European Research Network on Foundations, Software Infrastructures and Applications
for large scale distributed, GRID and Peer-to-Peer Technologies

A Metwork of Excellence funded by the European Commission

A DHT-based Peer-to-Peer Framework
for Resource Discovery in Grids

Domenico Talia, Paolo Trunfio
{talia|trunfio }@deis.unical.it
Jingdi Zeng
zeng@si.deis.unical.it
DEIS, University of Calabria,
Via Pietro Bucci 41C, 87036 Rende (CS), Italy

Mikael Hogqvist
hoegquivt@zib.de
Konrad-Zuse-Zentruniif Informationstechnik Berlin,
Takustrasse 7, D-14195 Berlin-Dahlem, Germany

CoreGRID Technical Report
(oreGAMD— Number TR-0048
June 8, 2006

Institute on Knowledge and Data Management &
Institute on System Architecture

CoreGRID - Network of Excellence
URL.: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265

A DHT-based Peer-to-Peer Framework
for Resource Discovery in Grids

Domenico Talia, Paolo Trunfio
{talia|trunfio }@deis.unical.it
Jingdi Zeng
zeng@si.deis.unical.it
DEIS, University of Calabria,
Via Pietro Bucci 41C, 87036 Rende (CS), Italy

Mikael Hogqgvist
hoegquivt@zib.de
Konrad-Zuse-Zentrumiir Informationstechnik Berlin,
Takustrasse 7, D-14195 Berlin-Dahlem, Germany

CoreGRID TR-0048
June 8, 2006

Abstract

Several systems adopting Peer-to-Peer (P2P) solutions for resource discovery in Grids have recently been pro-
posed. This report looks at a P2P resource discovery framework aiming to manage various Grid resources and
complex queries. Following the discussion on characteristics of Grid resources and related query requirements, a
DHT-based framework leveraging different P2P resource discovery techniques is proposed. The goal of the proposed
framework is two-fold: to address discovery of multiple resources, and to support discovery of dynamic resources
and arbitrary queries in Grids.

1 Introduction

A large amount of work on Peer-to-Peer (P2P) resource discovery has been done, including both unstructured and
structured systems. Early unstructured P2P systems, such as Gnutella[l], flsedhmy techniqueo broadcast
resource requests in the network. The flooding technique does not rely on a specific network topology and supports
gueries in arbitrary forms. Several approaches [2, 3, 4], moreover, have been proposed to enhance two intrinsic
drawbacks of the flooding technique: the potentially massive amount of messages, and the possibility that an existing
resource may not be located. For structured P2P systems, distributed hash tables (DHTSs) are widehTxbaded
system$b, 6, 8] arrange< attribute, attribute-value >, that is,< key,value > pairs in multiple locations across

the network. A query message is forwarded towards the node that is responsible for the key in a limited number of
hops. The result is guaranteed, if such a key exists in the system. As compared to the flooding technique, however,
DHT-based approaches need intensive maintenance on hash table updates.

In Grid environments, applications are composed of hardware and software resources that need to be located; effi-
cient and effective resource discovery is critical. While Grids can be seen as a more federated version of P2P systems,
they shall be able to benefit from distributive P2P resource discovery techniques. Taking into account the character-
istics of Grids, accordingly, several P2P resource discovery techniques have been adapted to Grid environments. For

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

instance, DHT-based P2P resource discovery systems have been extended to support range value and multi-attribute
queries [9, 10, 11, 12, 13].

Two major differences between P2P systems and Grids, however, determine their different approaches towards
resource discovery. First, P2P systems are originally designed to share files among peers. Grids, on the contrary,
deal with a complicate set of resources, ranging from files to computing resources. Second, the dynamism of P2P
systems comes from both nodes and resources. Peers join and leave at any time, and thus do the resources shared in
the network. In Grid environments, nodes connect to the network in a relatively static manner. The dynamism of Grids
mainly comes from the fast-changing status of resources. For example, the storage space and CPU load may change
continuously over time.

Highlighting the variety and dynamism of Grid resources, this report proposes a DHT-based resource discovery
framework for Grids. The rest of the report is organized as follows. Section 2 introduces existing Grid resource
discovery systems that relate to this work. Section 3 discusses characteristics of Grid resources and related query
requirements. Section 4 unfolds the picture of the proposed framework, by touching up on major implementation
concerns. Section 5 concludes the report.

2 Related Work

Several systems exploiting DHT-based P2P approaches for resource discovery in Grids have recently been proposed
[9, 10, 11, 12, 13]. Two important issues investigated by these systems are range queries and multi-attribute resource
discovery.

Range queries look for resources specified by a range of attribute values (e.g., a CPU with spae2iGidnto
3.2GHz). These queries are not supported by standard DHT-based systems such as Chord [5], CAN [6], and Pastry
[7]. To support range queries over DHTS, a typical approach is to use locality preserving hashing functions that retain
the order of numerical values in DHTs [9, 10].

Multi-attribute resource discovery refers to the problem of locating resources that are described by a set of attributes
or characteristics (e.g., OS version, CPU speed, etc.). Several approaches have been proposed to organize resources in
order to efficiently support multi-attribute queries. Some systems focus on weaving all attributes into one DHT [11]
or one tree [12]. Some others adopt one DHT for each attribute [9, 10, 13].

Aside from single value queries, range queries, and multi-attribute queries for single resources, the proposed
framework aims to support queries for multiple resources. We use multiple DHTs to manage attributes of multiple
resources. This provides a straightforward architecture, and leaves space for potential extensions.

Gnutella-basedlynamic query14] strategy is used to reduce the number of messages generated by flooding.
Instead of all directions, this strategy forwards the query only to a selected peer. If a response is not returned from
a direction, another round of search is initiated in the next direction, after an estimated time. For relatively popular
contents this strategy significantly reduces the number of messages without increasing the response time.

Broadcast in DHT-based P2P networks [15] adds broadcast service to a class of DHT systems that have logarithmic
performance bounds. In a network 8fnodes, the node that starts the broadcast reaches all other nodes with exactly
N — 1 messages (i. e., no redundant messages are generated).

The approach proposed for dynamic resource discovery in this report uses a DHT for broadcasting queries to all
nodes without redundant messages, and adopts a similar “incremental” approach of dynamic query. It reduces the
number of exchanged messages and response time.

3 Background

Two concepts are used in the rest of the report:

e Resource classa “model” for representing resources of the same type. Each resource class is defined by a set
of attributes which specify its characteristics.

e Resourcean “instance” of a resource class. Each resource has a specific value for each attribute defined by the
corresponding resource class. Resources are univocally identified by URLSs.

An example of resource class is “computing element” that defines the common characteristics of computing re-
sources. These characteristics are described by attributes such as “OS name”, “CPU speed”, and “Free memory”.

CoreGRID TR-0048 2

A computing resource (i.e., an instance of the “computing element” resource class) has a specific value for each
attribute, for example, “OS name = Linux”, “CPU speed = 1000MHz", and “Free memory = 1024MB".

Table 1 lists some examples of Grid resources classes. It's not exhaustive, with new classes emerging. A more
complete list of resource classes can be found in [18].

Resource class Description

Computing resource Computing capabilities provided by computers, clusters of computers, etc.
Storage resource | Storage space such as disks, external memory, etc.

Network resource | Network connections that ensures collaboration between other Grid resources.
Device resource Specific devices such as instruments, sensors, etc.

Software resource | Operating systems, software packages, Web services, etc.

Data resource Various kinds of data stored in file systems or databases.

Table 1: Examples of Grid resource classes.

Resource classes can be broadly classifiediitta-nodeandinter-noderesources. “Computing element” is an
example of intra-node resource class. An example of inter-node resource class is “network connection” (see Table 1),
which defines network resource characteristics.

Figure 1 shows a simple Grid including four nodes and three resource classes. As examples of intra-node resources,
NodeA includes two instances of resource clasand one instance of resource cléissThe figure also shows two
inter-node resources: one betwegnde A and Node B, and the other betweeNode B and NodeD.

Node A Node B

D Resource class a
D Resource class b

@ A Resource class ¢
Node D : " NodeC

Figure 1: Inter-node and intra-nodes resources.

The attributes of each resource class are egtaticor dynamic

e Static attributes refer to resource characteristics that do not change frequently, such as “OS name” and “CPU
speed” of a computing resource.

e Dynamic attributes are associated to fast changing characteristics, such as “CPU load” and “Free memory”.

The goal of resource discovery in Grids is to locate resources that satisfy a given set of requirements on their
attribute values.
Three types of queries apply to each attribute involved in resource discovery:

e Exact match querywhere attribute values of numeric, boolean, or string types are searched.
e Range querywhere a range of numeric or string values are searched.

e Arbitrary query, where for instance partial phrase match or semantic search is carried out.

A multi-attribute query is composed of a set of sub-queries on single attributes. Each sub-query fits in one of the
three types as listed above, and the involved attributes are either static or dynamic.

Complex Grid applications involve multiple resources. Thus, multi-resource queries are often needed. For in-
stance, one can be interested in discovering two computing resources and one storage resource; these resources may

CoreGRID TR-0048 3

not be geographically close to each other. A multi-resource query, in fact, involves a set of sub-queries on individual
resources, where each sub-query can be a multi-attribute query.

Taking into consideration both characteristics and query requirements of Grid resources, appropriate P2P discovery
techniques are listed in Table 2. DHTs are used for exact and range queries on static Grid resources, where static
resources are quantified and represented by exact numeric values. Organized in DHTSs, these values can be efficiently
accessed. Nevertheless, traditional DHTs may not be able to handle fast-changing attribute values. In other words,
the frequent updates on DHTSs that cause inconsistent table content and unstable state pose a challenge on the resource
discovery performance of DHTs. Moreover, queries in arbitrary forms are not supported by DHTs. As a result, the
flooding technique is used for both dynamic Grid resources and arbitrary queries on static Grid resources.

Static Grid resources | Dynamic Grid resources
Exact query DHT Flooding
Range query DHT Flooding
Arbitrary query | Flooding Flooding

Table 2: Query techniques used for different types of resources and queries.

4 System architecture

The framework aims to provide a generic architecture that leverages existing techniques to fulfill various resource
discovery needs in Grid environments. As illustrated in Figure 2, the DHT-based architecture is composed of a set of
virtual planes one for each resource class. Within the virtual plane of resource Blader example, static attributes
R,.Aq, ..., Ry. Ay, are associated to their DHTSs, respectively. Exact or range queristattattributes are carried

out using the DHTSs corresponding to these attributes.

‘ Resource class R,

‘ Resource class R, N

Resource class R, A,

ST TN Vg R S

'Asz

. .y S
@@?&gﬁ;b o
N S

A Ry,
@ttributes Ay E?D
o gavrr T

Figure 2: System architecture.

An additional “general purpose” DHT is dedicated to queries on dynamic attributes and to “arbitrary queries” on
static attributes. This DHT is different from the others. The DHTs in the virtual planes are standard DHTSs, in which
both nodes and resource identifiers are mapped on the same ring. In the general purpose DHT, only the node identifiers
are mapped to the ring, while resources are not mapped to it. In other terms, there are not pointers to resources in the
general purpose DHT.

Basically, the general purpose DHT is used to broadcast queries to all Grid nodes whose identifiers are mapped to
the ring. All Grid nodes reached by a query are in charge of processing it against the local resources, and sending the
response to the node that originated the query. The mechanism used for broadcasting a query on this ring is described
in Section 4.3.

CoreGRID TR-0048 4

4.1 Local component

Figure 3 shows the software modules inside each Grid node.

From other nodes
Query Engine * >
To other nodes

/i — P |
A),)

FT(Ra.Al)

)
"] [
-

>

]

>

l FT (General purpose DHT) ‘

Figure 3: Software modules inside each Grid node.

With multiple virtual planes defined in the system, each node participates in all DHTs of these virtual planes.
Therefore, multiple finger tables corresponding to each DHT co-exist in each node, as illustrated in Figure 3. For ex-
ample, finger table8'T(R,.A1), FT(R,.Az2),...,andF'T(R,.A,,) correspond to DHTs of attributdy,. A1 ...R,. Asp,
in Figure 2.

The finger table of the general purpaBd{ T, that is, FT (General purpose DHT), is used to reach individual
nodes and locate dynamic attributég ,...,A4,. A query engine processes resource discovery requests and associates
them to different query instances and thus DHTs. The results are then generated at the node where related queries are
initiated.

4.2 Static attribute discovery

A number of multi-attribute, range query approaches has emerged. They either use one DHT [11] or one tree [13] for
all attributes, or arrange attribute values on multiple DHTs [9]. While both one DHT and multi-DHT approaches have
proved effective, we adopt the multi-DHT strategy, for its simplicity and extension potentials.

Assume there arg classes of resources, each of which h&goes of attributes. A total number pfx ¢ DHTs is
used. Although one node does not necessarily have all attributes, it is included in all DHTSs, and the values of its blank
entries are left as null. The number of finger tables that a node maintgins is Each finger table, for overal
nodes, containkg(N) entries.

While existing approaches support resource discovery on single or multiple attributes of one resource class, the
framework proposed in this report manages multiple resources. One way to do it is to hash the string of “resource
class + attribute” into aiD; this ID is used to identify the corresponding finger table inside a node.

4.3 Dynamic Attribute Discovery

As mentioned in Section 2, our approach for dynamic resource discovery exploits both the dynamic query [14] and the

broadcast over DHT [15] strategies. The general purpose DHT and associated finger tables, as illustrated in Figures
2 and 3, are used only to index Grid nodes, without keeping pointers to Grid resource attributes. Queries are then
processed by the local query engine of each node.

4.3.1 To Reach all Nodes

To reach all nodes without redundant messages, the broadcast strategy is based on a DHT [15]. Take a fully populated
Chord ring withN = 2™ nodes and a/-bit identifier space as an example. Each Chord netlas a finger table,

with fingers pointing to nodek + 2¢~!, wherei = 1, ..., M. Each of thesé@/ nodes, in turn, has its fingers pointing

to anotherM nodes. Each node forwards the query to all nodes in its finger table, and in turn, these nodes do the same

CoreGRID TR-0048 5

with nodes in their finger tables. In this way, all nodes are reachéd steps. Since multiple fingers may point to the

same node, a strategy is used to avoid redundant messages. Each message contains a “limit” argument, which is used
to restrict the forwarding space of a receiving node. The “limit” argument for the node pointed by fisdgarger

1+ 1.

Figure 4: An example of broadcast.

Figure 4 gives an example of an eight-node three-bit identifier Chord ring. The "limit” of each node is marked
with a black dot. Three steps of communication between nodes are demonstrated with solid, dotted, and dashed lines.
Obviously, nodé reaches all other nodes viéd — 1 messages withifi/ steps. The same procedure applies to Chord
ring with N < 2™ (i.e., not fully populated networks). In this case, the number of distinct fingers of each node is
logN on the average.

4.3.2 Incremental Resource Discovery

The broadcast strategy in Section 4.3.1 adopts a “parallel” approach. That is, the node that initiates the discovery tasks
sends the query message to all its fingers in parallel. Although no redundant messages are generated in the network,
its N — 1 messages can be prohibitive in large-scale Grids.

Referred to as “incremental”, our approach uses a mixed parallel and sequential query message forwarding. A
“parallel degree”D is introduced to adjust the range of parallel message forwarding, and thus curb the number of
exchanged messages. Given a node that initiates the query, it forwards the query message in parallel to nodes pointed
by its first D distinct fingers. If there are enough positive responses, the search terminates; otherwise, this node
forwards the query message to the node pointed bpits 1 finger. The same procedure applies to nodes pointed
by the rest of fingers, sequentially, until the number of positive responses meets the requirementd) Wheh
our incremental approach is the same as the parallel approach;Wwhken, the incremental approach proceeds in a
completely sequential manner, where nodes pointed by all fingers are visited one after another.

The number of generated messages by the incremental approach is obviously less than or equal to that of the parallel
approach. The response time of the incremental approach, however, may be prolonged owing to its sequential query
message forwarding. We argue that this does not necessarily hold true. In large-scale Grids, multiple query requests
at one node can be prominent, which adds extra delay to response time. Under this circumstance, the incremental
approach shall benefit from its reduced number of messages that may shorten this extra delay.

A discrete-event simulator is used to evaluate the performance of the incremental approach in comparison with the
parallel approach. Preliminary results confirmed the previous expectation. When the number of queries concurrently
submitted in the network increases, the response time of the incremental approach increases more slowly than that
of the parallel approach. This is because in the parallel approach the overall number of generated messages is much
higher than that in the incremental approach, which results in increased message traffic and processing load that cause

CoreGRID TR-0048 6

a higher response time. In the scenario where the processing time and the delivery time increase exponentially with
the load of the network, the response time in the incremental approach should be significantly better than that in the
parallel approach.

4.3.3 Discussion on tradeoffs

The two major motivations of the “incremental” approach are to support arbitrary queries and to acquire up-to-date
values of dynamic resource attributes.

Arbitrary queries. The term “arbitrary query” is used in this report to indicate any query that cannot be solved
through key lookup over standardDHT. Examples of arbitrary queries include partial-match queries (e.g., substrings
searching), and queries against structured and semi-structured data stored in different formats across Grid nodes.

Extensions to standard DHTs have been proposed to support keyword searching [20], complex queries [21], and
efficient storing and querying of XML data (e.g., [22] for RDF documents). However, such systems require additional
indexing structures, which may result ineffective in case of highly-dynamic resources. Moreover, the use of hetero-
geneous resource schemas in different sites makes infeasible the design of ad hoc indexing structures that are able to
support queries of arbitrary format.

For these reasons, following the approach in [15], the broadcast over DHT approach is adopted to distribute arbi-
trary queries across the Grid. This allows to search resources of interest even if they cannot be indexed by a dedicated
infrastructure. To compensate the inherent broadcast overhead, the “incremental” strategy is used, reducing response
time and saving network bandwidth in case of relatively popular resources, as discussed before.

Up-to-date attribute values. The “incremental” approach is beneficial when DHT updating is rather frequent, and
thus up-to-date attribute values are difficult to obtain. A Grid user discovers desired resources, and negotiates with
them to ensure the eventual resource usage. During the course of the negotiation, however, the targeted resource
attributes may change. This inconsistency of attribute values will cost the Grid user one or more rounds of query and
negotiation.

Additionally, when using the “incremental” approach, there is no message overhead for updating the dynamic
resource attribute values. The saved cost increases with the updating frequency, the number of attributes, and the DHT
updating cost of a single value, i.e., O(log N).

Given the advantages and drawbacks of different strategies, the Grid resource provider can decide if an attribute
should be treated as static or dynamic. Accordingly, the multi-DHT or the broadcast over DHT approach is used.

4.4 APIs

DHT systems have APIs developed to maintain their hash tables. APIs of Chord, for example, inskrti&ey,
value) lookup(key) update(key, newvaljoin(n), andleave() Systems [15] built on top of DHT systems also define
policies and higher level APIs.

The framework proposed in this report identifies two types of APl operatlonal operations retrieve and update
attribute statessommunicatioroperations define the messages exchanged among nodes, and the information carried
by these messages. Extra APIs to differentiate multiple resource classes is of importance here. For ©@aple,
used to identify attributes of different resource classes. THzsmay be arranged in a list or a DHT.

There are two approaches towards the definition of a complete set of APIs for the proposed framework. First, new
higher level APIs are introduced to interface with existing APIs. Second, existing APIs are modified to cope with
attributes of multiple resource classes.

To eliminate the difference between structured overlay protocols (e.g., CAN, Tapstry, Pastry, and Chord), basic
abstractions for APl implementation in structured P2P networks are proposed [19]. The proposal demonstrates how
higher level abstractions, such as dynamic hash table operations, are realized on top of a basic key-based routing layer.
This could be an interesting direction for the APl implementation of the framework.

5 Conclusions

The proposed framework aims to support resource discovery in Grid environments, based on DHT systems. Aside
from the proposed framework, this report identifies the necessity of handling multiple Grid resources and dynamic

CoreGRID TR-0048 7

Grid attributes. Methods that support resource discovery on multiple resource classes as well as on dynamic attributes
and arbitrary queries are introduced.

To be implemented over different platforms and span through wide area networks, this framework needs to be
seamlessly integrated with tl@pen Grid Services Architectuf®©GSA and theWeb Service Resource Framework
(WSRH, which provides standard mechanisms for the implementation of Grid systems and applications [17]. More-
over, the framework needs to explicitly address XML-based queries to support the discovery of WSRF-enabled Web
services.

Acknowledgments

We thank Dr. Artur Andrzejak for reading and commenting on an earlier version of this report.

References

[1] Gnutella Protocol Development.
http://rfc-gnutella.sourceforge.net/src/rfosedraft.html.

[2] C. Gkantsidis, M. Mihail, and A. Saberi, “Hybrid Search Schemes for Unstructured Peer-to-peer Networks,”
Proc. of IEEE INFOCOM'05, Miami, USA, March 2005.

[3] Q.Lv, P.Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replicating in Unstructured Peer-to-peer Networks,”
Proc. of 16th Annual ACM Int. Conf. on Supercomputing (ISC’02), New York, USA, June 2002.

[4] A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-peer Systems,” Proc. of Int. Conf. on Distributed
Computing Systems (ICDCS’02), Vienna, Austria, July 2002.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications,” Proc. of ACM SIGCOMM’01, San Diego, USA, August 2001.

[6] S. Ratnasany, P. Francis, M. Handley, R. M. Karp, and S. Shenker, “A Scalable Content-Addressable Network,”
Proc. of ACM SIGCOMM’'01, San Diego, USA, August 2001.

[7] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for large-scale peer-to-
peer systems,” Proc. of IFIP/ACM International Conference on Distributed Systems Platforms (Middleware),
Heidelberg, Germany, pp. 329-350, November 2001.

[8] M. Frans Kasshoek and D. R. Karger, “Koorde: A Simple Degree-optimal Distributed Hash Table,” Proc. of 2nd
Int. Workshop on Peer-to-peer Systems (IPTPS’03), Berkeley, USA, February 2003.

[9] M. Cai, M. Frank, J. Chen, and P. Szekely, “MAAN: A Multi-Attribute Addressable Network for Grid Informa-
tion Services,” Journal of Grid Computing, 2004.

[10] A. Andrzejak and Z. Xu, “Scalable, Efficient Range Queries for Grid Information Services,” Proc. of 2nd IEEE
Int. Conf. on Peer-to-peer Computing (P2P’02), Sweden, September 2002.

[11] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, “Scalable Wide-Area Resource Discovery,” UC Berke-
ley Technical Report, UCB/CSD-04-1334, July 2004.

[12] S. Basu, S. Banerjee, P. Sharma, S. Lee, “NodeWiz: Peer-to-peer Resource Discovery for Grids,” Proc. of
IEEE/ACM GP2PC'05, Cardiff, UK, May 2005.

[13] D. Spence and T. Harris, “XenoSearch: Distributed Resource Discovery in the XenoServer Open Platform,” Proc.
of HPDC’03, Washington, USA, June 2003.

[14] Adam A. Fisk, “Gnutella Dynamic Query Protocol v0.1,” http://www.the-
gdf.org/wiki/index.php?titte=DynamiQuerying.

CoreGRID TR-0048 8

[15] S. El-Ansary, L. Alima, P. Brand, and S. Haridi, “Efficient Broadcast in Structured P2P Networks” Proc. of
IEEE/ACM Int. Symp. on Cluster Computing and the Grid (CCGRID’05), Cardiff, UK, 2005.

[16] J. Salter, “An Efficient Reactive Model for Resource Discovery in DHT-based Peer-to-peer Networks,” Master
Thesis, University of Surrey, UK, June 2005.

[17] C. Comito, D. Talia, and P. Trunfio, “Grid Services: Principles, Implementations and Use,” International Journal
of Web and Grid Services, Vol. 1, No. 1, pp 48-68, 2005.

[18] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Konya, M. Mambelli, J. Schopf, M. Viljoen,
and A. Wilson, “GLUE Schema Specification Version 1.2: Final Specification - 3 Dec 05/
http://infnforge.cnaf.infn.it/glueinfomodel/index.php/Spec/V12.

[19] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards a Common API for Structured Peer-to-
peer Overlays”, Proc. of IPTPS’'03, Berkeley, USA, February 2003.

[20] P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword Searching”, Proc. of Int. Middleware Conference
(Middleware 2003), Rio de Janeiro, Brazil, 2003.

[21] M. Harren, J. M. Hellerstein, R. Huebsch, and B. T. Loo, “Complex Queries in DHT-based Peer-to-Peer Net-
works”, Proc. of 1st Int. Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.

[22] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor, “A Subscribable Peer-to-Peer RDF Repository for Dis-
tributed Metadata Management”, Journal of Web Semantics: Science, Services and Agents on the World Wide
Web, 2(2):109.130, December 2004.

CoreGRID TR-0048 9

