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Abstract

The focus of this paper is on the efficient solution of boundary value problems
involving the double—curl operator. Those arise in the computation of electro-
magnetic fields in various settings, for instance when solving the electric or mag-
netic wave equation with implicit timestepping, when tackling time—harmonic
problems or in the context of eddy—current computations.

Their discretization is based on on Nédélec’s H (curl; Q)-conforming edge
elements on unstructured grids. In order to capture local effects and to guarantee
a prescribed accuracy of the approximate solution adaptive refinement of the
grid controlled by a posteriori error estimators is employed. The hierarchy of
meshes created through adaptive refinement forms the foundation for the fast
iterative solution of the resulting linear systems by a multigrid method.

The guiding principle underlying the design of both the error estimators and
the multigrid method is the separate treatment of the kernel of the curl-operator
and its orthogonal complement. Only on the latter we have proper ellipticity of
the problem. Yet, exploiting the existence of computationally available discrete
potentials for edge element spaces, we can switch to an elliptic problem in po-
tential space to deal with nullspace of curl. Thus both cases become amenable
to strategies of error estimation and multigrid solution developed for second
order elliptic problems.

The efficacy of the approach is confirmed by numerical experiments which
cover several model problems and an application to waveguide simulation.

Key words. Maxwell’s equations, edge elements, Nédélec’s elements, multigrid methods, a pos-
teriori error estimators, waveguide simulation
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1 Introduction

The past decades have seen the development of a vast array of numerical techniques
for the computation of electromagnetic fields, accompanied by the arrival of ever more
powerful computer hardware. This has made possible the fast and accurate predic-
tion of electromagnetic phenomena and thus numerical simulation has emerged as an
indispensable tool for the analysis and the design of technical devices in electrical
engineering.

Basically, there is a single set of equations governing all electromagnetic phenom-
ena, Mazwell’s equations. They comprise four first order partial differential equations
linking the fundamental electromagnetic quantities, the electric field E = E(x,t), the
magnetic induction B = B(x,t), the magnetic field H = H («,t), the electric flux
density D = D(x,t), the electric current j = j(a,t) and the space charge density

p=p(x,1):

curlH =35+ 0,D divD =p (1)
curl E = -0,B divB =0 (2)

Strictly speaking, these equations are posed over the entire space R® and they have to
be supplemented by the following material laws:

D =¢F, B =uH , ]:0E+]z7 (3)

where j, denotes an intrinsic current density. The combined equations (1)-(3) form a
second order hyperbolic system describing the behavior of electromagnetic waves and
their interaction with matter. In this presentation we admit only linear and isotropic
materials, in which case €, u, 0 are bounded scalar functions of the spatial variable @
with € > €9 > 0, u > pp > 0 and o > 0 almost everywhere. As a matter of course,
steep jumps in these coefficients may occur at material interfaces.

In principle, all computations of electromagnetic fields could be tackled by a general
purpose solver for Maxwell’s equations. Yet, in special situations additional assump-
tions allow substantial simplifications of the model. Most of these assumptions concern
the temporal variation of the fields:

In the stationary case we encounter the familiar problems of electro— and mag-
netostatics. The mathematical models boil down to elliptic boundary value problems
corresponding to a minimization of energy or energy dissipation, respectively. In gen-
eral, methods working with electric and magnetic potentials are preferred in these
cases [87].

In the case of time—harmonic processes and linear material properties, we can
switch to the frequency domain and end up with indefinite second order problems in
space for the complex amplitudes of the fields. This approach is feasible for a wide
range of scattering problems, waveguide computations [61, 87] and the determination of
propagating modes, where the latter application involves the solution of an eigenvalue
problem [41].

Transient, slowly—varying fields permit us to ignore wave propagation [28]. Crudely
speaking, this yields a reasonable approximation provided that possibly occurring elec-
tromagnetic waves possess a wavelength much greater than the size of the region of
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interest. Situations where this requirement is met often include eddy—current simula-
tions, for instance in electrical engines and transformers [17, 18, 65]. Then we typically
arrive at problems of parabolic type.

If transient, fast processes are involved we have to resort to the full Maxwell’s equa-
tions, which may be converted into a wave equation for either the electric or magnetic
field. This is necessary for an adequate modeling of certain scattering problems which
are typically appearing in microwave structures [64, 66].

The bottom line is that the mathematical features of the models for electromagnetic
fields crucially depend on the kind of simplification employed. A crude distinction
can be made between equilibrium and near—equilibrium situations, typical of low—
frequency settings, and arrangements where wave propagation is the principal effect.
The former case gives rise to elliptic or parabolic problems, whereas the latter leads
to hyperbolic equations.

Matching the diversity of situations, numerous different approaches have been de-
vised for the numerical treatment of the electromagnetic problems:

Temporal discretization can be done in an explicit fashion only in the pronounced
hyperbolic case, for example, by means of the popular leap—frog scheme [69,98]. Oth-
erwise we are faced with stiff problems, which require implicit schemes in order to
avoid severe limitations on the length of admissible timesteps due to the well-known
CFL-restriction. These methods entail solving a stationary boundary value problem
in each timestep.

Several approaches have been explored for the spatial discretization of the field
equations. The first schemes to be used in practical codes were finite difference tech-
niques [93,98], which approximate the electromagnetic fields in regularly arranged
gridpoints (nodes) and express the discrete differential operator by algebraic equations
linking neighboring nodes. Closely related are generalized finite volume methods, like
the finite integration technique [91,92]. The fairly regular hexahedral grids employed
allow for easy implementation. In particular, in connection with explicit timestepping
finite difference methods are fairly popular [35,101].

Finite elements [33,61,103] provide an alternative discretization in space. They
rely on approximation spaces for the physical quantities that possess locally sup-
ported basis functions with respect to a triangulation of a bounded computational
domain. Finite element discretizations can cope well with unstructured meshes and
offer enhanced flexibility compared to finite difference methods.

A completely different kind of spatial discretization can be achieved by means
of boundary element methods [63,86]. The boundary value problem is converted into
an integral equation for unknown functions on the boundary of the computational
domain. Thanks to a reduction in the dimension of the problem we need to deal
with a significantly reduced number of unknowns. Yet, this advantage is offset by the
computational cost for the generation of the full system matrix and the solution of
the discrete linear problem. In addition, it is difficult to apply the method to the case
of non—constant material coefficients and non—linear problems. Nevertheless boundary
elements are widely used in electromagnetic simulations, in particular, in combination
with finite elements [26, 83].

In this paper, we only consider cases that lead to stationary second order boundary
value problems for a double—curl operator. We expose how advanced adaptive multi-
level schemes, a cutting—edge numerical technology for second order elliptic problems,
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can be adjusted to curl curl-problems. We summarize and extend results scattered
over several recent publications by the authors [10-12, 54, 55]. What is entirely new
is the comprehensive discussion of both error estimation and multigrid schemes for
H (curl; Q)—conforming finite elements.

Those arise in virtually all of the above mentioned settings, as we will reveal in
Sect. 2. In that section we derive weak formulations posed over the Hilbert—space
H (curl; Q) from Maxwell’s equations. Sect. 3 is devoted to the discretization of the
linear variational problems by means of H (curl;Q)—conforming edge elements. In
Sect. 4 we introduce a key concept for the design of both error estimators and mul-
tilevel iterative solvers, the Helmholtz—decomposition of H (curl; Q) and its finite ele-
ment subspaces. The fifth section outlines the main principles of adaptive multilevel
methods. One of their principal components, suitable a—posteriori error estimators,
will be examined in the following section. After that, we deal with the second key
component, fast multigrid methods for the solution of the large sparse linear systems
of equations that result from the finite element discretization. In Sect. 8 we supply
results from a number of numerical experiments and discuss real-life simulation.

In this presentation the emphasis is on the fundamental principles of error estima-
tors and multilevel schemes and the key role played by specific properties of the edge
element approximation. We largely dispense with rigorous proofs and prefer heuristic
arguments to motivate the design of the algorithms. We aim to drive home our convic-
tion that the techniques, ranging from the finite element approximation to multigrid
solvers, are “naturally” stipulated by the structure of the problem.

2 Variational formulations

In this section we focus on the weak formulation of Maxwell’s equations, that is,
we convert them into variational equations posed over suitable function spaces. An
adequate choice for these function spaces are vectorfields of finite energy, for which
the application of the differential operators is “meaningful”. In other words, applying
curl and div must not lead to unbounded energy. Remember that the energy of the
fields is measured through weighted L2 norms. This hints that the appropriate spaces
for the electric field E and the magnetic field H are provided by

H(curl; Q) := {n € L*(Q); curln € L*(Q)} .

Here 2 C R? is a domain, not necessarily bounded, whose boundary 952, if non-empty,
is sufficiently regular (Lipschitz—continuous). Similarly, we define the function space

H(div; Q) := {v € L*(Q); divw € L*(Q)} ,

to which the displacement current D and the magnetic induction B should belong.
Both spaces, equipped with the canonical inner products, are Hilbert-spaces with
norms
2 2 2
1€z curti) = €]l + llcurl€]lgq (4)

2 2 . 2
[0l Eraiviy = 0]l + Idivollgg - ()
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We write ||-[|o.q, for the L?(Q2)-norm and (-, -)o., for the L*(Q) inner product.

The subspace of H (curl; 2) containing the vectorfields £ with vanishing tangential
trace € xn on I' C 0N is denoted by Hr(curl; ). As usual, n designates the exterior
unit normal vectorfield on 0f2. For a detailed discussion of the properties of these
spaces the reader should consult [49, Ch. 1]. Throughout this presentation, unless
the physical meaning of quantities suggests otherwise, small boldface Greek letters
will stand for vectorfields from H (curl; 2), whereas those in H (div; 2) are tagged by
small boldface Roman symbols.

A vexing question emerges: How should the material laws (3) be read, since they
link functions from different spaces? To view them as mere scaling is obviously flawed.
This reflects the widely shared perception that the material laws mar the consistency of
Maxwell’s equations; they arise from averaging and only make sense on a macroscopic
scale. Thus, they are fittingly stated as equations involving weighted local averages.
Unfortunately, there are two competing formulations for each material law and both
are justified and problematic alike [26,27]. For instance, D = e¢E may be stated as

(e_lD,'u)OQ = (B,v)yq VYve H(div;) (6)
Note that we formulated the products in this way to achieve some formal consis-
tency within the framework of differential geometry (see e.g. [24,27]). Here the fields
are interpreted as differential forms, products between 1-forms into 2-forms yielding

electric or magnetic energy, respectively. The “coefficients” €, u and o are operators
transforming between differential forms of different order.

2.1 The high frequency transient case

There are several, by and large symmetric, ways to derive variational equations from
(1), (2). We single out an approach that retains the electric field E as unknown.
Alternatively we could zero in on the magnetic field [69] or handle a first order system
[70]. First we get from (2)

Vv € H(div; Q) , (8)

Q

(n ' curl E,’u)o; = - (M_latB7'v)0;Q

which preserves (2) in strong form. Next, we plug in the material law B = pH and
set v = curln:

(1! curl E, curl n)o;ﬂ = — (0;H,curln),, Vn € H(curl;() 9)
By means of a variant of Green’s formula we derive the weak form of (1):
(H,curl 77)0;9 + (H x n, 77)0;6Q =(g+0oD, 7))0;Q Vn € H(curl; Q) (10)
Using the material law H = !B again, we get from (9) and (10)

(1! curl E, curl’n)o;Q =—(3+0;D, 77)0;9 + (0:H xm,m)y50 -
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Now Ohm’s law j = o F can be applied along with (7) and B = pH, which are used
to rephrase the boundary terms. This means that for all n € H(curl; Q)

(e@fE + o0, E, 77)0;9 + (/fl curl E, curl 7))0;9 +
(1" curl E x nm), = — (0 Mo -

This is the general weak form of the “electric” vector wave equation. Strictly speak-
ing, this equation has to be considered on the entire space R?, seeking solutions that
vanish at infinity. However, in practical computations, unless infinite elements [50,
Sect. 6] or boundary element methods are employed, we can only deal with bounded
computational domains. This entails supplying suitable boundary conditions to ensure
uniqueness of the solution. The simplest method is to truncate the grid at some dis-
tance from the regions of interest and to assume an enclosure provided by a perfectly
conducting material, which is equivalent to imposing vanishing tangential components
of E. Of course, such an arbitrary truncation will lead to undesired reflections of out-
going waves. Sophisticated investigations have been carried to remedy this drawback
by so—called absorbing boundary conditions (ABC’s) [38,50]. In their first-order form
such formulations realize Sommerfeld’s radiation condition. For the electric field they
read

curlE xn=(nxc 'OE)xn+ Ey. xn, (11)
where ¢ denotes the phase velocity and is given by ¢ = eu~/2. Equation (11) is a
Cauchy—type boundary condition supposed to hold on I'y := 9Q/I'p. Higher-order
formulations have been developed in order to minimize artificial reflections [44, 77].
Another promising approach uses so—called perfectly matched layers (PML’s), where
the domain is covered by an anisotropic absorbing material [15].

We can now incorporate the boundary conditions into the variational equation and
end up with the following initial boundary value problem describing the behavior of
the electric field for times ¢ €]0; 77 :

Seek E € C*([0;T), Hr, (curl; Q)) such that

(e0}E + 00,E, "7)0-9 + (¢ curl E, curl’n)(}Q — ((uc)flﬁtE X 1,1 X n)o~rA -
= (0 Moo+ (W Bine, M)y, V0 € Hrpy(curk Q) (12)

and fulfilling the initial condition E ;—g = E, (div Ey = 0).

This comprehensive model has to be used for the accurate simulation of transient
electromagnetic phenomena, if wave propagation is a crucial feature.

In general, explicit timestepping schemes are the method of choice for the simu-
lation of fast—scale transient electromagnetic phenomena, since timestep have to be
kept small in order to curb numerical dispersion [75]. However to circumvent the CFL—
condition, which may impose needlessly severe limitations on the maximal length of
timesteps, we have to resort to implicit timestepping. In particular, in the case of
lossy media (o > 0) this is the only feasible option. Employing, for instance, the pop-
ular Crank—Nicholson scheme (Implicit trapezoidal rule), in each timestep we face the
following stationary problem:
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Seek E,, € Hr,(curl; Q) such that for all n € Hp, (curl; 2)

1 At?
(e+ —cA)E,,n + | —curl E,, curln -
2 0;02 Ap 0;02

aAt? )
— OE xn,nxn = , 13
(Gpeomsnnxn) =m0y

where At > 0 is the fixed length of the timesteps, E,, stands for the unknown elec-
tric field in the nth step and f is a functional on Hr,(curl; ), which comprises all
excitations and, in addition, depends on the approximations F,,_q, E,_5 in the previ-
ous timesteps. For a study of a wider class of implicit timestepping schemes see [67].
Formally speaking, (13) is a second order H (curl; Q)—elliptic variational problem.

2.2 The eddy—current approximation

A significant simplification of (12) can be achieved for transient processes on a slow
timescale in the presence of considerable dissipation, i.e. ¢ > 0. This is typical of eddy—
current problems which deal with currents caused by slowly varying electromagnetic
fields. Then wave propagation can be neglected and homogeneous boundary conditions
also make sense for artificial boundaries. For the resulting parabolic problem, implicit
timestepping is mandatory. For instance, when applying the implicit Euler scheme in
the nth timestep we confront the variational problem
Seek E,, € Hy(curl; Q) such that for all n € Hy(curl; Q)

(cE,, 77)0;(2 + (At,u_l curl E,, curl 77)0;(2 = f(n), (14)

where f is some right hand side functional, depending on known data and the length
At of the timestep. This problem much resembles (12), but the uniqueness of the
solution of (14) is not guaranteed in €27, since there may be a non-conducting (o = 0)
region (7. A possible remedy is to impose the gauge condition diveE = 0 in its weak
form:

(eE,no)O;Q =0 Vn € H)(curl;Q;), (15)

where Hj(curl; Q) := {n € Hy(curl;Q;), curln = 0 in Q;} (In the sequel we are
going to tag spaces of irrotational vectorfield by a superscript 0.).

We point out that apart from (14), (15) there are several alternative variational
formulations of the eddy—current problem utilizing various scalar and vector potentials
(see e.g. [17,19]). Regardless of the model used, the governing equations for the vector
potentials give rise to problems similar to (14).

2.3 The time—harmonic case

Now, all the quantities occurring in Maxwell’s equations (1), (2) are assumed to feature
a sinusoidal dependence on time with a fixed angular frequency w > 0. Then, we have
the representation

E(x,t) =R (E(a:) exp(iwt)) reQteR,
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with a complex amplitude EcH rp(curl; ©2). Thus we can switch to the frequency
domain and end up with [25, 71]:

Seck E € Hr, (curl; ) such that
-1 o ~ 2 1~ 1w = ~ Y
u - curl E curln — (w€E,n —|—Exn,nxn = f(n) (16)
0;Q2 0;Q 0.7 4

for all (complex—valued) test functions n € Hrp,(curl; Q) and some functional f €
Hr, (curl; Q). The coefficient € := € — 0/iw stands for a complex dielectric constant.
In this presentation we will consider the time-harmonic problem only for lossless
media, i.e. 0 = 0, which renders ¢/ = e. However, we want to stress that the methods
exposed in this paper work for the general case as well.

In contrast to the previous cases, the symmetric variational problem(16) is indefi-
nite due to the negative weight of the zero order term. Moreover, (16) may not have a
solution at all, if w? happens to be equal to an eigenvalue of the curl i curl-operator.
For a detailed discussion concerning existence and uniqueness of solutions we refer to
25, 28]. For the remainder of the paper we will take for granted that (16) has a unique
solution.

Let us summarize the different models: In each case we finally came across a
variational problem of the form:

Seek E € Hrp,(curl; ), real valued or complex valued respectively, such that

a(E,n) = (acurl§, curln),q + (BE,n)uq + (VE X n,n X n)op, = f(n)  (17)

for all n € Hr,(curl;(2) and a suitable right hand side f(n) = (f,n), with f €
L*(Q).

Throughout, o« € L*(Q2) has been uniformly positive, whereas § > 0 only for
models in the time domain. In the frequency domain S turns out to be uniformly
negative. In this case v is an imaginary constant, otherwise v > 0. Anyway, the chief
message of the above discussion is that the proper discretization and efficient solution
of problem (17) is a core task in the numerical simulation of electromagnetic fields.

3 Finite element discretization

For the discretization of the variational problem (17) we rely on Hrp,(curl;)-
conforming finite element schemes. In order to construct the finite element spaces
we first equip the computational domain €2 with a tetrahedral and/or hexahedral tri-
angulation 7T, consisting of elements 73,7 =1,... , Nj. Curved elements are not ruled
out, but, as usual, we demand that the elements are uniformly shape regular in the
sense of [36], i.e., they must not be severely distorted. Moreover, the Dirichlet part T'p
of the boundary is assumed to be the union of complete faces of elements.

A vectorfield that is piecewise smooth with respect to 7Tj belongs to H (curl; ), if
and only if its tangential components across interior faces are continuous [78]. This is a
natural requirement for an approximation of the electric field E, which sports exactly
the same continuity properties. Yet, it takes a judicious choice of local polynomial
spaces and degrees of freedom to ensure those conformity conditions.
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The credit for introducing H (curl; ©)-conforming finite element schemes into nu-
merical simulation goes to Nédélec [78, 79], though similar devices had been invented
earlier for theoretical purposes [94]. The latter work pursued the construction of dis-
crete differential forms, a perspective that proves particularly rewarding [23, 26, 27].
To appreciate this, recall that Maxwell’s equations allow for a very concise formulation
in the calculus of differential forms [6], with the electric field being related to 1-forms.
It turns out that the point of view of discrete differential forms offers a rather simple
and elegant description of the finite element schemes [53].

Two main classes of finite elements in H (curl; Q) are known, Nédélec’s elements
of the first kind [78] (“type—1") and those of the second kind [79] (“type—-1I"). For the
former, the local representation on a tetrahedron 7' looks like

ND(T) = (Prr(T))" +{p € (P(T))”; (p(x),x) =0,V& €T}

where k € N denotes the polynomial order of the ansatz. The symbol Py (T') refers to
the space of polynomials of degree < k over T'. For the lowest order case £k = 1 this
leads to the representation N'D1(T) = {x — a+bx x, a,b € R*}. On a hexahedron
T aligned with the coordinate axes the local finite element spaces read

NDk(T) = qu,k,k(T) X Qk,kq,k(T) X Qk,k,kq(T) )

where Qp, k, 15(1') is the space of polynomials of degree < k; in the ith coordinate
direction, 7 = 1, 2, 3.

In contrast to these incomplete local spaces, Nédélec’s elements of the second kind
employ full polynomial spaces to approximate each component of the field locally:
This means that

ND(T) = (Pe(T))’  and ND(T) = (Qusi(T))’ ,

for a tetrahedron and hexahedron, respectively.

The global degrees of freedom must both supply a unique characterization of a
finite element function and ensure that the appropriate matching conditions at in-
terelement boundaries are satisfied. Please note that point evaluations — suitable
degrees of freedom for H'(€)-conforming finite elements — are pointless for want of
global continuity; on spaces of 1-forms, with which we are dealing, path integrals are
the natural functionals. Thus, in the lowest order case k = 1, we pick (weighted) path
integrals along edges of elements as degrees of freedom: For lowest order Nédélec—
elements of the first kind built upon a mesh 7 the degrees of freedom are defined
by

£— / (&(s),t) dU'(s), eedgeof Ty . (18)

Here t stands for the unit tangential vector along e. Please note that the edges have to
be endowed with an orientation before an evaluation of (18). Additional first moments
of path integrals along edges are introduced as degrees of freedom for type-II elements.

The form of the degrees of freedom accounts for the widely used term “edge ele-
ments” coined for H (curl; 2)—conforming finite element schemes. In higher order cases
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further moments of tangential components on edges and faces as well as moments over
the whole element occur as degrees of freedom [49, 78].

It can be shown [53, 78] that the degrees of freedom associated with a face com-
pletely determine the tangential components of the finite element vectorfield on that
face. Hence, global H (curl; 2)—conformity is guaranteed and the construction of the
global finite element spaces is accomplished. We adopt the notation N'D(7) for an
edge element space of polynomial order £ and of either kind based on the triangulation
Th.

Dirichlet boundary conditions are easily incorporated by just the values of degrees
of freedom associated with edges on I'p. Thus we get the finite element subspace
ND;r,(T) of Hr,(curl; Q). In the lowest order case its dimension evidently equals
the number N, of edges of T, not contained in the closure of I'p (for type-I) or twice
that number (for type-II).

The edge element spaces should not be branded “exotic” [72], since they feature
all desirable properties of standard finite element spaces:

To begin with, they possess locally supported basis functions at worst confined to
the union of elements sharing an edge. Moreover, these basis functions have simple
representations. For simplicial meshes the formulas are based on the barycentric co-
ordinate functions [99]. As the entries of the N.j x N, stiffness matrix A, related
to (17) arise from plugging these nodal basis functions into the bilinear form a(-,-),
their computation is straightforward. Also, it is clear that A, displays the customary
pronounced sparsity of finite element matrices.

Secondly, edge elements form affine families of finite elements (cf. [36]), since the
local spaces can be obtained from a polynomial space defined on reference elements
through an invertible transformation that leaves the values degrees of freedom unaf-
fected. This particular transformation is the following covariant mapping of vectorfields

78]
¢, (z) = DO (z)(€, 0 D) (z) €T, (19)

where @ : T"+— Tis a diffeomorphic mapping of the element T onto the reference ele-
ment 7. This offers a second option for the efficient assembly of A, via transformation
formulas. Furthermore, thanks to affine equivalence, isoparametric edge elements are
readily available, implicitly defined by the mapping ®.

Thirdly, the approximation properties of edge element spaces are as good as one
can expect of a scheme whose local spaces comprise all polynomials of a certain degree.
More precisely, if a quasiuniform triangulation of meshwidth A is assumed, we get for
type-I edge elements of order k and 0 < s <m < k

lnf U - S S C’hm*S U m ) U c Hm Q
nheNDk(Th)H Enlla o) U] m Q)
inf curl(U — s < Ch™s|lcurlU|| ;mion, curlU € H™(Q) .
MEND(T;) feur( &l o) I ez 0 (22)

(20)

Applying Cea’s lemma [36], we immediately arrive at a priori error estimates for the
discrete variational problem (17) in the positive definite case. A more detailed inves-
tigation of the approximation properties of edge elements for various problems arising
from Maxwell’s equations can be found in [71,72]. In [67,81] the error introduced
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by discretization in time is taken into account, as well. An analysis of the p—version
of edge element schemes is carried out in [73]. Numerical dispersion occurring when
approximation the vector wave equation by means of edge elements is investigated
in [75]. [74] studies superconvergence that has been observed on regular hexahedral
grids. [26] deals with coupling edge elements and boundary elements. Edge elements
have also been combined with H (div; 2)—conforming “face elements” to discretize the
first order equations (1) and (2) [66].

Apart from these “normal” features, edge elements are exceptional concerning
the existence of discrete potentials: For the continuous case it is well known that
irrotational vectorfields on simply connected domains can be represented as gradients
of scalar potentials (see [49, Thm. 2.9]). This entirely carries over to the discrete setting
(see [53, Thm. 20]).

THEOREM 3.1 (Discrete potentials). For simply connected 0 and I'p being a
simply connected part of the boundary 02 we have for type—I edge elements and all
k>1

NDr,(Th) N H(curl; Q) = grad Skrp(Th)

where S, (Tn) C H%D (Q) denotes the space of Lagrangian finite elements of degree
k vanishing on I'p.

On topologically more complex domains the assertion of the theorem has to be
altered into

NDyr,(Th) N H'(curl; Q) = grad Skrp(Th) ® O(Th) (21)

where O(T,) is some space of small dimension, which can be chosen to be L?(2)-
orthogonal to grad Sy r,(7,). Based on Thm. 3.1, the representation (21) can be
established by means of a cutting plane technique applied to the mesh T;. A closer
scrutiny reveals that dim O(7},) is a topological invariant [48]. We have demanded that
Tr, resolves the topological features of ). As a consequence, the dimension of O(T}) is
independent of the actual mesh.

The gist of Thm. 3.1 is that scalar potentials of curl-free vectorfields from
Nédélec’s spaces are proper finite element functions themselves. In other words, dis-
crete potentials are always computationally available. This is a unique trait of edge
elements, which is deeply rooted in their close relationship with 1-forms. Of course,
for any other H (curl; Q2)-conforming finite element space the mere existence of scalar
potentials is guaranteed. However, they remain elusive, as, except under very special
circumstances, no convenient finite element representation can be found.

Since edge elements were suggested there has been a debate on why they should be
preferred to approximating each component of the electric field by means of classical
Lagrangian (“nodal”) finite elements. This alternative approach already yielded second
order accuracy in the simplest case and seamlessly fits traditional codes. Since we
firmly champion edge elements, we want to present the main reasons in their favor:

1. Edge elements are hardly more costly computationally than nodal elements. This
is obvious for hexahedral grids and on tetrahedral meshes enhanced sparsity of
the matrix offsets the slightly increased number of unknowns [25].



12 R. Beck, P. Deuflhard, R. Hiptmair, R.H.-W. Hoppe, and B. Wohlmuth

2. Boundary conditions for tangential components can easily be implemented for
edge elements, as explained above. Conversely, nodal elements run into difficul-
ties when confronted with edges and corners of 0S2.

3. In the presence of reentrant edges, there might be solutions of (17) that cannot
be approximated by nodal finite elements at all. As shown in [39], (H'())?
is a genuine closed subspace of H(curl; Q) N H(div; Q) in this case. Thus,
the only way to get an accurate solution is to use edge elements, unless one
supplements the nodal finite element space with particular singular solutions [21]
or relaxes continuity requirements [82]. Moreover, if unphysical total continuity
of the electric fields at material boundaries is enforced, the consistency of the
approximation is destroyed [25].

4. Concerning eigenvalue computations for the curl curl-operator, it is well known
that approximations based on H!(€)-conforming finite elements are haunted by
“spurious modes” [25]. Though not fully understood, this phenomenon hints at
a profound instability of nodal elements. Edge elements help to avoid these and
perform superbly on any kind of mesh [20].

5. As will become clear in this paper, the existence of potentials in a simple finite
element space is the key to the construction of highly efficient adaptive mul-
tilevel schemes for the variational problem (17). Only edge elements meet this
requirement unconditionally.

Remark. We point out that there is a close link between the hugely popular Yee’s
finite difference scheme [76, 98] and the finite integration technique, respectively, and
edge elements on hexahedral grids. The connection is established by considering a
lumped method, which relies on the second order accurate quadrature rule based on
the vertices of the elements. Applying it to evaluate the entries of the stiffness matrix
for (17) in the case of constant coefficients, we get the same matrix as for the above
mentioned discretization schemes [72].

4 Helmholtz—decompositions

A field where adaptive multilevel techniques have been applied with tremendous suc-
cess is the numerical solution of elliptic boundary value problems. It is their very
feature of ellipticity that makes these problems particularly amenable to the above
mentioned type of schemes.

In an intuitive sense, ellipticity of a linear differential operator means that when
applied to harmonics it effects an amplification that is a monotonically increasing
function of the frequency only. Crudely speaking, this implies a virtual decoupling of
smooth and oscillatory functions.

In a formal sense, for a linear second order differential operator L with associated
bilinear form I(-,-) : V. x V — R, V C H*(Q), ellipticity is distinguished by the
estimate

U, w) > allulfng YueV (22)
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for some constant o > 0. This means that L behaves like the Laplacian A when acting
on oscillatory functions.

What about the ellipticity of the operator A related to the bilinear form af(-,-)
from (17)? Let us temporarily consider the positive definite case and, in particular,
consider « =1, f =1, and v = 0. Then, in the sense of distributions we get

A = curlcurl+Id .

Obviously, A agrees with the identity mapping on the null space H°(curl; Q) of the
curl-operator. As H"(curl; Q) contains any gradient, it is teeming with oscillatory
functions, whose H ' norms can be arbitrarily large compared to their L? norms. This
spells a blatant violation of (22).

However, taking into account that for sufficiently smooth vectorfields

A=-A+graddiv+Id,

we see that the Laplacian is actually hidden in A; it emerges, once we restrict A
to divergence—free vectorfields. Those are characterized as being orthogonal to any
gradient in grad H¢ (). Now, recall that these gradients form the bulk of H°(curl; Q).
In particular, since grad HE () C H}._(curl; Q) we may tersely write

A=—-A+Id on Hf (curl;Q), (23)

where we adopted the notation H %D(curl; Q) for the orthogonal complement of the
nullspace of curl in Hr, (curl;2). Thus, we recover ellipticity in a strict sense on
H{ (curl;Q). To put it rigorously, one can prove [49, Thm. 3.9] that on convex
domains H 5, (curl; Q) ¢ H'(Q2) and for an a > 0

la(n, )| > a ||77||§11(Q) V1 € Hpg(curl; Q) .

With the H/2(€2)-norm instead of the H'(2)-norm, this result is valid for general
Lipschitz—domains [3, Thm. 2.17].

It remains to deal with the nullspace of the curl-operator. In order to obtain an
elliptic problem, we exploit potentials: First it is immediate that (x tags the adjoint
of an operator)

grad* oA ograd=A in H} (Q). (24)

In general, we have HY. (curl;Q) = grad H{ () + O(Q) with dimO(Q) < oo.
Ignoring the “small” space O(f2) for the moment, (24) instantly cures the lack of
ellipticity on the nullspace of the curl-operator.

These considerations illustrate that we can arrive at neat second order elliptic
problems by treating the two components of the a(-,-)-orthogonal splitting

Hr,(curl;Q) = H} (curl;Q) & Hy (curl; Q) (25)

separately. In a slight generalization of the term, we refer to (25) as the Helmholtz—
decomposition of the function space. It is a powerful device in the analysis of numerical
schemes for Maxwell’s equations [67, 71, 81].
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So far, we have stuck to the continuous setting. In principle, the arguments elab-
orated above, remain valid for the discrete problem. This is immediate, as far as the
nullspace of the curl-operator is concerned: Thanks to the representation theorem
3.1, the lifting (24) whisks us into a very handy finite element space: For lowest order
type-I edge elements, we get

grad® o A, o grad = Ay, , (26)

where A, agrees with the discrete Laplacian generated by piecewise linear, continuous
finite elements Sy 1, (7). Again, we stress that without simple discrete potentials, A,
in (26) would correspond to the Laplacian in some awkward piecewise polynomial
space which not necessarily is a proper finite element space at all.

Issues concerning the orthogonal complement are more disturbing, as the discrete
orthogonal complement N’ ’DiFD(Q) of ND 1 (Q) itself is utterly inaccessible. We
just point out that no locally supported basis of N ’DfFD(Q) is available. Even worse,
computing functions in this orthogonal complement is prohibitively expensive. Simi-
larly daunting is the fact that N’DipD (Q) ¢ Hy (curl; Q) which thwarts (23) in the
discrete setting.

Yet, our objective are algorithms whose very soul is the idea to approximate the
inverse of the discrete operator A, and to do so uniformly well, no matter what
the meshwidth is. Thus, exact orthogonality should not be quintessential; functions
T, € N Dir,(2) that are “sufficiently” orthogonal to the nullspace will do. All we
have to make sure is that the angle between 7, and N'DY [ () is bounded from
below independently of h.

What are promising candidates for such functions? It turns out that we can simply
rely on the nodal basis functions. A crucial clue is offered by the estimate

HseHO;Q < Ch@ chrlgeHO;Q ) (27)

where &, is the edge element basis function belonging to the edge e, h. =
diamsupp(&,), and C' > 0 is a constant that can be chosen independently of e.
The estimate (27) implies that for a quasiuniform mesh with meshwidth A the an-
gle Z(&,,ND}} (Q)) — 7/2 + O(h). The bottom line is that on fine meshes the

nodal basis functions are very close to N DiFD ().

5 Adaptive grid refinement

Our ultimate objective is to compute an approximate finite element solution of the
continuous variational problem matching a prescribed accuracy with minimal com-
putational effort. A decisive part of this endeavor is the construction of “optimal”
triangulations, providing a desired accuracy of the finite element solution with as lit-
tle elements as possible. Of course, there are many ways to measure the quality of a
discrete solution. We will rely on global integral norms for this purpose, in particular
the energy norm ||| , induced by the bilinear form a(-,-) in the s.p.d. case. Then, a
solution E, passes as acceptable, if the energy norm of the error x := E — FE}, is below
a fixed tolerance 7.
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Usually, electromagnetic fields display pronounced local features, e.g., singularities
at material interfaces. To maintain the overall accuracy of the finite element solu-
tion without wasting computer resources, locally refined meshes are indispensable. Of
course, a nearly optimal mesh cannot be constructed all at once, but has to be built
through a process of gradual improvement:

Given a mesh Ty and a related solution E g of the discrete variational problem,
we need an element—oriented local a—posteriori estimate ny of the norm of the error
on each element T € Ty, i.e. np = ||x||ar. Obviously, summing up the squares of
the local quantities 77 supplies an estimate for the norm ||x||% of the global error. If
x| < 72, we can quit the process.

Otherwise, elements for which n% > 0 &, (o is a safety factor in ]0; 1[) are marked
for refinement. Popular strategies to obtain the threshold &, are the maximum, the
mean value or the more complicate extrapolation strategy. In the case of the mean
value strategy the threshold value is defined by

1
Etol 1= o Z 7

TeTy

and the safety factor o is chosen as ~ 0.95. Here, ny is the number of elements of
the triangulation 7. The common idea behind these strategies is to strive for an
equidistribution of the error. Please note that we owe the possibility to combat large
errors in small regions by local refinement at those very sites to the ellipticity of the
problem.

Now, the issue is how to refine a marked element. For hexahedral elements this
is easily achieved by cutting it into two, four, or eight parts. The situation is more
involved for tetrahedral meshes. In this case, we may resort to the bisection algorithm
of Bénsch [5], extending the 2D concepts of Bank et al. [7], which divides each marked
element into two subelements. We may also use the refinement techniques proposed
by Bey [16], where each marked element will be decomposed into eight subelements.
Then, special precautions can be taken to avoid “hanging nodes”, but those can easily
be dealt with by plain interpolation of the finite element functions. Both strategies
guarantee that the shape regularity of the triangulation is inherited by the new mesh.
Moreover, they lead to nested meshes Ty < Ty, for which each element of Ty is the
union of elements of 7j,.

Once the refined mesh 7, is available, we can assemble and solve the related linear
system of equations. This yields a presumably improved discrete solution E, and
another cycle of adaptive refinement can be carried out. Eventually, we end up with
a sequence 7o < Ty < ... < Tp, L € N, of nested meshes.

Despite adaptive refinement, a reasonably accurate discrete solution of a three—
dimensional problem may still require scores of degrees of freedom, which rules out
using direct solvers, except, perhaps, on 7q. Instead iterative solution methods should
be used for the large sparse linear systems. Besides, by interpolating the approximate
solution from 7;_; onto 7, we can get a good initial guess. This nested iteration strategy
[51, Ch. 5] finally tips the balance in favor of iterative schemes.

However, we have to control the inevitable iteration error. The most plausible
approach is to demand that the norm of the iteration error should be smaller than
27P times the estimated error norm on the previous level. This appears reasonable for
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a scheme of approximation order p in the energy norm; lowest order edge elements
are a first order scheme. Of course, a generous security margin, introduced by some
security factor p, 0 < p < 1 is advisable. Strictly speaking, the iteration error enters
the estimate for ||x|| . Yet in the remainder of the paper, we will neglect it.

6 A posteriori error estimation

Ideally, an a-posteriori error estimator should match three conditions which are in
general conflicting:

1. It should be local: The estimator can be written as the sum of local contributions,
and the computation of the local contribution n7 for an element 7" must be cheap
in the sense that it relies on only a fixed small number of nodal values of the
approximate solution.

2. It should be reliable: This means that the estimate 7 for ||| , satisfies ||x||, <
C'n with a constant independent of the mesh. This property ensures that very
inaccurate solution are not accepted.

3. It should be efficient: ||x|| 5.5, = Cnr, where C' > 0 must not depend on the
mesh. Here, ||-|| ., denotes the energy norm restricted on a small neighborhood
of T'. Then, unnecessary refinement is suppressed.

Sometimes it is also interesting to obtain an error estimator which is asymptotically
exact, i.e., the ratio between true and estimated error tends to one with an increasing
number of refinement steps. Such an error estimator guarantees that a given accuracy
can be reached within the adaptive multilevel algorithm using an almost minimal
number of unknowns.

For the sake of simplicity, we restrict ourselves to the lowest order case, k = 1,
of Nédélec—elements of the first kind and to I'p = 0€2. In addition, the existence of
discrete potentials is assumed for all irrotational edge element vectorfields. Yet, our
results can be easily extended to more general situations, higher order elements or
elements of the second kind. As for the space O(Ty), it can safely be ignored for the
purpose of a—posteriori error estimation, since a basis of this space is always contained
in the finite element space. This will be discussed in greater detail in subsection 7.1
in a different context. Further, we only consider cases where 3 is uniformly positive.

The semidefinite case can be easily included by ignoring information about the
irrotational components of the error in regions where § = 0. The fully indefinite case,
where [ < 0 defies a rigorous theoretical treatment, as we do not have a “natural” en-
ergy norm induced by the bilinear from a(-, -) at our disposal. However, the techniques
presented below may still be applied successfully, if the ratio ||/« is moderate. A more
quantitative analysis will be postponed to subsection 7.4. Anyway, under these circum-
stances we can still use the local contributions 7y to control the refinement process,
though reliability and efficiency is no longer guaranteed. To hint at these shortcomings,
the term error indicator has been introduced.

In the spirit of Sect. 4, we aim to draw on firmly established concepts for
a—posteriori error estimators for second order elliptic problems. Naturally, the
Helmholtz—decomposition of the function space comes into play, which gives rise to an
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a(+, -)-orthogonal decomposition of the error x := E — E},, where E € H yq(curl; Q)
and Ej, € N'D; pq(T;,) are the continuous and discrete solutions of (17), respectively:

x=x"+x" x"€ Hjy(cur;Q), x* € Hjy(curl; Q). (28)

Thanks to (26) and the existence of discrete potentials in Sy gq(75), well known er-
ror estimators for the discrete diffusion operator div(/5 grad -) instantly furnish good
estimates for ||x°|| ;.

To tackle x*, we recall that on the weakly solenoidal part of the Helmholtz decom-
position the bilinear form a(-,-) is elliptic. This motivates our policy to obtain local
estimates for x* by means of slightly modified standard strategies. Two of those will
be discussed in the following subsections. Several others, like everaging error estimators
[10,102], are not covered in this presentation.

Remark. The idea to use the Helmholtz—decomposition for the design of error
estimators is a valuable guideline beyond problems in H (curl; ). Its relevance was
first realized for problems in H (div; Q) [2,57].

6.1 Residual based error estimator

This kind of error estimator is based on an appropriate evaluation of the dual norm
of the residual as a continuous linear functional. The concept of residual based error
estimation has been introduced in an early work of Babuska and Rheinboldt [4] and has
been further developed and analyzed by various authors [22, 46,62, 89, 90]. Originally,
introduced for standard conforming discretization schemes for elliptic equations such
estimators have been extended within the last few years to nonconforming and mixed
discretizations, as well as nonlinear applications and parabolic problems see e.g. [2,
34,47,56,57,59,60,62,96]. For a more general approach concerning error estimators
based on dual norms, we refer to [13, 14, 45].
The starting point is the continuous defect problem

a(x;n) =r(n) = f(n) — a(Enn), 1 e Hg(curl; Q). (29)

Here, the residual r depends only on the right hand side f of (17) and the finite element
solution Ej. By means of the a(-,-)-orthogonal splitting (28), (29) can be converted
into two separate defect problems on the spaces H Y, (curl;Q) and Hz,(curl; ),
respectively: Find x° € HY,(curl; Q) such that

(BX"1°) 0., = [(1°) = (BEwM") s m° € Hgg(curl; Q) (30)

and find x* € Hz,(curl; Q) such that for all x* € Hz,(curl; Q)
(a curle,curl'r]l)O;Q + (Bxl,nL)O;Q = f(n*) — a(Ey,nt) . (31)
According to this splitting the local contributions nr of the error estimator

will be given by n2 = (n%)? + (n7)?. Here, n% and n7 are the local contributions of
n° and - which will yield upper and lower bounds for [ x°| , and || x| ,, respectively.



18 R. Beck, P. Deuflhard, R. Hiptmair, R.H.-W. Hoppe, and B. Wohlmuth

Exploiting representations through potentials in H 3, (2) to deal with (30) we end
up with the same variational problem as for a standard diffusion equation: We set
X" = grad ® where ® € H},(Q) satisfies

(Bgrad @, gradv),, = f(grady) — (BE,, gradv),q, o € Hypo().  (32)

Now, the well-known techniques for the Laplace operator and a standard conforming
FE discretization in S; 9a(75) can be applied [90]. For the element T' € T}, the local
contribution 7% to the estimator for the curl-free part of the error turns out to be

2hpBr,

B
= G AVEE )l + 3 FE

FcoTnQ

I, BE) — T f )5 -
(33)

Here, [-]; stands for the jump of a functions across the face F'. hy denotes the diameter
of the element T' € T, and hp stands for the diameter of the face F'. I1; is the projection
onto piecewise linear vector fields. The weights 87 and 7, depend on the coefficient
[B. They are chosen as the maximum of § restricted on 7" and T, where Tx is the
neighbor element of T" sharing the face F'.

The first part of 7% in (33) is associated with the strong form of the variational
problem (32). In the second part the jump of the normal components comes into play.
It turns out that the error estimator depends only on the available finite element
solution E}; and the right hand side of the original problem. If the coefficients are
piecewise constant, we have to compute the corresponding values only in the centers
of gravity of the elements and of the edges. Thus, the numerical computation of 1% is
very cheap.

Keeping in mind that (31) is a truly elliptic variational problem, we proceed in
perfect analogy to the case of a second order elliptic diffusion equation. Since the
second order term is associated with the curl-operator, we apply Green’s formula
to (a curl £, curl nl) o0.q- As in the standard conforming case, it is then sufficient
to use Galerkin orthogoflality and an appropriate local quasi-interpolation operator
P, which has to satisfy local approximation and stability properties. We may use an
analogue of the interpolation operator of Clément [37] or simpler projection operators
(80, 85]. This gives us reliability. To confirm efficiency we make use of cubic and quartic
bubble functions having a local support and inverse inequalities for polynomials. For
a detailed proof we refer to [11].

Eventually, we arrive at the following expression for n:

2 _(hE 1
o =i (1. ) [ curlg, + 5B ~ )l +
ar’ SBr
QhFOéT
> mmn X gplilloe - (34)
Fcorno L Tr
The weights correspond to those given for 5% and g, := acurl E;. We recall that

in the lowest order case the term curl a curl E}, is vanishing for a piecewise constant
coefficient a.. In contrast to n%, the first term is the norm of a linear function whereas
the second is the norm of a constant if the coefficients are piecewise constant. Thus,
the norms can be evaluated by using low order quadrature formulas.
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Altogether, we obtain the following upper and lower bounds for the error E — E,
in the ||-|| , norm [11]:

CR1 — Chighhigh < || E — Ep|| 4 < Crn + Chighhign

where in general the term 7y, is of higher order and can therefore be neglected, if the
triangulation is fine enough. We note that for each triangulation there is an example
where this term is dominant and the error estimator fails.

6.2 Hierarchical error estimator

Hierarchical basis error estimators are well-known for standard conforming discretiza-
tions [8,40,43,90]. They are based on a defect correction in a higher order space and
a hierarchical two-level splitting. An excellent overview of different techniques can be
found in [22,90] (see also the references therein).

There are basically two ways to obtain such an error estimator. Using the ideas of
Deuflhard, Leinen, Yserentant [40], the resulting continuous defect problem is first
discretized and then localized. The second possibility follows Bank and Weiser [§],
where the defect problem is first localized and then discretized. These concepts have
been generalized to nonconforming discretizations, [58,95], mixed Raviart-Thomas
discretizations, [1,29,57,60] and the Stokes problem [9, 88]. In this section, we present
a hierarchical basis error estimator which is based on a defect correction in an appro-
priate higher order space, a hierarchical splitting, and, finally, localization techniques
(cf., e.g., [8,40,90].

A characteristic feature of hierarchical estimators is that they are based on satu-
ration assumptions. These assumptions are in general justified to some extend by a
priori estimates. We assume that there is a constant 4 < 1 independent of h < hq such
that the following inequality holds

1B = Es 4 < 0u[lE — Enll 4, (35)

with 6, < § < 1 where Ey € N'Dyyq(Ts) is the finite element solution of the varia-
tional problem (17) on N'Dy q(Tr,). We recall that (35) always holds with a § < 1. In
fact if the solution E is smooth enough, we expect that ¢, tends to zero with decreas-
ing h, i.e., for an increasing number of refinement levels. Under the assumption (35)
it is sufficient to consider E), — E5 to obtain upper and lower bounds for || E;, — E|| ,.
In addition, E;, — E5 satisfies the following global discrete defect problem

a(Ey — Ey,m) =r(n), 1n€ND(Th) (36)

and the residual 7(-) is defined as in the previous subsection. Solving (36) is pro-
hibitively expensive. However, for the error estimator it is sufficient to obtain an
approximation E, of Ey — Ej, which has an equivalent ||-|| , norm and at the same
time can be easily computed. A first step towards the definition of E ., is the hierar-
chical two-level splitting of N D3 sq(Ty). How this looks like on the element level is
depicted in Fig. 1.

Here, Sy(T') is the hierarchical surplus of the standard quadratic elements
and J\f/;’f)j(T) = {& € NDy(T)| (&) = 0, eedgeof T}. The Helmholtz—
decomposition of the quadratic surplus is conspicuous in this splitting: The irrota-
tional part corresponds to A%S(T) and ./\7’5: (T) is close to the weakly solenoidal
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Figure 1: Degrees of freedom and hierarchical two-level splitting of the local ansatz space.

—— 0 —— |
component. Note that we have no orthogonality between N'D,(T) and N'D, (T),
since N Diaﬂ('ﬁl) is not available. Yet the basis functions spanning J\%;(T ) are
sufficiently orthogonal to the nullspace of the curl-operator. Thus, a strengthened
Cauchy-Schwarz inequality holds with a constant independent of T € T;, and the
mesh 7. The local splitting from Fig. 1 implies the following global decomposition:

NDsp0(Th) = NDyoo(Tr) & grad S.00(T) & N'Dy 50 (Th) (37)

~ — 1
where S, 9o (75) is the global quadratic hierarchical surplus and N D, po(Th) =1{€ €
ND, p0(Th)| (§,1). =0, e edge of Tp}.

Now, we neglect the coupling between the three different global subspaces and
replace the bilinear form a(€, x) in (36) by

a(€,x1) +al€hxs) tal€y,xy), €=&+&+&, X=X1+X3+ Xz,

where €, X1 € N'D1,50(Th), £, X3 € grad S, 90(T5) and €5, X5 € ND;m(’ﬁl). The
solution of the modified variational problem is still equivalent to E 5 — E},. This can
be proven by a strengthened Cauchy-Schwarz inequality between the three subspaces.
In addition, the structure of the modified variational problem is very simple. It turns
out that it consists of three independent variational problems. Taking into account the
Galerkin orthogonality, we obtain that the solution of the defect problem restricted
on the original finite element space N D1oa(Th) is equal to zero. We arrive at the

following two remaining variational problems: Find ® € S, so(75) such that
(Bgrad @, grad ), = r(gradv), o € S00(Th) (38)
—!
and find 2y € ND, yo(Ts) such that

W(EL xt) = rxt), Xt € N Dy (39)

Then, under the saturation assumption (35), there exist constants 0 < cpier < Chier
independent of the refinement level such that

ler 1/2 Cler 1/2
2 (lgrad @l + [|Z511) < 12 - Bull, < 75 (lerad 0[5 + [|=5]3)

Both global variational problems (38) and (39) give rise to a stiffness matrix which is
spectrally equivalent to its diagonal and its block diagonal matrix where each block is
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a 2 x 2 matrix, respectively. Therefore a further simplification is justified, and we end
up with the following definition of the local contribution 77 of the error estimator:

2
5 r*(grad ¢.) 1 _ 9
Ny = E + 3 E 1EF|-
eCOTNO nea(grad Pe, grad ¢6) 2 FCaTnQ

Here, ¢, is the quadratic bubble function associated with the edge e and n. stands
— 1
for the number of elements sharing the edge e. Finally, Ep € N'D, 5o(F) := {£ €

N
ND, 50(Th)| € = 0, F' # F} satisfies the two-dimensional variational problem:

W(Er, &) =1(€), € ND,(F).

In contrast to the residual based error estimator, we have to solve local low—
dimensional subproblems; one 2 x 2 problem for each face.

Remark. From an algebraic point of view, the error estimator coincides with the
correction resulting from a single block Jacobi step applied applied to the discrete
defect problem (36) with respect to the hierarchical basis implied by the decomposition
(37). The estimate of the error can be improved if we use several block—Gauss—Seidel
steps instead of one block—Jacobi step. Although the efficiency index, the ratio between
true and estimated error, can be expected to be better, according to our experience,
the adaptively generated triangulations will almost be the same.

7 Multigrid method

To make the adaptive approach competitive we urgently need a highly efficient iterative
solver for the finite elements equations on fine grids. In this context the notion of
“efficiency” implies two essential requirements [51, Ch. 5]:

1. A single step of the iteration should require a computational effort proportional
to the number of unknowns.

2. The rate of convergence must be well below 1 and must not deteriorate when
the (local) meshwidth becomes very small (asymptotic optimality)

The first criterion is naturally met by most iterative solvers like Gaufi-Seidel or
CG-variants that rely on purely local computations. Yet single-grid iterative methods,
which are by now largely used in commercial software for electromagnetic simulations,
inevitably fail on the second criterion (see [52]).

It is now common knowledge that for most elliptic problems there is one way to
accommodate both requirements: The trick is done by multilevel techniques, with
multigrid methods as their most commonplace representative (see [30,32,51] and the
references therein). To achieve their superior convergence, these methods rely on a
hierarchy of refined meshes. Obviously, they perfectly match the adaptive setting, since
the required coarse and fine meshes are automatically created during the refinement
process. This is another strong incentive to seek to marry the adaptive approach and
multigrid methods.
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Remark. The performance and robustness of multigrid methods can be enhanced
by using them as preconditioner for a Krylov—subspace iterative method like CG.
These gains often outweigh the small extra costs. Moreover, the preconditioned CG
method (PCQG) provides a cheap estimate for the iteration error through the size of
the residual.

7.1 Multigrid idea

In recent years a new understanding of multigrid methods for symmetric positive
definite variational problems a(u,v) = f(v), v € V has emerged (cf. ,e.g., [30,97, 100]).
According to this point of view each step of the iteration boils down to carrying out
successive corrections in subspaces V;, ¢ € {1,..., K} of the finite element space
Vi, C V (multiplicative Schwarz method). We get individual corrections ¢; € V; of
some intermediate approximation as solutions of the defect problems a(c;, v;) = r(v;),
v; € V;, where r stands for the current residual. Then one step of the iteration applied
to the approximate solution x;, € V), can be described by

Tp 4 T+ ¢y ale,v) = f(u) —alzp,v) Yy, €V, i=1,... K.

Hence, a multigrid method is fully specified, once the underlying subspace decompo-
sition Vj, = Zfil V; is known. If the dimensions of these subspaces are small, then the
computational effort still complies with the first criterion. To confirm that the second
condition is fulfilled, we have to establish a kind of uniform stability of the splitting
with respect to the energy norm induced by the bilinear form.

What turned out to be a very effective choice for second order elliptic problems dis-
cretized by means of standard Lagrangian finite elements, is a nodal multilevel decom-
position [80]. This refers to a decomposition that, except for the entire finite element
space on the coarsest mesh 7Ty, encompasses only the one-dimensional spaces spanned
by the nodal finite element basis functions on all levels of refinement. A closer scrutiny
reveals that an ordinary multigrid V—cycle can be recovered as a straightforward suc-
cessive subspace correction based on this decomposition [97]. The nodal multilevel
decomposition can be shown to be actually H'(2)-stable with constants independent
of the depth of refinement [30]. In a profound way this property is a consequence of
the ellipticity of the operator.

7.2 Multilevel decomposition

Now we focus on the bilinear form a(-, -) from (17) discretized by means of lowest order
edge elements of the first kind. In addition, in this section we do not allow negative
values of 3. To fix the setting, we assume that a sequence of nested triangulations 7;,
l=0,...,L, has already been created by repeated adaptive refinement.

To begin with, we know that a plain nodal multilevel decomposition is only suit-
able for problems of an elliptic character. Thus, a naive multigrid approach to the
H (curl; Q)-elliptic variational problem (17) is doomed: Taking into account the con-
siderations of Sect. 4 it is clear that both parts of the Helmholtz—decomposition have
to be taken care of by different splittings.

By and large (26) settles the issue for the irrotational vectorfields, because we can
simply copy the successful policy for second order elliptic problems: The conventional
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nodal multilevel decomposition of the discrete potential space immediately supplies a
the desired splitting of irrotational vectorfields, as far as they possess a representation
as gradients. Since a(grad ), grad ¢) = (B grad v, grad ¢),, the stability estimates
for second order elliptic problems remain fully valid for (17).

It remains to deal with O(7.), where the discrete potential space fails. How-
ever, in Sect. 3 we learned that dim O(7y) = dim O(7T;). Elementary linear algebra
then proves that O(7,) C gradSir,(7.) + O(Ty). Consequently, the coarse grid
space N D?ID(%) can already contribute all those odd curl-free vectorfields outside
grad S;r, (7). Hence, the final splitting of the irrotational part of the Helmholtz-
decomposition reads:

L
NDY L (T) =NDYp (To)+ Y Y Span{grad,} (40)

I=1 zeVpew

Here, we wrote 1, for the nodal basis function of S;(7;) perched on the vertex x. The
choice of the relevant vertices on level [, which form the set V"V, is inspired by the idea
of “local multigrid” (see [68]). Putting it tersely, no basis function must occur twice
(40). Thus, for big values of [, only nodes in regions where massive adaptive refinement
has taken place are incorporated into V*V. Unless such a strategy is implemented,
overall efficiency might be squandered.

The recipe how to handle the orthogonal complement N ’DiFD(TL) has already
been outlined in Sect. 4. We have seen that we can count on ellipticity in this case
and therefore a multilevel nodal decomposition looks promising. As discussed before,
there are no locally supported basis functions exactly lying in N DfFD (7) and we
cannot require this for the splitting either. Yet, following the arguments in Sect. 4, a
satisfactory approximate splitting can be based on the edge element basis functions.
Consequently, we incorporate the one-dimensional spaces, spanned by edge element
basis functions on all levels of refinement into the multilevel decomposition. Again,
we have to avoid multiple occurrences of the same subspace by applying the “local
multigrid” selection criterion specified above: only those edges belong to the set £V
that either have been created in the [th step of refinement or whose associated edge
element basis function has changed.

One might object that the sum of all these subspaces is way too large, since it
agrees with the total finite element space, whereas the weakly solenoidal vectorfields
are no more than a subspace. However, note that in any nodal multilevel splitting
there is a massive “overlap” between the subspaces. Indeed, this redundancy accounts
for the excellent stability of the splittings [80]. It is rather desirable than worrisome
that the splitting extends beyond the targeted subspace.

Ultimately, by merging the splitting for both parts of the Helmholtz decomposition,
we arrive at

L L
NDir,(TL) = NDir,(To) + Z Z Span{&,.} + Z Z Span {grad ¢, } .

I=1 ec&pev I=1 zeVpe™

(41)

Thus far, the energetic stability of (41) can only be shown under restrictive as-
sumptions [54]:
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Initial guess: EL, right hand side &,
MGVC (1, € NDir,(Ti),5 € NDir,(T)
{
if (I==0) &, := A;'&
else

{
él — Sl(élvﬁl)
M1 <0

MGVC(l — 1,7, , R (c?l - Algz))

[Presmooth]

(€ € NDir,(T),d e NDir,(T)))
{

{ Gauf3-Seidel sweep on d.o.f.s
of A€, =& related to &MV

B — & — NE,
P17 Py
wl<—0

{ Gauf3-Seidel sweep on d.o.f.s

El +— El + Pl 7 of Aﬂ/_)} = p; related to VPV

& <~ S;(&,61) [Postsmooth] return &, + Tiy

Figure 2: Left: Recursive implementation of multigrid V(1,1)—-cycle for the discrete varia-
tional problem related to a(-,-). Right: Evaluation of the hybrid smoother §(&;,67).

THEOREM 7.1. We assume that Q C R® is convex and I'p = 0. If the sequence
(T)E, of nested meshes has been obtained by uniform refinement, then the decompo-
sition (41) of ND1r, (Tr) is stable with respect to the energy semi-norm induced by
a(-,-) with constants independent of the depth L of refinement.

However, the size of jumps of the coefficient functions o and  enter the constants
as well as their relative scaling.

7.3 Algorithmic aspects

From the algebraic point of view the multigrid algorithm is uniquely determined by
the decomposition (41). Yet the subspace corrections have to be implemented in a
multigrid fashion to achieve optimum computational complexity. The principal idea is
to avoid visiting the finest grid after each correction in the direction of a coarse grid
function. Instead the exchange of information between different levels of refinement
is effected by evaluating transfer operators (restriction, prolongation) [51]. This gives
rise to a multigrid cycle depicted in Fig. 2, left. Symbols with small arrows on top
designate coefficient vectors with respect to the canonical bases of the finite element
spaces.

The operators P!, : NDir, (1) = NDir,(T) and R : NDyr,(T) —
ND; r,(T;_1) designate the canonical intergrid transfers, prolongation and restriction,
in the Nédélec spaces, induced by the natural embedding of these spaces (see [51]).
They are transposes of each other and permit a purely local evaluation.

The distinctive feature of the method is the design of the smoother (-, ), whose
steps are described in Fig. 2. It might be dubbed a “hybrid” Gauf-Seidel smoother,
since smoothing sweeps both in the space of edge elements and the scalar potential
spaces S1 1, (7;) are carried out. In Fig. 2 A; stands for the linear operator (i.e. the stiff-
ness matrix) related to the bilinear form (¢, ;) — (5 grad ¢;, grad ¢),., in S1.r, (71).
The Gauf3-Seidel relaxation of any linear system is invariably supposea to be based
on the canonical bases of the finite element spaces.
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Let us take a closer look at the smoother .S; applied to &; with right hand side o;.
Its evaluation boils down to that part of the successive subspace correction related to
level [. Correcting an approximate solution in the direction of some edge element basis
functions just amounts to a plain Gaufi—Seidel sweep applied to a part of the stiffness
matrix A;.
As for the one—-dimensional subspaces spanned by the gradients of basis functions in
new

Si1,(Ti), alocal correction grad -y, € Span {grad i, }, € € V'V, of the intermediate
solution &, is obtained from

algrad v, grad V) = (o1 = A, grad v,)

)

Actually, this is a scalar equation, whose right hand side is calculated by evaluating
the residual, which is a linear form on N'D1 1, (7;), for the argument vector grad 1,,.
If the residual corresponds to the coefficient vector p = (p.). with respect to the
canonical dual basis of N'D1r, (7)), we get

(00— Ay gradi) = weop.. (42)

’ ec&;

The weights w, agree with the coefficients occurring in the representation of grad ¢,
in the basis of the edge element space. Due to the small supports of 1, only a few
w, are different from zero, namely those belonging to edges adjacent to . Moreover,
the non—vanishing weights are either +1 or —1, depending on the orientation of the
edge e. Thus, (42) can be implemented by summing up the weighted nodal values of
all edges sharing the vertex x.

For the sake of efficiency, it makes sense to rearrange the steps in which the com-
putation of the correction in potential space is carried out; the residual can be cal-
culated first, then it should be transferred to the dual space of Sy, (7;) all at once:
this amounts to the collective execution of the summing—up operation outlined above
and can be characterised as the transpose of the transfer operator 7} : Sy, (7)) —
ND, r,(T,) induced by the embedding grad S r,,(7;) C N D1, (T)).

If § = 0 in parts of the domain {2, some local corrections in potential space may not
be well defined. If we assume that o is piecewise constant and bounded away from zero
in supp(o), which it usually is in real-life applications, then there is a ready remedy:
The relaxation in Sy r,, (7;) has to be confined to ¢, such that supp(¢,) Nsupp(c) # 0.
This is natural, since outside supp(o)) the solution E of (17) is only unique up to an
irrotational vectorfield. We point out that given the restricted correction in potential
space, the multigrid algorithm can well cope with the semidefinite case.

The bottom line is that all steps of the algorithm involve purely local operations.
This ensures computational costs for a single multigrid sweep.

7.4 Multigrid in the indefinite case

If B < 0, ellipticity may not only be infringed by the presence of a large kernel of
the curl-operator, but also by negative eigenfunctions in its orthogonal complement.
Nevertheless we aim to stick to the multigrid scheme designed in the previous sections.
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Instead from the standard Helmholtz-decomposition now the analysis of the multi-
grid method should start from the a(-, -)-orthogonal splitting

NDir,(T) =ND{; (TL) 8 M @ M,

where M~ and M™ are the spaces spanned by eigenfunctions of A; belonging to
negative and positive eigenvalues, respectively. It is easy to see that corrections in
potential space are not affected in the indefinite case, as (26) remains valid. Conversely,
we have to worry about the viability of the splitting (41).

Experience and theory (cf. [31]) teach us that a multigrid scheme for indefinite
symmetric problems may perform well, if all vectorfields in M ~ can be well represented
on the coarsest grid. For moderate ratios 8/« an elementary Fourier analysis shows
that M~ only contains functions of long spatial wavelength.

To elaborate this further, we now focus on the time harmonic case, discussed in
subsection 2.3, i.e., @ = p~! and 8 = —ew?. For the moment assuming homogeneous
material (i.e., 1, € = const.), we conclude that a plane spatial wave E(x) = exp(ikx) -
€. can only coincide with a negative eigenmode, if |k|? < w?ue. In other words, its
spatial wavelength must be below a critical wavelength A¢c := 27 [w, /€.

According to Nyquist’s theorem, we need at least two sampling points per wave-
length to sample a sine wave. This heuristic gives us the following condition for an
adequate representation of negative eigenmodes on 7Ty: The length h, of an edge e of
the coarsest mesh 7y must satisfy

ho< 2o T

— 2 - w\/a )
where the maximal values of € and p in elements adjacent to e should be taken.

Note that on finer meshes the diameter of supports of nodal basis functions is well
below the threshold (43). Thus even a plain Gaufi—Seidel smoother is impervious to
the impact of negative eigenmodes, since for any &, we have a(€,,€,) > 0. This is,
because the dominant frequency components of £, belong to the space M™ spanned
by eigenvectors corresponding to positive eigenvalues.

In sum, the multigrid convergence should not be affected by the presence of nega-
tive eigenvalues, if the above requirement (43) is met. In many applications computa-
tions are done at moderately high frequencies. Then, the performance of the multigrid
method can be salvaged through sufficiently fine coarse grids without prohibitive costs.

As another precaution we can embed the V—cycle into a preconditioned conjugate
residual method (PCR) [52]. This CG-variant is suitable for linear systems of equations
with symmetric indefinite matrices. If the space M ~ is poorly handled by the multigrid
method, the CR-part may still effectively curb the error in M ™.

(43)

8 Numerical results

At best, the rigorous theoretical results about the properties of the multigrid method
and the error estimators provide norm equivalences with a guaranteed independence
of the constants of certain parameters. However, there is hardly any information about
the actual size of the constants. Moreover, rigorous theory fails in many cases relevant
for practical applications, though the algorithms might still work well.
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To offset these shortcomings of theoretical analysis it is badly recommended to
study the behavior of the schemes in actual computations. This can at least confirm
their viability for a few problems.

8.1 Multigrid convergence

We first study the convergence of multigrid V—cycles applied to (17) discretized by
lowest order type-I edge elements for several model problems. To begin with, we focus
on the case of regularly refined uniform hexahedral meshes. One Gauf3-Seidel sweep
is used for pre- and postsmoothing. We set the right hand side f = 0 and provide a
random initial guess. The rate of convergence is determined from the reduction of the
Euclidean norm of the error in the final of 15 multigrid iteration sweeps. To offset the
impact of randomness the average rate for two runs is calculated in each case.

The first exzperiment is carried out on a cube € :=|0; 1[*> and we impose homoge-
neous Dirichlet boundary conditions on all of ). The coarsest grid Ty comprises eight
equal cubes, which are successively regularly refined to create 71,...,7,. We inves-
tigate the case of constant coefficients o = 1, = const. The rates of convergence
are measured for different depths L of refinement and various ratios a//f to study the
influence of the relative scaling of the different parts of the bilinear form. The results
are recorded in Tab. 1 for the V(1,1)-multigrid cycle (and for the preconditioned CG
method, too). In addition, we monitor convergence in the absence of smoothing in
potential space to underscore that multigrid efficiency critically hinges on it.

We observe the uniform boundedness of the convergence rates as predicted by
the theory and, in addition, the robustness of the method with respect to a;//3. This
is particularly good news, since the method is to be employed in conjunction with
implicit timestepping. In this case vulnerability to dominant zero order terms would
impair the efficiency for small timesteps.

L [ 2 | 3 | 4 | 5 | 6 |
B=0.1 | 0.15 (5)[0.98] | 0.16 (5)[0.98]| 0.16 (5)[0.99]] 0.16 (5)[0.99]] 0.16 (5)[0.99]
B=05 | 0.15 (5)[0.97] | 0.16 (5)[0.97]| 0.16 (5)[0.98]| 0.16 (5)[0.98]| 0.16 (5)[0.99]
B=1.0 | 0.15 (5)[0.96] | 0.16 (5)[0.97] | 0.16 (5)[0.97]| 0.16 (5)[0.97]| 0.16 (5)[0.98]
3=20 | 0.15 (5)[0.96] | 0.16 (5)[0.96] | 0.16 (5)[0.96]| 0.16 (5)[0.97]| 0.16 (5)[0.98]
B=10.0 | 0.14 (5)[0.88] | 0.16 (5)[0.93] | 0.16 (5)[0.96]| 0.16 (5)[0.97]| 0.16 (5)[0.97]
B'=100.0 || 0.10 (4)[0.75] | 0.13 (5)[0.91]| 0.15 (5)[0.92]| 0.16 (5)[0.95] 0.16 (5)[0.96]

Table 1: Convergence rates for multigrid V(1,1)-cycle obtained in numerical experiment
1. (In brackets: Average number of PCG steps needed to reduce the Fuclidean norm of the
residual by a factor of 10°.) [In square brackets: Convergence rates without smoothing in
potential space. |

The second experiment relies on almost the same setting as the first, except for
the domain, which is the three dimensional non—convex “L-shaped” domain €2 :=
]0; 1[*/[0; 5]*. The outcome of the second experiment is documented in Tab. 2. Despite
the presence of a reentrant corner, we observe qualitatively the same behavior as in
Exp. 1. This hints that irregularly shaped domains do not affect the method much.
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We point out that the slight degradation of the multigrid convergence can be entirely
avoided if a PCG-method is used (see Tab. 2)

L [ 2 [ 3 [ 4 | 5 | 6 |
r=01 |[0.18(5) ] 0.19 (5)] 0.20 (5)| 0.21 (5)] 0.22 (5)
r=05 | 0.18(5) | 0.19 (5)] 0.20 (5)| 0.21 (5)] 0.22 (5)
r=1.0 || 0.18 (5) | 0.19 (5) | 0.21 (5)| 0.21 (5)] 0.22 (5)
r=20 || 0.17 (5) | 0.19 (5) | 0.21 (5)| 0.21 (5)] 0.22 (5)
r=10.0 || 0.16 (4) | 0.19 (5) | 0.20 (5)| 0.22 (5)] 0.22 (5)

Table 2: Multigrid convergence rates for Exp. 2. (In brackets: Required average number of
PCG steps to reduce the norm of the residual by a factor of 18.)

The third experiment is intended to probe the impact of strongly varying coefficient
functions. It relies on the setting of the first numerical experiment and uses g = 1.
The coefficient « for the second order term was chosen according to

[ oap ;foraxe]l/3,2/3°
a(x) = { 1 ; elsewhere in ]0, 1[? .

The results are given in Tab. 3 and they highlight the amazing robustness of the
method with respect to large jumps in the coefficient function a(x).

log  J10° [ 10* [10° [ 10 | 10" [107 ' [1072[ 103 [107* [ 107 |
L=2]015]017]0.16] 0.16] 0.16] 0.18] 020 0.20[ 0.20] 0.24
L=3]023]018[018]0.17] 0.17] 0.18] 0.20| 0.22] 0.21| 0.25
L=4]024]021][021]020] 0.19] 0.19] 0.22] 0.23] 0.22] 0.26
L=5]023]022[019]0.18] 0.17] 0.17] 0.22] 0.23] 0.23] 0.26

Table 3: Convergence rates for multigrid V(1,1)-cycle in the case of jumping coefficient o
(Exp. 3).

In the forth experiment the jump in the coefficient occurs in the zero order term, by
choosing f according to (44) and o = 1. Everything else remains unchanged compared
to the previous experiment. Tab. 4 illustrates the behavior of the rate of convergence.
It reveals satisfactory convergence regardless of strong variations in f(x).

(B J10° 10" [10° [10° | 10" [100' [102[103 [10°* [ 1077 |
0.32]0.22]019] 0.22] 020] 0.16 | 0.16| 0.16| 0.16| 0.16
0.30 [ 023 ] 0.23] 0.24] 0.22] 0.18 | 0.19] 0.19] 0.19] 0.20
0.25 [ 0.24 | 0.24] 0.26[ 0.23] 0.20 | 0.21| 0.21| 0.21] 0.21
0.25 [ 0.26 | 0.26 | 0.26] 0.24] 0.22 | 0.23| 0.23| 0.23] 0.23

O = WD

L
L
L
L

Table 4: Convergence rates for multigrid V(1,1)-cycle in the case of jumping coefficient (3
(Exp. 4).
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The fifth experiment was dealing with an even more challenging case of jumping
coefficients, described by 5 =1 and

L (7)) fora:EC'1UCQUC’3UC4
ofz) := { 1 elsewhere , (45)
where
0 lp NRLISICIINE
Cl —]0,2[ CQ _]271[ X]Ovz[
- 1o e Lk
C; .—]2,1[><]O,2[ C, .—]2,1[><]0,2[><]2,1[.

This particular arrangement of jumps is called non—-monotonous. Recent results reveal
that this type of jumps wreaks havoc to the convergence of standard multigrid for
second order problems [42].

The resulting rates of convergence are recorded in Tab. 5, as well as the iteration
counts for the preconditioned CG method. The message sent by the figures in Tab. 5
is daunting; little remains of the uniform rate of convergence in a practical range of
refinement levels. In this sense, our method behaves exactly like conventional multigrid
[42]. We also found that using the V-cycle in conjunction with a preconditioned CG
method does not cure the overall deterioration of the rates of convergence on finer
levels.

log  J10° [ 10* [10° [ 10° | 10" J 107" [1072 [ 103 107" [ 107 |
L=2]045]044]044]043] 0.32] 029 ] 037] 041] 041] 0.42
L=3]054]054]0.53]051] 035 032 | 048] 048] 0.50] 0.51
L=4]061]062]0.62]057]038] 036 053] 0.57| 0.59[ 0.59
L=5]069]068]0.68]065] 041] 0.381] 0.59 | 0.65| 0.66] 0.67
L=6]074]074]0.73]070] 043 0.41 | 0.65[ 0.70] 0.72] 0.73

Table 5: Convergence rates for multigrid V(1,1)-cycle in the case of a coefficient o governed
by (45) (Ezp. 5).

The sizth ezperiment deals with the behavior of the multigrid V(1,1)-cycle on lo-
cally refined unstructured tetrahedral meshes. Throughout, we use it as preconditioner
in the framework of a PCG method and measure the number of iterations needed to
achieve a reduction of the norm of the residual by a factor of 10'°. We resort to an
L-shaped domain 2 € R? representing a cube from which the fourth quadrant of the
x-y-plane had been cut out:  := [—1,1]*\ {[0,1] x [-1,0] x [-1,1]} (see Fig. 3)

We split the domain into two subregions 2y := [—1,0] x [0,1] x [—1,1] and Qy :=
Q\ Q. On ©, which comprises the second quadrant of the x-y-plane, a and  are
always set to 1, whereas on )y these coefficients (denoted by as and f; in the tables
below) vary by several orders of magnitude in order to obtain steep jumps.

Again, we solve problem (17), discretized by means of lowest order tetrahedral edge
elements. The right hand side f is a constant vector field f, = -1, f, =1, f. = 0.
Natural boundary conditions (n X curl E = 0) are applied on the planes z = 1 and
z = —1 and homogeneous Dirichlet boundary conditions (n x E = 0) on the remaining
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surfaces. Thus we create a rather challenging problem: The solution has a singularity
along the edge {z = 0,y = 0} where the material coefficients of the three adjoining
regions are varying by several orders of magnitude.

We started with a coarse grid 7Ty
consisting of 52 tetrahedra as shown in
Fig. 3. The mesh was refined adaptively
by employing the hierarchical error esti-
mator of Sect. 6.2. The results are given
in Tab. 6. Compared to the structured
grids, we observe that convergence is only
about half as fast. This seems to be
the fault of the tetrahedra, since a sim-
ilar loss of speed is also encountered for
Lagrangian finite elements and standard
multigrid when switching to simplicial
meshes. However, adaptive refinement it-
self does not have a harmful impact. The
degradation noticeable in the bottom row
of Tab. 6 is probably due to the non-monotonous jump of the coefficient « (cf. Exp. 5).

Figure 3: Coarse grid for the L-shaped do-
main.

Level | 1 2 3 4 5 6 7

Qg B2

1 1117 18 18 18 18 19 20

1 10*|15 15 16 17 17 17 17

1 107* |18 17 18 19 20 21 23
10% 1116 18 21 17 18 19 21
104 1119 17 19 19 25 31 36

Table 6: Exp. 6: Number of PCG-iterations required to reduce the initial residual by a factor
1010,

For the case ay = [y = 1 Fig. 4 depicts a cross section (lying in the x-y-plane)
of the locally refined grid and the solution. Both plots were generated on the fifth
refinement level and show the improved mesh resolution along the edge {x = 0,y = 0}
where the vector field is singular.

For oy = 1,3y = 10* similar plots are shown in Fig. 5. Now, the vector field is
concentrated in the subdomain 2; and the mesh has become finer near the internal
boundary between {2, and 2.

8.2 Performance of error estimators

In the seventh experiment we tested the performance of the error estimators for the
variational problem (17) on 2 := [0, 1]* and Dirichlet boundary conditions throughout.
The coefficients a and 3 from (17) were kept constant all over the domain; « is always
set to 1. On the other hand, we took into account different values for 3 in order to
obtain situations resembling an implicit time—stepping scheme with widely varying
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Figure 4: Cross section of the locally refined grid and the vector field for the case cp = 3 = 1
(Exp. 6).
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Figure 5: Cross section of the locally refined grid and the wvector field for the case
as = 1, By =10* (Ezp. 6).
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time steps. We remark that boundary data and the right hand side were chosen to
produce the smooth solution E = (0,0, sin(7x).

We define an effectivity index ¢ := ngg/Nrrue as the ratio between the estimated
and the true discretization error. The results for the hierarchical estimator, which was
introduced in Sect. 6.2, are given in Tab. 7. Evidently the desired asymptotic limit

Level 0 1 2 3 4 5

0-*]045 0.63 0.67 069 0.69 0.70
0-2 045 0.63 0.67 0.69 0.69 0.70
0.46 0.67 072 0.75 0.76 0.77
0> [0.65 1.01 1.01 1.04 1.06 1.07
0* | 074 1.27 1.40 143 1.33 1.19

D@
Il
e

Table 7: Effectivity index € for the hierarchical error estimator on the unit cube (Exp. 7).

€ — 1 is not approached for § < 1. On the other hand, the error is over—estimated
in the remaining cases. As noted in Sect. 6.2, the estimator solves the defect equation
for the hierarchical surplus by one step of a block-Jacobi iteration. For low [ this
procedure effectively acts a smoother, whereas for high § the mass-term (8E, 1), is
dominating in (17). 7

In the latter case the solution of the defect equation resembles an Lo—projection,
for which the decoupling of basis functions in the hierarchical surplus not appropriate.
In general, a possible remedy may be the stabilization of the mass—matrix by lumping.
But there is no simple lumping procedure available for Nédélec-spaces, so we tried to
improve the estimator by forgoing decoupling in the hierarchical surplus. The results
are shown in Tab. 8 and appear to be very satisfactory. However, this procedure was
much more expensive and did not produce significantly different grids in the adaptive
refinement steps. The effectivity indices for the residual based estimator are shown in
Tab. 9.

Level 0 1 2 3 4 5

B=10"%1025 088 089 093 0.95 0.96
B=10"2 1025 0.94 089 093 0.95 0.96
B =10 026 092 090 094 095 0.96
B=10> | 044 0.59 092 096 0.98 0.99
B=10" 054 035 095 097 0.98 0.98

Table 8: Effectivity index € for the hierarchical error estimator on the unit cube without
decoupling in the hierarchical surplus. (Exp. 7)

Please note that the residual based error estimator in general provides only esti-
mates for a scaled norm of the error. What is important is the correct information
about the distribution of the error. Crucial for this purpose is that the effectivity index
reaches a stable limit on finer discretizations. This is confirmed by the values for ¢
from Tab. 9.
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Level 0 1 2 3 4 5
B =10"%|4.05 (2.40) 8.05 (4.18) 8.18 (4.49) 8.24 (4.57) 8.27 (4.59) 8.29 (4.59)
B=10"2 | 4.04 (2.40) 8.05 (4.18) 8.17 (4.49) 8.23 (4.57) 8.27 (4.59) 8.29 (4.59)
8=1.0 3.01 (2.37) 7.64 (4.20) 7.78 (4.53) 7.84 (4.62) 7.87 (4.65) 7.89 (4.66)
B=10% |229 (2.28) 4.27 (4.25) 4.70 (4.67) 4.95 (4.88) 5.20 (4.97) 5.26 (5.01)
f=10* |2.33(2.31) 4.23 (4.22) 4.66 (4.65) 4.86 (4.86) 4.95 (4.94) 5.00 (4.99)

Table 9: Effectivity e for the residual based error estimator on the unit cube (Exp. 7). The
number in brackets show €, if the contribution of the inner residual is neglected

When we quantitatively compare the various terms which are summed up in this
estimator, then the first part of the curl-related contribution 77 in (34), i.e. the inner
residual, appears to be critical. This may be due to the fact that we are dealing with
the lowest order Nédélec-space where curl a curl E;, vanishes and thus a certain con-
tribution of the residual is dropped. So we repeat our calculations, this time omitting
the inner residual completely. Then the results are more satisfactory (see Tab. 9.

Although appearing less reliable, this estimator is more economic concerning com-
putation time and memory usage. In our implementation it was approximately three
times faster than its hierarchical counterpart.

In the eighth experiment we revert to the setting of Exp. 6. As there is no analytical
solution available, we take the field computed on refinement level 7 as a substitute for
the exact solution. The results are shown in the Tabs. 10 and 11. Also in the presence
of field singularities and steep material jumps the estimates remain within a reliable
range.

Level 0 1 2 3 4 5

Qg B2

1 11084 087 0.84 0.89 0.89 097

1 104 | 0.74 0.70 0.58 0.62 0.69 0.82

1 107*]057 053 052 0.53 0.54 0.58
10% 11077 081 0.82 086 0.87 0.99
1074 11080 088 095 096 1.04 1.07

Table 10: Exp. 8: Estimated effectivity e for the hierarchical error estimator on the L-shaped
domain with varying coefficients co and Ps.

Without recording the related values we point out that the procedures mentioned
in the previous section — a modified solver for the hierarchical surplus and the neglect
of the inner residual — yielded improved results.

8.3 The time—harmonic case: waveguide computations

Here we consider the scattering of an electric field by a so—called taper structure, a
device which is used to connect waveguides of different shape. In our example two
rectangular microstrip—lines of different width form the input and output ports of
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Level 0 1 2 3 4 5

a2 B2
1 1584 6838 6.61 6.91 6.74 6.83
1 10* | 756 941 824 7.74 7.18 6.60
1 107%| 511 3.93 3.61 326 3.52 3.60
10* 1733 923 9.06 886 9.28 10.5
1074 1319 344 336 3.55 3.94 4.46

Table 11: Exp. 8: Estimated effectivity € for the residual based error estimator on the L-
shaped domain with varying coefficients co and .

the device, the taper section is placed in the middle of the model (see Fig. 6). We
enclose the whole arrangement by a metallic box. All conductors are supposed to have
negligible resistance, so that the tangential components of the electric field vanish on
their surfaces (this is a sensible assumption if the skin depth is small).

The stripline is placed on a dielectric substrate with ¢ = 100 and u = 1; the
remaining region is air (¢ = p = 1). The taper device is fed on the input port by a
quasi-TEM-wave, which is partially reflected at the taper section.

We assume that at both ports (formed by the front and back plane) only quasi—
TEM-modes are propagated. Thus, in the immediate vicinity of each port the field
may be split into an incident and a reflected TEM-wave by [84]

~ ~ ~ ~

E(a’.) = Ech(w) + Eref(a:) = Einc(xu y) e_iCZ + -/E\’ref(‘r,y) eigz ]

The direction of propagation is aligned with the z-axis; ( denotes the propagation
constant and is given by ¢ = w,/ei. By applying the operator n x curl to (8.3), we
obtain a Cauchy-type boundary condition similar to (11) on the ports. The incident
field Emc(x, y) of a TEM-mode can be derived from a two—dimensional static potential
for which Laplace’s equation holds on the plane defining the port [84].

Thus we finally arrive at the variational formulation (16) in Sect. 2.3. We have to
tackle an indefinite problem with complex fields, which have singular behavior along
the edges of the striplines.

All computations were started on the initial mesh shown in Fig. 6, which comprises
566 degrees of freedom. The figure also displays the grid and the electric field after two
steps of adaptive refinement. We applied two different excitation frequencies w = 0.02
and w = 27 to assess the influence of the ratio r between grid spacing and local
wavelength \¢

hT 2
r =max —

Ao “T wyen
For w = 27 we have r = 0.49 and thus are reaching the critical coarse grid limit
r = 0.5 on our initial mesh 7y (see Sect. 7.4).

Tab. 12 records the behavior of the PCR-method preconditioned with a multigrid
V(1,1)—cycle. As was to be expected, the convergence rates are better for the low
frequency, where the coarse mesh provides a superior resolution of M ~. But even for
the high frequency range no substantial deterioration of the solver could be observed.
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Figure 6: Cross section of the locally refined grid and the vector field for w = 2.
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For the sake of comparison we solved the problem again, now omitting the smoothing
in the potential space. The results in Tab. 12 demonstrate the disastrous consequences.
As the figures reveal, the convergence rates are worse for the low frequency. This is
due to the fact that here we are rather close to the static limit, where the solution
behaves like a potential field (Observe that the incident TEM-wave is derived from a
static solution).

Level T 1 2 3 4 5 6 7

w=0.027 | 0.0049 | 22 (604) 21 (5934) 21 (16983) 21 (37363) 21 22 23
w= 27| 049 | 31(239) 31 (1414) 29 (3539) 28 (6729) 30 31 34

Table 12: Waveguide problem: Number of PCR-iterations required to reduce the initial
residual by a factor 10'°. Iteration counts in brackets result if smoothing in potential
space is omitted.

Next we examine the capability of the error estimators introduced before, to serve
as error indicators in the indefinite case. Although our problem is formally an elliptic
one, it is nevertheless derived from a system of hyperbolic equations and thus exhibits
their typical propagation effects due to solution components in M ~. Thus we may
encounter oscillatory solutions where sources (and thus also unwanted effects generated
by discretization errors) may produce far-reaching field contributions which cannot
be captured by local error estimators.

However, it may be still sensible to detect and refine areas contributing large errors
in the high-frequency components of the solution. Such regions typically appear near
field singularities or near interfaces between materials with varying coefficients.

Here we measure the error £ in the norm

1 ~ -
(— curl &, curl 5)
1

which is derived from (16) by switching from negative to positive signs. To get an idea
of the quality of the proposed error indicators, we compare our solutions to the one
obtained on the seventh level, considering the latter as a good approximation of the
exact solution.

The critical phase within of the hierarchical error estimator appears to be the
block-Jacobi step for obtaining an approximate solution of the hierarchical defect
system. As the system matrix contains negative eigenvalues, the Jacobi step amplifies
the related eigenmodes. However, if the grids are not too coarse, the modulus of all
negative eigenvalues is comparatively small and these modes can be expected to give
only minor contributions.

The residual based estimator is applied without any alterations, as its different
contributions are simply added up anyway. Table 13 gives the results, which exhibit
a behavior similar to those of the positive definite case.

In order to demonstrate the gains through error estimation and local grid refine-
ment, we have monitored the decrease of the discretization error 7, for w = 27 in
Fig. 7. The adaptively constructed grids bring about a major saving in the number of
unknowns.

+ <w26/§: E)o-ﬂ + (%Z xm, € x n) (46)

0;Q2 0;Q
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Level 0 1 2 3 4 5 error indicator

w=0.027 079 078 0.80 0.85 0.89 1.02
= 27 (067 069 078 081 0.88 0.97

w=0.027 | 3.84 4.00 427 446 4.72 542
w= 2m|341 441 477 494 547 581

hierarchical

S

residual based

Table 13: Waveguide problem: estimated effectivity index € of the error estimators.

Uniform grid —— -
Adaptive grid -+

30

20

Error

10

1000

10000
Degrees of freedom

100000

Figure 7: Decrease of the discretization error Npyye on uniformly and adaptively refined

grids.
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