Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

Takustralle 7
D-14195 Berlin-Dahlem
Germany

RAINER RoITzscH! BoDO ERDMANN JENS LANG

The Benefits of Modularization:
from KASKADE to KARDOS

*submitted to Proceedings of the 14th GAMM-Seminar Kiel on ‘Concepts of Numerical
Software’, January 23rd to 25th, 1998

Preprint SC 98-15 (May 1998)

The Benefits of Modularization:
from KASKADE to KARDOS

Rainer Roitzsch Bodo Erdmann Jens Lang

Abstract

KARDOS solves nonlinear evolution problems in 1, 2, and 3D. An
adaptive multilevel finite element algorithm is used to solve the spatial
problems arising from linearly implicit discretization methods in time.
Local refinement and derefinement techniques are used to handle the
development of the mesh over time.

The software engineering techniques used to implement the mod-
ules of the KASKADE toolbox are reviewed and their application to
the extended problem class is described. A notification system and
dynamic construction of records are discussed and their values for the
implementation of a mesh transfer operation are shown. The need for
low-level and high—level interface elements of a module is discussed for
the assembling procedure of KARDOS. At the end we will summarize
our experiences.

1 Introduction

Our “definition” of modularity in the programming context will remain vague
and general: Breaking a program into parts. The art of programming is to
do this “breaking into parts” in a way which gives you modules of mod-
erate size, with natural functionality (reflecting the problem area), and a
minimal interface. The modularization should not sacrifice efficient compu-
tation, add too much complexity, or introduce new (programming) problem
areas. Hopefully, the user of a module needs only to know the interface, not
the implementation. Modules should allow reuse without touching and the
adaption to programming languages like Fortran, C, and C++.

It is obviously the programming environment (social and computational)
and the developers personal heritage (character and taste) which guides the

“modularizator” to his modularization. The selection of the implementation
language (here C) gives him a set of techniques to define the interfaces be-
tween the modules. All his previous programming practice will influence his
preferences. One of the authors introduces his previous LISP experience and
his “living” with the Macintosh OS. The techniques to extend the description
of module interfaces, which we present in this paper, have a dynamic object
oriented flavor.

The KASKADE toolbox [4, 5] developed at the Konrad—Zuse—Center can be
used to write algorithms to solve linear systems of elliptic partial differential
equations by an adaptive refinement process. It uses the data structures of
Peter Leinen to handle adaptive refinable meshes (red/green refinement, R.
Bank 98). The mesh and the data arising by the discretization are stored in
local data objects to get distributed arrays and sparse matrices. An overview
of the modules will be given in Section 2.

The KARDOS [8] application (or toolbox extension) of KASKADE imple-
ments some new requirements on the handling of meshes and finite element
vectors and matrices. KARDOS solves time—dependent, nonlinear partial
differential equations

H(z,t,u)uy — V- (D(z,t,u)Vu)=F(x,t,u,Vu)
reQCR,t>0,n=1,23 (1)
u=(ul,... u)

with suitable boundary conditions. Some application areas are combustion
problems [7, 9], pattern formation, regional hyperthermia [6], dopand diffu-
sion in semiconductor manufacturing [10], incompressible flows, and porous
media.

For the time discretization a one-step method of Rosenbrock type is used.
At each new time the solution from the previous time is required to solve
elliptic problems to get the intermediate stage values. The implementation
of the necessary mesh transfer operation is given in Section 3.

The need to use low—level interface elements to implement efficient algorithms
is shown in Section 4. The high-level interface for assembling the linear
system of equations was not well suited to implement the KARDOS solver.
Thus, the low-level (previously internal) interface of the KASKADE toolbox
has to be made available.

2 KASKADE Modules

Figure 1 shows a simplified overview of the module structure of the KASKADE
toolbox. The conventional finite element modules use the runtime interface
modules and each other in a hierarchical order from left to right.

KASKADE toolbox

Runtime interface

MEMORY EVENT DyNREC COMMANDS

TRIANG NODE ASSEMBLE SOLVE

Figure 1: KASKADE modules

2.1 Runtime Interface Modules

These modules were designed to supply functionality to the C programming
language and library.

The first implementation of KASKADE showed the deficiency of the (im-
plementation dependent) C library routine malloc. Intensive use of this
runtime routine can be very inefficient, depending on the quality of the local
implementation. This introduces an unintended system dependency. The
MEMORY module consists of routines to allocate/deallocate masses of short
storage units which arise from the adaptive triangulation handling. Extra
code to help debugging and catch pointer errors as early as possible are
included. Data about the used memory are at any time available. This
proved to be essential for the development of KARDOS because memory
book—keeping errors are fatal for long time simulations.

The EVENT module manages events to create a notification system. Events
can be defined by modules to enhance the module interface. Let us look at
an example: The interface to the SOLVE module includes an event NewSol
which can be used to register routines. The GRAPHIC modules register the
routine DrawSol to be computed when a new solution is available. The event
is raised every time that a new solution is computed and the EVENT module

will call all registered routines automatically, see Figure 2. Independently
other routines can be registered for the same event.

SOLVE NewSol GRAPHIC

register

execute
create

EVENT
HANDLER

Figure 2: Automatic execution of a routine at event NewSol

The EVENT interface contains routines to create and delete events. These
events can be used to raise events in two variants, one to process the registered
routines immediately and one to put the event in a queue for processing in
an event loop. At registration the user may control at which point in the
sequence of registered routines the new routine is inserted. The EVENT
module includes debugging code to trace event processing and inform on
existing events.

The DYNREC module manages dynamic structures. The idea is a simple
one: The user can request a slice of a given byte array for his use. DyYN-
REC searches for the first free slice (maybe with some alignment condition),
reserves the slice and returns the index of the first byte of the slice.

An example of utilizing this idea is the management of user storage at the
triangulation. At each geometric entity (points, edges, triangles, tetrahedra)
a byte array (of fixed length) is stored. A prototype for the array is handled
by DYNREC and the user has access to it. For example, a user who wants
to store a pointer at triangles will request 4 bytes (somehow aligned) on this
prototype byte array and gets an index to a free slice. Macros are available to
access this storage for all existing triangles. The DYNREC module contains
debugging code like a trace and an information facility.

The EVENT and DYNREC modules support the clean separation of interfaces
thus minimizing the interfaces. Different users of an event or a dynamic
record need not coordinate their usage which is completely hidden from each
other.

All these runtime modules include an interface to the command language
module COMMANDS. The user can add commands and get some help to
process parameters. Furthermore, a set of commands is available to view
and change internal parameters which are registered. The complete module
can be substituted by the well-known Tcl/Tk scripting language [11].

2.2 Finite Element Modules

The interface of the TRIANG module consists of a set of procedures to create,
delete, or select triangulations, see Figure 3. The access to the geometric
entities is handled by applying (user) functions on sets of points, edges,
triangles, tetrahedra. The refinement/derefinement process is invoked by a
call of open/close routines and a marking process in between.

routine

CrTri create triangulation

SelTri select triangulation

CloseTri delete triangulation

ApplyP apply user routine to points

ApplyE apply user routine to edges

ApplyT apply user routine to triangles

ApplyTD apply user routine to tetrahedra
OpenRef prepare triangulation for refinement
CloseRef refine triangulation

RefTr, RefTd mark triangle (tetrahedron) for refinement
OpenDel prepare triangulation for derefinement
CloseDel derefining triangulation

DelTr, DelTd mark triangle (tetrahedron) for deletion

Figure 3: Some routines of the interface to the TRIANG module

This functional interface is enhanced by events which allow the user to write
callback procedures, see Figure 4, and by dynamic records to store data at the
basic geometric objects, see Figure 5. These callback procedures are managed
by the EVENT module, the dynamic records by the DYNREC module.

This interface proved to be rich enough to implement a mechanism to connect
the triangles of two triangulations in a way to find for a triangle of one
triangulation the corresponding triangle of the other triangulation in a very
direct way, see Section MESH TRANSFER.

event

TriSelect01ld before triangulation selection
TriSelectNew after triangulation selection
NewTriangle new triangle generated
ReturnTriangle triangle to delete
RefineTriangle triangle refined
DeleteTriangle triangle derefined

Figure 4: Some events of the interface to the TRIANGULATION module

event

accPoint at points
accEdge at edges
accTriangle at triangles

Figure 5: Dynamic records managed for the TRIANGULATION module

The NODE module handles assignment of node storage (including the node
number for each degree of freedom) at the triangulation. It should work
for arbitrary (but fixed over the triangulation) finite elements by just using
the number of nodes at points, edges, triangles, or tetrahedra. The module
is responsible to identify common nodes correctly, for example to ensure
the right sequence of nodes on an edge. Systems of equations are handled
here too. The implementation of this module depends heavily on the runtime
modules. The memory assigned to a node is distributed over the triangulation
as slices of the dynamic records at points, edges, triangles, and tetrahedra.

The ASSEMBLE module contains the interface to define the coefficients of the
elliptic problem or a local assembly routine, assembling the stiffness matrix
and right—hand sides. Standard sets of shape functions, sets of integration
points are included.

The SOLVE module defines the framework for the adaptive cycle: solving the
linear system, error estimation, and refinement. Methods can be registered to
the module which execute them in a well defined environment. The selection
and information on these registered methods are supported in the command
language.

3 Mesh Transfer

A time integration scheme for equation (1) generates a sequence of elliptic
problems which can be solved by the KASKADE toolbox. In the context of
this paper it is sufficient to look at the most simple equation

u — Au =0 (2)
and the simple time integration scheme (backward Euler)
(I = 7A)ultnsr) = ultn) (3)

to see the necessity to implement an efficient mesh transfer operator. Figure
6 shows a diagram of computational steps. The elliptic solver needs the
solution computed for the mesh 7, on each of the triangulations T}¥,

3 n—1
70 70, by adapting T
1 1
n n+1
T Al

Figure 6: Mesh transfer between timesteps n and n + 1

The following solution assumes that both triangulations are generated by re-
finement /derefinement algorithms from the same coarse triangulation. While
assembling the local stiffness matrices and right—hand sides on triangulation
7% 1 we need to find the values of the solution on 7™ at the integration
points. Our solution is to connect both triangulations by linking each tri-
angle with a pointer to the finest triangle (of the other triangulation) which

includes or equals the current triangle, see Figure 7.

Both (coarse) triangulations are connected at the start of the computations.
Each time a triangle is refined or derefined this information is updated in a
straightforward manner. The routines to do this are registered at the events
RefineTriangle and DeleteTriangle.

Now let us discuss the actual implementation. The first part is the initial-
ization, here a simplified pseudocode:

m k
T, Toi

triangles of 7,
pointed to "

AN £

Figure 7: Connecting two triangulations

#define ALIGN 4
int partnerTriangle;
void InitMeshTransfer (TRIANGUALATION *triangl,
TRIANGUALATION *triang?2)
{

Triangle *t, *tPartner

partnerTriangle = GetAccess(accTriangle, sizeof (*Triangle),
ALIGN, "partner");
Register(SetPartner, RefineTriangle,
"set partner at refinement");
Register (UnsetPartner, DeleteTriangle,
"unset partner at derefinement");

forall (Triangle* tc&triangl)
tPartner = FindPartner(t, triang?2);
SetPointer(t, partnerTriangle) = tPartner;
SetPointer (tPartner, partnerTriangle) = t;

}

return;

Note that the strings used in the calls to GetAccess and Register are only
needed for documentation and debugging, they need not to be unique. The
routine SetPartner is always called when a triangle t is refined.

void SetPartner(Triangle *t)

{

Triangle *tPartner = GetPointer (t, partnerTriangle);

if ((t->refType)==(tPartner->refType))
{
SetPartersOnSons(t, tPartner);
SetPartersOnSons (tPartner, t);
return;
}
SetSameParterOnSons(t, tPartner);
return;

The field refType of the Triangle data structure contains the refinement
type (green, red or not refined) of a triangle. The routines SetPartersOnSons
and SetSameParterOnSons will do what their names imply. The routine
UnsetPartner which is called just before a triangle is derefined looks even
more simple:

void UnsetPartner(Triangle *t)

{

Triangle *tPartner = GetPointer(t, partnerTriangle);

if ((t->refType)==(tPartner->refType))
SetSameParterOnSons (tPartner, t);
return,;

}

Now it is relatively easy to find the values of the solution on the previous
triangulation. When assembling the local stiffness for a triangle the best
triangles to start a search is directly available.

Let us finish this section with a remark on the coarsening of the grid. The
implemented strategy must guaranty the return to the coarsest triangles in
regions where the solution allows this. The simplest method would be to
start with the coarse triangulation at each new time. This technique is
used in the older code KASTIO [3]. A more sophisticated strategy is the
trimming tree technique [8] which removes just the (local) finest level on

the complete domain. The adaptive coarsening strategy implemented in the
current version of KARDOS uses the result of the last error estimation, thus
loosing a minimum of information.

4 Efficiency of Assembling

KARDOS implements a much more complicated scheme than the backward
Euler schema (3). A step in this direction is the reformulation of the equation
which has the difference u(t,,1) — u(t,) as solution of

(I — 7)) (u(tng1) — ultn)) = TAu(t,) . (4)

Even in this simple setting we need two matrices, the mass matrix for [
and the stiffness matrix for A. In the more complex environment of the
Rosenbrock scheme four matrices are needed. The ASSEMBLE module of
KASKADE includes a data type to define a user problem by user functions for
the coefficients of the partial differential equation. This environment is used
to assemble the linear system of equations. In the KARDOS environment
we would use the interface as follows:

massMatrix = Assemble(MassProblem);
stiffnessMatrix = Assemble(LaplaceProblem);

but this would result in a very inefficient code. For each call of Assemble
each triangle is touched once and some calculations (like the transformation
of the integration points, the transfer of the previous solution at these points)
are done twice. Additionally, the information to store structure of the sparse
matrices is doubled. What we need is a much finer interface of the ASSEMBLE
module which allows to write the assembling loop directly:

sparseStructure = MakeSparseStructure();
massMat = MakeSparseMatrix(sparseStructure);
stiffnessMat = MakeSparseMatrix(sparseStructure);
forall (Triangle* tE&triang)
{
localData = ComputeLocalData(t);
localMassMat = AssemblelLocal (MassProblem, localData);
localStiffnessMat = AssembleLlocal(LaplaceProblem,
localData);
globalIndices = GetNodeIndices(t);

10

AddLocalMatrix(massMat, localMassMat, globallndices);
AddLocalMatrix(stiffnessMat, localStiffnessMat,
globalIndices);

This version is much more efficient, but further optimization is still feasible.

5]

Conclusion

The modularization concept described in this paper has proved to be flexi-
ble enough to implement complicated algorithms such as needed for KAR-
DOS. Newly emerging software techniques (like C4++, Java, or an object ori-
ented design methodology) were used to implement KASKADE 3.0 in C++
[2]. Both versions are freely distributed at ftp://ftp.zib.de/pub/kaskade.
The changes necessary to adapt KARDOS to the new version request a sub-
stantial effort.

References

1]

2]

Bank, R.E.: “PLTMG: A Software Package for Solving Elliptic Partial
Differential Equations — User’s Guide 8.0”, STAM, 1998.

Beck, R., Erdmann, B., Roitzsch, R.: “An Object-Oriented Adaptive
Finite Element Code and its Application in Hyperthermia Treatment
Planning”, In: Modern Software Tools for Scientific Computing, Er-
lend Arge, Are Magnus Bruaset, and Hans Petter Langtangen (Eds.),
Birkhauser, 1997.

Bornemann, F.A.: “An Adaptive Multilevel Approach to Parabolic
Equations. III: 2D Error Estimation and Multilevel Preconditioning”,
IMPACT 2, p. 1-45, 1992.

Deuflhard, P., Leinen, P., Yserentant, H.: “Concept of an Adaptive
Hierarchical Finite Element Code”, IMPACT 1, p. 3-35, 1989.

Erdmann, B., Lang, J., Roitzsch, R.: “KASKADE Manual, Version
2.0”7, Z1B TR93-5, Berlin, 1993.

Erdmann, B., Lang, J., Seebafl, M.: “Adaptive Solutions of Nonlinear
Parabolic Equations with Application to Hyperthermia Treatments”,

11

[10]

[11]

Proc. Int. Symp. on Advances in Comp. Heat Transfer, Cesme, Turkey,
1997.

Frohlich, J., Lang, J.: “Twodimensional Cascadic Finite Element Com-
putations of Combustion Problems”, to appear in Comp. Meth. Appl.
Mech. Engrg., 1998.

Lang, J.: “Adaptive FEM for Reaction—Diffusion Equations”, Appl.
Numer. Math. 26, p. 105-116, 1998.

Lang, J., Erdmann, B., Roitzsch, R.: “Adaptive Time-Space Dis-
cretization for Combustion Problems”, Proc. 15th IMACS World
Congress on Scientific Computation, Modelling and Applied Mathemat-
ics (Ed. A. Sydow), Vol. 2 (Numerical Mathematics), p. 149-155, Berlin,
1997.

Lang, J., Merz, W.: “Numerical Simulation of Single Species Dopant
Diffusion in Silicon under Extrinsic Conditions”, ZIB SC 97-47, Berlin,
1997.

Ousterhout, J.K.: “Tcl and the Tk Toolkit”, Addison—Wesley, Reading,
1994.

12

