TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum =
fur Informationstechnik Berlin —

NORBERTASCHEUER SVEN O. KRUMKE JORG RAMBAU

The Online Transportation Problem:
Competitive Scheduling of Elevators

Z1B-Report 98-34 (December 1998)

THE ONLINE TRANSPORTATION PROBLEM:
COMPETITIVE SCHEDULING OF ELEVATORS

NORBERT ASCHEUER, SVEN O. KRUMKE, ANDORG RAMBAU

ABSTRACT. In this paper we consider the following online transportation problem
(OLTP): Objects are to be transported between the vertices of a given graph. Trans-
portation requests arrive online, specifying the objects to be transported and the cor-
responding source and target vertex. These requests are to be handled by a server
which commences its work at a designated origin vertex and which picks up and
drops objects at their starts and destinations. After the end of its service the server
returns to its start. The goal @LTP is to come up with a transportation schedule

for the server which finishes as early as possible.

We first show a lower bound &/ 3 for the competitive ratio of any deterministic
algorithm. We then analyze two simple and natural strategies which wBeplan
andIgnore. Replan completely discards its schedule and recomputes a new one
when a new request arriveginore always runs a (locally optimal) schedule for a set
of known requests and ignores all new requests until this schedule is completed.

We show that both strategieReplan andlgnore, are5/2-competitive. We also
present a somewhat less natural strat8tgep which in contrast to the other two
strategies may leave the server idle from time to time although unserved requests are
known. We also establish a competitive ratidog® for the algorithmSleep.

Our results are extended to the case of “open schedules” where the server is not
required to return to its start position at the end of its service.

1. INTRODUCTION

Transportation problems where objects are to be transported between given sources
and destinations in a metric space are classical problems in combinatorial optimization.
In the classical setting, one assumes that the complete input for an instance is available
for an algorithm to compute a solution. In many casesdfflse optimizatiordoes not
reflect the real-world situation appropriately. For instance, the transportation requests
in an elevator system are hardly known in advance. Decisions have to beomade
without the knowledge of future requests.

Online algorithms are tailored to cope with such situations. They work on request
sequences and, as soon as a new request arises, update their solution to serve the new
request as well. A common way to evaluate the quality of online algorithroens
petitive analysi$§BEY98, FW98].

In this paper we consider the following online transportation probl@nTg): Ob-
jects are to be transported between the vertices of a given graph. A request consists
of the objects to be transported and the corresponding source and target vertex of the
transportation request. The requests arrive online and must be handled by a server
which commences and ends its work at a designated origin vertex and which moves

Key words and phrases/ehicle Routing, Online-Algorithms, Competitive Analysis.
Research supported by the German Science Foundation (DFG, grant Gr 883/5-1).
1

2 NORBERT ASCHEUER, SVEN O. KRUMKE, ANDORG RAMBAU

along the paths in the graph. The server picks up and drops objects at their starts
and destinations. We assume that neither the release time of the last request nor the
number of requests is not known in advance. The go&afp is to come up with a
transportation schedule for the server which finishes as early as possible.

Our investigations of th©LTP were originally motivated by the performance anal-
ysis of a large distribution center of Herlitz AG, Berlin [A®8]. Its automatic pallet
transportation system employs several vertical transportation systems (elevators) in or-
der to move pallets between the various floors of the building. The pallets that have to
be transported during one day of production are not known in advance. If the objective
is chosen as minimizing the completion time (makespan) then this can be modeled by
the OLTP where the underlying graph is a path. All of our algorithms solve “offline
instances” ofOLTP during their run. On general graphs this tasiB-hard, since it
contains the Hamiltonian path problem as a special case [Fre93]. On paths, however,
one can solve the static transportation problem efficiently (by an easy modification of
the algorithm presented in [AK88]).

2. PRELIMINARIES

An instance of the online transportation probl@unTp consists of an undirected
graphG = (V, E) with edge-weightsl(e) (e € E) and a distinguished origin vertexc
V.

Each request is a tripla = (ti,a,bi), wheret; is a real number, the time where
request; becomes known, aral € V andb; €V are the source and target, respectively,
between which the new object is to be transported. We will consider eaah-set
{r1,...,rm} of transportation requests as ordered by the release times. We assume that
the online algorithm does neither have information about when the last request arrives
nor about the total number of requests.

The server can move at constant unit speed and is located at theatirhe0. We
allow the server to move “continuously” on the graph, i.e., to move continuously from
one end point of an edde, v) to the other one and possibly change its direction while
at some locatios on the edgé€u,v). The server haanit-capacity i.e., it can carry at
most one object at a time. Finally, we dot allow preemptiononce the server has
picked up an object, it is not allowed to drop it at any other place than its destination.

It is easy to see that in the setting above, without loss of generality one can restrict
the server to move along shortest paths in the graph. Thus, we will not state explicitly
which path the server actually takes and just say that it moves from a ytina
pointy. Hence, we can assume that the underlying gi@gph complete with edge-
weights satisfying the triangle inequality. In the sequel wed(seb) to denote the
shortest path distance between the verteesmdb in the graphG. We also extend
the distance functiowl to the infinitely many points that lie on the edges@if If
sis on edge(u,v) at distanced(s,u) from u and distancel(s,v) = d(u,v) — d(s,u)
from s, then its distance from any other poinbn the graph is given bmin{d(s,u) +
d(u,x),d(s,v) +d(v,Xx)}.

Given a seto of requests, a valid transportation scheduledas a sequence of
moves of the server such that the following conditions are satisfied: (a) The server
starts its movement in the origin vertex(b) each transportation requestiis served,

THE ONLINE TRANSPORTATION PROBLEM: COMPETITIVE SCHEDULING OF ELEVATORS 3

but starting not earlier than the time it becomes known, and (c) the server returns to
the origin vertex after having served the last request.

Let Ca(0) denote the completion time of the server moved by algorithon the
seto of requests. We also u€¥PT to denote the optimal offline algorithm. An online
algorithm A for OLTP is c-competitive if there exists a constamtsuch that for any
request sequence

Ca(0) < c-Copt(0).

3. RELATED WORK

The model of online computation using release dates for the requests was introduced
in [AFT95, AFt94]. There, the authors studied a similar problem which they called
theonline traveling salesman problef®LTSP): A server moves at constant unit speed
through a metric space and serves requests that occur at points of the space. The main
difference between th@LTspP and theOLTP studied in this paper are the following:

¢ IntheOLTsPthe server can change its mind any time, recompute a new schedule
and, if necessary, change its direction right on the spot. IrOitwP this is not
possible. Once the server has picked up an object to be transported fodmit
is not allowed to drop that object at any other place than

e The distances in the metric space of fBersp are assumed to be symmetric.
Thus, if starting and ending in the origin, a et {r1,...,rm} of requests can
be served in the ordem,... .rm Or ry, ... ,r1 at the same cost. In theLTp
changing the “direction” of service could increase the cost by a factor of two.

In [AF ™95, AF"94] the authors show a lower bound%fgﬂﬂ ~ 1.64 for the compet-

itive ratio of any deterministic online algorithm for tif@.Tsp. This lower bound is
established for the special case that the metric space is the real line. In Section 4 we
show a slightly better lower bound @f+v/2/2 ~ 1.70for the OLTP on the real line.

The authors in [AF95, AF"94] also present &/4-competitive algorithm for the
real line and &-competitive algorithm that works in an arbitrary (symmetric) metric
space.

Recently, in an independent effort Feuerstein and Stougie [FS00] analyzed the al-
gorithmIgnore(which they callDLT) and established the same competitive ratio as in
this paper. To the best of our knowledge, there have been no proofs of the competitive
ratios of our other algorithms in literature so far.

4. LOWER BOUNDS

In this section we address the question how well an online algorithm can perform
compared to the optimal offline adversary.

Theorem 4.1. No deterministic algorithm folOLTP can achieve a competitive ra-
tioc < 5/3.

Proof. The underlying grapié = (V,E) for the instance oOLTP consists of a path
of 5 verticesvy, ... , V4 with the origin being the “leftmost” vertex at distance = 4
from the right end. All edge-weights are equal to one, sodlatv;) = i.

Suppose thad is a deterministic online algorithm with competitive ratiowWe can
assume that < 5/3, since otherwise there is nothing left to be proved.

4 NORBERT ASCHEUER, SVEN O. KRUMKE, ANDORG RAMBAU

At time t = 0, the algorithmA is faced with two requests = (0,0,v2) andr, =
(0,v2,0). ThusCppt(r1,r2) =4 and the server operated Bymust start serving re-
questry at some time& < T <4c—2. Sincec <5/3,we have2 <T <4c—-2< 4%.
Case 1:2<T < 3.

At time T the adversary issues another requegst (T,vs,V2). Thus, the online
server can not finish before tinle+ 8 > 10. On the other hand, the offline server
first handleg 1, then continues to move tg which it reaches no earlier than the time
whenrz becomes known. Hence, the optimal offline server incurs a total c&t of
which gives us that

Ca(ry,ra,rs) 5
Copt(r1,r2,rs — 3’
Case 2.3<T<4c—2

In this case, attim@& the adversary issues another requegst (T,v|7,V2). Notice
that sincelT > 3and|T | < 4 we have thav 1| € {v3,v4}.

Let |T] =T +¢for some—1 < &€ <0. The online algorithm will need total time at
leastT +2+2|T] = 3T + 2+ 2¢. The offline server first serves requestand then
moves to vertew|t| where it sits until timeT. It then servess and, finally,r, at a
total cost ofCopt(ra,r2,r3) =T+ |[T| = 2T +¢.

Thus in the second case the ratio between the time needéddmy the optimal
offline algorithm is

Ca(ry,ro,rs) - 3T +2+2¢ - 3(4c—2)+2+2e 12c—-4+2¢
Copt(ra,ra,r3) = 2T+e — 2(4c—2)+¢ ~ 8c—4+¢
Itis easy to check that the expression given above is increassmdimus we have that

the competitive ratie is bounded from below by the value of the above expression for
e=-1

12c—-6
c> . 1
> e 1)
The smallest value > 1 satisfying Equation (1) is = Y%7 ~ 1,678 > 3, which
contradicts the assumption thais c-competitive withc < 5/3. O

It should be pointed out that the lower bound above is achieved on a path where the
ratio of the diameter and the minimum distance between any two vertices is bounded
by 4. For the case when the underlying metric spaceorp is the real line we can
establish a slightly better lower bound by basically the same construction as in the
proof of Theorem 4.1:

Theorem 4.2. For the OLTP on the real line, no deterministic algorithm can achieve
a competitive raticc < 1+1/2/2 ~ 1.7071068 O

5. TWO SIMPLE STRATEGIES

In this section we present and analyze two very natural online-strategies for for
OLTP. We also study another somewhat less natural strategy which shows that leaving
the server idle for some time can also lead to a competitive algorithm.

Strategy Replan: As soon as a new request arrives, the server completes the cur-

rent carrying move (if it is performing one), then the server stops and does a
replan: it computes a new shortest schedule which starts at the current position

THE ONLINE TRANSPORTATION PROBLEM: COMPETITIVE SCHEDULING OF ELEVATORS 5

of the server, takes care of all yet unserved requests and then either stops or
returns to the origin, depending on the problem specification, i.e., whether the
server should move alorgpenor closedschedules.

Strategylgnore : The server remains idle until the first request becomes known.
It then serves the first request immediately. All requests that arrive during the
service of the first request are temporarily ignored. After the first request has
been served, the server computes a shortest schedule for all unserved requests
and follows this schedule. Again, all new requests that arrive during the time
that the server is following the schedule are temporarily ignored. A schedule for
the ignored requests is computed as soon as the server has completed its current
schedule. The algorithm keeps on following schedules and temporarily ignoring
requests this way.

For a seto of requests and a pointlet L*(t,x,0) denote the length of a shortest
schedule (i.e., the time difference between its completion time and the start)time
which starts inx at timet, serves all requests fromand ends in the origin. Clearly
for t’ >t we have that*(t’,x,0) < L*(t,x,0). Moreover,Copt(0) = L*(0,0,R) and
thusCopt(0) > L*(t,0,0) for any timet > 0.

Since the optimum offline serv@PT can not serve the last requegt= (tm, am, bm)
from o before this request is available we get that

CopT1(0) > max{L*(t,0,0),tm+d(am,bm) +d(bm,0)} foranyt>0. (2)

Lemma5.1. Leto = {ry,...,rm} be a set of requests. Then for any t, and any
request; = (tj,a,b;) fromo

L*(t,bj,0\ri) <L*(t,0,0) —d(a,b;) +d(a,0).

Proof. Consider an optimum schedu which starts at the origio at timet, serves
all requests iro and has length*(t,0,0). It suffices to construct another schedSle
which starts inb; no earlier than time serves all requests o\ r; and has length at
mostL*(t,0,0) — d(a;, b;) + d(&;,0).

Let S* serve the requests in the ordgy, ..., rj,, such that; = rj,. Notice that if we
start inb at timet and serve the requests in the order

r‘jk#—l" : '7rjm’rjl’ o '7rjl<—1

and then moving back to the origin yields a schedhgth the desired properties.[]
We are now ready to prove the result about the performanBeplan:

Theorem 5.2. AlgorithmReplan is 5/2-competitive.

Proof. Leto = {r4,...,rm} be any set of requests. We distinguish between two cases
depending on the current load of tReplan-server at the timéy, (the last request
becomes known).

If the server is currently empty it recomputes an optimal schedule which starts at
its current position, denoted sfty,), serves all unserved requests, and returns to the
origin. This schedule has length at m&s{tm, S(tm),0) < d(0,S(tm)) + L*(tm,0,0).

Thus,

Creplan(0) < tm+d(0,S(tm)) + L*(tm, 0,0) (2 tm+ d(0,S(tm)) + Copt(0). (3)

6 NORBERT ASCHEUER, SVEN O. KRUMKE, ANDORG RAMBAU

New now consider the second case, when the server is currently serving a request
r = (t,a,b). The time needed to complete the movelis(ty),b). Then a shortest
schedule starting di serving all unserved requests is computed which has length at
mostL*(tm,b,0\ r). Thus in the second case

CRepIan(G) <tm+ d(S(7b) +L7 (tm> b, 0\ r)
<tm+d(S(tm),b) + L*(tm,0,0) — d(a,b) + d(a,0) (by Lemma 5.1)
<tm+Cop7(0) —d(a,b) + d(S(tm), b) + d(&,S(tm)) +d(S(tm), 0)
=d(a,b)

tm)
tm)

=tm+d(0,S(tm)) +CopT(0).

This means that inequality (3) holds in both cases. Sinc&#ydan server has trav-
eled to positiors(ty) at timety,, there must be a request= (tj,a;,bj) in o where
eitherd(o,&) > d(o,s(tm)) or d(o,b;) > d(o,s(tym)). But this means that the optimal
offline server will have to travel at least twice the distadée, S(t,,)) during its sched-
ule. Thusd(o,s(tm)) < CopT(0)/2 and using this result together with (3) we get that
the total time theReplan server needs is no more th&j2 times that of the offline
server. O

We are now going to analyze the competitiveness of the second simple strategy
Ignore.

Theorem 5.3. AlgorithmIgnore is 5/2-competitive.

Proof. Consider again the mometitin time when the last request becomes known.

If the Ignore server is currently idle at the origim then its completes its last sched-
ule no later tharm + d(0,am) + d(am, bm) + d(bm,0) < Copt(0) +d(0,am) < 3/2-
CopT1(0). Here, we have used again the fact that the optimum offline server will have
to travel at least twice the distandéo, am) during its service.

It remains the case that at timygthelgnore server is currently working on a sched-
ule Sfor a subsets of the requests. Ldt denote the starting time of this schedule.
Thus, thelgnore-server will completeS at timets+ L*(ts, 0,0s). Denote byo the
set of requests presented after titgeNotice thato- is exactly the set of requests
that are served bignore in its last schedule. Thignore-server will complete its total
service no later than timig + L*(ts, 0, 0s) + L*(tm, 0, O>tg)-

Letrs € 0>t be the first request from>, served byOPT. Thus

Cop1(0) >t +L*(tr,as,05t5) > ts+ L" (tm, ar, 0>¢s). 4)

Now L*(tm,0,0>t5) < d(0,af¢) + L*(tm,ar,0>t5) and L*(ts,0,0s) < Copr(0). This
gives us that

Clgnore(c) < tS+COPT(0) + d(07 af) +L* (tm7 as, OZtS)

(4)
< 2Copr(0) +d(0,a)
<5/2:Cop1(0).

This completes the proof. O

THE ONLINE TRANSPORTATION PROBLEM: COMPETITIVE SCHEDULING OF ELEVATORS 7

6. THE SLEEP STRATEGY

StrategySleep is another very simple strategy that surprisingly leads to a competi-
tive algorithm.

Strategy Sleep: The algorithm has a fixed “waiting scaling” parameer 1. The
algorithm also records a “base tim& which equals zero initially. From time to
time the algorithm consults its “work-or-sleep” routine: this subroutine computes
a shortest schedule for all unserved requests. If this schedule can be completed
before timedT the subroutine returnsS work), otherwise it returngS sleep).

The server of algorithrSleep can be in four states:

idle: In this case the server has served all known requests, is sitting in the origin
and waiting for new requests to occur.

sleeping: In this case the server knows of some unserved requests but also
knows that they take too long to serve (what “too long” means will be for-
malized in the algorithm below).

working: In this state the algorithm (or rather the server operated by it) is
following a computed schedule.

We now formalize the behavior of the algorithm by specifying how it reacts in
each of the four states.

e If the algorithm is idle and a new request arrives, it updates the bas&time
to the release time of the new request (which equals the current time). It then
calls “work-or-sleep”. If the result i§S work), the algorithm resef§ to the
completion time ofSand enters the working state.

If the result of “work-or-sleep” igS sleep), then the algorithm enters the
sleeping state.

¢ In the sleeping state the algorithm resets its base timié 00T and simply
does nothing (or sleeps) until timkE. At time T’ the algorithm reconsults
its “work-or-sleep” subroutine. This process is continued until the server
eventually enters the working state (since the number of requests is finite).

¢ In the working state, i.e, while the server is following a schedule all new
requests are ignored. As soon as the current schedule is completed the server
either enters the idle-state (if there are no unserved requests) or it consults
its “work-or-sleep” subroutine which determines the next state.

Theorem 6.1. Algorithm Sleep is max{ 3,2+ g2; }-competitive.

Proof. Let 0_, be the set of requests released at timé.e., the point in time when
the last requests becomes known. We distinguish between different cases depending
on the state of th&leep-server at time,:
Case 1:The server isidle.
In this case the algorithm computes a shortest schedule for the requests and
resets its base time =ty TheSleep-server will start its work at tim&6', where
i is the smallest nonnegative integer such th@it+L*(T@',0,0—,) < T8%. Notice
that for alli we haveL*(T@',0,0_,) = L*(tm,0,0_,) < CopT(0).
In other words, the server starts its work at tiln@ such thai > 0 is the smallest
nonnegative integer such that

L*(tm,0,0—,) < TO'(8—1). (5)

8 NORBERT ASCHEUER, SVEN O. KRUMKE, ANDORG RAMBAU

The server will complete its work at time8' + L* (tm, 0,0y).
If i =0, thenCgjeep(0) = tm+ L*(tm,0,0,,) < 2-Copt(0). If i > 0, then by the
minimality of i we have that Equation (5) is false fior 1 and we get that

CopT(0) > L*(tm,0,0—,) > T8 1(0—1). (6)
On the other hand
Csleep(0) <TO 4L (tm,0,0—t,,)

7lcopT()+ L*(tm, 0,0—t,,)

8
< <1+ 9) Copt(0)
(2 91>COPT<>

Case 2:The server is sleeping.

Let TOP for somep > 0 be the time when the algorithm went to sleep the last time.
At time TOP*! the algorithm will reconsult its “work-or-sleep” subroutine. We have
that TeP < ty, < TOPHL,

The server will start its last schedule at tifi@° 1!, wherei is the smallest integer
such thaff@P+1+ 4 [*(ty,, 0,0") < 86P++2 whered’ denotes the set of yet unserved
requests. By essentially the same arguments as in Case 1 we get that

Csleep(0) < <2+)COPT()-

Case 3:The algorithm is working.
If after completion of the current sched@¢he server enters the sleep state then the
arguments given above establish that the completion time does not e()a:e%éq) CopT(0).
The remaining case is that tt®&leep-server starts its final schedule immediately
after having complete8 Thus, from the timés where the server start&Ithe Sleep
algorithm behaves exactly like tihgnore strategy and the arguments given in the proof
of Theorem 5.3 show that in this caSgieep(0) < 5/2-Copt(0). This completes the
proof. O

We note that the second factb#- 9%01 =2+ efll is at mos6/2 provided thab > 3.
We thus obtain the following corollary.

Corollary 6.2. If 8 > 3, then algorithmSleep is 5/2-competitive. O

7. EXTENSION TO OPEN SCHEDULES

In this section we show how to extend our results to the case of “open schedules”
where the server is not required to return to the origin at the end of its service.

7.1. Lower Bound. We first establish a lower bound on the competitive ratio of any
deterministic algorithm foOLTP with open schedules.

Theorem 7.1. For open schedules no deterministic algorithm @utp can achieve a
competitive raticc < 2—4/D, whereD := max,y d(0,V) is the maximum distance of
any node in the graph to the origin vertex

THE ONLINE TRANSPORTATION PROBLEM: COMPETITIVE SCHEDULING OF ELEVATORS 9

Proof. The underlying graplc = (V,E) for the instance oDLTP consists of a path
of 2n+ 1 vertices with the origin being the middle vertex at distance &bm each
end. More formally, we have that = {v; :i = —n,... ,n} with 0:=vp andE =
{(vi,Viy1) :i1=—n,...,n—1}. All edge-weights are equal tb

Assume thaA ist an Algorithm with competitive ratic < 2—4/D =2—4/n. The
first request given is; = (t; = 0,vp,v_1). We now claim that at tim& = n— 1 the
online-server can not be strictly to the right of vertgx In fact, if the server were to
the right, say at distana®> 0 to the right of vertews, then we could add the request
rz=(n—1,v_h_1),V_n). The online server would then need time at leastd +n to
serve the request. This would result in a total timeof- 5. On the other hand, the
offline server could servg starting at time; = 0 and then continue to move to the left
until it reaches vertex_,_1) at timen— 1ready to serve the new request Thus, the
offline server needs time and thusCa(r1,r2)/Copt(ri,r2) = (2n+9)/n > 2 which
means thaA would not even b@-competitive.

We have seen that at time= n— 1 the online server is to the left of vertex. We
now add the request = (n—1,v_3,Vnh—2). The total time needed by the online server
is then at least — 1+ (n—2) = 2n—4.

On the other hand, the offline server serves the sequanceby handlingr; at
timet; and then immediately moving to vertex , which it reaches at time— 1 ready
to servers. Thus we have thaopt(r1,rz) = n andCa(ra,rs)/Copr(ri,rz) =2 —
4/n> c. This contradicts the assumption tiais c-competitive witha < 2—4/D. [

7.2. Competitive Ratios of Replan and Ignore . We now show how to modify the
proof of Theorem 5.2 to obtain a result about the competitiveneRgplan for open
schedules.

For a seto of requests and a pointlet I:*(t,x, o) denote the length of a shortest
schedule (i.e., the time difference between its completion time and the start)time
which starts inx at timet, serves all requests from. The difference td_*(t,x, o)
defined in Section 5 is that we do not require the schedule to end at the origin.

Fort’ >t we have thal*(t',x,0) < L*(t,x,0). Moreover,Copt(0) = L*(0,0,0)
and thusCopt(0) > L*(t,0,0) for any timet > 0. Since the optimum offline server
OPT can not serve the last requegt = (tm,am,bm) from o before this request is
available we get that

Copt(0) > max{L*(t,0,0),tm+d(am,bm)} foranyt > 0. (7)
The following lemma can be proved similarly to Lemma 5.1.

Lemma7.2. Leto = {ry,...,rm} be a set of requests. Then for any t,, and any
request; = (ti,&,bi) fromo

L*(t,bi,0\ ri) < L*(t,0,0) — d(a,bi) +d(b,0),
whereb is the endpoint of a path with lengtti(t,0,0). In particular
L*(t,bi,0\ 1) < 2L*(t,0,0) — d(a;, by).
We are now ready to establish the analogon of Theorem 5.2 for open schedules:

Theorem 7.3. In the case of open schedules AlgoritRaplan is 3-competitive. [

10 NORBERT ASCHEUER, SVEN O. KRUMKE, ANDGRG RAMBAU

Proof. If at the timety, when the last request, = (tm,am,bm) from o is issued, the
Replan server does not perform a carrying move, then the total time needeédign
is no more than

tm+ L* (tm, S(tm), 0) < tm+d(S(tm),0) + L* (tm,0,0) < d(0,S(tm)) 4+ 2CopT(0).

The distancel (o, s(tym)) can be bounded from above 8ypr(0) (instead ofCopT(0)/2
as for closed schedules) and tiRigplan needs time at mostimes the optimum in
this case.

If at timety, Replan performs a carrying move fromto b, it will finish its move at
timety+ d(s(tm),b). We thus have

Creplan (0) <tm+d(S(tm),b) + L (tm,b,0)

< tm+d(S(tm), b) +2L* (tm,0,0) —d(a, b) (by Lemma 7.2)
<tm+2L*(tm, 0,0)
<3-Copt(0).

This completes the proof. O

Theorem 7.4. In the case of open schedules, the competitive ratio of Algorigaim
nore is 4.

Proof. The only interesting case is that at the titpewhen the last request becomes
known thelgnore server is currently working on a schede Suppose thag was
started at timés and has starting poimtand ends at point. Then the schedule will be
completed no later than tintg+ L* (ts, X,0s), Wwhereas denotes the subset of requests
served in the current schedu®e Thelgnore server will complete its total work no
later than time

ts+ E* (t37 X, GS) + I:* (tm,y, O-Zts)’

whereo-, denotes the set of requests presented aftertime
Let r¢ be the first request from the set, of ignored requests served IQPT.
Then

Copt(0) >t +L*(ts, a5, 055) > ts+ L*(ts, ar, 0x¢).
Thus, we have that
< [*(ts,x, 05) +d(y,af) +ts+ L* (tm, ar, 0>t5)
< l:* (tS7 X, OS) + d(y7 as) + COPT(O)
< 2COPT(0) + d(X7 O) + d(y7 af)'

Itis easy to see that both valug¥s, 0) andd(y,ar) are bounded from above Bpp1(0),
and so the theorem follows. O

Clgnore<0)

8. CONCLUDING REMARKS

The competitive ratios of our three algorithms are summarized in Table 1. Examples
show that all of them are tight.

THE ONLINE TRANSPORTATION PROBLEM: COMPETITIVE SCHEDULING OF ELEVATORS 11

Algorithm || Replan | Ignore Sleep
5 5 5 1
Closed Schedules > > max{2,2+ 6 1}

Closed Schedules

w
SN
|

TaBLE 1. Competitive Ratios of algorithms in this paper.

REFERENCES

[AFT94] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. TaléBeoying request with on-
line routing Proceedings of the 4th Scandinavian Workshop on Algorithm Theory, Lecture
Notes in Computer Science, vol. 824, July 1994, pp. 37-48.

[AFT95] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Tal@oapetitive algorithms for
the traveling salesmarProceedings of the 4th Workshop on Algorithms and Data Structures,
Lecture Notes in Computer Science, vol. 955, August 1995, pp. 206-217.

[AG'98] N. Ascheuer, M. Gitschel, S. O. Krumke, and J. Ramb@ambinatorial online optimizatign
Proceedings of the International Conference of Operations Research (OR’98), Springer, 1998,
pp. 21-37.

[AK88] M. J. Atallah and S. R. KosarajiEfficient solutions to some transportation problems with
applications to minimizing robot arm traveSIAM Journal on Computind7 (1988), no. 5,
849-869.

[BEY98] A. Borodin and R. El-YanivOnline computation and competitive analystambridge Uni-
versity Press, 1998.

[ET76] K. P. Eswaran and R. E. Tarjadugmentation problemsSIAM Journal on Computind
(1976), 653-665.

[Fre93] G. N. Frederickso note on the complexity of a simple transportation prohl8MM Jour-
nal on Computin@2 (1993), no. 1, 57-61.

[FS00] E.Feuerstein and L. Stougien-line single server dial-a-ride problenibheoretical Computer
Science (2000), To appear.

[FW98] A. Fiat and G. J. Woeginger (edsQnline algorithms: The state of the aitecture Notes in
Computer Science, vol. 1442, Springer, 1998.

KONRAD-ZUSE-ZENTRUM FUR INFORMATIONSTECHNIKBERLIN, DEPARTMENTOPTIMIZATION,
TAKUSTR. 7, 14195 BRLIN-DAHLEM, GERMANY.
E-mail address{ascheuer,krumke,rambau t@zib.de

