
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

NORBERTASCHEUER SVEN O. KRUMKE JÖRG RAMBAU

The Online Transportation Problem:
Competitive Scheduling of Elevators

ZIB-Report 98-34 (December 1998)



THE ONLINE TRANSPORTATION PROBLEM:
COMPETITIVE SCHEDULING OF ELEVATORS

NORBERT ASCHEUER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

ABSTRACT. In this paper we consider the following online transportation problem
(OLTP): Objects are to be transported between the vertices of a given graph. Trans-
portation requests arrive online, specifying the objects to be transported and the cor-
responding source and target vertex. These requests are to be handled by a server
which commences its work at a designated origin vertex and which picks up and
drops objects at their starts and destinations. After the end of its service the server
returns to its start. The goal ofOLTP is to come up with a transportation schedule
for the server which finishes as early as possible.

We first show a lower bound of5/3 for the competitive ratio of any deterministic
algorithm. We then analyze two simple and natural strategies which we callReplan
and Ignore. Replan completely discards its schedule and recomputes a new one
when a new request arrives.Ignore always runs a (locally optimal) schedule for a set
of known requests and ignores all new requests until this schedule is completed.

We show that both strategies,Replan andIgnore, are5/2-competitive. We also
present a somewhat less natural strategySleep which in contrast to the other two
strategies may leave the server idle from time to time although unserved requests are
known. We also establish a competitive ratio of5/2 for the algorithmSleep.

Our results are extended to the case of “open schedules” where the server is not
required to return to its start position at the end of its service.

1. INTRODUCTION

Transportation problems where objects are to be transported between given sources
and destinations in a metric space are classical problems in combinatorial optimization.
In the classical setting, one assumes that the complete input for an instance is available
for an algorithm to compute a solution. In many cases thisoffline optimizationdoes not
reflect the real-world situation appropriately. For instance, the transportation requests
in an elevator system are hardly known in advance. Decisions have to be madeonline
without the knowledge of future requests.

Online algorithms are tailored to cope with such situations. They work on request
sequences and, as soon as a new request arises, update their solution to serve the new
request as well. A common way to evaluate the quality of online algorithms iscom-
petitive analysis[BEY98, FW98].

In this paper we consider the following online transportation problem (OLTP): Ob-
jects are to be transported between the vertices of a given graph. A request consists
of the objects to be transported and the corresponding source and target vertex of the
transportation request. The requests arrive online and must be handled by a server
which commences and ends its work at a designated origin vertex and which moves

Key words and phrases.Vehicle Routing, Online-Algorithms, Competitive Analysis.
Research supported by the German Science Foundation (DFG, grant Gr 883/5-1).

1



2 NORBERT ASCHEUER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

along the paths in the graph. The server picks up and drops objects at their starts
and destinations. We assume that neither the release time of the last request nor the
number of requests is not known in advance. The goal ofOLTP is to come up with a
transportation schedule for the server which finishes as early as possible.

Our investigations of theOLTP were originally motivated by the performance anal-
ysis of a large distribution center of Herlitz AG, Berlin [AG+98]. Its automatic pallet
transportation system employs several vertical transportation systems (elevators) in or-
der to move pallets between the various floors of the building. The pallets that have to
be transported during one day of production are not known in advance. If the objective
is chosen as minimizing the completion time (makespan) then this can be modeled by
the OLTP where the underlying graph is a path. All of our algorithms solve “offline
instances” ofOLTP during their run. On general graphs this task isNP-hard, since it
contains the Hamiltonian path problem as a special case [Fre93]. On paths, however,
one can solve the static transportation problem efficiently (by an easy modification of
the algorithm presented in [AK88]).

2. PRELIMINARIES

An instance of the online transportation problemOLTP consists of an undirected
graphG= (V,E) with edge-weightsd(e) (e∈E) and a distinguished origin vertexo∈
V.

Each request is a tripler i = (ti ,ai ,bi), whereti is a real number, the time where
requestr i becomes known, andai ∈V andbi ∈V are the source and target, respectively,
between which the new object is to be transported. We will consider each setσ =
{r1, . . . , rm} of transportation requests as ordered by the release times. We assume that
the online algorithm does neither have information about when the last request arrives
nor about the total number of requests.

The server can move at constant unit speed and is located at the starto at time0. We
allow the server to move “continuously” on the graph, i.e., to move continuously from
one end point of an edge(u,v) to the other one and possibly change its direction while
at some locations on the edge(u,v). The server hasunit-capacity, i.e., it can carry at
most one object at a time. Finally, we donot allow preemption: once the server has
picked up an object, it is not allowed to drop it at any other place than its destination.

It is easy to see that in the setting above, without loss of generality one can restrict
the server to move along shortest paths in the graph. Thus, we will not state explicitly
which path the server actually takes and just say that it moves from a pointx to a
point y. Hence, we can assume that the underlying graphG is complete with edge-
weights satisfying the triangle inequality. In the sequel we used(a,b) to denote the
shortest path distance between the verticesa andb in the graphG. We also extend
the distance functiond to the infinitely many points that lie on the edges ofG: If
s is on edge(u,v) at distanced(s,u) from u and distanced(s,v) = d(u,v)− d(s,u)
from s, then its distance from any other pointx on the graph is given bymin{d(s,u)+
d(u,x),d(s,v)+d(v,x)}.

Given a setσ of requests, a valid transportation schedule forσ is a sequence of
moves of the server such that the following conditions are satisfied: (a) The server
starts its movement in the origin vertexo, (b) each transportation request inσ is served,



THE ONLINE TRANSPORTATION PROBLEM: COMPETITIVE SCHEDULING OF ELEVATORS 3

but starting not earlier than the time it becomes known, and (c) the server returns to
the origin vertex after having served the last request.

Let CA(σ) denote the completion time of the server moved by algorithmA on the
setσ of requests. We also useOPT to denote the optimal offline algorithm. An online
algorithmA for OLTP is c-competitive, if there exists a constantc such that for any
request sequenceσ:

CA(σ)≤ c·COPT(σ).

3. RELATED WORK

The model of online computation using release dates for the requests was introduced
in [AF+95, AF+94]. There, the authors studied a similar problem which they called
theonline traveling salesman problem(OLTSP): A server moves at constant unit speed
through a metric space and serves requests that occur at points of the space. The main
difference between theOLTSP and theOLTP studied in this paper are the following:

• In theOLTSP the server can change its mind any time, recompute a new schedule
and, if necessary, change its direction right on the spot. In theOLTP this is not
possible. Once the server has picked up an object to be transported froma to b it
is not allowed to drop that object at any other place thanb.

• The distances in the metric space of theOLTSP are assumed to be symmetric.
Thus, if starting and ending in the origin, a setσ = {r1, . . . , rm} of requests can
be served in the orderr1, . . . , rm or rm, . . . , r1 at the same cost. In theOLTP

changing the “direction” of service could increase the cost by a factor of two.

In [AF+95, AF+94] the authors show a lower bound of9+
√

17
8 ≈ 1.64 for the compet-

itive ratio of any deterministic online algorithm for theOLTSP. This lower bound is
established for the special case that the metric space is the real line. In Section 4 we
show a slightly better lower bound of1+

√
2/2≈ 1.70 for theOLTP on the real line.

The authors in [AF+95, AF+94] also present a7/4-competitive algorithm for the
real line and a2-competitive algorithm that works in an arbitrary (symmetric) metric
space.

Recently, in an independent effort Feuerstein and Stougie [FS00] analyzed the al-
gorithmIgnore(which they callDLT) and established the same competitive ratio as in
this paper. To the best of our knowledge, there have been no proofs of the competitive
ratios of our other algorithms in literature so far.

4. LOWER BOUNDS

In this section we address the question how well an online algorithm can perform
compared to the optimal offline adversary.

Theorem 4.1. No deterministic algorithm forOLTP can achieve a competitive ra-
tio c < 5/3.

Proof. The underlying graphG = (V,E) for the instance ofOLTP consists of a path
of 5 verticesv0, . . . ,v4 with the origin being the “leftmost” vertexv0 at distanceD = 4
from the right end. All edge-weights are equal to one, so thatd(o,vi) = i.

Suppose thatA is a deterministic online algorithm with competitive ratioc. We can
assume thatc≤ 5/3, since otherwise there is nothing left to be proved.



4 NORBERT ASCHEUER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

At time t = 0, the algorithmA is faced with two requestsr1 = (0,o,v2) andr2 =
(0,v2,o). ThusCOPT(r1, r2) = 4 and the server operated byA must start serving re-
questr2 at some time2≤ T ≤ 4c−2. Sincec≤ 5/3, we have2≤ T ≤ 4c−2≤ 42

3.
Case 1:2≤ T ≤ 3.

At time T the adversary issues another requestr3 = (T,v3,v2). Thus, the online
server can not finish before timeT + 8≥ 10. On the other hand, the offline server
first handlesr1, then continues to move tov3 which it reaches no earlier than the time
when r3 becomes known. Hence, the optimal offline server incurs a total cost of6,
which gives us that

CA(r1, r2, r3)
COPT(r1, r2, r3

≥ 5
3
.

Case 2:3 < T ≤ 4c−2.
In this case, at timeT the adversary issues another requestr3 = (T,vbTc,v2). Notice

that sinceT > 3 andbTc ≤ 4 we have thatvbTc ∈ {v3,v4}.
Let bTc= T + ε for some−1≤ ε≤ 0. The online algorithm will need total time at

leastT + 2+ 2bTc = 3T + 2+ 2ε. The offline server first serves requestr1 and then
moves to vertexvbTc where it sits until timeT. It then servesr3 and, finally,r2 at a
total cost ofCOPT(r1, r2, r3) = T + bTc= 2T + ε.

Thus in the second case the ratio between the time needed byA and the optimal
offline algorithm is

CA(r1, r2, r3)
COPT(r1, r2, r3)

≥ 3T +2+2ε
2T + ε

≥ 3(4c−2)+2+2ε
2(4c−2)+ ε

=
12c−4+2ε
8c−4+ ε

It is easy to check that the expression given above is increasing inε. Thus we have that
the competitive ratioc is bounded from below by the value of the above expression for
ε =−1:

c≥ 12c−6
8c−5

. (1)

The smallest valuec≥ 1 satisfying Equation (1) isc = 17+
√

97
16 ≈ 1.678> 5

3, which
contradicts the assumption thatA is c-competitive withc < 5/3.

It should be pointed out that the lower bound above is achieved on a path where the
ratio of the diameter and the minimum distance between any two vertices is bounded
by 4. For the case when the underlying metric space forOLTP is the real line we can
establish a slightly better lower bound by basically the same construction as in the
proof of Theorem 4.1:

Theorem 4.2. For the OLTP on the real line, no deterministic algorithm can achieve
a competitive ratioc < 1+

√
2/2≈ 1.7071068.

5. TWO SIMPLE STRATEGIES

In this section we present and analyze two very natural online-strategies for for
OLTP. We also study another somewhat less natural strategy which shows that leaving
the server idle for some time can also lead to a competitive algorithm.

StrategyReplan : As soon as a new request arrives, the server completes the cur-
rent carrying move (if it is performing one), then the server stops and does a
replan: it computes a new shortest schedule which starts at the current position



THE ONLINE TRANSPORTATION PROBLEM: COMPETITIVE SCHEDULING OF ELEVATORS 5

of the server, takes care of all yet unserved requests and then either stops or
returns to the origin, depending on the problem specification, i.e., whether the
server should move alongopenor closedschedules.

Strategy Ignore : The server remains idle until the first request becomes known.
It then serves the first request immediately. All requests that arrive during the
service of the first request are temporarily ignored. After the first request has
been served, the server computes a shortest schedule for all unserved requests
and follows this schedule. Again, all new requests that arrive during the time
that the server is following the schedule are temporarily ignored. A schedule for
the ignored requests is computed as soon as the server has completed its current
schedule. The algorithm keeps on following schedules and temporarily ignoring
requests this way.

For a setσ of requests and a pointx let L∗(t,x,σ) denote the length of a shortest
schedule (i.e., the time difference between its completion time and the start timet)
which starts inx at timet, serves all requests fromσ and ends in the origin. Clearly
for t ′ ≥ t we have thatL∗(t ′,x,σ) ≤ L∗(t,x,σ). Moreover,COPT(σ) = L∗(0,o,R) and
thusCOPT(σ)≥ L∗(t,o,σ) for any timet ≥ 0.

Since the optimum offline serverOPT can not serve the last requestrm=(tm,am,bm)
from σ before this request is available we get that

COPT(σ)≥max{L∗(t,o,σ), tm+d(am,bm)+d(bm,o)} for anyt ≥ 0. (2)

Lemma 5.1. Let σ = {r1, . . . , rm} be a set of requests. Then for anyt ≥ tm and any
requestr i = (ti ,ai ,bi) from σ

L∗(t,bi ,σ\ r i)≤ L∗(t,o,σ)−d(ai ,bi)+d(ai ,o).

Proof. Consider an optimum scheduleS∗ which starts at the origino at timet, serves
all requests inσ and has lengthL∗(t,o,σ). It suffices to construct another scheduleS
which starts inbi no earlier than timet serves all requests inσ \ r i and has length at
mostL∗(t,o,σ)−d(ai ,bi)+d(ai ,o).

Let S∗ serve the requests in the orderr j1, . . . , r jm such thatr i = r jk. Notice that if we
start inb at timet and serve the requests in the order

r jk+1, . . . , r jm, r j1, . . . , r jk−1

and then moving back to the origin yields a scheduleSwith the desired properties.
We are now ready to prove the result about the performance ofReplan:

Theorem 5.2. AlgorithmReplan is 5/2-competitive.

Proof. Let σ = {r1, . . . , rm} be any set of requests. We distinguish between two cases
depending on the current load of theReplan-server at the timetm (the last request
becomes known).

If the server is currently empty it recomputes an optimal schedule which starts at
its current position, denoted bys(tm), serves all unserved requests, and returns to the
origin. This schedule has length at mostL∗(tm,s(tm),σ) ≤ d(o,s(tm)) + L∗(tm,o,σ).
Thus,

CReplan(σ)≤ tm+d(o,s(tm))+L∗(tm,o,σ)
(2)
≤ tm+d(o,s(tm))+COPT(σ). (3)



6 NORBERT ASCHEUER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

New now consider the second case, when the server is currently serving a request
r = (t,a,b). The time needed to complete the move isd(s(tm),b). Then a shortest
schedule starting atb serving all unserved requests is computed which has length at
mostL∗(tm,b,σ\ r). Thus in the second case

CReplan(σ)≤ tm+d(s(tm),b)+L∗(tm,b,σ\ r)

≤ tm+d(s(tm),b)+L∗(tm,o,σ)−d(a,b)+d(a,o) (by Lemma 5.1)

≤ tm+COPT(σ)−d(a,b)+d(s(tm),b)+d(a,s(tm))
︸ ︷︷ ︸

=d(a,b)

+d(s(tm),o)

= tm+d(o,s(tm))+COPT(σ).

This means that inequality (3) holds in both cases. Since theReplan server has trav-
eled to positions(tm) at time tm, there must be a requestr j = (t j ,a j ,b j) in σ where
eitherd(o,ai) ≥ d(o,s(tm)) or d(o,bi) ≥ d(o,s(tm)). But this means that the optimal
offline server will have to travel at least twice the distanced(o,s(tm)) during its sched-
ule. Thus,d(o,s(tm))≤COPT(σ)/2 and using this result together with (3) we get that
the total time theReplan server needs is no more than5/2 times that of the offline
server.

We are now going to analyze the competitiveness of the second simple strategy
Ignore.

Theorem 5.3. AlgorithmIgnore is 5/2-competitive.

Proof. Consider again the momenttm in time when the last requestrm becomes known.
If the Ignore server is currently idle at the origino, then its completes its last sched-
ule no later thantm + d(o,am) + d(am,bm) + d(bm,o) ≤ COPT(σ) + d(o,am) ≤ 3/2 ·
COPT(σ). Here, we have used again the fact that the optimum offline server will have
to travel at least twice the distanced(o,am) during its service.

It remains the case that at timetm theIgnore server is currently working on a sched-
ule S for a subsetσS of the requests. LettS denote the starting time of this schedule.
Thus, theIgnore-server will completeSat timetS+L∗(tS,o,σS). Denote byσ≥tS the
set of requests presented after timetS. Notice thatσ≥tS is exactly the set of requests
that are served byIgnore in its last schedule. TheIgnore-server will complete its total
service no later than timetS+L∗(tS,o,σS)+L∗(tm,o,σ≥tS).

Let r f ∈ σ≥tS be the first request fromσ≥tS served byOPT. Thus

COPT(σ)≥ t f +L∗(t f ,af ,σ≥tS)≥ tS+L∗(tm,af ,σ≥tS). (4)

Now L∗(tm,o,σ≥tS) ≤ d(o,af ) + L∗(tm,af ,σ≥tS) and L∗(tS,o,σS) ≤ COPT(σ). This
gives us that

CIgnore(σ)≤ tS+COPT(σ)+d(o,af )+L∗(tm,af ,σ≥tS)
(4)
≤ 2COPT(σ)+d(o,af )

≤ 5/2·COPT(σ).

This completes the proof.



THE ONLINE TRANSPORTATION PROBLEM: COMPETITIVE SCHEDULING OF ELEVATORS 7

6. THE SLEEP STRATEGY

StrategySleep is another very simple strategy that surprisingly leads to a competi-
tive algorithm.

StrategySleep : The algorithm has a fixed “waiting scaling” parameterθ > 1. The
algorithm also records a “base time”T which equals zero initially. From time to
time the algorithm consults its “work-or-sleep” routine: this subroutine computes
a shortest schedule for all unserved requests. If this schedule can be completed
before timeθT the subroutine returns(S,work), otherwise it returns(S,sleep).

The server of algorithmSleep can be in four states:
idle: In this case the server has served all known requests, is sitting in the origin

and waiting for new requests to occur.
sleeping: In this case the server knows of some unserved requests but also

knows that they take too long to serve (what “too long” means will be for-
malized in the algorithm below).

working: In this state the algorithm (or rather the server operated by it) is
following a computed schedule.

We now formalize the behavior of the algorithm by specifying how it reacts in
each of the four states.
• If the algorithm is idle and a new request arrives, it updates the base timeT

to the release time of the new request (which equals the current time). It then
calls “work-or-sleep”. If the result is(S,work), the algorithm resetsT to the
completion time ofSand enters the working state.
If the result of “work-or-sleep” is(S,sleep), then the algorithm enters the
sleeping state.

• In the sleeping state the algorithm resets its base time toT ′ = θT and simply
does nothing (or sleeps) until timeT ′. At time T ′ the algorithm reconsults
its “work-or-sleep” subroutine. This process is continued until the server
eventually enters the working state (since the number of requests is finite).

• In the working state, i.e, while the server is following a schedule all new
requests are ignored. As soon as the current schedule is completed the server
either enters the idle-state (if there are no unserved requests) or it consults
its “work-or-sleep” subroutine which determines the next state.

Theorem 6.1. AlgorithmSleep is max
{

5
2,2+ 1

θ−1

}

-competitive.

Proof. Let σ=tm be the set of requests released at timetm, i.e., the point in time when
the last requests becomes known. We distinguish between different cases depending
on the state of theSleep-server at timetm:
Case 1:The server is idle.

In this case the algorithm computes a shortest schedule for the requests inσ=tm and
resets its base time toT = tm. TheSleep-server will start its work at timeTθi , where
i is the smallest nonnegative integer such thatTθi +L∗(Tθi ,o,σ=tm) ≤ Tθi+1. Notice
that for all i we haveL∗(Tθi ,o,σ=tm) = L∗(tm,o,σ=tm)≤COPT(σ).

In other words, the server starts its work at timeTθi such thati ≥ 0 is the smallest
nonnegative integer such that

L∗(tm,o,σ=tm)≤ Tθi(θ−1). (5)



8 NORBERT ASCHEUER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

The server will complete its work at timeTθi +L∗(tm,o,σ=tm).
If i = 0, thenCSleep(σ) = tm+ L∗(tm,o,σ=tm) ≤ 2 ·COPT(σ). If i > 0, then by the

minimality of i we have that Equation (5) is false fori−1 and we get that

COPT(σ)≥ L∗(tm,o,σ=tm) > Tθi−1(θ−1). (6)

On the other hand

CSleep(σ)≤ Tθi +L∗(tm,o,σ=tm)
(6)
<

θ
θ−1

COPT(σ)+L∗(tm,o,σ=tm)

≤
(

1+
θ

θ−1

)

COPT(σ)

=
(

2+
1

θ−1

)

COPT(σ).

Case 2:The server is sleeping.
Let Tθp for somep≥ 0 be the time when the algorithm went to sleep the last time.

At time Tθp+1 the algorithm will reconsult its “work-or-sleep” subroutine. We have
thatTθp ≤ tm≤ Tθp+1.

The server will start its last schedule at timeTθp+1+i , wherei is the smallest integer
such thatTθp+1+i +L∗(tm,o,σ′) ≤ δθp+i+2, whereσ′ denotes the set of yet unserved
requests. By essentially the same arguments as in Case 1 we get that

CSleep(σ)≤
(

2+
1

θ−1

)

COPT(σ).

Case 3:The algorithm is working.
If after completion of the current scheduleSthe server enters the sleep state then the

arguments given above establish that the completion time does not exceed
(

2+ 1
θ−1

)

COPT(σ).
The remaining case is that theSleep-server starts its final schedule immediately

after having completedS. Thus, from the timetS where the server startedS, theSleep
algorithm behaves exactly like theIgnore strategy and the arguments given in the proof
of Theorem 5.3 show that in this caseCSleep(σ)≤ 5/2 ·COPT(σ). This completes the
proof.

We note that the second factor1+ θ
θ−1 = 2+ 1

θ−1 is at most5/2 provided thatθ≥ 3.
We thus obtain the following corollary.

Corollary 6.2. If θ≥ 3, then algorithmSleep is 5/2-competitive.

7. EXTENSION TO OPEN SCHEDULES

In this section we show how to extend our results to the case of “open schedules”
where the server is not required to return to the origin at the end of its service.

7.1. Lower Bound. We first establish a lower bound on the competitive ratio of any
deterministic algorithm forOLTP with open schedules.

Theorem 7.1. For open schedules no deterministic algorithm forOLTP can achieve a
competitive ratioc < 2−4/D, whereD := maxv∈V d(o,v) is the maximum distance of
any node in the graph to the origin vertexo.



THE ONLINE TRANSPORTATION PROBLEM: COMPETITIVE SCHEDULING OF ELEVATORS 9

Proof. The underlying graphG = (V,E) for the instance ofOLTP consists of a path
of 2n+ 1 vertices with the origin being the middle vertex at distance ofn from each
end. More formally, we have thatV = {vi : i = −n, . . . ,n} with o := v0 and E =
{(vi ,vi+1) : i =−n, . . . ,n−1}. All edge-weights are equal to1.

Assume thatA ist an Algorithm with competitive ratioc < 2−4/D = 2−4/n. The
first request given isr1 = (t1 = 0,v0,v−1). We now claim that at timet2 = n−1 the
online-server can not be strictly to the right of vertexv1. In fact, if the server were to
the right, say at distanceδ > 0 to the right of vertexv1, then we could add the request
r2 = (n−1,v−(n−1),v−n). The online server would then need time at least1+δ+n to
serve the request. This would result in a total time of2n+ δ. On the other hand, the
offline server could server1 starting at timet1 = 0 and then continue to move to the left
until it reaches vertexv−(n−1) at timen−1 ready to serve the new requestr2. Thus, the
offline server needs timen and thusCA(r1, r2)/COPT(r1, r2) = (2n+ δ)/n > 2 which
means thatA would not even be2-competitive.

We have seen that at timet2 = n−1 the online server is to the left of vertexv1. We
now add the requestr3 = (n−1,vn−3,vn−2). The total time needed by the online server
is then at leastn−1+(n−2) = 2n−4.

On the other hand, the offline server serves the sequencer1, r3 by handlingr1 at
timet1 and then immediately moving to vertexvn−2 which it reaches at timen−1 ready
to server3. Thus we have thatCOPT(r1, r3) = n andCA(r1, r3)/COPT(r1, r3) = 2−
4/n> c. This contradicts the assumption thatA isc-competitive withα < 2−4/D.

7.2. Competitive Ratios ofReplan and Ignore . We now show how to modify the
proof of Theorem 5.2 to obtain a result about the competitiveness ofReplan for open
schedules.

For a setσ of requests and a pointx let L̃∗(t,x,σ) denote the length of a shortest
schedule (i.e., the time difference between its completion time and the start timet)
which starts inx at time t, serves all requests fromσ. The difference toL∗(t,x,σ)
defined in Section 5 is that we do not require the schedule to end at the origin.

For t ′ ≥ t we have that̃L∗(t ′,x,σ) ≤ L̃∗(t,x,σ). Moreover,COPT(σ) = L̃∗(0,o,σ)
and thusCOPT(σ) ≥ L̃∗(t,o,σ) for any timet ≥ 0. Since the optimum offline server
OPT can not serve the last requestrm = (tm,am,bm) from σ before this request is
available we get that

COPT(σ)≥max{L∗(t,o,σ), tm+d(am,bm)} for anyt ≥ 0. (7)

The following lemma can be proved similarly to Lemma 5.1:

Lemma 7.2. Let σ = {r1, . . . , rm} be a set of requests. Then for anyt ≥ tm and any
requestr i = (ti ,ai ,bi) from σ

L̃∗(t,bi ,σ\ r i)≤ L̃∗(t,o,σ)−d(ai ,bi)+d(b,o),

whereb is the endpoint of a path with length̃L∗(t,o,σ). In particular

L̃∗(t,bi ,σ\ r i)≤ 2L̃∗(t,o,σ)−d(ai ,bi).

We are now ready to establish the analogon of Theorem 5.2 for open schedules:

Theorem 7.3. In the case of open schedules AlgorithmReplan is 3-competitive.



10 NORBERT ASCHEUER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

Proof. If at the timetm when the last requestrm = (tm,am,bm) from σ is issued, the
Replan server does not perform a carrying move, then the total time needed byReplan
is no more than

tm+ L̃∗(tm,s(tm),σ)≤ tm+d(s(tm),o)+ L̃∗(tm,o,σ)≤ d(o,s(tm))+2COPT(σ).

The distanced(o,s(tm)) can be bounded from above byCOPT(σ) (instead ofCOPT(σ)/2
as for closed schedules) and thusReplan needs time at most3 times the optimum in
this case.

If at time tm Replan performs a carrying move froma to b, it will finish its move at
time tm+d(s(tm),b). We thus have

CReplan(σ)≤ tm+d(s(tm),b)+ L̃∗(tm,b,σ)

≤ tm+d(s(tm),b)+2L̃∗(tm,o,σ)−d(a,b) (by Lemma 7.2)

≤ tm+2L̃∗(tm,o,σ)

≤ 3 ·COPT(σ).

This completes the proof.

Theorem 7.4. In the case of open schedules, the competitive ratio of AlgorithmIg-
nore is 4.

Proof. The only interesting case is that at the timetm when the last request becomes
known theIgnore server is currently working on a scheduleS. Suppose thatS was
started at timetS and has starting pointx and ends at pointy. Then the schedule will be
completed no later than timetS+ L̃∗(tS,x,σS), whereσS denotes the subset of requests
served in the current scheduleS. The Ignore server will complete its total work no
later than time

tS+ L̃∗(tS,x,σS)+ L̃∗(tm,y,σ≥tS),

whereσ≥tS denotes the set of requests presented after timetS.
Let r f be the first request from the setσ≥tS of ignored requests served byOPT.

Then

COPT(σ)≥ t f + L̃∗(tS,af ,σ≥tS)≥ tS+ L̃∗(tS,af ,σ≥tS).

Thus, we have that

CIgnore(σ)≤ L̃∗(tS,x,σS)+d(y,af )+ tS+ L̃∗(tm,af ,σ≥tS)

≤ L̃∗(tS,x,σS)+d(y,af )+COPT(σ)

≤ 2COPT(σ)+d(x,o)+d(y,af ).

It is easy to see that both valuesd(x,o) andd(y,af ) are bounded from above byCOPT(σ),
and so the theorem follows.

8. CONCLUDING REMARKS

The competitive ratios of our three algorithms are summarized in Table 1. Examples
show that all of them are tight.



THE ONLINE TRANSPORTATION PROBLEM: COMPETITIVE SCHEDULING OF ELEVATORS 11

Algorithm Replan Ignore Sleep

Closed Schedules
5
2

5
2

max

{

5
2
,2+

1
θ−1

}

Closed Schedules 3 4 —

TABLE 1. Competitive Ratios of algorithms in this paper.

REFERENCES

[AF+94] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo,Serving request with on-
line routing, Proceedings of the 4th Scandinavian Workshop on Algorithm Theory, Lecture
Notes in Computer Science, vol. 824, July 1994, pp. 37–48.

[AF+95] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo,Competitive algorithms for
the traveling salesman, Proceedings of the 4th Workshop on Algorithms and Data Structures,
Lecture Notes in Computer Science, vol. 955, August 1995, pp. 206–217.

[AG+98] N. Ascheuer, M. Gr̈otschel, S. O. Krumke, and J. Rambau,Combinatorial online optimization,
Proceedings of the International Conference of Operations Research (OR’98), Springer, 1998,
pp. 21–37.

[AK88] M. J. Atallah and S. R. Kosaraju,Efficient solutions to some transportation problems with
applications to minimizing robot arm travel, SIAM Journal on Computing17 (1988), no. 5,
849–869.

[BEY98] A. Borodin and R. El-Yaniv,Online computation and competitive analysis, Cambridge Uni-
versity Press, 1998.

[ET76] K. P. Eswaran and R. E. Tarjan,Augmentation problems, SIAM Journal on Computing5
(1976), 653–665.

[Fre93] G. N. Frederickson,A note on the complexity of a simple transportation problem, SIAM Jour-
nal on Computing22 (1993), no. 1, 57–61.

[FS00] E. Feuerstein and L. Stougie,On-line single server dial-a-ride problems, Theoretical Computer
Science (2000), To appear.

[FW98] A. Fiat and G. J. Woeginger (eds.),Online algorithms: The state of the art, Lecture Notes in
Computer Science, vol. 1442, Springer, 1998.

KONRAD-ZUSE-ZENTRUM FÜR INFORMATIONSTECHNIKBERLIN, DEPARTMENTOPTIMIZATION ,
TAKUSTR. 7, 14195 BERLIN-DAHLEM , GERMANY.

E-mail address: {ascheuer,krumke,rambau }@zib.de


