the distance variable x. Next,
we investigate the second term of (2). An integration by parts supplies

∫ P2

P1

v̄(x, y)∂2
yu(x, y) dy −→

(
v̄1(x, y1(x)) ∂yuh(x, y)|y=y1(x)

v̄2(x, y2(x)) ∂yuh(x, y)|y=y2(x)

)
−(

(v1y, v1y) (v1y, v2y)
(v2y, v1y) (v2y, v2y)

)
︸ ︷︷ ︸

Se(x)

(
u1

u2

)
. (5)

The matrix Se(x) is the conventional elementary stiffness matrix for the
1D Laplace operator. The subscript e stands for edge and means that this
elementary stiffness matrix corresponds to the edge of the boundary, which
bounds the related exterior segment. Evaluating the path integrals, we obtain

Se(x) =
1

h(0) + (a1 + a2)x

(
1 −1
−1 1

)
. (6)
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Unlike in situations with smooth boundaries, where the boundary terms of
the first term on the right hand side of (5) cancel each other after assem-
bling of the system matrices, these terms do not vanish in our situation of a
polygonal shaped boundary. For an approximate evaluation of these terms,
let us consider the point P2 = (x2, y2). We have

v(x, y)∂yuh(x, y)|y=y2(x)
= v(x, y2(x))∂yuh(x, y)|y=y2(x)

= ∂yuh(x, y)|y=y2(x)

= ∇u(x, y)|y=y2(x)
ey

= ∇u(x, y)|y=y2(x)
(sinα2 er + cosα2 et) .

Here ey is the unit vector in the y-direction, er is the radial unit vector,
parallel to y2(x), and et is the unit vector perpendicular to er, i. e. , er · et =
0, and we have expressed the Cartesian unit vector ey by the radial and
tangential unit vectors. From these terms we need to consider only the radial
part, because the tangential parts of two neighboring boundary elements
cancel each other. Suppressing the tangential part, it follows

∂yuh(x, y)|y=y2(x)
= sinα2 (∂xuhexer + ∂yuheyer) .

The polygonal shaped boundary serves as an approximation of the smooth
boundary of the original domain. Therefore, the finer the triangulation and
the larger the local bending radii of the original boundary the smaller be-
comes α2. Thus, we find approximately,

exer → 1 and eyer → 0 .

Further, in the limit of a small angle α2, we can replace ∂xuh(x, y) at y =
y2(x) by ∂xu2(x) and sinα2 by a2. Altogether, we find the finite element
approximation∫ P2

P1

v̄(x, y)∂2
yu(x, y) dy −→ Sα

(
u1x

u2x

)
− Se(x)

(
u1

u2

)
,

with

Sα =

(
a1 0
0 a2

)
,

and Se(x) given by (6). The subscript α has been chosen to indicate that
this part of the boundary stiffness matrix originates from the angles between
two neighboring boundary elements.

7



The last term of (2) again represents a mass-term which is weighted by the
constant coefficient n2k2

0. Hence, we obtain, in analogy to the computation
of the first term and with the matrix M(x) defined in (4),∫ P2

P1

v̄(x, y)n2k2
0u dy −→ n2k2

0 M(x)

(
u1

u2

)
.

Next, we assemble the whole system of ordinary differential equations.
In order to maintain a suggestive notation and to avoid the introduction of
new symbols, we use for the assembled large matrices the same symbols as
for the local matrices. The only exception is the labeling of the weighted
mass matrix. Since the factors n2k2

0 may be different in each of the exterior
segments, we label the assembled weighted mass matrix by Mw(x). Further,
we continue to use the variable x as the distance variable. The resulting
system reads now

M(x)uxx + (2Mx + Sα)ux +
(
Mxx(x) +Mw(x)− Se(x)

)
u = 0 . (7)

4 Discrete boundary operator

Besides the approximation with respect to Sα, where we have exploited the
assumption of large local bending radii, (7) is exact. The main approxima-
tion step is now to neglect the x-dependence of the matrices M(x), Mw(x),
Mxx(x), Se(x) , and to replace them by M(0), Mw(0), Mxx(0), Se(0). This
approximation allows for an elementary derivation of an asymptotic correct
boundary operator B. The approximation becomes the better the larger the
local bending radii, hence, the larger the computational domain. Using this
asymptotic approximation, (7) simplifies to a system of ordinary differential
equations with constant coefficients

M(0)uxx + (2Mx + Sα)ux +Mxx(0) +Mw(0)− Se(0)u = 0 . (8)

To simplify the notation, we write from now M instead of M(0), etc. A
Laplace transformation of (8), which results in[

Mp2 + (2Mx + Sα)p+Mxx +Mw − S
]
u(p) =

M(pu0 + u0x) + (2Mx + Sα)u0 , (9)

yields directly a solution for the dual variable u(p) with p ∈ C,�(p) ≥ 0.
The matrix M in (9) is symmetric positive definite, hence invertible, and (9)
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can be rewritten as(
Ip2 +Cp+D

)
u(p) = pu0 + u0x +Cu0 (10)

with C = M−1 (2Mx + Sα) (11)

D = M−1 (Mxx +Mw − S) . (12)

Further, let us introduce the boundary operator B by

Mu0x = Bu0 .

Equation (10) now takes the simple form(
Ip2 +Cp+D

)
u(p) =

(
Ip+M−1B+C

)
u0 . (13)

With a factorization of the quadratic expression on the left-hand side of (13)(
Ip2 +Cp+D

)
= (Ip− F−) (Ip− F+) (14)

the solution becomes

u(p) = (Ip− F+)
−1 (Ip− F−)

−1 (Ip+M−1B+C
)
u0 .

The subscripts ± indicate that the the eigenvalues λ of the matrices F± have
only positive (negative) imaginary parts. The real part of all eigenvalues is
always nonpositive. The special choice of the boundary operator

B = −M (C+ F−) (15)

yields the corresponding solution

u(p) = (Ip− F+)
−1 u0 . (16)

Since �(λ(F+)) ≤ 0 and 	(λ(F+)) > 0, (16) contains only non-increasing and
outgoing modes. Hence B, given by (15), is the desired boundary operator.

It remains to find a suitable approximation of F−. The matrix F− is a
solution of a quadratic matrix equation. There are some iterative methods
to solve such matrix equations, including Newton’s method and iterations
of the algebraic Ricatti equation, see e. g. [12]. The application of these
methods, however, causes additional numerical effort, therefore we try to
find approximations F̃± of F± by

F̃± = −1

2
C± 1

2

(
C2 − 4D

)1/2
,
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which is motivated by the corresponding scalar quadratic equation. Clearly,
this causes an error(

Ip− F̃−
)(

Ip− F̃+

)
− (Ip− F−) (Ip− F+) =

1

4

(
(C2 − 4D)1/2C−C(C2 − 4D)1/2

)
in the constant term of the quadratic expression. In the asymptotic case,
however, when the bending radii become large, C tends to zero and the error
term vanishes. Hence, our factorization is asymptotic correct. This way, we
obtain a first version of the boundary operator,

B = −M

(
1

2
C− 1

2
(C2 − 4D)1/2

)
. (17)

Numerical experience shows that a further simplification, concerning the
square-root expression involved in (17), is sufficient for many problems. To
derive this approximation, we employ the asymptotic properties |C| 
 |D|
and |Mxx| 
 |Mw|, where the inequalities hold componentwise, and which
is valid for large local bending radii of the boundary. Additionally, we know
that the mass matrices M and Mw are close to diagonal matrices. In fact,
for the numerical realization of the boundary operator we use throughout
the lumped, hence diagonal, approximation of the original mass matrices.
Thus the numerical approximations of M and Mw commute with each other.
Using these properties, the boundary operator reads

B = −M

(
1

2
C− i

[
M−1(Mw − Se)

]1/2)
. (18)

To understand this equation, it is useful to consider the special case of a
homogeneous exterior domain, i. e. Mw = n2k2

0M, and a solution u, which
is constant along the boundary, i. e. , Seu → 0. The resulting boundary
operator is simply

BS = −1

2
MC+ in0k0M . (19)

The matrix 1/2MC is approximately a diagonal matrix and contains entries
of the type const./r, with r the local bending radius of the boundary. Hence,
we have recovered a discrete Sommerfeld-like boundary condition. Keeping
this Sommerfeld-like radiation condition in mind, we approximate the square-
root in (18) such that we take the matrix Mw as dominant term and the
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stiffness matrix Se as perturbation. In other words, the task, which we want
to solve approximately, is to find a matrix X, such that

X2 = A2 +P ,

with a dominant matrix A2 and a small perturbation P. We suggest an
approximate solution

X = A+
1

2
A−1P ,

which can be seen as the first iterate of the Newton-like iteration

Xk+1 =
1

2

(
Xk +X−1

k (A2 +P)
)
, X0 = A, k = 0, 1 . . . .

In fact, this iteration is different from Newton’s method, which would in-
volve the solution of Sylvester’s equation. Since we want to derive only a
lowest order correction without any additional computational effort, we have
restricted ourselves to this simplified iteration. Applying this square-root
approximation to (18), we obtain finally

B = −1

2
(2Mx + Sα) + iM1/2

(
M1/2

w − 1

2
M−1/2

w Se

)
. (20)

5 Application

In preparation of the numerical reflection experiment, we compute first the
propagation of a Gaussian beam in a homogeneous medium. The compu-
tational domain (see Fig.’s 1 and 2) has an extension of 3μm × 3μm. The
refractive index of this domain is n = 3.2, the wavelength λ = 1.55μm. The
waveguide supports a fundamental mode of Gaussian profile with an 1/e-
width of 0.54μm. Fig. 4 displays the result of the simulation in terms of
iso-curves with respect to |u(x, y)|. The smoothness of these iso-curves can
be seen as an indicator for the quality of the boundary conditions. The inner
rectangle marks the position, where we will insert the dielectric mirror in a
later experiment. The smoothness of the iso-curves in Fig. 4 shows that the
derived discrete boundary operator (20) works well.

Next, we show that this boundary operator, in fact, supplies better results
than the discrete Sommerfeld-like boundary condition, which is obtained by
setting Sα = Se = Mx = 0. The corresponding simulation run is docu-
mented in Fig. 5. The wave-like behavior of the iso-curves, especially near
the corners, indicate that a non-neglectable amount of reflection is generated
at the boundary.
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Figure 4: Iso-curves of |u(x, y)| of a Gaussian beam propagating in a homo-
geneous medium, computed with the discrete boundary operator. The levels
of the iso-curves are taken to max(|u|) {0.8, 0.6, 0.4, 0.2, 0.1,0.05}. The
inner rectangle indicates the position of a mirror for the following numerical
experiments.

Figure 5: Iso-curves of |u(x, y)| of a Gaussian beam propagating in a homo-
geneous medium, computed with the Sommerfeld-like approximation of the
boundary operator. The levels of the iso-curves are the same as in Fig. 4.
Residual reflections occur.
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Figure 6: Iso-curves of the solution �(u) displaying the typical interference
pattern

In a second experiment, we insert the dielectric mirror. The mirror has
a thickness of 0.3μm and a refractive index n = 1.5. These parameters has
been chosen such that diffraction and refraction occur, too. Fig. 6 shows the
real part of the field distribution. It displays the typical interference pattern
of reflected waves. Further, the refracted part of the wave becomes visible.

Another representation of the same field is given in Fig. 7, which shows
the intensity distribution of the reflected field. Here, we take the intensity
to I(x, y) = |�(iū∇u)|. It is apparent from these figures that the direct
simulation of the Helmholtz equation equipped with transparent boundary
conditions supplies a useful tool in studying of reflection phenomena.

6 Conclusions

We have derived an asymptotic discrete transparent boundary condition for
the Helmholtz equation with inhomogeneous exterior domain. Our deriva-
tion is not restricted to a special choice of a coordinate system. The cen-
tral assumption, which we have made, is that the local bending radii of the
boundary of the computational domain are sufficiently large. For practical

13



Figure 7: Intensity distribution of the reflected beam

purposes this means that the bending radii must be of the order of the local
wavelength. The smoother the boundary and the larger the interior domain
the better the approximation. Numerical experiments validate the efficiency
of the discrete boundary operator.
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