
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

NORBERT ASCHEUER MICHAEL JÜNGER

GERHARD REINELT

A Branch & Cut Algorithm for the
Asymmetric Traveling Salesman Problem with

Precedence Constraints

Preprint SC 97-70 (December 1997; revised January 1999)

A Branch & Cut Algorithm for the

Asymmetric Traveling Salesman Problem with

Precedence Constraints

Norbert Ascheuer ∗ Michael Jünger † Gerhard Reinelt ‡

Berlin, December 1997; revised January 1999

Abstract

In this article we consider a variant of the classical asymmetric traveling salesman
problem (ATSP), namely the ATSP in which precedence constraints require that certain
nodes must precede certain other nodes in any feasible directed tour. This problem occurs
as a basic model in scheduling and routing and has a wide range of applications varying
from helicopter routing [25], sequencing in flexible manufacturing [3, 4], to stacker crane
routing in an automatic storage system [2].

We give an integer programming model and summarize known classes of valid ine-
qualities. We describe in detail the implementation of a branch&cut-algorithm and give
computational results on real–world instances and benchmark problems from TSPLIB.
The results we achieve indicate that our implementation outperforms other implemen-
tations found in the literature. Real world instances with more than 200 nodes can be
solved to optimality within a few minutes of CPU-time.

As a side product we obtain a branch&cut-algorithm for the ATSP. All instances in
TSPLIB can be solved to optimality in a reasonable amount of computation time.

Keywords: Asymmetric traveling salesman problem, precedence constraints, branch&cut

1 Introduction

The asymmetric traveling salesman problem with precedence constraints, also called sequential
ordering problem, can be phrased in graph theoretical terminology as follows. We are given
a complete directed graph Dn = (V,An) on n nodes, and cost-coefficients cij ∈ N , cij ≥ 0,
associated with each arc (i, j) ∈ An. We assume without loss of generality that a fixed starting
node for each tour, say node 1, is given. Furthermore, we are given an additional precedence
digraph P = (V,R) that is defined on the same node set V as Dn. An arc (i, j) ∈ R, i, j �= 1,
represents a precedence relationship, i.e., i has to precede j in every feasible tour. This will
also be denoted by i ≺ j. Obviously, the precedence digraph P must be acyclic, otherwise
no feasible solution exists. Moreover, it can be assumed to be transitively closed, because if
i ≺ j and j ≺ k we can conclude that i ≺ k.

∗Konrad–Zuse–Zentrum für Informationstechnik Berlin, Takustr. 7, D–14195 Berlin Dahlem
†Institut für Informatik der Universität zu Köln, Pohligstr. 1, D–50969 Köln
‡Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 293, D–69120 Heidel-

berg

1

A tour that satisfies the given precedence relationships will be called feasible. The problem
is to find a feasible tour with minimal total cost. In the literature this problem is also known as
the sequential ordering problem (SOP). Obviously, the SOP reduces to the “pure” asymmetric
traveling salesman problem (ATSP) in the case that the precedence digraph P = (V,R) has
empty arc set R. Thus, the ATSP is a special case of the SOP. As the ATSP is an NP-hard
problem the same holds for the SOP.

There is a great variety of real–world problems that can be modeled as a SOP. They occur,
e.g., in routing applications where a pick-up has to precede the delivery [26], in the on-line
routing of a stacker crane in an automatic storage system [2] or in scheduling applications
where a certain job has to be completed before other jobs can start [4].

Although the traveling salesman problem is one of the most investigated problems in
combinatorial optimization, not much attention has been paid to the precedence constrained
version. The sequential ordering problem (SOP), stated in a slightly different form, seems to
have been mentioned first by Escudero [9, 10]. The aim of his investigations was to design
heuristics to be implemented in a production planning system that perform well in practice
with respect to solution quality guarantee and running time.

Ascheuer [1] and Ascheuer, Escudero, Grötschel, and Stoer [3, 4] describe a cutting-plane
approach to obtain lower bounds on the value of the optimal solution. These lower bounds
were used to check the quality of the solutions constructed by the heuristics developed by
Escudero. The authors compare three different models and give computational results on
real–life data of IBM that was provided by Escudero. The model that will be presented
in Section 2 turned out to give satisfactory bounds and to be superior to the other models
from a computational point of view. Escudero, Guignard, and Malik [11] strengthened the
model by introducing new classes of valid inequalities and describe a Lagrangean relax-and-
cut approach that for some instances obtained better lower bounds than the ones given by
Ascheuer et al.

Around the same time a similar model was developed independently by Balas, Pulleyblank,
and Timlin [25, 26]. They considered the symmetric case and the aim of their research was to
design heuristics to schedule helicopters that have to visit offshore oil-platforms in a certain
order. It was desired to find a route for each daily set of stops that satisfies all the requirements
(precedence constraints, helicopter capacity) and minimizes the total distance flown.

For the TSP and ATSP polyhedral approaches (in particular branch&cut-algorithms) are
known to be the appropriate method to solve problem instances to optimality (see [13, 17],
among others). For the sequential ordering polytope, i.e., the convex hull of the incidence
vectors of all feasible solutions, first polyhedral investigations have been carried out. We
will summarize some of the inequalities presented in Balas, Fischetti, and Pulleyblank [7]
and Ascheuer [2] in Section 3. Although there exist partial results on the structure of this
polytope, to the best of our knowledge there is no exact algorithm published that exploits
these polyhedral results.

Branch&cut-algorithms simultaneously calculate series of increasing lower and decreasing
upper bounds. In case that they coincide, the optimality of the feasible solution has been
proven. Even if this is not the case the bounds allow to give a quality guarantee on the
best solution, stating that this solution is no more than a certain percentage away from an
optimal one. This is in contrast to pure heuristic approaches. Moreover, the algorithm may
be stopped if a prespecified quality is reached.

In the sequel, we use the following terminology. Given a digraph D = (V,A), variables xij for

2

all (i, j) ∈ A, F ⊆ A andW ⊆ V , we set x(F) :=
∑

(i,j)∈F xij and A(W) := {(i, j) ∈ A | i, j ∈
W}. If j ∈ V , then δ−(j) := {(i, j) ∈ A, i ∈ V \{j}} and δ+(j) := {(j, k) ∈ A, k ∈ V \{j}}.
For U,W ⊆ V,U ∩ W = ∅, we set (U : W) := {(i, j) ∈ A | i ∈ U, j ∈ W}. To simplify
notation, we write (j : W) instead of ({j} : W). Given a (transitively closed) precedence
digraph P = (V,R), the set π(j) of predecessors of j ∈ V and the set σ(i) of successors of i
are defined by

π(j) := {i ∈ V | (i, j) ∈ R},
σ(i) := {j ∈ V | (i, j) ∈ R}.

If there exists a node i ∈ V \ {1} such that |π(i)| + |σ(i)| = n − 2 we know that node i is
fixed to a certain position in the tour and thus the problem instance can be split into two
instances. If this is the case, we say that the instance is decomposable.

The paper is organized as follows. In Section 2 we present an integer programming model for
the SOP and introduce the sequential ordering polytope. Section 3 contains a summary of
known classes of valid inequalities that will be used in the branch&cut-algorithm. Section 4
describes the implementation details of the branch&cut-algorithm. Section 5 outlines the
computational experiments. The paper closes with some concluding remarks.

2 Modeling

Suppose we are given a complete digraph D = (V,An) and a precedence digraph P = (V,R).
For each arc (i, j) ∈ An we introduce a binary variable xij ∈ {0, 1} with the interpretation
that

xij =

{
1, if (i, j) ∈ An is in the tour,
0, otherwise.

Immediately some simple reductions can be performed.

(1) Lemma.
Given Dn = (V,An) and P = (V,R), then
(i) x1j = 0 for all (i, j) ∈ R
(ii) xi1 = 0 for all (i, j) ∈ R
(iii) xji = 0 for all (i, j) ∈ R
(iv) xik = 0 for all (i, k) ∈ R such that (i, j) ∈ R and (j, k) ∈ R.

Proof. Obvious.

The variable set (resp. arc set) can be reduced by fixing these variables to 0 (resp. deleting
the arcs). To state this more formally we let

R1 = {(1, j), (i, 1) ∈ An | (i, j) ∈ R},
R2 = {(j, i) ∈ An | (i, j) ∈ R},
R3 = {(i, k) ∈ An | (i, j) ∈ R and (j, k) ∈ R}.

By setting
A = An \ (R1 ∪R2 ∪R3)

we end up with the digraph D = (V,A) in which we look for a tour of minimum length. We
only associate variables with the feasible arc set A. In [7] it was proven that this lemma yields
a complete characterization of all variables that can a priori be fixed to zero.

3

The linear 0/1-model can be stated as follows (see [4]) :

(2) Linear 0/1-Programming Formulation.

min cTx

s. t. (1) x(δ�(i)) = 1 ∀ i ∈ V

(2) x(δ+(i)) = 1 ∀ i ∈ V

(3) x(A(W)) ≤ |W | − 1 ∀ W ⊂ V, 2 ≤ |W |
(4) x(j : W) + x(A(W)) +X(W : i) ≤ |W | ∀ (i, j) ∈ R and

∀ W ⊆ V \ {1, i, j}, W �= ∅
(5) xij ∈ {0, 1} ∀ (i, j) ∈ A

(1)–(3),(5) is the standard formulation for the asymmetric traveling salesman problem. Ine-
qualities (3) are called subtour elimination constraints, the inequality system (4) assures that
all precedences are satisfied (precedence forcing constraints).

It is readily checked that every feasible solution of (1)–(5) is the incidence vector of a
feasible tour and vice-versa. Although this model yields an integer programming formulation,
it should be mentioned that inequalities (4) can be strengthened by adding either x(W : j) or
x(i : W) to the left hand side and that several classes of inequalities are known that strictly
dominate these strengthened precedence forcing inequalities (see [7]). These inequalities, that
are used in our implementation, will be described in the following section.

3 Classes of valid inequalities

In the following we summarize classes of inequalities that we use in our implementation of the
branch&cut-algorithm and that are known to be valid for the sequential ordering polytope

SOP (n,P) = conv{x ∈ R
A | x is a feasible tour with respect to P}.

The study of the structure of this polytope is closely related to the study of the asymmetric
traveling salesman polytope Pn

T , as SOP (n,P) ⊆ Pn
T holds. In the literature several classes

of valid and facet defining inequalities are known for Pn
T (see [12, 15, 16], among others).

Obviously, these inequalities are valid for SOP (n,P) as well. In case that precedences between
the nodes in V are involved, they can be strengthened in several ways. The polyhedral study
of the sequential ordering polytope turned out to be complicated [2, 7]. So far, no general
formula for the dimension of SOP (n,P) has been proven. Therefore, the classes of inequalities
have only been proven to be valid for SOP (n,P). Whether and under which conditions they
are facet defining still remains open.

The classes of inequalities that we use include:

• “Pure” ATSP-inequalities (Dk-inequalities, SD-inequalities),

• strengthened versions of ATSP-inequalities (2-matching inequalities, Tk-inequalities, π-
inequalities, etc.),

• classes of inequalities introduced for the SOP.

4

3.1 Dk-inequalities

The Dk-inequalities, introduced by Grötschel and Padberg [15, 16], are obtained by sequen-
tially lifting the cycle inequality

∑
(i,j)∈C xij ≤ k − 1 for the cycle C = {(i1, i2), . . . , (ik, i1)}.

Depending on the order in which the variables are lifted one obtains different classes of ine-
qualities, two of them called D−

k -inequalities

k−1∑
j=1

xij ij+1 + xiki1 + 2
k∑

j=3

xi1ij +
k∑

j=4

j−1∑
h=3

xij ih ≤ k − 1, (3)

and D+
k -inequalities

k−1∑
j=1

xij ij+1 + xiki1 + 2
k−1∑
j=2

xij i1 +
k−1∑
j=3

j−1∑
h=2

xij ih ≤ k − 1. (4)

Dk-inequalities have been proven to be facet-defining for Pn
T by Fischetti [12]. Strengthenings

of the Dk-inequalities for the precedence constrained ATSP are known for small k, e.g.,
k = 3 (see [2]).

3.2 SD-inequalities

SD-inequalities have been introduced by Balas and Fischetti [6] and can be described as
follows. Given a handle H ⊂ V , disjoint teeths T1, ..., Tt, t odd, such that |Ti ∩H| = 1 and
|Ti \H| = 1, and (possibly empty) disjoint node sets S and D, (S∪D) ⊂ V \(H∪T1∪ ...∪Tt),
such that |S|+ |D| = t is odd, the SD-inequalities have the form

x(S ∪H : D ∪H) +
t∑

i=1

x(A(Ti)) ≤ |H|+ |S|+ |D|+ t− 1

2
. (5)

SD-inequalities may be seen as a generalization of 2-matching inequalities to which a source-
and destination node set is attached.

3.3 Predecessor / Successor inequalities

Balas, Fischetti, and Pulleyblank [7] introduced classes of inequalities that can be seen as
strengthenings of the subtour elimination inequality (written in the cut form)

x(δ+(W)) ≥ 1 for all W ⊂ V.

Let S ⊆ V \ {1}, S := V \ S, then the predecessor inequality (π-inequality)

x(S \ π(S) : S \ π(S)) ≥ 1 (6)

and the successor inequality (σ-inequality)

x(S \ σ(S) : S \ σ(S)) ≥ 1 (7)

are valid with respect to SOP (n,P) [7]. For given j, k ∈ V \ {1} such that π(j) �= ∅, σ(k) �= ∅
and any S ⊂ V such that k, j ∈ S, the inequalities

x(S \ π(j) : S \ π(j)) ≥ 1 (8)

x(S \ σ(k) : S \ σ(k)) ≥ 1 (9)

5

are called weak π- and weak σ-inequality.
Furthermore, let X,Y ⊆ V \ {1}, such that i ≺ j for all pairs i ∈ X, j ∈ Y , W :=

{1} ∪ π(X) ∪ σ(Y). Then for all S ⊂ V , such that X ⊂ S, Y ⊂ S

x(S \W : S \W) ≥ 1 (10)

is called a predecessor-successor inequality or (π, σ)-inequality and is valid with respect to
SOP (n,P). For X = {i} and Y = {j} with i ≺ j and Wij := {1} ∪ π(i) ∪ σ(j)

x(S \Wij : S̄ \Wij) ≥ 1 (11)

is called a weak (π, σ)-inequality.
Balas, Fischetti and Pulleyblank proved that the π- and σ-inequalities are facet defining

under certain conditions (see [7]).

3.4 Precedence cycle breaking inequalities

Let S1, .., Sm ⊆ V \ {1},m ≥ 2, be disjoint node sets such that σ(Si) ∩ Si+1 �= ∅ with
Sm+1 = S1. Then the precedence cycle breaking inequality (or pcb-inequality)

m∑
i=1

x(A(Si)) ≤
m∑
i=1

|Si| −m− 1 (12)

is valid for SOP (n,P) [7].
The precedence cycle breaking inequality in its simplest form (m = 2 and |S2| = 1) is

x(A(S1)) ≤ |S1| − 2 (13)

and is as well a strengthened version of a subtour elimination inequality, in which the right
hand side is reduced by one. This inequality will be called a simple pcb-inequality.

Let S1, S2, S3 ⊂ V \ {1} be disjoint node sets, with σ(S1) ∩ S2 �= ∅ and σ(S2) ∩ S3 �= ∅.
The following inequalities are valid with respect to SOP (n,P) [7]:

2∑
i=1

x(A(Si)) + x(S2 : S1) ≤ |S2|+ |S1| − 2, (14)

3∑
i=1

x(A(Si)) + x(S1 : S3) ≤ |S1|+ |S2|+ |S3| − 3. (15)

Roughly speaking, inequalities (14) and (15) may be interpreted as being obtained from the
trivial inequalities xij ≤ 0 for all infeasible arcs (i, j) ∈ An (characterized by Lemma 1) by a
clique-lifting procedure akin to that described in [6], in which each node vi is replaced by a
clique Si of indistinguishable “clones”.

3.5 Strengthened Tk-inequalities

Let W ⊂ V, 2 ≤ |W | = k ≤ n− 2, w ∈ W , p, q ∈ V \W . The Tk-inequalities

x(A(W)) + xpw + xpq + xwq ≤ k

6

have been introduced by Grötschel and Padberg and have been proven to be facet defining
for Pn

T for most k and n (see, e.g., [15, 16]).
Like the subtour elimination inequalities, these inequalities can be strengthened as prece-

dences get involved. As they are more “complicated” than the subtour elimination inequal-
ities, the resulting strengthened versions do not have such a nice form as the π-inequalities,
etc. All strengthened Tk-inequalities we consider have been introduced by Ascheuer [2]. In
the sequel let

x(A(Tk)) := x(A(W)) + xpw + xpq + xwq

denote the sum of the left hand side of the Tk-inequality. Furthermore, let W̃ = W \ {w}.
Then the inequalities

x(A(Tk)) + x(W ∩ σ(W̃) : W) + x(W \ σ(W̃) : W ∩ σ(W̃)) ≤ k (16)

x(A(Tk)) + x(W : W ∩ π(W̃)) + x(W ∩ π(W̃) : W \ π(W̃)) ≤ k (17)

are valid with respect to SOP (n,P). Further valid inequalities are known for the case that
special structures in the precedences occur: Let i, k ∈W̃ , j �∈ W ∪ {p, q}. Then the following
inequalities are valid for SOP (n,P):

x(A(Tk)) ≤ k − 1 , if i ≺ j ≺ k, (18)

x(A(Tk)) + x(p : W̃) + xwp ≤ k − 1 , if i ≺ q ≺ w, (19)

x(A(Tk)) + x(W̃ : q) + xqw ≤ k − 1 , if w ≺ p ≺ k (20)

3.6 Strengthened 2-matching inequalities

2-matching inequalities are widely used in implementations of branch&cut-algorithms for the
TSP, because exact as well as efficient heuristic separation procedures exist. As the 2-matching
inequalities are valid for SOP (n,P), the separation routines can be applied to our problem
as well. As done for the Tk-inequalities the 2-matching inequalities can be strengthened in
case that precedences get involved.

Let H,T1, T2, ..., Tk ⊂ V, k ≥ 1 be vertex sets satisfying

|H ∩ Ti| = 1 for i = 1, ..., k,
|Ti \H| = 1 for i = 1, ..., k,
Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ k,
k ≥ 3 and odd , or k = 1 and |H| ≥ 4.

The 2-matching inequality is given by

x(A(H)) +
k∑

i=1

x(A(Ti)) ≤ |H|+ k − 1

2
.

To simplify notation further, let T =
⋃k

i=1 Ti, S = H ∪ T . Let {si} := H ∩ Ti, {ti} := Ti \H,
and x(2M) := x(A(H)) +

∑k
i=1 x(A(Ti)).

The following inequalities are valid with respect to SOP (n,P) (see [2]):

x(2M) +
k∑

i=1

x(S ∩ σ(ti) : si) +
k∑

i=1

x(si : S ∩ π(ti)) ≤ |H|+ k − 1

2
(21)

7

x(2M) +
k∑

i=1

x((H \ T) ∩ σ(si) : ti) +
k∑

i=1

x(ti : (H \ T) ∩ π(si)) ≤ |H|+ k − 1

2
(22)

x(2M) +
k∑

i=1

x(H \ si : ti ∩ σ(Ti)) ≤ |H|+ k − 1

2
(23)

x(2M) +
k∑

i=1

k∑
j=1
i�=j

x(si ∩ π(Ti) : tj) ≤ |H|+ k − 1

2
(24)

x(2M) +
k∑

i=1

x(ti ∩ π(Ti) : H) ≤ |H|+ k − 1

2
(25)

x(2M) +
k∑

i=1

k∑
j=1
i�=j

x(tj : si ∩ σ(Ti)) ≤ |H|+ k − 1

2
(26)

If there exist m := k+1
2 triples (ui, vi, wi), i = 1, ...,m, such that

{ui, wi} ∈ H ∩ T,
vi ∈ H̄ \ T,
ui ≺ vi ≺ wi for i = 1, ...,m,
vi �= vj for i, j = 1, ...,m, i �= j,
wi = ui+1 for i = 1, ...,m − 1,

then the inequality

x(A(H)) +
k∑

i=1

x(A(Ti)) ≤ |H|+ k − 1

2
− 1 (27)

is valid with respect to SOP (n,P) [2].
Inequalities (21)–(26) are strengthenings of the standard 2-matching inequality in the sense

that additional variables are added on the left hand side. For inequality (27) it is possible to
reduce the right hand side by 1, if a certain structure in the precedences is present.

4 The Branch&Cut-Algorithm

One of the main features of branch&cut-algorithms is that they simultaneously calculate
upper and lower bounds on the value of the optimal solution. The upper bounds are provided
by heuristic algorithms, whereas lower bound calculations are done by means of a cutting
plane algorithm. In case that upper and lower bounds coincide, the optimality of the feasible
solution has been proven. In this section we describe in detail the procedures to calculate
these bounds.

For an efficient implementation several other details besides upper and lower bound calcu-
lations have to be clarified. Since the initial version of our computer code was implemented a
few years ago and continuously updated and refined since then, our implementation is based

8

on the branch&cut software framework that is the predecessor of the ABACUS system [19, 20].
The same framework was used in the branch&cut-code for the TSP that is described in [18].
It consists of a library of C-functions that has in the meantime been replaced by the object-
oriented C++-based ABACUS system. The article [18] contains a detailed description of the
general branch&cut-framework. Here we concentrate only on those parts that differ from the
description given there and that we consider important.

4.1 Upper bound calculations

We calculate feasible solutions at two points of the algorithm: in the initialization phase
and after each solution of a linear program (LP). It turns out that for some instances it is
very hard to find good solutions using the initial heuristics. Especially for these instances
it is necessary to improve the solution by exploiting the information on the structure of an
optimal solution that is contained in the LP-solution. The computational experiments show
that very seldomly an optimal solution is found by the initial heuristics.

Initial feasible solution

We implemented a number of modified versions of known heuristics for the TSP. Among them
are several construction heuristics (savings, greedy, nearest neighbor, farthest insertion, best
insertion, etc.) and additional improvement heuristics (2-node-exchange, 2-Opt, 3-Opt, etc.).
We performed an extensive computational comparison of the heuristics and our experience
was that none of the heuristics performed well on every instance. For any combination of
construction and improvement heuristic we found several problem instances on which they
yield rather poor results [5]. Better feasible solutions are obtained by the LP-exploitation
heuristic.

Therefore, we decided not to spend much time in constructing an initial feasible solution
and we just run a nearest feasible neighbor heuristic. Roughly speaking we start with a
partial feasible path T containing only an arc (1, i). Let j be the current last node in T . We
successively expand T by a node k such that all predecessors of k are already contained in T
and arc (j, k) has minimal cost among all feasible arcs (j, l). We start this construction with
each feasible arc (1, i) ∈ A.

Afterwards, the best sequence is passed to a modified 3-opt heuristic in which infeasible
changes of the incumbent best solution are rejected.

LP-exploitation heuristic

After each solution of an LP we try to exploit the information contained in the optimal LP-
solution, say x̄, to find a better solution. Very seldomly, x̄ is the incidence vector of a feasible
tour. But even a fractional solution contains information on the structure of “good” feasible
solutions, as it contains variables with value 1 or close to 1.

First, we check if the current LP-solution is the incidence vector of a feasible tour. If this
is the case, we proceed with a pricing step.

If not, we apply a “greedy-like” heuristic in which arcs are sorted according to their value
in the current LP-solution. Arcs corresponding to nonactive variables are added to the list
with value 0. This list is scanned and arcs are chosen to be part of the sequence if the partial
paths remain “feasible”. Checking if a certain selection is feasible is more complicated than
for the ATSP, because it is not only necessary to avoid subtours, but also to assure that the

9

given precedences are not violated. (See [5] for a more detailed description.) This heuristic
turns out to give good results for dense precedence structures, i.e., |R| > α · |V | for α ∼ 1.5.

For sparse precedences better results can be achieved with the following approach that
takes the cost-coefficients into account as well. Roughly speaking, we modify the original
cost-coefficients and run heuristics with the modified cost-matrix C′ = (c′ij)i,j∈{1,...,n} where
c′ij := (1.0 − xij) · cij. For nonactive variables xlk we assume xlk = 0. The goal is to make
arcs, whose corresponding variable has a high value, attractive for the heuristic algorithms.
After constructing the modified cost-matrix C′ we run a construction heuristic with C′. In
order to avoid that the same sequence is generated in several subsequent iterations, we vary
the heuristic that is called. After the solution of the k-th linear program, we call the

list insertion heuristic
random insertion heuristic
nearest feasible neighbor heuristic

⎫⎪⎬⎪⎭ if k mod 3 =

⎧⎪⎨⎪⎩
0,
1,
2.

The constructed feasible tour is the starting point for subsequent improvement heuristics.
Since the improvement heuristics can be rather time consuming, we avoid calling them more
than once with the same input sequence by using a hash table. The insertion key is the value
of the input solution and the index of the improvement heuristic. If the heuristic was already
called with a sequence of this value, it is skipped. Notice that different sequences may have
the same value and we may miss a solution that leads to a better sequence. Nevertheless, this
strategy led to a dramatic reduction in the computation time needed for this part.

Furthermore, we avoid calling the improvement heuristic if the value ci of the input se-
quence is “too far away” from the value cb of the incumbent best known solution. In the
current implementation we run the improvement part only if ci

cb
≤ 2.5 holds.

Whenever possible, any of the following improvement heuristics is called (with the original
cost-matrix C):

• Node reinsertion heuristic

• Two node exchange heuristic

• 3-Opt heuristic

When a better solution is found, the current best solution and the global upper bound are
updated, and nonactive variables, whose corresponding arc is in this solution, are added to
the sparse digraph and to the LP.

4.2 Separation procedures.

The core of any cutting-plane algorithm is the generation of violated valid inequalities that
are added as cutting planes to the current linear program. In the following, we briefly outline
how violation of the inequalities described in Section 3 is determined.

An ATSP-inequality ax ≤ α is called symmetric if aij = aji for all (i, j) ∈ A holds.
Given a valid TSP-inequality by ≤ β, one can derive a symmetric ATSP-inequality ax ≤ α
by replacing ye by xij + xji and setting α = β, aij = aji = be for all e = ij ∈ E. Conversely,
every symmetric ATSP-inequality corresponds to a TSP-inequality.

As a consequence, separation routines implemented for the TSP can be used without
any modification for the ATSP and SOP. Suppose we are given a fractional point x. We

10

construct the undirected counterpart y by setting ye = xij + xji for all e ∈ E, e = ij and
then apply the TSP-separation routine to y. If a violated inequality is found, the TSP-
inequality is retransformed into the corresponding ATSP-version. Both inequalities have the
same amount of violation. In our implementation we apply this procedure to the subtour
elimination inequalities and to the 2-matching inequalities.

Inequality-Pool. During the run of the algorithm we maintain a pool of active and non-
active valid inequalities. (An inequality is called active if it is both stored in the constraint
matrix of the current LP and in the pool, whereas an inequality that is only stored in the
pool is called nonactive.) The pool is initially empty. Each generated cut is added to the
constraint matrix and is stored in the pool. As soon as an inequality is nonbinding in the
current LP, it becomes inactive, i.e., it is removed from the constraint matrix but is still kept
in the pool.

The inequalities in the pool can be used either to regenerate linear programs from scratch,
or to check, if any of the cuts generated in an earlier iteration of the algorithm is violated by
the actual LP-solution. Since not all pool inequalities are active, i.e., are considered in the
actual LP, this can be done by “checking” all nonactive pool-inequalities. In case that the
pool gets too large, inequalities that have not been reactivated for a long time are removed
from the pool.

In contrast to implementations of branch&cut-algorithms for the TSP we separate all
types of inequalities from the pool. This is done in order to avoid double entries for certain
inequalities (e.g., π-inequalities generated by the separation routine for subtour elimination
inequalities).

Subtour Elimination Inequalities. We apply the exact separation algorithm as described
by Padberg and Rinaldi [21]. Whenever a violated subtour elimination inequality is found,
we check if it can be strengthened as a π-, σ-, (π, σ)-inequality, or as a simple pcb-inequality.
If this is the case, we add any of the tightened inequalities.

π-, σ-, (π, σ)-inequalities. Balas et al. [7] describe exact separation procedures for weak
π-, σ-, (π, σ)-inequalities. The separation routine for weak π-inequalities roughly works as
follows. Suppose we are given a fractional point x∗. We set up a capacitated LP-solution
digraph D∗ = (V,A∗) with (i, j) ∈ A∗, if x∗

ij > 0. To each (i, j) ∈ A∗ we associate a capacity
c∗ij = x∗ij. For all j ∈ V such that |π(j)| > 0 we apply the following procedure. We construct

a digraph D̃ = (Ṽ , Ã) from D∗ by deleting all nodes in π(j). If we do not succeed to send
one unit of flow from j to 1 in D̃, the minimum capacity cut in D̃ separating j from 1 defines
a violated weak π-inequality.

The bottleneck in this procedure are the maxflow calculations that have to be called at
most n times. In order to avoid them as much as possible, we check in a first step the 1-paths
in D∗ for possible violations. If this is not successful, we shrink the 1-paths to single nodes
and delete all arcs that will not occur in a maximum flow from j to 1, i.e., (i, j), (1, i) ∈ A
for all i ∈ V . Furthermore, we delete the arc (j, 1) (if present). In case that either j or 1 is
isolated we know that the maximum flow has a value of xj1 < 1. The shores of the cut are
trivially defined by the isolated node. If this is not successful, a maxflow algorithm is called
on the shrunken digraph.

11

The separation of weak σ- (resp. (π, σ)-) inequalities follows a similar line. For all j ∈ V
(resp. (i, j) ∈ R) nodes in σ(j) (resp. π(i) ∪ σ(j)) are deleted and we try to send one unit of
flow from 1 to j (resp. from i to j). The above reductions are applied as well.

Precedence Cycle Breaking Inequalities. The heuristic separation procedure (already
outlined in [7]) is based on shrinking node sets that satisfy the subtour elimination inequality
with equality. Simultaneously, the same node set is shrunk in the precedence digraph. It may
happen that after shrinking infeasible arcs occur (e.g., cycles in the precedence graph). These
structures correspond to violated inequalities. The procedure can be outlined as follows.

Input : D = (V,A), P = (V,R) and a fractional LP-solution x̄
Output : violated pcb-inequality or

violated inequality of type (14) and (15)
(if any such inequality is found)

1. Initialize: Set m = n, Si = {i} for all i ∈ V, ỹij = x̄ij, D̃ = D, P̃ = P .

2. Find a set S ⊆ Ṽ , s.t. |S| ≥ 2 and ỹ(S) = |S| − 1.
If found : shrink S to a single node, update D̃ = (Ṽ , Ã), P̃ = (Ṽ , R̃), m and
y,
else STOP

3. If R̃ contains a cycle, then a violated precedence cycle breaking inequality
(12) is found.

4. If ỹij > 0, for some (i, j) ∈ Ã s.t. (i, j) ∈ R̃1 (resp. (i, j) ∈ R̃2), then a
violated inequality of type (14) (resp. (15)) is found.

5. Goto 2.

One of the central steps in this procedure is how to detect the saturated subtour elimina-
tion inequality in step 2. In a first step, we shrink all arcs with value ỹij = 1. If no violated
inequality is found, we shrink node sets of size 2, i.e., {i, j} ∈ Ṽ with ỹij + ỹji = 1. These
nodes are detected by enumeration. So far, larger node sets are not considered.

Strengthened Tk-inequalities. The strengthened Tk-inequalities are heuristically sepa-
rated. We use the following straightforward heuristic separation procedure to detect such
violated inequalities. The idea is that we try to “guess” nodes p,w, q and a node set W that
are likely to violate a (strengthened) Tk-inequality.

In the first step, node sets S with |S| ≥ 2 and x(A(S)) = |S| − 1 are determined. This
is done by enumerating nodes i, j ∈ V with xij + xji = 1, shrinking these nodes to a single
node and iteratively applying this enumeration procedure to the resulting shrunken digraph.
Each shrinking that is performed is stored in a shrinking digraph Ds = (V,As), where an arc
(i, j) ∈ As occurs whenever clusters i and j are shrunk to a new cluster j. The iteration in
which the arc is generated is stored as the arc label of (i, j). The outdegree of each node is
at most 1, whereas more than one arc can enter a node. For a given node i ∈ V node sets Sk
containing i and satisfying x(A(Sk)) = |Sk| − 1 can easily be detected.

In the second step, promising node triples for the Tk inequality are enumerated. In order
to keep computation time moderate we only consider nodes p,w, q, such that xpw+xpq+xwq is
between some limiting values. Computational tests show that it is most likely to find (within

12

reasonable time) violated Tk-inequalities if 1.33 ≤ xpw + xpq + xwq ≤ 1.75. Furthermore, we
generate just n such triples.

Finally, it is checked if a combination of the triples (p,w, q) and Sk violates a strengthened
Tk-inequality.

2-matching inequalities. So far no separation procedure for strengthened 2-matching
inequalities is known that incorporates the precedence structure directly. Therefore, we apply
the heuristic separation procedure by Padberg and Rinaldi [22], that is based on the exact
separation algorithm by Padberg and Rao [23]. If a violated 2-matching inequality is found,
all strengthened versions (21)–(27) are checked. The most violated inequality is added.

SD- and Dk-inequalities. So far, we only add the basic ATSP version of the inequalities.
We use the FORTRAN implementation of the separation procedure that was supplied by
Fischetti and Toth and is described in [13].

Separation strategy. The separation procedures described above are called in a hierarchi-
cal order:

Input : Incumbent LP-solution x̄.
Output : An inequality ax ≤ a0 violated by x̄, i.e., ax̄ > a0, if it can be

found.

1. Search for violated pool inequalities

2. Exact separation of subtour elimination inequalities

3. Exact separation of Dk-inequalities

4. Heuristic separation of SD-inequalities

5. Heuristic separation of π-inequalities

6. Heuristic shrinking separation procedure for precedence cycle breaking ine-
qualities

7. Heuristic separation of (π, σ)-inequalities

8. Heuristic separation of σ-inequalities

9. Heuristic separation of strengthened 2-matching inequalities

10. Heuristic separation of strengthened Tk-inequalities

If one of the steps is successful, i.e., a violated inequality is found, no other separation
procedure is called.

4.3 Variable fixing

In several parts of the algorithm we aim at fixing variables either to 0 or 1. We use reduced
cost criteria as well as criteria based on logical implications.

Reduced cost criteria allow to fix nonbasic active variables at their current value. To
be more precise, suppose we are given a global lower bound glb, a global upper bound gub,
and a nonbasic variable xij with associated reduced cost rij . In case that xij = 0 and
�glb+rij� ≥ gub we are allowed to fix variable xij to zero, whereas xij = 1 and �glb−rij� ≥ gub
imply that xij can be fixed to one. (Recall that we assumed to work with nonnegative, integer
costs cij .)

13

Logical implications

Computational tests showed that variable fixing (resp. setting) due to logical implications is
an important part of an efficient implementation, because it allows to reduce the problem
dimension dramatically.

When a variable xij is fixed (set) to 1, it is possible to fix (set) a number of other variables.
These variables include those corresponding to the reverse arc (j, i), to all other arcs with tail
in i, resp. head in j, but as well variables xkl for which we know that not both arcs (i, j) and
(k, l) can be present in a feasible solution without violating a precedence relationship. We
obtain the following implications:

xij = 1 ⇒ xji = 0
xik = 0 ∀k ∈ V \ {j}
xkj = 0 ∀k ∈ V \ {i}
x(j : π(i)) = 0
x(σ(j) : i) = 0
x(π(i) : σ(j)) = 0
x(π(j) : σ(i)) = 0

After fixing all variables to zero it may happen that there exists nodes i ∈ V such that
|δ−(i)| = 1 (resp. |δ+(i)| = 1). Because at least one arc entering (resp. leaving) i has to be
used, the corresponding variable can be fixed to 1.

Furthermore, if xij is fixed to 1, we update the precedence digraph P = (V,R). On the
one hand, we know that i precedes j and we can add the precedence relationship i ≺ j to the
precedence digraph (if not yet present). On the other hand, node i (resp. j) “inherits” all the
predecessors and successors of node j (resp. i). Afterwards, the transitive closure is updated
and variables may be fixed (set) to zero due to Lemma 1. If after this update a new fixed
node occurs, we decompose this problem into two subproblems and handle them separately.

4.4 Further implementation details

Preprocessing. In a preprocessing step we eliminate all arcs that cannot be present in any
feasible tour. These are

• arcs (i, k) with (i, j) ∈ R and (j, k) ∈ R

• arcs (1, j) with (i, j) ∈ R

• arcs (i, 1) with (i, j) ∈ R

Furthermore, we check if fixed nodes are present, i.e., nodes i ∈ V such that |π(i)| + |σ(i)| =
n − 2 holds. If such nodes exist, it is possible to decompose the instance into two smaller
instances by “splitting” it at node i and to handle them separately.

Initial set of variables. All arcs that are not fixed in the preprocessing phase are stored
explicitly in the feasible arc set. Since only a small subset of the variables will be nonzero in
an optimal solution, we are not working on the whole set of variables, but choose a promising
subset of variables, which we hope to contain an optimal solution. We have chosen the
variables of the k-nearest neighbor digraph, which we also denote as sparse digraph Ds =
(V,As). We have tested several possible values of k and have finally chosen k = 4 (see also

14

the paragraph on Pricing). We run an initial heuristic to obtain a feasible solution. The main
purpose of this heuristic is to make the sparse digraph Hamiltonian. The arcs of that tour
are added to the sparse digraph. Only the variables corresponding to the arcs of the sparse
digraph are considered in the initial linear program. The value of the global upper bound is
initialized with the value of this feasible tour.

Initial linear program. We set up the initial linear program with the variables in the
sparse digraph Ds, the degree constraints, and the trivial bounds xij ≥ 0.

Pricing. A pricing step has to be performed before branching, if an infeasibility is detected,
and if a tailing-off phenomenon is observed. Recall that basically the variables correspond-
ing to the k-nearest neighbor digraph are considered in the initial LP. The “sparse-digraph
technique” keeps the size of the linear program “moderate” but makes it necessary to price
out nonactive variables, that are not considered in the actual LP. The purpose is to check
if the LP solution is valid for the complete digraph, i.e., if all nonactive variables price out
correctly.

Since this may be very time consuming, the pricing is performed in a hierarchical way.
First the variables in a so-called reserve digraph Dr = (V,Ar) are considered, before per-
forming a pricing on the complete set of variables. We have chosen Dr to be the m-nearest
neighbor digraph for m > k. Arcs already contained in As are not considered in Ar. If the
reserve-graph-pricing is successful, the complete pricing is omitted.

The computational experiments documented in [2] showed that in the current implemen-
tation the choice of m and k only has a minor influence on the overall computation time. We
tested values for k ∈ {2, 3, 4, 5, 6, 7} and m ∈ {5, 6, 7, 8, 9, 10} leading to more or less the same
overall computation times. We decided to choose k = 4 and m = 7 as default values.

Furthermore, the pricing step is performed every pricing freq iterations. We have chosen
pricing freq = 10 as default value. This assures that variables needed in an optimal solution
enter the LP early.

Tailing off. If during the last k iterations of the cutting plane phase no significant improve-
ment (of at least p%) is achieved, a pricing step is performed. If this is not successful, i.e., no
variables are added, we leave the cutting plane phase and branch. We use the default values
k = 5 and p = 2.5 · 10−5.

Branching. Branching is performed on variables only. In the branching step a fractional
variable is chosen and two new subproblems are generated by setting the value of the variable
to 0, resp. to 1. We have chosen the following branching strategy that is supported by the
branch&cut framework: Choose the variable with value closest to 0.5; in case that several
such variables exist, the one with the highest cost-coefficient is chosen.

Enumeration strategy. In order to keep the branch&cut tree small, the way in which
the subproblems in the tree are processed is very important for an efficient implementa-
tion. In our implementation we tested three different strategies that are supported by the
branch&cut framework: depth-first-search (DFS), breadth-first-search (BRFS), and best-first-
search (BEFS). The computational results on some benchmark problems showed that DFS is
not a good strategy, because the “risk” of spending too much time in a branch of the tree that

15

Key to Tables 1–4:

problem : Name of the problem instance.
n : Number of nodes.
|R| : Number of precedence relationships (without transitively derived prece-

dences).
Solution : Value of the found solution. If the instance is not solved to optimality, the

global lower bound glb and global upper bound gub is given in the form
[glb,gub].

qual. : Quality of final feasible solution calculated by gub�glb
glb · 100 (if the problem

instance is solved to optimality it is marked with “–”).
Heur. : Value of the solution obtained by the initial heuristic.
BC-root : Quality of the solution at the root LP.

...bounds : Lower and upper bound at the root LP. If the problem instance is solved to
optimality at the root, it is marked with “–”.

...GAP(lb/ub) : Optimality gap at the root node calculated separately for the lower and
upper bound. Let lbroot (resp. ubroot) denote the lower bound (resp. upper
bound) before branching. Then the optimality gap at the root is defined as
gub�lbroot

lbroot
· 100 (resp. ubroot�glb

glb · 100).
BC-tree ... : Information on the branch&cut tree.

... # N : Number of generated nodes in the branch&cut tree (except the root node).

... level : Depth of the branch&cut tree.
#cuts : Number of generated cutting planes.
#LPs : Number of linear programs that had to be solved.
CPU : CPU time needed to solve the problem in format min:sec.

If the problem instance cannot be solved to optimality within a certain time
limit, this is marked by giving the CPU-time after which the run is stopped
(all computation times for SUN SPARC 10).

is useless for the computation of the bounds is too high. BRFS slightly outperforms BEFS
(see Ascheuer [2]) as it tends to give more “stable” results. Thus, we decided to use BRFS
as a default strategy.

5 Computational Results

The branch&cut-algorithm described in the previous section is coded in C on a SUN Ultra-
SPARC Model 140 with 128 MB main memory under SUN OS 5.6. We use a preliminary
version of the general purpose branch&cut-framework ABACUS that is explained in [18], the
LP-solver CPLEX 5.0, and the FORTRAN implementations of the separation routines for
SD- and Dk-inequalities by Fischetti and Toth [13]. The code is tested on several classes of
problem instances that contain real–life data, randomly generated data, and a combination
of both, involving the benchmark problems for the SOP contained in TSPLIB [24].

For all instances we allow a maximum computation time of 5·� n
100 � hours of CPU-time and

they are all run with the default parameter settings that we have described in the previous
section. It is obvious that better results on some of the instances may be achieved by fine-
tuning the parameters for these instances. But the aim of the computational experiments
is to evaluate parameter settings that give satisfactory results for a wide range of problem
instances. If an instance cannot be solved to optimality within the given time limit, we give

16

the lower and upper bounds found by the algorithm. First, we briefly describe the classes of
problem instances we use, afterwards we discuss the results achieved on these instances. The
results are summarized in Tables 1–4.

Table 1: Results on real–life instances

BC–root BC–tree
Problem n |R| Solution qual. Heur. bounds GAP #N, Level # cuts #LPs CPU
ESC07 9 6 2125 — 2550 – – – 0, 0 4 3 0:00
ESC11 13 3 2075 — 2129 – – – 0, 0 13 7 0:00
ESC12 14 7 1675 — 1760 – – – 0, 0 34 34 0:00
ESC14 16 12 2125 — 2125 – – – 0, 0 20 10 0:00
ESC25 27 9 1681 — 2372 [1642, 1684] 2.38 2.56 4, 2 85 93 0:01
ESC47 49 10 1288 — 2609 [1247, 1370] 3.29 9.86 40, 6 580 643 0:28
ESC63 65 95 62 — 63 – – – 0, 0 4 3 0:00
ESC78 80 77 18230 — 20130 – – – 0, 0 41 16 0:01
ESC98 100 84 2125 — 2125 – – – 0, 0 55 17 0:05
rbg019a 21 43 198 — 198 [197, 198] 0.51 0.51 4, 2 5 9 0:00
rbg019b 21 57 199 — 214 – – – 0, 0 4 2 0:00
rbg021a 21 68 158 — 183 – – – 0, 0 20 13 0:00
rbg023a 23 79 155 — 193 – – – 0, 0 42 22 0:00
rbg029a 29 76 217 — 248 [216, 218] 0.46 0.93 8, 3 88 56 0:01
rbg048a 50 192 351 — 396 [347, 351] 1.15 1.15 10, 5 493 235 0:21
rbg049a 51 241 355 — 425 – – – 0, 0 37 13 0:00
rbg050a 52 225 400 — 460 – – – 0, 0 157 66 0:03
rbg050b 52 258 397 — 465 – – – 0, 0 55 16 0:00
rbg050c 52 256 467 — 497 [465, 467] 0.43 0.43 12, 4 358 91 0:03
rbg068a 68 249 609 — 689 – – – 0, 0 57 19 0:01
rbg088a 90 547 1130 — 1245 [1124, 1133] 0.53 0.80 26, 4 1734 289 0:40
rbg092a 94 573 [1035, 1037] 0.19 1098 [1032, 1037] 0.48 0.48 11684,19 15609 29981 –∗

rbg094a 96 457 1336 — 1401 – – – 0, 0 24 9 0:00
rbg105a 107 682 [996, 1023] 2.71 1224 [990, 1030] 3.33 4.04 24718,14 11594 54110 –∗

rbg109a 111 622 1038 — 1117 [1027, 1042] 1.07 1.46 16734,34 4952 34703 232:59
rbg113a 113 305 1432 — 1537 [1431, 1432] 0.07 0.07 2, 1 95 36 0:05
rbg117a 117 312 1494 — 1609 – – – 0, 0 74 22 0:04
rbg118a 118 312 1423 — 1551 – – – 0, 0 390 103 0:27
rbg124a 124 351 1361 — 1520 – – – 0, 0 70 10 0:02
rbg126a 126 369 1381 — 1587 [1376, 1384] 0.36 0.58 1098,19 2273 3734 17:55
rbg143a 143 359 1765 — 1966 – – – 0, 0 46 14 0:03
rbg148a 148 976 [1396, 1399] 0.21 1554 [1376, 1407] 1.67 2.25 10054,18 16003 26503 –∗

rbg150a 152 952 [1748, 1750] 0.11 1858 [1745, 1750] 0.29 0.29 12230,13 19263 31151 –∗

rbg161a 161 472 1962 — 2178 – – – 0, 0 138 27 0:11
rbg174a 176 1113 [2029, 2033] 0.20 2193 [2022, 2037] 0.54 0.74 8376,12 16741 21490 –∗

rbg190a 190 725 [2229, 2241] 0.54 2442 [2209, 2251] 1.45 1.90 8372,13 20744 29303 –∗

rbg219a 219 799 [2530, 2544] 0.55 2767 [2512, 2551] 1.27 1.55 9574,13 24366 32566 –∗

rbg247a 247 702 3062 — 3379 – – – 0, 0 284 55 1:16
rbg253a 255 1721 [2929, 2951] 0.75 3163 [2918, 2961] 1.13 1.47 5074,11 16801 16255 –∗

rbg285a 285 820 3482 — 3857 [3479, 3483] 0.09 0.11 442,15 1770 1584 42:51
rbg323a 325 2412 [3137, 3141] 0.13 3381 [3126, 3157] 0.48 0.99 2146,10 24360 11607 –∗

rbg341a 343 2542 [2528, 2582] 2.14 3136 [2504, 2651] 3.12 5.87 2536,10 13900 9653 –∗

rbg358a 360 3239 [2527, 2568] 1.62 3185 [2499, 2601] 2.76 4.08 1094, 9 14480 6536 –∗

rbg378a 380 3069 [2771, 2856] 3.07 3431 [2731, 2881] 4.58 5.49 1120, 9 14616 6311 –∗

–∗: time limit exceeded

Real-life data. The problem instances ESC07–ESC98 are production data from IBM, that
were supplied by Escudero. They correspond to the instances P1–P9 as given in Ascheuer
et al. [4]. The instances rbg019a–rbg378a correspond to data that was obtained from the
routing of a stacker crane in an automatic storage system (for more details see Ascheuer [2]).

17

Randomly generated problem instances. All instances prob.* are randomly generated.
prob.7 (in TSPLIB prob.100) turned out to be one of the hardest instances we considered,
although the precedence relationships are easily structured. The instance contains 41 disjoint
pair of nodes ui, vi such that ui ≺ vi holds. Nevertheless, it seems to be nontrivial to find
good feasible solutions. It is not known if the best feasible solution (1385) is close to the
value of the optimal solution, or if the best lower bound (approx. 1035) is the tighter bound.
In order to study the reasons for this unsatisfactory behavior we constructed several other
instances by just considering the first k nodes of this instance (prob.7.k).

Table 2: Solution of random problem instances

BC–root BC–tree
Problem n |R| Solution qual. Heur. bounds GAP #N, Level # cuts #LPs CPU
prob.1 11 6 38 — 38 – – – 0, 0 6 3 0:00
prob.2 11 6 287 — 287 – – – 0, 0 2 2 0:00
prob.3 22 4 218 — 272 [217, 218] 0.46 0.46 2, 1 85 61 0:00
prob.4 42 0 225 — 233 – – – 0, 0 23 3 0:00
prob.5 42 10 243 — 285 [227, 254] 7.05 11.89 348,14 3715 5443 3:55
prob.6 82 5 614 — 859 [614, 643] 0.00 4.72 4, 1 259 57 0:10
prob.7 100 41 [1025, 1448] 41.27 1990 [1004, 1669] 44.22 66.24 6756,11 48778 42546 –∗

prob.7.30 30 5 898 — 1260 [874, 927] 2.75 6.06 14, 4 216 203 0:03
prob.7.35 35 7 957 — 957 [910, 957] 5.16 5.16 94, 9 1124 579 0:18
prob.7.40 40 10 1071 — 1587 [1054, 1146] 1.61 8.73 16, 5 379 223 0:07
prob.7.45 45 11 974 — 974 [932, 974] 4.51 4.51 120,10 1643 830 0:42
prob.7.50 50 14 879 — 1651 [866, 920] 1.50 6.24 28, 4 644 379 0:18
prob.7.55 55 16 882 — 1471 [847, 967] 4.13 14.17 1740,12 15908 10938 22:03
prob.7.60 60 20 [907, 1024] 12.90 1561 [855, 1242] 19.77 45.26 13416,12 83788 93316 –∗

prob.7.65 65 23 [899, 1049] 16.69 1382 [884, 1291] 18.67 46.04 13080,12 71182 81284 –∗

prob.7.70 70 27 [871, 1005] 15.38 1625 [853, 1245] 17.82 45.96 10696,12 75501 75066 –∗

–∗: time limit exceeded

Pure ATSP instances. Since the ATSP is a special case of the SOP where the set of
precedence relationships is empty, we obtain as a side product an algorithm to solve asym-
metric TSPs to optimality. We run the algorithm with the (hard) ATSP instances contained
in TSPLIB [24] (varying from 17 to 100 nodes). Furthermore, we run several large-scale in-
stances that have been derived from the stacker crane application (problem instances rbg*.0).

ATSP instances with random precedences. It turned out that the ATSPs that are
the basis for the real–life problems rbg* are easily solvable. In order to check what influence
additional precedence constraints have on hard ATSP instances we perform experiments on
the ATSP instances contained in TSPLIB [24]. For that purpose we randomly generate
precedence digraphs P = (V,R) and add them to the ATSP instances.

The random precedence digraph P = (V,R) is constructed in the following way: Initially
we set R = ∅. For each problem instance two lists l1, l2 of k random integers in the interval
[1, n] are generated. List l1 corresponds to the tails, list l2 to the heads of potential arcs
(i, j) ∈ R. Starting from the first entry of the list we add an arc (l1[i], l2[i]) to R if l1[i] �= l2[i],
(l1[i], l2[i]) �∈ R, and R ∪ (l1[i], l2[i]) remains acyclic — otherwise this arc is skipped. We
generate problem instances for k = n

4 ,
n
2 , n, 2 · n. Because some infeasible arcs are generated,

the actual number of added precedences is smaller than k.

18

Table 3: Solution of asymmetric TSP instances

BC–root BC–tree
Problem n Opt. Heur. bounds GAP #N, Level # cuts #LPs CPU
br17 18 39 39 – – – 0, 0 9 7 0:00
p43 44 28100 28130 [28058,28100] 0.15 0.15 170,23 1115 808 0:52
ry48p 49 14422 14732 [14351,14519] 0.49 1.17 8, 3 176 255 0:15
ft53 54 6905 7667 – – – 0, 0 25 21 0:06
ft70 71 38673 39653 [38660,38673] 0.03 0.03 6, 3 30 38 0:23
kro124p 101 36230 39468 [36217,36230] 0.04 0.04 2, 1 163 86 2:25
rbg323.0 324 1326 1327 – – – 0, 0 8 10 9:54
rbg341.0 342 1116 1120 – – – 0, 0 1 8 10:39
rbg358.0 359 1163 1165 – – – 0, 0 5 13 12:10
rbg378.0 379 1633 1634 – – – 0, 0 12 14 16:48
rbg399.0 400 2048 2048 – – – 0, 0 0 5 16:22
rbg403.0 404 2465 2465 – – – 0, 0 0 5 13:18
rbg416.0 417 2126 2136 – – – 0, 0 1 7 29:02
rbg423.0 424 2065 2066 – – – 0, 0 0 6 20:38
rbg443.0 444 2720 2720 – – – 0, 0 0 6 19:37

If name is the name of the TSPLIB-instance then

name.1 is used for additional k = n
4 potential precedence relationships,

name.2 is used for additional k = n
2 potential precedence relationships,

name.3 is used for additional k = n potential precedence relationships,
name.4 is used for additional k = 2 · n potential precedence relationships.
On the one hand, most of the small and medium sized problem instances can be solved to

optimality within a reasonable amount of computation time (Table 1). On the other hand,
there exist several other instances for which the optimality gap is pretty large even after
several hours of computation time (see column Solution). These instances are mainly among
the TSPLIB-instances with random precedences (see Table 4).

For all of the real–life instances in Table 1 good lower and upper bounds on the value of
an optimal solution can be found even in the root of the branch&cut tree. For all instances,
except ESC47, the gap of the bounds is in a 4%-range. Both lower and upper bound differ
by the same order of magnitude from the value of an optimal solution (see Column BC-
root...GAP).

A similar behavior can be observed for the instances summarized in Table 4. Nevertheless,
the final GAP for these instances is larger. Moreover, the gap before branching is larger than
for the other classes of instances. As a consequence, the major part of these instances cannot
be solved to optimality within the given time limit (although they are smaller in size than
many of the real–life instances). Although several separation routines are available and a
large number of cuts are generated, this is not sufficient. This is perhaps due to the fact that
the generated inequalities are only valid inequalities but we do not know if they are facet
defining, i.e., they are not strong enough from a computational point of view. As for the TSP
the size of the instance, typically indicated by the number of nodes, is not the only indicator
for the “hardness” of an instance.

It seems worth mentioning that only for very few instances the initial heuristics yield good
feasible solutions. For most of the considered instances better solutions are found “on the
fly” by the LP-exploitation heuristic. The results of the initial heuristic are getting worse
the more precedences are involved (e.g., instances rbg*). This indicates that the starting
heuristics do not handle the precedence structure properly.

All ATSP instances can be solved to optimality in a short computation time (Table 3).

19

Table 4: Solution of TSPLIB instances with random precedences

BC–root BC–tree
Problem n |R| Solution qual. Heur. bounds GAP #N, Level # cuts #LPs CPU
br17.1 18 4 41 — 41 [39, 41] 5.13 5.13 10, 5 100 84 0:01
br17.2 18 8 47 — 49 [40, 47] 17.50 17.50 168,25 1099 1065 0:16
br17.3 18 14 49 — 49 [43, 49] 13.95 13.95 6, 3 104 72 0:00
br17.4 18 17 76 — 76 – – – 0, 0 31 14 0:00
p43.1 44 9 28140 — 28280 [28063,28170] 0.27 0.38 1132,27 3695 3788 6:21
p43.2 44 20 [28319,28480] 0.57 28630 [28109,28500] 1.32 1.39 7670,14 32859 40238 –∗

p43.3 44 37 [28553,28835] 0.99 29255 [28160,28890] 2.40 2.59 5876,12 25618 35939 –∗

p43.4 44 50 [65497,83005] 26.73 83525 [55884,83050] 48.53 48.61 12604,25 15949 50570 –∗

ry48p.1 49 11 15805 — 16984 [14969,15994] 5.58 6.85 7456,29 19575 72208 208:03
ry48p.2 49 23 [15587,16666] 6.92 17562 [15117,16940] 10.25 12.06 7754,12 25642 78473 –∗

ry48p.3 49 42 [17813,19894] 11.68 22406 [17248,20370] 15.34 18.10 5836,11 14741 59392 –∗

ry48p.4 49 58 [29616,31446] 6.18 34467 [27165,31446] 15.76 15.76 11322,13 9109 59114 –∗

ft53.1 54 12 7531 — 8723 [7186, 7695] 4.80 7.08 10084,32 7418 45925 112:48
ft53.2 54 25 [7594, 8054] 6.06 10674 [7419, 8691] 8.56 17.15 14950,13 10342 70207 –∗

ft53.3 54 48 [9253,10262] 10.90 13743 [9115,10748] 12.58 17.92 4190,11 12290 47152 –∗

ft53.4 54 63 [14124,14425] 2.13 16231 [13871,14425] 3.99 3.99 13044,17 10239 60653 –∗

ft70.1 71 17 39313 — 41960 [39168,39617] 0.37 1.15 348,10 1150 2327 6:03
ft70.2 71 35 [39843,40485] 1.61 43883 [39417,41628] 2.71 5.61 17080,13 10244 65637 –∗

ft70.3 71 68 [41413,42884] 3.55 48659 [40646,43563] 5.51 7.18 7826,11 12178 51554 –∗

ft70.4 71 86 [52298,53583] 2.46 60806 [50611,53627] 5.87 5.96 5892,11 12010 37201 –∗

kro124p.1 101 25 [37861,39982] 5.60 46063 [36538,42814] 9.43 17.18 5310,11 23082 54957 –∗

kro124p.2 101 49 [38809,42055] 8.36 48330 [37591,44064] 11.88 17.22 6112,11 18643 53928 –∗

kro124p.3 101 97 [41451,51123] 23.33 56198 [39323,53389] 30.01 35.77 5416,11 11125 47211 –∗

kro124p.4 101 131 [65445,76103] 16.29 91579 [56516,79377] 34.66 40.45 3582,10 10394 28945 –∗

–∗: time limit exceeded

These results indicate that the precedence constrained instances are “more difficult” than
pure ATSP instances of the same size. The rbg-instances are easily solvable. All of them
can be solved just after a few iterations and very often only subtour elimination inequalities
suffice to solve the instances. The achieved results are comparable to the best computation
times documented by Fischetti and Toth [13]. This is not surprising as more or less the same
separation routines are used.

Table 5 shows results on a subset of all test instances indicating the strength of the various
separation routines. To concentrate on the influence of the separation procedures on the lower
bound only, an optimal solution was supplied as input sequence. ColumnAll gives the results
when all separation routines are used. The first entry corresponds to the optimality gap at the
root node (opt−glb

glb · 100), the second entry to the overall time (min:sec) to solve the instance
to optimality. In the last row gaps and computing times are summed up.

It turns out that the most efficient separation routines are those for π-, σ-, and (π, σ)-
inequalities. Computing times considerably increase if these procedures are not used. They

Table 5: Results for separation routines

All without π without σ without (π, σ) without 2M without Dk without SD without Tk
ESC25 0.18 0:00 0.60 0:00 2.19 0:01 0.36 0:00 0.18 0:00 0.06 0:00 0.30 0:00 0.18 0:00
ESC47 3.21 0:15 3.37 0:15 3.29 0:16 3.45 0:26 3.21 0:16 3.29 0:17 3.29 0:13 3.21 0:15
ft70.1 0.37 0:35 0.44 0:45 0.41 2:32 0.37 0:34 0.37 0:38 0.38 0:29 0.38 0:45 0.37 0:47
prob.7.35 5.16 0:18 5.28 0:31 5.28 0:37 5.16 0:18 5.16 0:20 5.05 0:17 5.16 0:14 5.16 0:18
prob.7.45 4.28 0:42 4.28 1:11 6.22 1:41 4.28 0:41 6.10 1:14 5.98 0:48 4.28 0:20 4.28 0:44
rbg048a 1.45 0:11 0.57 12:14 1.15 0:29 1.15 0:51 1.45 0:20 1.45 0:15 1.45 0:14 1.15 2:36
rbg118a 0.00 0:27 0.00 0:11 0.07 0:23 0.07 2:02 0.00 0:27 0.00 0:32 0.07 0:26 0.00 0:28
rbg247a 0.00 1:16 0.00 0:58 0.00 0:54 0.03 1:19 0.00 1:11 0.00 1:18 0.00 1:15 0.00 1:26∑

14.65 3:44 14.54 16:05 18.61 6:53 14.87 6:11 16.47 4:26 16.21 3:56 14.93 3:27 14.35 6:34

20

generate many cuts that considerably improve the objective function value (see, e.g., the gap
for the σ–separation).. Furthermore, we emphasize the computational power of strengthen-
ing generated subtour elimination inequalities. Especially for problem instances with dense
precedence structure, very seldomly pure subtour elimination inequalities are added as cutting
planes. Also, very few cuts can be strengthened to simple pcb-inequalities. Moreover, the
separation routines for Dk- and SD-inequalities as well as the shrinking procedure for identi-
fying violated precedence cycle breaking inequalities prove to be very helpful. The separation
routines for 2-matching inequalities and strengthened Tk-inequalities only play a minor role
in solving instances to optimality.

6 Conclusions

The sequential ordering problem (SOP), or equivalently asymmetric traveling salesman prob-
lem with precedence constraints is an important basic model for many applications in schedul-
ing and routing.

In this paper we have described the implementation of a branch&cut-algorithm that solves
problem instances to optimality or gives quality bounds on the value of the best solution found.
This is in contrast to pure heuristic methods.

Computational experiments with both real–life data obtained from industrial applications
as well as randomly generated instances show that the branch&cut-algorithm is capable of
solving medium sized instances of more than 200 nodes within a few minutes of CPU-time to
provable optimality. Our method clearly outperforms other exact methods published so far.

An analysis of the bounds obtained before branching shows that for most problem in-
stances very good lower bounds are obtained. Sometimes it is difficult to find a feasible
solution with that value. The results on some instances, especially large scale instances with
dense precedence structure, show that the heuristics sometimes fail to construct good solu-
tions. From our point of view, this is one of the main reasons that most of the larger instances
cannot be solved to optimality. Recently, alternative heuristic algorithms have been proposed
[8, 14] that seem to give good results for these type of problem instances. Their use within
the branch&cut-algorithm should be investigated.

Furthermore, we believe that the derivation of new classes of inequalities and the incor-
poration of further separation routines will improve the computation times and will lead to
optimal solutions for some of the unsolved instances. This is left to further research.

Acknowledgements

Our research was partially supported by the Science Program SC1-CT91-620 of the EEC. We
are grateful to Stefan Thienel who provided the implementation of the branch&cut framework.
We also thank Matteo Fischetti and Paolo Toth for having provided us with their FORTRAN
code for the separation of the Dk- and SD-inequalities.

References

[1] N. Ascheuer. Ein Schnittebenenverfahren für ein Reihenfolgeproblem in der flexiblen
Fertigung. Master’s thesis, Universität Augsburg, Germany, 1989.

21

[2] N. Ascheuer. Hamiltonian Path Problems in the On-line Optimization of Flexi-
ble Manufacturing Systems. PhD thesis Tech. Univ. Berlin, 1995. Avail. at URL
http://www.zib.de/ZIBbib/Publications/,

[3] N. Ascheuer, L. Escudero, M. Grötschel, and M. Stoer. On identifying in polynomial time
violated subtour elimination and precedence forcing constraints for the sequential order-
ing problem. In Kannan, R. and Pulleyblank,W.R., editors, Integer Programming and
Combinatorial Optimization, pages 19–28. University of Waterloo, Waterloo, Ontario,
1990.

[4] N. Ascheuer, L. Escudero, M. Grötschel, and M. Stoer. A cutting plane approach to
the sequential ordering problem (with applications to job scheduling in manufacturing).
SIAM Journal on Optimization, 3:25–42, 1993.

[5] N. Ascheuer, M. Jünger, and G. Reinelt. Heuristic algorithms for the ATSP with prece-
dence constraints – a computational comparison. Technical report, ZIB Berlin, 1998. (To
appear).

[6] E. Balas and M. Fischetti. A lifting procedure for the asymmetric traveling salesman
polytope and a large new class of facets. Mathematical Programming, 58:325–352, 1993.

[7] E. Balas, M. Fischetti, and W. Pulleyblank. The precedence constrained asymmetric
traveling salesman polytope. Math. Prog., 68:241–265, 1995.

[8] S. Chen and S. Smith. Commonality and genetic algorithms. Technical Report Technical
Report CMU-RI-TR-96-27, Carnegie Mellon University, Pittsburgh, 1996.

[9] L.F. Escudero. An inexact algorithm for the sequential ordering problem. European
Journal of Operational Research, 37:236–253, 1988.

[10] L.F. Escudero. On the implementation of an algorithm for improving a solution to the
sequential ordering problem. Trabajos de Investigacion-Operativa, 3:117–140, 1988.

[11] L.F. Escudero, M. Guignard, and K. Malik. A Lagrangean relax–and–cut approach
for the sequential ordering problem with precedence constraints. Annals of Operations
Research, 50:219–237, 1994.

[12] M. Fischetti. Facets of the asymmetric traveling salesman polytope. Mathematics of
Operations Research, 16:42–56, 1991.

[13] M. Fischetti and P. Toth. A polyhedral approach to the asymmetric traveling salesman
problem. Management Science, 43(11):1520–1536, 1997.

[14] L.M. Gambardella and M. Dorigo. HAS-SOP: Hybrid ant system for the sequential
ordering problem. Technical Report Technical Report IDSIA-11-97, IDSIA, Lugano,
Switzerland, 1997.

[15] M. Grötschel. Polyedrische Charakterisierungen kombinatorischer Optimierungsprob-
leme. Hain, Meisenheim am Glan, 1977.

[16] M. Grötschel and M. Padberg. Polyhedral theory. In E.L. Lawler, J.K. Lenstra, A.H.G.
Rinnooy Kan, and D.B. Shmoys, editors, The Traveling Salesman Problem. John Wiley
& Sons, 1985.

22

[17] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In M.O. Ball,
T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors, Network Models, volume 7 of
Handbooks in Operations Research and Management Science, chapter 4, pages 225–330.
North Holland, 1995.

[18] M. Jünger, G. Reinelt, and S. Thienel. Provably good solutions for the traveling salesman
problem. Zeitschrift für Operations Research, 22:83–95, 1998.

[19] M. Jünger and S. Thienel. Introduction to ABACUS – A Branch And CUt System. Tech-
nical report, Institut für Informatik, Universität zu Köln, Technical Report No. 97.263,
1997. See on-line documentation under URL

http://www.informatik.uni-koeln.de/ls juenger/projects/abacus.html.

[20] M. Jünger, and S. Thienel. Introduction to ABACUS - A Branch And CUt System.
Operations Research Letters, 40(2):183–217, 1994.

[21] M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut problem.
Mathematical Programming, 47:19–36, 1990.

[22] M. Padberg and G. Rinaldi. Facet identification for the symmetric traveling salesman
polytope. Mathematical Programming, 47:219–257, 1990.

[23] M. Padberg and M.R. Rao. Odd minimum cut-sets and b-matchings. Math. of OR,
7:67–80, 1982.

[24] G. Reinelt. TSPLIB – a traveling salesman problem library. ORSA Journal on Comput-
ing, 3:376–384, 1991. See

http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html.

[25] M. Timlin. Precedence constrained routing. Master’s thesis, Department of Combina-
torics and Optimization, University of Waterloo, 1989.

[26] M.T. Fiala Timlin and W.R. Pulleyblank. Precedence constrained routing and helicopter
scheduling: Heuristic design. Interfaces, 22(3):100–111, May–June 1992.

23

