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Fast Data Assimilation in Fire Tests of
Steel Members

Preprint SC 98-33 (December 1998)



Fast Data Assimilation in Fire Tests of Steel

Members
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Abstract

This report presents a fast data assimilation method to produce an
interpolating time and space temperature distribution for steel members
subject to fire testing. The method assimilates collected temperature data
into the numerical integration of the heat equation. This physically based
method also allows the computation of lateral and axial heat flux into and
inside the member.
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1 Introduction

Fire tests are performed to determine the contribution made by applied protec-
tion systems to the fire resistance of structural steel members such as beams
and columns. These tests are usually required by law and are specified in test
codes for the respective country, for example in [3] for Germany.

The fire protection system is evaluated according to the length of the fire
resistance period, during which a design temperature of 500C◦ [3] or 750C◦ [8]
on the steel surface is not exceeded.

The steel temperature is measured along the member at measurement sta-
tions. Each measurement station consists of 2 [3] or 5 [8] thermocouples to guard
for thermocouple failure or abnormal behavior of fire protection. The required
number of measurement stations are 3 [3] and 5 [8]. The required length of a
member exposed to heat is 4000mm for beams and 3000mm for columns. With
a typical lateral dimension between 245mm and 300mm, the members a rather
slim (ratio of lateral to axial dimension less than 1:10).

The thermocouple locations throughout the member are very sparse and
non-uniform. It is therefore desirable to interpolate the collected thermocou-
ple data to obtain a temperature distribution throughout the member. This
could be done by treating the problem as a pure interpolation problem, and
can therefore be solved by standard techniques such as splines or scattered data
interpolation. However, our aim is not simply to find a smooth and visually
pleasing interpolant. Instead, by relating the data to its physical origin, we will
be able to
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• compute an interpolant which is closer to the actual temperature distri-
bution, and

• deduce other physical qualities of interest, such as the lateral and axial
heat flux.

To advance beyond a direct data interpolation problem, the member together
with the fire protection system is embodied in a computer model. In particular,
knowledge of time evolution is embodied in a forecast model. This enables us
to use observations distributed in time. Assimilation is the process of finding
the model representation which is most consistent with the observations.

Our model is based on a non-linear, transient heat equation. The bound-
ary condition in form of the unknown heat flux into the member has to be
determined in a data assimilation step from the collected thermocouple data.
By using an explicit, full time and space discretization of the heat equation
alternately on a fine and coarse grid, we are able to achieve a very fast data
assimilation. This will facilitate real-time data processing even in slow compu-
tational environments.

Data assimilation is mainly used in computational meteorology and oceanog-
raphy [4]. As an inverse problem [1] it is related to parameter identification.
Although both share a common objective, the term parameter identification
is used when a small number of slow varying unknowns, for example material
properties, have to be determined. On the other hand, we refer to data assim-
ilation if part of the state of a dynamical system itself is unknown. We should
also mention its links to optimal control [2][6] and the Kalman Filter [5].

This report will use a 1-D non-linear heat equation as a mathematical model
for the member. However, the ideas presented in this report also carry through
in 2-D or 3-D. The reduction to a 1-D model is acceptable for two reasons.
First, one can observe that the lateral temperature variation is small, usually
less than 10C◦. Second, the required number of measurement stations is far too
small to resolve the lateral temperature distribution. In fact, a member with
ratio 1:10 already needs 21 measurement stations to acquire equal lateral and
axial resolution.

The method in this report is applicable indiscriminately to the section type.
It can be applied to ’I’, ’H’, angle or ’T’ sections. It may also be applied to
structurally hollow sections such as in circular or square members.

The fire protection system is specified by the type of material, by its thick-
ness, and by the method the material is applied to the member (profiled or
boxed). At this stage of the project, the nature of the fire protection system
was not taken into consideration. The reason for this omission is that the re-
sulting heat flux into the member is automatically determined by the collected
temperature data and does not have to be conjured from the, possibly complex,
heat transport processes occurring in the protection material.

An important part of fire testing is the assessment of the fire protection
thickness by interpolating collected data over a range of fire protection materials
and a range of steel sections. To conduct such an assessment, an understanding
of the heat transport process is essential. This shall be a future part of the
project.

The methods in this paper should be applied with care to very thin, usually
sprayed on, fire protection material, and to reactive fire protection material. In

2



these cases, the temperature distribution on the member can vary considerably
both in time and space during fire testing, and the interpolation may thus be
of very poor quality.
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2 Symbols and Material Properties

symbol property typical values at 100C◦

cv specific heat capacity 487J/kgK

ρ density 7850kg/m3

k conductivity 50J/mKsec

Table 1: Temperature Dependent Material Properties for Steel

symbol definition
c cvρ
tn sampling time, n = 1, . . . , N
Δtn time step tn+1 − tn
xj point on discretization grid, j = 1, . . . , J
Δxj grid spacing xj+1 − xj

Σd FTCS discretization grid
Σm measurement (thermocouple) grid
fn
j value of function f(x, t) at time tn and location xj

u(x, y, z, t) time dependent temperature field
L length of member
Ω section of member

A(Ω) section area
γ normal lateral heat flux [J/secm2]
Γ average lateral heat flow line density [J/secm]

Γtotal total heat flux [J/sec]
ul lower mount temperature
uu upper mount temperature
uf furnace temperature
λ fire protection material heat transfer coefficient

Table 2: Symbols

Whenever possible, we will suppress functional argument, such as in u = u(x, y, z) =
u(x, y, z, t).
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3 Mathematical Model

upper mount

lower mount

x

y

z

y − z lateral dimension

x axial dimension

Figure 1: Beam with Slabs and Coordinate System

Let the surface of the member be partitioned into three disjoint sets Sl∪Su∪
Sn, where Sl and Su are the contact surfaces with the lower and upper mount,
respectively. Then a mathematical model for the member is the non-linear 3-D
heat equation

cvρ∂tu = ∇(k∇u),

with prescribed Dirichlet boundary conditions at the mounts

u
∣∣
Sl

= ul, u
∣∣
Su

= uu,

Von Neuman boundary conditions throughout Sn, i.e. the normal heat flux into
the member

k∂nu
∣∣
Sn

= γ,

and an initial distribution u
∣∣
t=0

= u0 We assume that the mount temperatures
ul and uu are collected and therefore known at all times. The mounts may be
water cooled.

4 Reduction to 1-D Non-Linear Heat Equation

Let Ω be the y−z section of the member and A(Ω) its area, see Figure 2. Define
the mean section temperature by

v(x, t) =
1

A(Ω)

∫
Ω

u(x, y, z, t) dA
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Figure 2: Section of Member

with dA = dydz. As shown in the Appendix, v then approximately satisfies the
non-linear, 1-D heat equation

c∂tv = ∂x(k∂xv) + Γ, (1)

where c = cvρ and Γ is the average lateral heat flux

1

A(Ω)

∫
∂Ω

γ ds.

Note that Γ = Γ(v, x, t) plays the role of an effective heat source in Eq. (1) and
that A(Ω)Γ is the lateral heat flow line density.

5 Time and space discretization of heat equa-

tion

Equation (1) is discretized using a forward time, centered space (FTCS) scheme.
The time grid is naturally given by the data acquisition system, which reads in
thermocouple data at discrete times tn, n = 1, . . . , N . For space discretization,
define a discretization grid

Σd = { x1, . . . , xJ }
consisting of J grid points such that the thermocouple locations Σm form a
subset of Σd, see Fig. 3. Note that for a given thermocouple configuration Σm,
the grid Σd is non-uniform in general.

On the discretization grid, the discrete temperature distribution vnj = u(xj , tn)
is defined. Note that vn1 and vnJ are the collected lower and upper mount tem-
peratures, respectively. The FTCS representation of (1) is

cnj
vn+1
j − vnj
Δtn

=
Kn

j
vn
j+1−vn

j

Δxj
−Kn

j−1
vn
j −vn

j−1

Δxj−1

Δxj +Δxj−1
+ Γn

j , (2)

where Kn
j = k(vnj+1) + k(vnj ) and cnj = c(vnj ). To solve (2) iteratively in time,

the stability criterion

max
j,n

2ΔtnK
n
j

cnjΔx2
j

≤ 1 (3)

has to be satisfied, see [9]. The grid Σd should be chosen as fine as the resolution
for the interpolant vnj is desired, but in accordance with the stability criterion
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i-1

i

i+1

j j+1j-1
lower mount = x1 = 0

upper mount = xJ = L

Figure 3: Scattered thermocouple locations Σm (•) and
non-uniform, finite difference (FD) grid Σd for 2D (left)
and 1D (right)

(3). Substituting the values of Table 1 and a typical value of Δtn = 10 sec into
(3) gives Δxj ≥ 15mm. However, for a member of length L = 3600mm, a
resolution of Δxj = 100mm is sufficient. Equation (2) can be written in the
form

cnj v
n+1
j −ΔtnΓ

n
j = Ψn

j , (4)

where Ψn
j does only depend on grid data at time step tn.

6 Data Assimilation

Equation (4) is solved iteratively in time for vnj with a data assimilation step
(steps III and IV below) at each iteration. See also the flow chart in Figure 4.

I. Given at time tn are the values vnj on the discretization grid xj ∈ Σd and

the collected data as vn+1
j on the thermocouple grid xj ∈ Σm;

II. (Assimilation step) Using the collected data vn+1
j at time tn+1, solve (4)

for Γn
j on the measurement grid xj ∈ Σm;

III. Interpolate Γn
j to xj ∈ Σd. How this interpolant is computed depends on

the ansatz for Γ(v, x, t), see below;

IV. Solve (4) for vn+1
j on the discretization grid to get temperature distribution

at time tn+1;

V. Set n �→ n+ 1 and go to step I.

The initial data v1j on the discretization grid, required to start the iteration, is
directly interpolated from the collected data on the measurement grid. For the
interpolation of Γn

j to the discretization grid in step III, we present two different
cases:
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1. In the simplest case Γ does not depend on the temperature, i.e. Γ =
Γ(x, t). Then a linear interpolation to the discretization grid will do:

Γn
j = Γn

k +
xj − xk

xl − xk
(Γn

l − Γn
k ) (5)

for xk, xl on the measurement and xj on the discretization grid;

2. Newton’s law of cooling [10] provides a more realistic model. Here

Γ = λ(x, t)(uf (x, t) − v(x, t)), (6)

where uf is the furnace temperature and λ the fire protection heat transfer
coefficient. On the measurement grid, λ is determined by

λn
j =

Γn
j

(uf )nj − vnj
,

and is interpolated to the discretization grid by replacing Γ with λ in (5).
Then Γn

j on Σd is given by

Γn
j = λn

j ((uf )
n
j − vnj ).

We should note that the data assimilation algorithm I–V is susceptible to
noise in the collected data. This does not so much affect the temperature dis-
tribution vnj as the predicted heat flux Γn

j , which may go through enormous
fluctuations in time. A simple counter measure is to smooth both the collected
data and the heat flux. For example, one could replace the flux after the assim-
ilation step II by

Γn
j �→ 1

Δn

m=n∑
m=n−Δn+1

Γm
j ,

that is, by the average heat flux over the last Δn time steps. It is important to
note that the data assimilation algorithm modified in this way does not anymore
produce an interpolant which matches the collected data at the thermocouple
locations. However, this is not a deficiency but a desired property of a robust
algorithm.

7 Results

The results in this section are based on a series of fire tests conducted as part
of a comparative study of an old and a new, improved furnace, see [7]. The test
specimen for two of these tests (Test I in old and Test II in new furnace) was
a column of section type HEB180 with a fire protection system consisting of
calcium silicate boards. Although a total of 16 thermocouples were used, only
7 thermocouples are non-redundant. Two of these thermocouples measured the
temperature of the lower and upper mounts.

For both tests, Figure 5 shows, at different times, the temperature distribu-
tion computed by the data assimilation technique in Section 6, where Newton’s
law of cooling in (6) was used. The vertical lines in Figure 5 mark the location
of the thermocouples. Figure 6 shows the dramatic difference between a simple
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linear interpolation and the data assimilation. Note that the maximal deviation
is more than 200C◦ or 30%. Also note that the maximum of the assimilant can
be larger than the highest collected temperature.

The heat flux into the column for Test I is shown in Figure 8 as a surface
plot over time and position. Noticeable is that the flux is not monotonically
increasing in time. This is due to evaporation of moisture in the fire protection
material, which starts at about 20 minutes into the test and lasts 10 minutes.
This phase is especially visible in Figure 9, where the total heat flux

Γtotal =

∫ L

0

Γ(x) dx

is plotted over time.

8 Appendix

To derive Equation (1), we have to assume that the dependence of the material
properties c = cvρ and k in the lateral direction is negligible, i.e.,

c(u(x, y, z, t)) ≈ c(v(x, t)) and k(u(x, y, z, t)) ≈ k(v(x, t))

for all y, z in all x-sections. Then

c(v)∂tv(x, t) =
1

A(Ω)

∫
Ω

c(v)∂tu dA

=
1

A(Ω)

∫
Ω

c(v)

c(u)
∇(k(u)∇u) dA

≈ 1

A(Ω)

∫
Ω

∇(k(v)∇u) dA

=
1

A(Ω)

∫
Ω

∂x(k(v)∂xu) dA+
1

A(Ω)

∫
∂Ω

k(v)∂nu ds

= ∂x(k(v)∂xv) +
1

A(Ω)

∫
∂Ω

γ ds

= ∂x(k(v)∂xv) + Γ.
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Figure 4: Overview of time-sequential assimilation process
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Figure 5: Temperature Distribution by Assimilation on
Test I (old furnace) and Test II (new furnace) in 10 minutes
intervals
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Figure 6: Linear Interpolant and Assimilant for Test I in
30 minutes intervals
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Figure 7: Temperature distribution for Test I over time and
position
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Figure 8: Heat flux line density for Test I over time and
position
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Figure 9: Total heat flux Γtotal over time for Test I

14


