
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ANDREAS BRANDT, MANFRED BRANDT

On a Two-Queue Priority System
with Impatience

and its Application to a Call Center

Preprint SC 98-21 (August 1998)



On a Two-Queue Priority System with Impatienceand its Application to a Call Center1Andreas BrandtWirtschaftswissenschaftliche Fakult�at, Humboldt-Universit�at zu Berlin,Spandauer Str. 1, D-10178 Berlin, Germanye-mail: brandt@wiwi.hu-berlin.deManfred BrandtKonrad-Zuse-Zentrum f�ur Informationstechnik Berlin (ZIB),Takustr. 7, D-14195 Berlin, Germanye-mail: brandt@zib.deAbstractWe consider a s-server system with two FCFS queues, where the arrival rates at the queuesand the service rate may depend on the number n of customers being in service or in the �rstqueue, but the service rate is assumed to be constant for n > s. The customers in the �rstqueue are impatient. If the o�ered waiting time exceeds a random maximal waiting time I ,then the customer leaves the �rst queue after time I . If I is less than a given deterministic timethen he leaves the system else he transits to the end of the second queue. The customers in the�rst queue have priority. The service of a customer from the second queue will be started if the�rst queue is empty and more than a given number of servers become idle. For the model beinga generalization of the M(n)=M(n)=s+GI system balance conditions for the density of thestationary state process are derived yielding the stability conditions and the probabilities thatprecisely n customers are in service or in the �rst queue. For obtaining performance measures forthe second queue a system approximation basing on �tting impatience intensities is constructed.The results are applied to the performance analysis of a call center with an integrated voice-mail-server. For an important special case a stochastic decomposition is derived illuminatingthe connection to the dynamics of the M(n)=M(n)=s+GI system.Mathematics Subject Classi�cation (MSC 1991): 60K25, 68M20, 60G10.Keywords: two queues; many-server; server reservation; impatience; occupancy distribution;waiting time distribution; approximate system; M(n)=M(n)=s+GI ; stochastic decomposition;call center application.1 IntroductionIn this paper we analyze a general two-queue s-server priority system with state dependentarrival and service rates, server reservation and impatient customers in the protected queue.The results are applied to the performance analysis of a call center with an integrated voice-mail-server.The general model, cf. Figure 1.1., consists of two FCFS queues denoted by Q and Q0, respec-tively, and s servers. The arrival rates �n and �0n at Q and Q0, respectively, are allowed to1This work was supported by a grant from the Siemens AG.1



depend on the number n of customers being in service or in Q. The customers in Q are impa-tient, i.e., each customer arriving at Q has a random maximal waiting time I. If the o�eredwaiting time W o (i.e., the time which the customer would have to wait for accessing a serverif he were su�ciently patient) exceeds I, then the customer leaves Q after time I: If I < � ,where � 2 IR+ is a given deterministic time (decision parameter), then the customer leaves thesystem (gets lost), else he transits to the end of Q0. The maximal waiting times are assumedto be i.i.d. with distribution function C(u) = P (I � u). As soon as any server is idle, the nextcustomer from Q { provided there is anyone { will be served. The customers in Q0 are notimpatient. Only if more than a servers, where a 2 f0; 1; : : : ; s�1g is a given parameter, are idleand no customers are waiting in Q then one of the idle servers starts serving a customer fromQ0 (server reservation for Q being protected). The cumulative rate �n of �nishing service of acustomer is allowed to depend on the number n of customers being in service or in Q, but therate is assumed to be constant for n > s, i.e., the rate of �nishing service may only depend onthe number of busy servers and additionally whether there are customers waiting for service inQ.
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m1m2m3...ms�nFigure 1.1. Two-queue s-server system with server reservation, impatient customers in the�rst queue Q, state dependent arrival and service rates, where n denotes thenumber of customers being in service or in Q.Note, that for the mathematical analysis { given later in the paper { it is crucial that thearrival and service rates may only depend on the number n of customers being in service orin Q and not on the number of customers in Q0. However, two interesting and very di�erentlimiting cases are obtained from this model: In case of � = 1, �0n � 0 the model reduces to aM(n)=M(n)=s+GI system (s-server system with impatient customers) which was analyzed byseveral authors, cf. [BB], [BH], [H], [J1], [J2], [GK], [HS], [W]; in case of � = 0 the model reducesto a two-queue s-server system with server reservation and transition from the protected to theend of the unprotected queue after waiting time I.The main results and the organization of the paper are as follows. In Section 2 we derivefor the general model, cf. Figure 1.1, a system of balance conditions for the density of thestationary vector process of the number n of customers being in service or in Q, the residualmaximal waiting times and original maximal waiting times of customers waiting in Q. Thesystem of balance conditions is just of the same structure as those for the M(n)=M(n)=s queue2



with impatient customers investigated in [BB]. An application of the results in [BB] and of theconservation principle for stationary point processes yields the stability conditions and an explicitrepresentation for the probabilities that precisely n customers are in service or in Q. However,for the stationary occupancy distribution for Q0 no explicit formulae are available. Thus, inSection 3 an approximate system is constructed by replacing the impatience mechanism in Q bywaiting place dependent impatience rates. The stability conditions and the probabilities thatprecisely n customers are in service or in Q are the same as in the exact model. For the factorialmoments of the occupancy distribution for Q0 in the approximate system a recursive algorithmis developed.In Section 4 the results of Section 2 and Section 3 are applied to the performance analysis ofa call center with an integrated voice-mail-server (VMS). Important performance measures canbe computed exactly: stability condition, blocking probability, impatience probability, waitingtime distribution in the waiting room etc. The �rst moment of the occupancy distribution for Q0in the approximate system of the general model, cf. Section 3, yields an approximation for themean number of calls in the VMS and, in view of Little's formula, also an approximation for themean waiting time in the VMS. Simulations of the system have shown that this approximationworks well. Corresponding numerical results are given.In the Appendix for a call center consisting of s servers, k waiting places and integrated VMS(special case �n = 1If0 � n < s + kg� for some positive integer k, �0n = 0, �n = min(n; s)�for n = 0; 1; 2; : : : and I � � in the model of Figure 1.1) a stochastic decomposition is given interms of the M(n)=M(n)=s queue with impatient calls. This decomposition result illuminatesadditionally the connection between the M(n)=M(n)=s queue with impatient calls investigatedin [BB] and the stochastics of the system considered in this paper.2 A system of balance conditions and the stationary occupancydistribution for QAs above denote by n the number of customers being in service or in Q and by n0 the numberof customers in Q0. Let in the following ` := (n�s)+. In view of the system dynamics thenthere are ` customers waiting in Q. We number the waiting customers in Q and Q0 accordingto their positions in Q and Q0, respectively. Thus, by the FCFS discipline the �rst customer ineach queue will be potentially the next from this queue for service. Throughout this paper wemake the following assumption concerning the arrival and service rates.Assumption 2.1. Let �n and �0n be bounded and either �n > 0 for n � 0 or there is a positiveinteger k such that �n > 0 for 0 � n < s+k and �n � 0 for n � s+k. Let �0n � 0 for n < s�a.Further, let �0=0, �n > 0 for s� a � n � s and �n � �� > 0 for n > s.Remark 2.2. The assumption �0n � 0 for n < s � a has technical reasons only. The generalcase is obtained by rede�ning the arrival intensities for n < s� a: �n as the sum of the arrivalintensities at Q and Q0 as well as �0n :� 0.We assume that the system is stable (the stability conditions will be given later) and that C(u)is non-defective and has a continuous density, for the general case see later. Let us introducethe following random variables and probabilities:3



N(t) { sum of the number of customers in service and of the number ofcustomers in Q at time t,L(t) := (N(t)� s)+ { number of customers in Q at time t,N 0(t) { number of customers in Q0 at time t,(X1(t); : : : ;XL(t)(t)) { vector of the residual maximal waiting times of waiting customersin Q ordered according to their positions in Q at time t,(I1(t); : : : ; IL(t)(t)) { vector of the original maximal waiting times of waiting customersin Q ordered according to their positions in Q at time t,p�(n; n0) := P (N(t) = n;N 0(t) = n0){ stationary distribution of the vector (N(t); N 0(t)),P �(n; n0; x1; : : : ; x`; u1; : : : ; u`) := P (N(t) = n;N 0(t) = n0; X1(t) � x1; : : : ;X`(t) � x`;I1(t) � u1; : : : ; I`(t) � u`){ stationary distribution on (N(t); N 0(t)) = (n; n0),p(n) := P (N(t) = n) { stationary distribution of N(t),P (n; x1; : : : ; x`; u1; : : : ; u`) := P (N(t) = n; X1(t) � x1; : : : ;X`(t) � x`;I1(t) � u1; : : : ; I`(t) � u`){ stationary distribution on N(t) = n.Obviously, for �xed n > s, n0 � 0 the support of P �(n; n0;x1; : : : ; x`;u1; : : : ; u`) is contained in
` := f(x1; : : : ; x`;u1; : : : ; u`) 2 IR2+̀ : u1 � x1 � : : : � u` � x` � 0g: (2.1)In view of the assumptions on C(u) the densitiesp�(n; n0;x1; : : : ; x`;u1; : : : ; u`) := @2`@x1 � ::: � @x`@u1 � ::: � @u`P �(n; n0;x1; : : : ; x`;u1; : : : ; u`);p(n;x1; : : : ; x`;u1; : : : ; u`) := @2`@x1 � ::: � @x`@u1 � ::: � @u`P (n;x1; : : : ; x`;u1; : : : ; u`)are continuous on 
`.In case of 0 � n < s, n0 � 0 we have the balance equations(�n + �0n + �n)p�(n; n0)= 1Ifn > 0g�n�1p�(n� 1; n0) + 1Ifn0 > 0g�0np�(n; n0 � 1)+ (1Ifn+ 1 6= s� ag+ 1Ifn+ 1 = s� ag1Ifn0 = 0g)�n+1p�(n+ 1; n0)+ 1Ifn = s� ag�np�(n; n0 + 1) (2.2)and in case of n = s, n0 � 0 the balance equations(�s + �0s + �s)p�(s; n0) 4



= �s�1p�(s� 1; n0) + 1Ifn0 > 0g�0sp�(s; n0 � 1)+ �Z0 p�(s+ 1; n0; 0;u)du + 1Ifn0 > 0g 1Z� p�(s+ 1; n0 � 1; 0;u)du+ �� ZIR2+ p�(s+ 1; n0;x;u)dxdu+ 1Ifa = 0g�sp�(s; n0 + 1): (2.3)In case of n > s, n0 � 0 and (x1; : : : ; x`;u1; : : : ; u`) 2 
`, in view of (2.1) especially implying0 � x` � u`, we have the balance conditionsp�(n; n0;x1; : : : ; x`;u1; : : : ; u`)= p�(n; n0;x1+h; : : : ; x`+h;u1; : : : ; u`)(1 � h�n � h�0n � h��)+ h1Ifn0 > 0g�0np�(n; n0�1;x1; : : : ; x`;u1; : : : ; u`)+ h `+1Xi=1 �Z0 p�(n+1; n0;x1; : : : ; xi�1; 0; xi; : : : ; x`;u1; : : : ; ui�1; u; ui; : : : ; u`)du+ h1Ifn0 > 0g `+1Xi=1 1Z� p�(n+1; n0�1;x1; : : : ; xi�1; 0; xi; : : : ; x`;u1; : : : ; ui�1; u; ui; : : : ; u`)du+ h�� ZIR2+ p�(n+1; n0;x; x1; : : : ; x`;u; u1; : : : ; u`)dxdu+ o(h); h > 0; x` < u`; (2.4)
p�(n; n0;x1; : : : ; x`�1; u`;u1; : : : ; u`)= �n�1p�(n� 1; n0;x1; : : : ; x`�1;u1; : : : ; u`�1)c(u`): (2.5)Unfortunately, there seems to be no explicit solution for (2.2) { (2.5). Hence, we will deal withthe marginal system of balance conditions for the customers being in service or in Q.Summing over n0 2 ZZ+ in (2.2) yields that for 0 � n < s(�n + 1Ifn 6= s� ag�n + 1Ifn = s� ag�np0)p(n)= 1Ifn > 0g�n�1p(n� 1) + 1Ifn+ 1 6= s� ag�n+1p(n+ 1)+ 1Ifn+ 1 = s� ag�n+1p0p(n+ 1); (2.6)where p0 := p�(s�a; 0)=p(s�a) is the conditional probability that Q0 is empty conditioned uponN(t) = s�a. Using the notation�0n := (1Ifn = s�agp0 + 1Ifn 6= s�ag)�n; n = 0; 1; : : : (2.7)5



from (2.6) we obtain that for 0 � n < s(�n + �0n)p(n) = 1Ifn > 0g�n�1p(n� 1) + �0n+1p(n+ 1): (2.8)From (2.3) by summing over n0 2 ZZ+ and using (2.7) it follows(�s + �0s)p(s) = �s�1p(s� 1) + ZIR+ p(s+ 1; 0;u)du + �� ZIR2+ p(s+ 1;x;u)dxdu: (2.9)Moreover, in case of n > s and (x1; : : : ; x`;u1; : : : ; u`) 2 
` we have the marginal balanceconditionsp(n;x1; : : : ; x`;u1; : : : ; u`)= p(n;x1 + h; : : : ; x` + h;u1; : : : ; u`)(1 � h�n � h��)+ h `+1Xi=1 ZIR+ p(n+ 1;x1; : : : ; xi�1; 0; xi; : : : ; x`;u1; : : : ; ui�1; u; ui; : : : ; u`)du+ h�� ZIR2+ p(n+ 1;x; x1; : : : ; x`;u; u1; : : : ; u`)dxdu+ o(h); h > 0; x` < u`; (2.10)p(n;x1; : : : ; x`�1; u`;u1; : : : ; u`) = �n�1p(n� 1;x1; : : : ; x`�1;u1; : : : ; u`�1)c(u`): (2.11)The system of equations (2.8) { (2.11) coincides with (2.3), (2.4), (2.7), (2.8) (with di�erentparameters) in [BB], characterizing there the steady state distribution of a s-server queueingsystem with impatient customers and state dependent arrival and service rates, denoted byM(n)=M(n)=s+GI. (The connection to this queueing system is additionally illuminated in theAppendix for an important special case by a stochastic decomposition.)The assumptions on our system imply that equations (2.3), (2.4), (2.7) and (2.8) in [BB] haveexactly one normalized solution. Thus, for n � s from (2.10) in [BB] we obtainp(n) = g� n�1Yi=0 �i�� sYi=n+1�0i�; n � s: (2.12)For n > s from (2.17) in [BB] for the density p(n;x1; : : : ; x`;u1; : : : ; u`) we �nd the expressionp(n;x1; : : : ; x`;u1; : : : ; u`)= 1If(x1; : : : ; x`;u1; : : : ; u`) 2 
`g g � n�1Yi=0 �i�� Ỳi=1 c(ui)�e���(u1�x1); n > s; (2.13)where g > 0 is a normalizing factor. In view of (2.7) from (2.12) it followsp(n) = (1Ifn < s�agp0 + 1Ifn � s�ag) g � n�1Yi=0 �i�� sYi=n+1�i�; n � s: (2.14)6



Analogously to the derivation of equation (3.1) in [BB] from (2.13) in case of n > s for thestationary distribution of N(t) we obtainp(n) = ZIR2+̀ p(n;x1; : : : ; x`;u1; : : : ; u`)dx1 : : : dx`du1 : : : du`= g� n�1Yi=0 �i� 1(n�s)! 1Z0 F (�)n�se��d�; n > s; (2.15)whereF (�) := �=��Z0 (1� C(�))d�; � 2 IR+: (2.16)De�ningq(n) := 8>>>><>>>>: � n�1Qi=0 �i�� sQi=n+1�i�; n = 0; 1; : : : ; s;� n�1Qi=0 �i� 1(n�s)! 1R0 F (�)n�se��d�; n = s+1; s+2; : : : (2.17)we havep(n) = (1Ifn < s�agp0 + 1Ifn � s�ag) g q(n); n = 0; 1; : : : (2.18)Let �n be the intensity of customers leaving the system due to impatience and �0n the intensityof customers transiting from Q into Q0 conditioned upon ` := n�s > 0 customers are in Q. Incase of p(n) > 0 these intensities are given by�n = 1p(n) X̀i=1 ZIR2`�1+ 1Ifui < �gp(n;x1; : : : ; xi�1; 0; xi+1; : : : ; x`;u1; : : : ; u`)dx1 : : : dxi�1dxi+1 : : : dx`du1 : : : du`; (2.19)�0n = 1p(n) X̀i=1 ZIR2`�1+ 1Ifui � �gp(n;x1; : : : ; xi�1; 0; xi+1; : : : ; x`;u1; : : : ; u`)dx1 : : : dxi�1dxi+1 : : : dx`du1 : : : du`: (2.20)Analogously to the derivation of equation (3.10) in [BB] by taking into account (2.13), (2.17),(2.18) after some algebra for n > s we obtain�n = �` 1Z0 F (�)`�1C(min(�=��; �)�)e��d��� 1Z0 F (�)`e��d���1; (2.21)7



�0n = �` 1Z��� F (�)`�1(C(�=��)� C(��))e��d��� 1Z0 F (�)`e��d���1; (2.22)where in case of p(n) = 0 we de�ne �n and �0n by these equations.The conservation principle applied to Q0 yields that the intensity of all arrivals at Q0 (externalarrivals and transitions from Q into Q0) equals the intensity of customers passing from Q0 intoservice. Since (1�p0)p(s�a) is the probability that precisely a servers are idle, Q is empty andQ0 is not empty we have that �s�a(1 � p0)p(s � a) is just the intensity of starting service of acustomer from Q0. Hence it holds1Xn=s�a�0np(n) + 1Xn=s+1�0np(n) = �s�a(1�p0)p(s�a): (2.23)From (2.23) and (2.18) for the unknown conditional probability p0 we obtain the explicit ex-pressionp0 = �s�aq(s�a)� 1Pn=s�a�0nq(n)� 1Pn=s+1�0nq(n)�s�aq(s�a) : (2.24)Since the p(n), n = 0; 1; : : : must sum up to one, in view of (2.18) for the normalizing factor git followsg =  p0 s�a�1Xn=0 q(n) + 1Xn=s�a q(n)!�1 ; (2.25)yielding the stability condition for Q:1Xn=s+1 q(n) <1: (2.26)Since p0 must be positive, from (2.24) it follows the stability condition for Q0:1Xn=s�a�0nq(n) + 1Xn=s+1�0nq(n) < �s�aq(s�a): (2.27)The case of a general distribution C(u) of the maximal waiting times is obtained by consideringC(u) as the limit in distribution of a sequence of non-defective distributions C�(u) with contin-uous density. In particular the formulae (2.16) { (2.18) and (2.21) { (2.25) remain valid, as wellas the considerations concerning the stability conditions. Summarizing the preceding results weobtain the following statement. 8



Theorem 2.3. The two-queue s-server system of Figure 1.1 with a general distribution C(u)of the maximal waiting times is stable, i.e., there exists a unique stationary state process of thesystem, i� (2.26) and (2.27) are satis�ed, where q(n) and �0n are given by (2.17) and (2.22),respectively.If the stability conditions (2.26) and (2.27) are ful�lled, then the stationary probabilities p(n)that the system is in state N(t) = n are given by (2.18), where q(n), p0 and g are given by(2.17), (2.24) and (2.25), respectively.Remark 2.4. If only Q is stable, i.e., if (2.26) is ful�lled but not (2.27), then the formulae(2.16) { (2.18), (2.21), (2.22) and (2.25) remain valid, where we have to de�ne p0 := 0. Weobtain the analysis of a modi�ed model analyzed in [BB], where Q0 is replaced by an in�nitereservoir of customers.Analogously to [BB] formulae can be derived for various performance measures related to Q asimpatience probabilities, waiting time distributions etc. However, performance characteristicsrelated to Q0 like the mean sojourn time until service in Q0 seem to be not available by thismethod.The following monotonicity results for the intensities �n and �0n, respectively, play a crucial rulein the stochastic interpretation of a system approximation given in the next section.Lemma 2.5. The intensities �n, n = s+1; s+2; : : : and �0n, n = s+1; s+2; : : : increasemonotonically with respect to n.Proof. 1. From (2.21) for n = s+1; s+2; : : : we obtain�n+1�n = (`+1) 1R0 F (���)`e����d� 1R0 F (���)`C(min(�; �)�)e����d�` 1R0 F (���)`+1e����d� 1R0 F (���)`�1C(min(�; �)�)e����d� :In view of (2.16) integration by parts yields�n+1�n = 1R0 F (���)`�1(1�C(�))e����d� 1R0 F (���)`C(min(�; �)�)e����d�1R0 F (���)`(1� C(�))e����d� 1R0 F (���)`�1C(min(�; �)�)e����d� : (2.28)Since �n is monotonically increasing i� �n+1=�n � 1 we conclude that the assertion is equivalentto the non-negativity of the di�erence � of the numerator and denominator of the right-handside of (2.28). Using Fubini's Theorem we �nd� := 1Z0 F (���)`�1(1� C(�))e����d� 1Z0 F (���)`C(min(�; �)�)e����d�� 1Z0 F (���)`(1� C(�))e����d� 1Z0 F (���)`�1C(min(�; �)�)e����d�9



= 12 1Z0 1Z0 F (���)`�1F (���)`�1e���(�+�)(F (���)� F (���))�C(min(�; �)�)(1 � C(�))� C(min(�; �)�)(1 � C(�))�d�d�:Since F (���) and C(�) increase monotonically it follows(F (���)�F (���))�C(min(�; �)�)(1�C(�))�C(min(�; �)�)(1�C(�))� � 0; �; � 2 IR+:This and F (���) � 0, � 2 IR+ imply that the integrand is non-negative over IR2+. Thus � � 0.2. The monotonicity of the sequence �0n, n = s+1; s+2; : : : will be proved analogously. From(2.22) for n = s+1; s+2; : : : we obtain�0n+1�0n = (`+1) 1R0 F (���)`e����d� 1R� F (���)`(C(�)� C(��))e����d�` 1R0 F (���)`+1e����d� 1R� F (���)`�1(C(�)� C(��))e����d� :Integration by parts yields�0n+1�0n = 1R0 F (���)`�1(1�C(�))e����d� 1R� F (���)`(C(�)� C(��))e����d�1R0 F (���)`(1� C(�))e����d� 1R� F (���)`�1(C(�)� C(��))e����d� : (2.29)Analogously to the �rst part the assertion is equivalent to the non-negativity of the di�erence�0 of the numerator and denominator of the right-hand side of (2.29). Using Fubini's Theoremwe �nd�0 := 1Z0 F (���)`�1(1� C(�))e����d� 1Z0 F (���)`1If� � �g(C(�)� C(��))e����d�� 1Z0 F (���)`(1� C(�))e����d� 1Z0 F (���)`�11If� � �g(C(�)� C(��))e����d�= 12 1Z0 1Z0 F (���)`�1F (���)`�1e���(�+�)(F (���)�F (���))�1If� � �g(C(�)�C(��))(1�C(�)) � 1If� � �g(C(�)�C(��))(1�C(�))�d�d�:Since F (���) and C(�) are non-negative and increase monotonically and since C(�) � 1 it followsthat the integrand is non-negative over IR2. Hence it holds �0 � 0, �nishing the proof.10



3 A system approximation by �tting impatience ratesSince for the stationary distribution P �(n; n0; x1; : : : ; x`; u1; : : : ; u`) and in particular for theoccupancy distribution for Q0 no explicit representation seems to be available, approximationsare of interest. We construct an approximate system by replacing the impatience mechanismin Q by waiting place dependent impatience rates. Using Lemma 2.5 these rates can be �ttedappropriately. For the factorial moments of the occupancy distribution for Q0 in the approximatesystem a recursive algorithm is given.Consider the two-queue s-server system of Figure 1.1, but with the following modi�cation ofthe impatience mechanism in Q: Let the waiting places for Q be numbered by i = 1; 2; : : : Acustomer waiting on place i in Q is impatient: He leaves Q with rate �i+�0i, where he leaves thesystem with probability �i=(�i+�0i) and transits to the end of Q0 with probability �0i=(�i+�0i),cf. Figure 3.1. The customers behind him move up in Q according to the FCFS discipline.Conditioned upon n�s > 0 customers are in Q, the cumulative rates ~�n of leaving the systemdue to impatience and ~�0n of transiting from Q into Q0 are given by~�n = n�sXi=1 �i; ~�0n = n�sXi=1 �0i; n = s+1; s+2; : : : (3.1)From Lemma 2.5 we know that the corresponding intensities �n and �0n in the original model,cf. (2.21), (2.22), increase monotonically with respect to n. Thus the �tting~�n := �n; ~�0n := �0n; n = s+1; s+2; : : : (3.2)provides uniquely determined waiting place dependent impatience rates �i and �0i, i = 1; 2; : : :

�n -
�0n -

?�1?�2?�3
6�016�026�03�rst queue: Q -

second queue: Q0 -n < s� a #

"

 

!

m1m2m3...ms�nFigure 3.1. Approximate system: The two-queue s-server system with waiting place depen-dent impatience rates �i and �0i.Denote by ~p(n; n0) the stationary probability that precisely n customers are in service or in Q11



and n0 customers are waiting in Q0. Then the balance equations read(�n + �0n + �n + �0n + �n)~p(n; n0)= 1Ifn > 0g�n�1~p(n�1; n0) + 1Ifn0 > 0g�0n~p(n; n0�1)+ (1Ifn+1 6= s�ag+ 1Ifn+1 = s�ag1Ifn0 = 0g)�n+1~p(n+1; n0)+ 1Ifn = s�ag�n~p(n; n0+1)+ �n+1~p(n+1; n0) + 1Ifn0 > 0g�0n+1~p(n+1; n0�1); (n; n0) 2 ZZ2+; (3.3)where �n := �0n := 0 for n = 0; 1; : : : ; s. The normalizing condition readsX(n;n0)2ZZ2+ ~p(n; n0) = 1: (3.4)The two-dimensional system of equations (3.3), (3.4) can be solved numerically, in principle. Bymeans of the ~p(n; n0) approximations for relevant performance measures can be computed. Butinstead of dealing with ~p(n; n0) being of some numerical complexity we will rather deal with thefactorial moments of the number of customers in Q0. De�ne byf(z; n) := 1Xn0=0 ~p(n; n0)zn0 ; n = 0; 1; : : : (3.5)the partial generating functions of the stationary distribution ~p(n; n0). For �xed z 2 IC withjzj � 1 by multiplying (3.3) by zn0 and summing over fn; n+1; : : :g � f0; 1; : : :g we obtain(�n + �0n + �n)f(z; n)� 1Ifn > 0g�n�1f(z; n�1)� 1Ifn = s�ag�s�a(f(z; s�a)� f(0; s�a))= 1Ifn � s�ag�s�a 1� zz (f(z; s�a)� f(0; s�a))� (1�z) 1Xi=n �0if(z; i)� (1�z) 1Xi=n+1�0if(z; i); n = 0; 1; : : : (3.6)For n = 0 equation (3.6) simpli�es to�s�a(f(z; s�a)� f(0; s�a)) = z 1Xi=s�a�0if(z; i) + z 1Xi=s+1�0if(z; i): (3.7)For z = 1 from (3.6), (3.7) it follows(�n + �0n + �n)f(1; n)� 1Ifn > 0g�n�1f(1; n�1)= 1Ifn = s�ag�s�a(f(1; s�a)� f(0; s�a)); n = 0; 1; : : : ; (3.8)12



�s�a(f(1; s�a)� f(0; s�a)) = 1Xi=s�a�0if(1; i) + 1Xi=s+1�0if(1; i): (3.9)Using the conservation principle one can show that the balance equations (3.8) and (3.9) alsohold in the exact model, cf. Figure 1.1, where one has to replace the probabilities f(1; n) thatprecisely n customers are in service or in Q by p(n) and f(0; s�a) (= ~p(s�a; 0)) by p�(s�a; 0),cf. (2.23). These facts and p�(s�a; 0) = p0p(s�a) yieldf(1; n) = p(n); n = 0; 1; : : : ; (3.10)f(0; s�a) = p0p(s�a): (3.11)From (3.10) and (3.11) we see that the �tting of the impatience rates, cf. (3.2), implies a �ttingof the probabilities that precisely n customers are in service or in Q, meeting the aim of a systemapproximation. Moreover, for the approximate system again we have the stability conditions(2.26) and (2.27).Since ~p(n; n0) = 0 for 0 � n < s�a and n0 > 0 from (3.5), (3.10) we concludef(z; n) � p(n); n = 0; 1; : : : ; s�a�1: (3.12)Denoting by fj(n) the j-th derivative of f(z; n) at z = 1, the j-th factorial moment fj of thenumber of customers in Q0 is given byfj = 1Xn=s�a fj(n); j = 1; 2; : : : (3.13)By taking the j-fold derivate of (3.6) at z = 1 for j = 1; 2; : : : and n = s�a+1; : : : we obtainfj(n) = �n�1fj(n�1) + 1Pi=n�0ijfj�1(i) + 1Pi=n+1�0ijfj�1(i)�n + �0n + �n : (3.14)For j = 1; 2; : : : let us de�negj(s�a) := 0; (3.15)gj(n) := �n�1gj(n�1) + 1Pi=n�0ijfj�1(i) + 1Pi=n+1�0ijfj�1(i)�n + �0n + �n ; n = s�a+1; : : : (3.16)Then from (3.14) and (3.16) for j = 1; 2; : : : and n = s�a+1; : : : it followsfj(n)� gj(n) = �n�1�n + �0n + �n (fj(n�1)� gj(n�1)): (3.17)13



A look at (3.8), (3.10) and (3.17) shows that for n = s�a; : : : the quantities fj(n)�gj(n) and p(n)coincide up to a factor being independent on n. Thus, in view of gj(s�a) = 0, for n = s�a; : : :we �ndfj(n) = gj(n) + p(n)p(s�a) fj(s�a): (3.18)For j = 1; 2; : : : the j-fold di�erentiation of (3.7) at z = 1 yields�s�afj(s�a) = 1Xi=s�a�0i(jfj�1(i) + fj(i)) + 1Xi=s+1�0i(jfj�1(i) + fj(i)): (3.19)From (3.19), (3.18) in view of (2.23) it follows�s�ap0fj(s�a) = 1Xi=s�a�0i(jfj�1(i) + gj(i)) + 1Xi=s+1�0i(jfj�1(i) + gj(i)): (3.20)Summarizing, for the factorial moments of the occupancy distribution for Q0 from (3.10), (3.15),(3.16), (3.20), (3.18) and (3.13) we obtain the following recursion.Algorithm 3.1. Letf0(n) := p(n); n = s�a; s�a+1; : : : (3.21)Then for j = 1; 2; : : : the factorial moments fj of the occupancy distribution for Q0 in the two-queue s-server system of Figure 3.1 are given by the recursiongj(s�a) := 0; (3.22)gj(n) := 1�n + �0n + �n��n�1gj(n�1) + 1Xi=n�0ijfj�1(i) + 1Xi=n+1�0ijfj�1(i)�;n = s�a+1; s�a+2; : : : ; (3.23)fj(s�a) := 1�s�ap0� 1Xi=s�a�0i(jfj�1(i) + gj(i)) + 1Xi=s+1�0i(jfj�1(i) + gj(i))�; (3.24)fj(n) := gj(n) + p(n)p(s�a) fj(s�a); n = s�a+1; s�a+2; : : : ; (3.25)fj = 1Xn=s�a fj(n): (3.26)14



4 Application: Performance analysis of an inbound call centerwith an integrated voice-mail-serverCall centers are installed for several di�erent services and businesses, e.g. for catalog orders on aservice 800 base, hotline calls related to speci�c products, travel agencies, telebanking and manymore. The automatic call distribution (ACD) software distributes { in accordance to 
exiblerules { the calls arriving at a call center to agents who will provide a service or product, cf.[P], [ST], [DPW], [G], [HHP]. Customers may abandon due to impatience if they have to waittoo long for service. By integrating a voice-mail-server this e�ect can be smoothed: after somewaiting time the customer will be informed or will get the o�er that he will be recalled later bythe system when enough idle agents are available.In this section we apply the results of the last two sections to the performance analysis ofa call center with an integrated voice-mail-server. The model is as follows: Consider a callcenter consisting of a group of s agents, k waiting places (i.e., s+k lines) and an integratedvoice-mail-server (VMS) of in�nite capacity, cf. Figure 4.1.

� -inbound calls?pB
-rn

?W o > X, X < �pIwaiting room (k) min(n; s)�

s agentsoutbound callsvoice-mail-server (1) -n < s� a
-
#

"

 

!

m1m2m3...ms
6W o > �

Figure 4.1. Call center with impatient inbound calls and over
ow into a voice-mail-server(VMS) occurring directly at the arrival (state dependent on the number n ofcalls being in service or in the waiting room) or after a deterministic maximalwaiting time � .Let n denotes the number of calls being in service or in the waiting room. At the system therearrive inbound calls from outside according to a Poisson process with intensity �. If at thearrival of a call we have n < s, then there is an idle agent, and the service begins immediately.If at the arrival of a call we have s � n < s+k, then all agents are busy, and with probabilityrn 2 [0; 1) the arriving call goes immediately into the VMS, otherwise it begins to wait forservice in the waiting room. If at the arrival of a call we have n = s+k, then there is nofree line, and the call gets lost (blocking). The calls waiting in the waiting room are servedin a FCFS manner. But they abandon after a random time X or will be transferred into thevoice-mail-server after a constant time � , the technical maximal waiting time, according to the15



following mechanism. Each call arriving at the system has a random individual maximal waitingtime X. If X < � and the waiting time exceeds X, then the call gets lost due to individualimpatience. If X � � and the waiting time exceeds � , then the call is transferred into the VMS.The calls waiting in the VMS are also served in a FCFS manner, but they are not impatient.If more than a agents, where a 2 f0; 1; : : : ; s�1g is the outbound parameter, are idle and nocalls are waiting in the waiting room then one of the idle agents serves a call from the VMSprovided there is anyone. This implies that the service of a call from the VMS will be started atthose moments when the service of any call is just �nishing, a+1 agents become idle, no calls arewaiting in the waiting room and there are calls waiting in the VMS. The service times of all callsare assumed to be i.i.d. and exponentially distributed with parameter �. Also, the individualmaximal waiting times are assumed to be i.i.d. with distribution function P (X � x). Further,the arrival stream, the service times and the individual maximal waiting times are assumed tobe mutually independent.Remark 4.1. The possibility of an immediate transition into the VMS at a call arrival withstate dependent probability rn corresponds to the situation that the customer has informationabout the queue length and hence decides whether to wait or to be recalled later. The technicalmaximal waiting time � means that after time � the call will be cut short by the system and thecustomer will be recalled later. By an appropriate change of X one can also model the morerealistic situation that the customer will be recalled with a given probability later (modelling thedecision of the customer and/or the ability of the system).Remark 4.2. In view of the FCFS queuing discipline for the waiting room and since thetechnical maximal waiting times are deterministic, the call on the �rst waiting place is the nextpotential call for service and for being transferred into the VMS.De�ning�n := 1Ifn < sg�+ 1Ifs � n < s+ kg�(1 � rn); n � 0; (4.1)�0n := 1Ifs � n < s+ kg�rn; n � 0; (4.2)�n := min(n; s)�; n � 0; �� := s�; (4.3)I := min(X; �) (4.4)the call center model proves to be a special case of the general model of Section 1, cf. Figure 1.1.4.1 Performance measures for the call centerFor the model considered several performance measures are of interest, e.g. the blocking prob-ability, the probability of leaving the system due to impatience, waiting times in the waitingroom and in the VMS etc.From (2.17), (2.18), (4.1) and (4.3) for the stationary probabilities p(n) that precisely n callsare in service or in the waiting room we obtainp(n) = (1If0 � n < s�agp0 + 1Ifs�a � n � s+kg) g q(n); n � 0; (4.5)where 16



q(n) = 8>>>>><>>>>>: s!�s (�=�)nn! ; 0 � n � s;�n� n�1Qi=s(1�ri)� 1(n�s)! 1R0 F (�)n�se��d�; s < n � s+k;0 elsewhere; (4.6)F (�) is given by (2.16) and where in view of (4.4) we haveC(u) = 1Ifu < �gP (X � u) + 1Ifu � �g; u � 0: (4.7)From (2.21), (2.22), (4.6), (2.16) and (4.7) for s < n � s+k we �nd the intensities �n of callsleaving the system due to impatience and �0n of calls transiting from the waiting room into theVMS conditioned upon n�s calls are waiting in the waiting room�n = �nq(n)� n�1Yi=s(1�ri)� 1(n�s�1)! 1Z0 F (�)n�s�1C(min(�=��; �)�)e��d�; (4.8)�0n = �nq(n)� n�1Yi=s(1�ri)� e����(n�s�1)! F (���)n�s�1(1� C(��)): (4.9)For the probability p0 := p�(s�a; 0)=p(s�a) that the VMS is empty on the condition thatprecisely a agents are idle and no calls are waiting in the waiting room from (2.24), (4.2), (4.3)and (4.6) it followsp0 = (s�a)�q(s�a)� � s+k�1Pn=s rnq(n)� s+kPn=s+1�0nq(n)(s�a)�q(s�a) : (4.10)From (2.25), (4.6) for the normalizing factor we obtaing = �p0 s�a�1Xn=0 q(n) + s+kXn=s�a q(n)��1: (4.11)For the call center the stability condition (2.26) for Q is always ful�lled, in view of (4.6). Thus,according to (2.27), (4.2), (4.6) and (4.3) the stability condition reads� s+k�1Xn=s rnq(n) + s+kXn=s+1�0nq(n) < (s�a)�q(s�a): (4.12)Remark 4.3. If (4.12) is ful�lled then (4.12) may be multiplied by g, i.e., q(n) may be replacedby p(n) in (4.12). The resulting inequality has the following interpretation: In the steady statethe intensity of all calls entering and hence leaving the VMS is smaller than the intensity of allcalls being served from state s�a on. 17



Remark 4.4. The model considered in [BB], Section 4, may be obtained from our modelas the limiting case where we have equality in (4.12), cf. Remark 2.4. However, a completemathematical analysis for our model as given for the model in [BB] seems to be not available,cf. the comment after formula (2.5).In the following we assume that (4.12) is ful�lled, i.e., that the call center of Figure 4.1 is stable.Now, formulae for several performance measures of interest will be derived. (Since the systemdynamics of the call center considered here are di�erent to the dynamics of the model in [BB]not all notation used here coincides with that in [BB].)The following call intensities related to the system are of special interest:�A { intensity of all calls accepted by the system,�I { intensity of all calls accepted by the system and which will get lost due to individualimpatience later,�W { intensity of all calls accepted by the system and which have to wait for service inthe waiting room,�V { intensity of all calls accepted by the system and which go immediately at theirarrival or will be transferred later into the VMS.These intensities are given by�A = �(1�p(s+k)); �I = s+kXn=s+1�np(n); (4.13)�W = �s+k�1Xn=s (1�rn)p(n); �V = �s+k�1Xn=s rnp(n) + s+kXn=s+1�0np(n): (4.14)Corresponding probabilities are:pB { blocking probability that a call arriving from outside is not accepted,pI { impatience probability that a call accepted by the system will get lost due to indi-vidual impatience later,pW { probability that a call accepted by the system has to wait for service in the waitingroom,pV { probability that a call accepted by the system goes immediately at its arrival or willbe transferred later into the VMS.Obviously, we obtainpB = p(s+k); pI = �I=�A; pW = �W =�A; pV = �V =�A: (4.15)By the intensity conversation principle the intensity of all calls accepted by the system andwhich will not get lost due to individual impatience equals the intensity of all served calls. Inview of (4.3) this yields the following alternative expression for the impatience probability pI :1� pI = 1�A s+kXn=0min(n; s)�p(n): (4.16)18



The distribution of the waiting time in the waiting room of a typical call accepted by the systemon the condition that it has to wait in the waiting room is given by Theorem 3.2 in [BB], formula(3.11), where � has to be replaced by �W since �W is the intensity of calls accepted by thesystem which have to wait in the waiting room. According to (2.16), (4.1) therefore we �nd1�WW (x) = �p(s)�W (1� C(x)) k�1Xj=0� s+jYi=s(1� ri)� 1j! 1Z��x (�F (�))je��d�; x 2 IR+: (4.17)By Little's formula for the mean waiting time EWW in the waiting room of accepted calls onthe condition that they have to wait in the waiting room we obtainEWW = 1�W s+kXn=s+1(n� s)p(n): (4.18)In the special case of (4.1) { (4.4), the �rst moment f1 of the occupancy distribution for Q0in the model of Figure 3.1 yields an approximation for the mean number of calls in the VMS.Therefore, by Little's formulaE ~WV := f1=�V (4.19)provides an approximation for the mean waiting time of the calls waiting in the VMS. In thespecial case of (4.1) { (4.4) for the �rst moment f1 of the number of customers in Q0 in themodel of Figure 3.1, the Algorithm 3.1 simpli�es as follows:g1(s�a) := 0; (4.20)g1(n) := p(n)�n�1p(n�1)��n�1g1(n�1) + � s+k�1Xi=max(n;s)rip(i) + s+kXi=max(n;s)+1�0ip(i)�;n= s�a+1; s�a+2; : : : ; s+k; (4.21)f1 = s+kXi=s�a+1g1(i) + s+kPi=s�a p(i)(s�a)�p0p(s�a)��s+k�1Xi=s ri�p(i)+g1(i)�+ s+kXi=s+1�0i�p(i)+g1(i)��: (4.22)4.2 Numerical examples in case of exponential individual maximal waitingtimesConsider the case of exponential individual maximal waiting times X with parameter �, i.e.C(u) = 1� 1Ifu < �ge��u; u � 0: (4.23)19



Exploiting the special structure of (4.23), from the explicit formulae of Section 4.1 numericallystable algorithms have been derived for the performance measures pB , pI , pW , pV , EWW andfor the approximate mean waiting time E ~WV in the VMS. These algorithms and a simulationof the call center have been implemented. In Table 4.2, numerical and simulation results aregiven for a call center with the parameters �=� = 100, 1=� = 300, 1=� = 180, � = 20 andrn = 1� 0; 98n�s+1 for s � n < s+ k. The parameters s, k, a vary accordingly.s k a pB pI pW pV EWW E ~WV EW �V EW ��V100 4 2 0.04549 0.00951 0.25928 0.01782 6.61 93.47 98.83 96.30100 4 4 0.04448 0.00929 0.25325 0.01740 6.61 175.14 180.69 179.40100 4 6 0.04369 0.00912 0.24857 0.01708 6.61 299.12 296.97 305.14100 8 2 0.01071 0.02236 0.45991 0.06035 8.75 404.96 429.95 419.52100 8 4 0.00992 0.02069 0.42557 0.05584 8.75 793.21 828.90 815.16100 8 6 0.00936 0.01952 0.40132 0.05266 8.75 1763.62 1974.91 1827.20100 12 2 0.00044 0.02579 0.51414 0.07472 9.03 668.73 651.46 669.72100 12 4 0.00040 0.02345 0.46743 0.06793 9.03 1438.47 1552.97 1447.97100 12 6 0.00038 0.02185 0.43544 0.06328 9.03 4847.53 3473.95 4969.33105 4 2 0.02620 0.00562 0.16308 0.01027 6.20 73.84 74.26 75.48105 4 4 0.02558 0.00548 0.15913 0.01002 6.20 129.45 137.43 131.90105 4 6 0.02512 0.00538 0.15618 0.00983 6.20 203.72 212.06 207.82105 8 2 0.00543 0.01230 0.27096 0.03142 8.17 203.73 204.36 210.29105 8 4 0.00505 0.01143 0.25182 0.02920 8.17 318.35 313.49 325.57105 8 6 0.00479 0.01083 0.23867 0.02768 8.17 476.76 477.43 485.53105 12 2 0.00021 0.01384 0.29595 0.03783 8.42 265.76 246.30 270.69105 12 4 0.00020 0.01268 0.27114 0.03466 8.42 404.28 378.10 409.73105 12 6 0.00018 0.01190 0.25450 0.03253 8.42 599.39 593.44 610.47110 4 2 0.01318 0.00292 0.09015 0.00526 5.83 60.72 62.08 61.55110 4 4 0.01285 0.00285 0.08791 0.00512 5.83 102.14 100.88 103.35110 4 6 0.01262 0.00280 0.08630 0.00503 5.83 153.58 160.93 154.82110 8 2 0.00240 0.00591 0.13976 0.01440 7.62 134.65 135.54 138.52110 8 4 0.00224 0.00553 0.13063 0.01346 7.62 197.45 194.02 201.76110 8 6 0.00214 0.00527 0.12456 0.01284 7.62 273.63 279.20 279.35110 12 2 0.00009 0.00651 0.14951 0.01688 7.84 163.21 158.93 165.90110 12 4 0.00008 0.00602 0.13820 0.01560 7.84 232.04 233.18 236.92110 12 6 0.00008 0.00570 0.13080 0.01477 7.84 315.57 317.05 319.81Table 4.2. Blocking probability pB , impatience probability pI , probabilities pW of waitingin the waiting room and pV of immediate or later transition into the VMS, themean waiting time EWW in the waiting room as well as the approximate meanwaiting time E ~WV and the simulated mean waiting times EW �V and EW ��V inthe VMS for the inbound call center with integrated VMS for the case of s agents,k waiting places and outbound parameter a. EW �V and EW ��V were obtained bysimulating the system with 106 and 108 evaluated arrivals, respectively, startingfrom the empty system after 104 and 106 non-evaluated arrivals, respectively.20



In the examples considered the call center works in the domain of critical loading. Comparing themean waiting times EW �V and EW ��V in the VMS obtained by simulating 106 and 108 arrivals atthe system, respectively, we see that the waiting times WV in the VMS of accepted calls on thecondition that they will wait for service in the VMS vary very strongly. Not before simulating arelatively large number of arrivals at the system (e.g. 108 as in Table 4.2) the mean waiting timesin the VMS obtained from simulation seem to be stable for the parameters chosen in Table 4.2.This causes from the fact that in critically loaded systems a strong 
uctuation (large variance)has to be expected. Moreover, the sequence of waiting times is strongly dependent. Thus,long simulation runs are necessary for obtaining stable statistics. However, the values of EW ��Vdemonstrate that in case of exponential individual maximal waiting times the approximationE ~WV given by (4.19) works well. The relative error of the approximate mean waiting timeE ~WV compared to the simulated mean waiting time EW ��V is less than 4% within Table 4.2.Also for many other examples { not reported here { we found that the approximation workswell and hence can be used successfully. On the other hand, in the examples considered themean waiting time EWV in the VMS does not give much information about quantiles of thedistribution of the waiting timesWV in the VMS due to the high variability of the waiting timesin the VMS. For the parameters of Table 4.2 it holds E ~WV < EW ��V . It seems that in case ofexponential individual maximal waiting times the approximation E ~WV is always less than theexact value EWV .Numerical results also show the impact of the operational strategy (outbound parameter a) onthe system performance. If a is chosen not too small, then among the parameters consideredonly the mean waiting time EWV in the VMS depends very strongly on a. This observationbases on the fact that in the special case of (4.1) { (4.4) only Q0 in Figure 1.1 modelling the VMSmay be unstable. Moreover, the numerical results illustrate the tradeo� between the blockingprobability pB and the impatience probability pI if k varies.The implemented algorithms can be used for studying the e�ects arising by integrating a VMSinto a call center and also as basis for optimizing call centers with integrated VMS.A Appendix. The special case rn � 0, X � 1 of the call center:A stochastic decomposition by a M(n)=M(n)=s+GI systemConsider the call center of Section 4 in the special case of rn � 0 and X � 1, cf. Figure A.1, i.e.,the model of Section 1 in case of �n = 1If0 � n < s+ kg� for some positive integer k, �0n = 0,�n = min(n; s)� for n = 0; 1; 2; : : : and I � � . In this case the dynamics simplify as follows: Anarriving inbound call from outside is accepted if n < s+k calls are in service or in the waitingroom, where in case of s � n < s+k it begins to wait for service in the waiting room. If the kwaiting places are occupied then it gets lost (blocking). If the o�ered waiting time W o of a callwaiting in the waiting room exceeds the deterministic technical maximal waiting time � , thenthe call will be transferred into the voice-mail-server (VMS) after waiting time � . The calls inthe VMS are served accordingly to the mechanism described in Section 4.In the following we will give a stochastic decomposition yielding an alternative approach fordetermining the distribution of the number of calls being in service or in the waiting room.The decomposition bases on a particular M(n)=M(n)=s+GI system, analyzed in [BB], and ona birth and death process. The idea is to consider the LCFS discipline instead of the FCFSdiscipline for the VMS. This modi�cation does not in
uence the occupancy distribution and21



other characteristics being of interest, but it o�ers a stochastic analysis. It seems that suchkinds of arguments have been used for the �rst time in [GK] for the analysis of the busy perioddistribution in the M=GI=1=1 system. Similar and more general stochastic decompositiontechniques were developed since that time for various queueing system, e.g. for the M=GI=1=-processor-sharing system in [KY], [Y], for polling systems in [KLS]. Further sources are [B],[FC], [M], [BFL].
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Figure A.1. Call center with calls being transferred into the voice-mail-server after a deter-ministic maximal waiting time � .A.1 A stochastic decompositionConsider now the VMS with the LCFS queueing discipline, i.e., the last arrived call is the nextfor service. By the independence and distributional assumptions the process (N(t); N 0(t)), t 2 IRof the vector of the number of calls being in service or in the waiting room and of the numberof calls in the VMS has the same distribution as in case of the FCFS discipline for the VMS.The LCFS discipline results into a stochastic cycle-decomposition as follows. Assuming that thesystem is in steady state { the corresponding stability condition will be given later { then thesystem becomes empty in�nitely often almost surely. Let T (i)s�a�1;s�a, i 2 ZZ be the time instantswhere N(t) jumps from s�a�1 to s�a. Since at these time instants the VMS and the waitingroom are empty, we conclude by the exponentiality of the service times that the T (i)s�a�1;s�a,i 2 ZZ form a renewal process and hence divide the time axis into cycles. The distribution ofthe duration Z of a typical cycle is given byP (Z � t) = P� infft : t > 0; N(t) = N(t�)+1 = s�ag ���N(0) = N(0�)+1 = s�a�:Since N(t) jumps downwards and upwards only by one, i.e., N(t)�N(t�) 2 f�1; 0; 1g, t 2 IR,it follows that after a jump from s�a�1 to s�a there is a jump from s�a to s�a�1 beforethe next jump from s�a�1 to s�a may occur. This implies that every cycle consists of two22



intervals of duration D and G, respectively, cf. Figure A.2,Z = D +G: (A.1)Here D is the duration from the beginning of a cycle until the �rst entrance of N(t) into s�a�1,i.e., of a jump from s�a to s�a�1, and G the subsequent duration until N(t) jumps intos�a, i.e., until the end of the cycle where a jump from s�a�1 to s�a occurs. Because of theexponential service times, the time instants where N(t) jumps from s�a�1 to s�a or from s�ato s�a�1 form an alternating renewal process with alternating phases D and G, cf. e.g. [A],p. 130, or [T]. In the following we assume that a typical cycle starts at t = 0, i.e., we considerthe Palm-distribution of N(t) with respect to the embedded point process T (i)s�a�1;s�a, i 2 ZZ,cf. e.g. [FKAS], Section 1.5. Let (N0(t), t 2 IR) be a corresponding version of this process, cf.Figure A.2.
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� -D � -G� -ZFigure A.2. Typical cycle of length Z, splitting in two phases of length D and G, respectively.Now let C be the �rst time instant after t = 0 where a+1 agents become idle and no calls arein the waiting room, i.e. the �rst time instant where a call from the VMS could go into service.During the interval (0; C] there transit M (� 0) calls into the VMS (from the waiting room dueto exceeding the maximal waiting time �). Denote these calls by Call1; : : : ; CallM . If M = 0then C = D, and after this time it follows the second part of the cycle of duration G, afterwhich a new cycle starts. If M > 0 then C < D, and CallM (being the last call arrived atthe VMS) goes at the time instant C into service. In this case N0(C) = s�a, and there is nojump of N0(t) at the time instant C. Consider now the case M > 0 in detail. Denote by DMthe time from the time instant C until a+1 agents become idle and no calls are in the waitingroom anew and only the calls Call1; : : : ; CallM�1 are present in the VMS. Then in view of theLCFS discipline DM is of the same probabilistic structure as D, i.e., D =D DM�1, where =Ddenotes equality in distribution. (During (C;C+DM ] all calls have been served which arrivedduring that time at the VMS). At the time instant C+DM as next the call CallM�1 goes inservice. The time DM�1 until a+1 agents become idle and no calls are in the waiting room anewand only the calls Call1; : : : ; CallM�2 are present in the VMS has { by the same arguments asabove { the same distribution as D, i.e., D =D DM�1. Continuing this scheme, each of the callsCallM�2; : : : ; Call1 initiates with the beginning of its service a corresponding cycle of duration23



DM�2; : : : ;D1, having the same distribution as D. Thus it followsD =D C + MXi=1Di: (A.2)In view of the system dynamics, the independence and exponentiality assumptions, the Di canbe chosen from a sequence of i.i.d. random variables D1;D2; : : : with Di =D D, and M isindependent on the sequence (Di)1i=1. Applying Wald's identity from (A.2) we obtainED = E C +EM �ED: (A.3)The process N(t), t 2 IR is a regenerative process concerning the epochs T (i)s�a�1;s�a, i 2 ZZ.Thus the stationary distribution p(n) = P (N(t) = n), n = 0; : : : ; s+k of the number of callsbeing in service or in the waiting room is given by the fraction of the sojourn time in the staten during a cycle, cf. [A], p. 126,p(n) = E TZnE Z = E TZnED +EG; n = 0; : : : ; s+k; (A.4)where TZn is the sojourn time of N0(t) in state n during the cycle (0; Z].A.2 Stability condition and stationary distribution p(n)In order to compute the stationary distribution p(n) via the right-hand side of (A.4) a com-putation of E TZn , E C, EM and EG is necessary, in view of (A.3). As mentioned in theintroduction, these quantities can be computed using results for the M(n)=M(n)=s+GI systemgiven in [BB] and for birth and death processes.Determination of EG.The random time G corresponds to the �rst passage time into the state s�a of a birth and deathprocess N(t) with initial condition N(0) = s�a�1 and birth and death rates �n := �, �n := n�,n = 0; : : : ; s�a, respectively, i.e., G = infft : t > 0; N(t) = s�ag, N(0) = s�a�1. From thetheory of birth and death processes we �ndE G = (s�a�1)!�(�=�)s�a�1 s�a�1Xj=0 (�=�)jj! : (A.5)Determination of E C.Let us consider the call center without VMS, i.e., accepted calls for which the o�ered waitingtime W o exceeds � will get lost due to impatience later, cf. Figure A.3. This system is a specialM(n)=M(n)=s+GI system with parameters�n := 1If0 � n < s+kg�; �n := min(n; s)�; n = 0; 1; : : : ; I � �24



and is analyzed in [BB].
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m1...ms?W o > �Figure A.3. The call center without VMS.Let the corresponding quantities in this system be equipped with a tilde, e.g. ~N(t), ~C, ~D, ~G,~Z, ~TZn and ~p(n). Since there is no VMS, it holds ~D = ~C. Furthermore, since in both models(Figure A.2 and Figure A.3) the dynamics of G and ~G and of C and ~C are the same we obtain~G = G; ~C = C: (A.6)Analogously to (A.4) it holds~p(n) = E ~TZnE ~C +E ~G; n = 0; : : : ; s+k; (A.7)where the ~p(n) are explicitly given in [BB]. Since ~G is just the sojourn time of ~N(t) in the setf0; : : : ; s�a�1g during the cycle from (A.7) we �ndE ~GE ~C +E ~G = s�a�1Xn=0 ~p(n);and in view of (A.6) it followsE C = �1� s�a�1Xn=0 ~p(n)�� s�a�1Xn=0 ~p(n)��1EG: (A.8)Using formula (3.5) in [BB] from (A.5) for EG we obtain the alternative expressionE G = 1(s�a)�~p(s�a) s�a�1Xn=0 ~p(n): (A.9)Combining now (A.8), (A.9) for E C we �nd the representationE C = 1(s�a)�~p(s�a) �1� s�a�1Xn=0 ~p(n)�: (A.10)25



Determination of EM .For the model of Figure A.3 according to formula (3.8) in [BB] the intensity ~�(I) of all acceptedcalls which will get lost due to impatience later is given by~�(I) = �(1�~p(s+k))� s+kXn=1min(n; s)�~p(n): (A.11)In view of the dynamics, for the number ~M of calls lost due to impatience during (0; ~C ] we havethe identity ~M = M . Since during ( ~C; ~C + ~G] no calls get lost due to impatience, taking intoaccount (A.6), it follows~�(I) = E ~ME ~C +E ~G = EME C +EG:Combining this with (A.9), (A.10) we obtainEM = ~�(I)(s�a)�~p(s�a) : (A.12)In view of (A.3), (A.10), (A.12) and (A.9) the quantities ED and EG are determined. For �nd-ing an explicit representation for the p(n) from (A.4) the quantities E TZn have to be determinedyet.Determination of E TZn .In case of n 2 f0; 1; : : : ; s�a�1g from (A.7), (A.6) and using the fact that ~TZn = TZn it followsE TZn = (E C +EG) ~p(n); n = 0; : : : ; s�a�1: (A.13)In case of n 2 fs�a; : : : ; s+kg from the stochastic decomposition, cf. (A.2) and (A.6), we obtainE TZn = E ~TZn +EM � E TZn :This and (A.7), (A.6) yieldE TZn = E ~TZn1�EM = E C +EG1�EM ~p(n); n = s�a; : : : ; s+k: (A.14)Thus the E TZn , n = 0; 1; : : : ; s+k can be computed.From (A.4), (A.3), (A.13) and (A.14) we obtainp(n) = E C +EGE C + (1�EM)E G �1� 1Ifn < s�agEM� ~p(n); n = 0; 1; : : : ; s+k: (A.15)Finally, using (A.9), (A.10) and (A.12) from (A.15) it follows that in the model of Figure A.1the stationary distribution of the number of calls being in service or in the waiting room is givenby 26
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