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Abstract

In the clinical cancer therapy of regional hyperthermia nonlinear per-
fusion effects inside and outside the tumor seem to play a not negligible
role. A stationary model of such effects leads to a nonlinear Helmholtz
term within an elliptic boundary value problem. The present paper re-
ports about the application of a recently designed adaptive multilevel
FEM to this problem. For two 3D virtual patients, nonlinear and linear
models are compared. Moreover, the numerical efficiency of the new algo-
rithm is compared with a former application of an adaptive FEM to the
corresponding instationary model PDE.
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1 Introduction

Many stationary states of dynamic systems in biology, chemistry, physics and
engineering are described by nonlinear elliptic PDEs. The solutions often have
complex behavior and geometry, such that only adaptive methods are able to
efficiently compute numerical solutions with required accuracy.

For linear elliptic PDE’s, several adaptive multilevel FEM’s are available —
such as PLTMG [1], KASKADE [5], and UG [3, 4]. For nonlinear elliptic PDE’s,
both nonlinear MG [10] and linear MG algorithms [2, 8, 9] have been suggested.
The present paper presents the extension of our hitherto 2D adaptive multilevel
Newton FEM [8, 9] to 3D, in particular applied to the challenging therapy
planning problem in regional hyperthermia [6, 7].

Hyperthermia, i. e. the local heating of tissue, is a recently developed
method of cancer therapy, usually combined with radio- or chemotherapy. Elec-
tromagnetic waves to be absorbed are used as heat source.

2 Features of the Alogrithm

In this section we present a brief overview of our recently designed multilevel
Newton method. For details and proofs, the reader may refer to [9].

2.1 Theoretical Background

Convex functional setting. The weak solution of a nonlinear elliptic PDE
is the minimizer of the corresponding variational functional f : D ⊂ X → R.
Here, f is assumed to be a strictly convex C2 functional defined on an open
convex set D. In order to assure the existence of a minimum point x∗ ∈ D, we
assume that the real Banach space X is reflexive and that for some x0 ∈ D the
level set L0 := {x ∈ D | f(x) ≤ f(x0)} is closed and bounded.

The nonlinear minimization problem is equivalent to the nonlinear operator
equation

F (x) := f ′(x) = 0, x ∈ D, (1)

that can be tackled by Newton’s method. In order to guarantee the feasibility of
Newton’s method, we further assume that (1) is a strongly monotone problem.
The ordinary Newton iteration is

F ′(xk)Δxk = −F (xk)

xk+1 = xk +Δxk .

Since the Newton correction has to be approximated numerically by a finite
element solution, we consider inexact Newton methods, wherein the Newton
corrections Δxk are approximated by inexact Newton corrections δxk, leaving
inner residuals rk. Furthermore, damping is used for globalization. The global
inexact Newton method now reads as

F ′(xk)δxk = −F (xk) + rk

xk+1 = xk + λkδxk .
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Affine Conjugacy Invariance. In addition to the norm || · ||, we will be
interested in local energy products defined by 〈·, F ′(x)·〉. Motivated by the
notation in Hilbert spaces, we write the induced norm shorthand as

∥∥F ′(x)1/2·∥∥ .
Following [9], we want to carefully observe the associated affine conjugacy

property, which means that we simultaneously treat the whole class of trans-
formed convex minimization problems

g(y) = f(By) = min , x = By ,

wherein B is understood to be an arbitrary isomorphism. By transformation,
we arrive at the first and second derivatives

G(y) = B∗F (x)

and
G′(y) = B∗F ′(x)B.

By construction, allG′ are symmetric strictly positive operators. The associated
linear system for the inexact Newton correction is

G′(yk)δyk = −G(yk) + sk ⇔ B∗F ′(xk)Bδyk = −B∗F (xk) + sk ,

which implies δxk = δyk as long as the inner iteration obeys the invariancy
condition sk = B∗rk. It is therefore only natural to require affine conjugacy also
for any damped Newton iteration both in the theoretical convergence analysis
and in the algorithmic realization. As a consequence of such a requirement, any
convergence theorems should only use affine conjugate theoretical quantities like
functional values or local energy products.

Convergence results. To begin with, we are interested in the functional
decrease obtained by the exact Newton method.

Theorem 2.1 Let f be as defined above. Assume the special affine conjugate
Lipschitz condition

∥∥∥F ′(x)−1/2(F ′(y)− F ′(x))(y − x)
∥∥∥ ≤ ω

∥∥∥F ′(x)1/2(y − x)
∥∥∥2

, x, y ∈ D

holds for some ω < ∞. For some iterate xk ∈ D, define the quantities

εk :=
∥∥∥F ′(xk)1/2Δxk

∥∥∥2

hk := ω
∥∥∥F ′(xk)1/2Δxk

∥∥∥ .

Moreover, let xk + λΔxk ∈ D for 0 ≤ λ ≤ λmax. Then

f(xk + λΔxk) ≤ f(xk)− tk(λ)εk (2)

where tk(λ) = λ − λ2

2 − λ3

6 hk. The optimal choice of the damping factor is

λk = 2
1+

√
1+2hk

≤ 1.
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From this theorem we may directly proceed to obtain the comparable results for
the inexact Newton iteration. The inner iteration, which is formally represented
by the introduction of the inner residual rk, will be further specified to satisfy
a Galerkin condition of the kind〈

δxk, F ′(xk)(δxk −Δxk)
〉
=

〈
δxk, rk

〉
= 0

and to have a relative error denoted by

δk :=

∥∥F ′(xk)1/2(Δxk − δxk)
∥∥∥∥F ′(xk)1/2δxk

∥∥ .

For this specification, we immediately verify the following corollary:

Corollary 2.2 The statements of Theorem 2.1 hold for inexact Newton-Galer-
kin methods as well, if only the exact Newton corrections Δxk are replaced by
the inexact Newton corrections δxk and εk, hk are replaced by

εδk :=
∥∥∥F ′(xk)1/2δxk

∥∥∥2

=
εk

1 + δ2k
, hδ

k := ω
∥∥∥F ′(xk)1/2δxk

∥∥∥ =
hk√
1 + δ2k

.

With these local results established, we are now ready to formulate the associ-
ated global convergence theorem.

Theorem 2.3 General assumptions as in Theorem 2.1 or Corollary 2.2, respec-
tively (in the latter case δk bounded). Additionally, let F ′ be uniformly positive
for all x ∈ L0. Then the damped (inexact) Newton iteration with damping fac-
tors in the range λk ∈ [ε,min(1, λmax

k −ε)] and sufficiently small ε > 0 depending
on L0 converges to the solution point x∗.

2.2 Adaptive Strategies

The above theoretical results are the basis for the subsequent adaptive algorith-
mic strategies to determine the damping factor λk (in the outer loop) and the
number of inner iterations.

Damping Strategy. We first construct a computational damping strategy
on the basis of the theoretically optimal damping strategy as derived in the
preceding section.

Therefore we replace the computationally unavailable Kantorovich quantities
hk by computational estimates [hk] ≤ hk and the damping factors λk by [λk] :=

2

1+
√

1+2[hk]
≤ 1. Since [hk] ≤ hk, we have [λk] ≥ λk such that both a prediction

strategey and a correction strategy need to be worked out. The efficiency of such
a strategy will depend on the required accuracy of the computational estimate,
which is analyzed in the following lemma.

Lemma 2.4 Standard assumptions and notation as just introduced. Let

0 ≤ hk − [hk] ≤ σ[hk]

for some σ < ∞. Then, for λ = [λk], the following functional decrease is guar-
anteed:

f(x+ λΔxk) ≤ f(xk)−
(
λ− λ2

2
− λ3

3
(1 + σ)(1− λ)

)
(3)
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If we require σ ≤ 1, we arrive at the standard functional monotonicity test

f(x+ λΔxk) ≤ f(xk)− λ

6
(λ + 2)εk ,

if we further impose σ ≤ 1
2 , i. e. if we require at least one exact binary digit in

the Kantorovich quantity estimate, then (3) leads to the restricted monotonicity
test

f(x+ λΔxk) ≤ f(xk)− λ

2
εk .

As for the computational estimates [hk], we have three basic cheap ways
of computational estimation which are based on functional, derivative and sec-
ond derivative differences, respectively. We only present the functional based
estimator here.

From inequality (2) we have the third order bound

E3(λ) := f(xk + λΔxk)− f(xk) + λ

(
1− λ

2

)
εk ≤ λ3

6
hkεk ,

which, in turn, naturally inspires the computational estimate

[hk](λ) :=
6|E3(λ)|
λ3εk

≤ hk

and leads to the correction strategy

λi+1
k :=

2

1 +
√
1 + 2[hk](λi

k)
.

In order to construct a theoretically backed initial estimate λ0
k, we may recall

that hk+1 =
√

εk+1

εk
hk and define

[hk+1]0 :=

√
εk+1

εk
[hk]i∗ ,

where i∗ denotes the index of the last computed estimate within the previous
iterative step k. For k ≥ 0, we are thus led to the prediction strategy

λ0
k+1 :=

2

1 +
√
1 + 2[hk+1]0

≤ 1 .

Still, the starting value λ0
0 needs to be set ad hoc, taking into account the

expected difficulty of the problem to be solved.

Accuracy Matching. With computational estimates for hδ
k at hand, we now

want to develop a suitable accuracy matching between the outer iteration (char-
acterized by hk) and the inner iteration (characterized by δk). Accuracy match-
ing is a crucial aspect of multilevel Newton methods since the value of δk deter-
mines the character of the algorithm (from nonlinear multigrid to exact Banach
space Newton method) as well as computing time.

A suitable criterion for choosing a specific accuracy matching is maximizing
the information gain per unit work

ik =
Ik
Ak
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within each step k. For global Newton methods, the information gain can be
defined as

Ik := f(xk)− f(xk+1) ≈ (1 + δ2k)
− 3

4 .

Using adaptive linear finite element methods as inner iteration, the amount of
work for step k can be estimated as

Ak ≈ δ−d
k , (4)

for δk small, where d is the spatial dimension. For the application to hyperther-
mia problems considered here, d equals 3 and we get

ik ≈ δ3k
(1 + δ2k)

3/4
,

which increases monotonically. Thus, choosing δk as large as possible seems
to be preferable. On the other hand, (4) is only valid for δk small, and FEM
error estimators are typically less reliable when the error is too large. Thus we
suggest to choose δk moderately large, e. g. δk ≈ 1.

3 Application to Regional Hyperthermia

The above described algorithm has been recently applied to the challenging
medical problem of therapy planning in regional hyperthermia.

3.1 Statement of the Mathematical Problem

Our model of heat transfer within the human body is Pennes’ stationary bio-
heat-transfer equation (BHTE) [12]

∇(κ∇T )− cW (T − Ta) +
1

2
σ |E|2 = 0

with the thermal conductivity κ, the blood perfusion W, the specific heat of
blood c, the tissue temperature T and the temperature of arterial blood Ta. The
source term 1

2σ |E|2, with electric conductivity σ, describes the absorbed power
per volume of the electric field E. The electric field results from a superposition
of four fields, generated by four antennas, which can be controlled separately in
amplitude and phase. An optimization of these eight parameters is required for
therapy in order to generate an optimal electric field.

Several experiments have shown that the response of vasculature in tissues
to heat stress is strongly temperature-dependent [13]. When heated the blood
flow in normal tissues, e. g. skin and muscle, increases significantly. In contrast,
the tumor zone often appears to be so vulnerable to heat that the blood flow
decreases upon heating. Taking this phenomenon into account results in a non-
linear Helmholtz term. Of course, the ellipticity of the equation depends on the
function W (T ). Fortunately, for the actual functions derived from experimental
data ellipticity is preserved in clinically reasonable temperature ranges. Since
the directional second derivative 〈v, F ′(T )v〉 comes out to be

∫
Ω

κ|∇v|2 + (W ′(T )(T − Ta) +W (T ))v2 dx ,
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Tissue Thermal Electric Density Mass
Conductivity Conductivity flow rate

κ σ ρ W
W/m/◦C 1/m/Ω kg/m3 kg/s/m3

Fat 0.210 0.04 900 Wfat
Tumor 0.642 0.80 1000 Wtumor
Bladder 0.600 0.60 1000 5.000
Kidney 0.577 1.00 1000 66.670
Liver 0.640 0.60 1000 16.670
Muscle 0.642 0.80 1000 Wmuscle
Bone 0.436 0.02 1600 0.540
Aorta 0.506 0.86 1000 83.330
Intestine 0.550 0.60 1000 3.333

Table 1: Material properties of tissues.

a sufficient condition for convexity is

W ′(T )(T − Ta) +W (T ) ≥ 0. (5)

This criterion, however, is not necessary because of the additional diffusion term
κ|∇v|2.

Boundary conditions are

κ
∂T

∂n
= h(Tout − T ),

where Tout is the environmental temperature, and h is the heat transfer coeffi-
cient.

We use the same problem setting, especially the models of temperature-
dependent blood perfusion in muscle, fat and tumor, as given in [11]:

Wmuscle =

{
.45 + 3.55 exp(−(T − 45)2/12), T ≤ 45
4, T > 45

Wfat =

{
.36 + .36 exp(−(T − 45)2/12), T ≤ 45
.72 T > 45

Wtumor =

⎧⎨
⎩

.833, T < 37

.833− (T − 37)4.8/5.438e3, 37 ≤ T ≤ 42

.416, T > 42

Although the perfusion model for tumor tissue fails to satisfy the convexity
criterion (5) in the small temperature range from 41◦C to 42◦C, the variational
functional seems to be convex.

The remaining material constants are listed in table 1. For the linear
model with constant perfusion we choose Wfat = 0.54kg/s/m3, Wmuscle =
2.3kg/s/m3 and Wtumor = 0.833kg/s/m3.

We further set Ta = 37◦C, c = 3500Ws/kg/◦C, h = 45W/m2/◦C, and
Tout = 25◦C.
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3.2 Numerical Results

In order to study the effect of the temperature-dependent perfusion, we compare:

1. Computation with linear model, using antenna parameters derived from
an optimization based on the linear model. This is the strategy currently
used for therapy. The total power is adjusted such that normal tissue is
not heated to more than 44◦C.

2. Computation with nonlinear model, using the same antenna parameters
from optimizing the linear model. This result should be expected to show
up in clinical therapy. Again, the total power is adjusted as above.

Cross-sections of the temperature field are shown in figures 1 and 2. The
self-regulation of healthy tissue reflected by the nonlinear model reduces hot
spots and thus permits a higher total power. This, together with the lower
perfusion below 42◦C, leads to higher temperatures in large regions of the body
and especially in the tumor. Temperature-volume histograms for tumor and
muscle tissue are given in figure 3.

Throughout the computations, we compared our algorithm with KARDOS,
a software package for solving timedependent PDE’s, that has been applied
to the same problems before. Care has to be taken in comparing such different
methods in terms of efficiency, and therefore we restrict ourselves to some general
remarks.

As expected, the stationary Newton multilevel approach outperforms the
accurate time-dependent solution of the stationary BHTE clearly, thus providing
a means for easier parameter studies for perfusion modelling as well as faster
optimization of antenna parameters. On the other hand, the method is limited

44°C

39°C

Figure 1: Temperature distribution in a cross-section of the pelvic region for
virtual patient A. Results obtained with linear (left) and nonlinear model (right).
Black lines: body outline and tumor contour.
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39°C

44°C

Figure 2: Temperature distribution in a cross-section of the pelvic region for
virtual patient B. Results obtained with linear (left) and nonlinear model (right).
Black lines: body outline, tumor and bladder contour.
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Figure 3: Temperature-volume histograms for tumor (top) and muscle (bottom).
Patient A is shown on the left, patient B on the right.
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to convex problems, thus limiting the modelling of the perfusion, and it does
not provide any information about the transient phase of heating.

We emphasize the possibility of adopting the time-dependent method for
stationary problems, thus leading to similar performance, but also to similar
constraints on convexity and trajectory information.

4 Conclusions

The proposed algorithm is well applicable to challenging 3D problems and con-
stitutes an efficient tool for stationary nonlinear hyperthermia problems. For
two virtual patients, the linear and the nonlinear model were compared. The
results suggest that the strategy currently used for therapy (i.e., optimization
based on the linear model) is a conservative one, since the predictions of the lin-
ear model are more pessimistic in terms of tumor heating. This finding should
be checked for more patient models. Furthermore, optimization based on the
nonlinear model should be considered, where even better results can be ex-
pected.

Acknowledgement The authors wish to thank P. Wust from Virchow-Klini-
kum Berlin for his inspiring cooperation and support, and B. Erdmann for his
help in comparing NEWTON-KASKADE with KARDOS.

References

[1] R. E. Bank. PLTMG: A Software Package for Solving Elliptic Partial
Differential Equations. User’s Guide 8.0. SIAM, Philadelphia, 1998.

[2] R. E. Bank and D. J. Rose. Analysis of a multilevel iterative method for
nonlinear finite element equations. Math. Comput., 39:453–465, 1982.

[3] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert,
and C. Wieners. UG – A Flexible Software Toolbox for Solving Partial Dif-
ferential Equations. Computing and Visualization in Science, (to appear).

[4] P. Bastian and G. Wittum. Adaptive multigrid methods: The UG concept.
In W. Hackbusch et al, editor, Adaptive methods - algorithms, theory and
applications. Proceedings of the 9th GAMM-Seminar Kiel, Germany, Jan-
uary 22-24, 1993, volume 46 of Notes Numer. Fluid Mech., pages 17–37,
Braunschweig, 1994. Vieweg.

[5] R. Beck, B. Erdmann, and R. Roitzsch. Kaskade 3.0, an object-oriented
adaptive finite element code. Technical Report 95-4, ZIB, 1995.

[6] P. Deuflhard and M. Seebaß. Adaptive Multilevel FEM as Decisive Tools in
the Clinical Cancer Therapy Hyperthermia. Preprint SC 98-30, ZIB, 1998.

[7] P. Deuflhard, M. Seebaß, D. Stalling, R. Beck, and H.-C. Hege. Hyperther-
mia Treatment Planning in Clinical Cancer Therapy: Modelling, Simula-
tion and Visualization. In A. Sydow, editor, Proc. of the 15th IMACS World
Congress 1997 on Scientific Computation: Modelling and Applied Mathe-
matics, volume 3, pages 9–17. Wissenschaft und Technik Verlag, 1997.

10



[8] P. Deuflhard and M. Weiser. Local inexact Newton multilevel FEM for
nonlinear elliptic problems. In M.-O. Bristeau, G. Etgen, W. Fitzigibbon,
J.-L. Lions, J. Periaux, and M. Wheeler, editors, Computational science
for the 21st century, pages 129–138. Wiley, 1997.

[9] P. Deuflhard and M. Weiser. Global inexact Newton multilevel FEM for
nonlinear elliptic problems. In W. Hackbusch and G. Wittum, editors,
Multigrid Methods V, Lecture Notes in Computational Science and Engi-
neering, pages 71–89. Springer, 1998.

[10] W. Hackbusch and A. Reusken. Analysis of a damped nonlinear multilevel
method. Numer. Math., 55(2):225–246, 1989.

[11] J. Lang, B. Erdmann, and M. Seebaß. Impact of Nonlinear Heat Transfer
on Temperature Control in Regional Hyperthermia. Preprint SC 97-73,
ZIB, 1997.

[12] H. H. Pennes. Analysis of tissue and arterial blood temperatures in the
resting human forearm. J. Appl. Phys., 1:93–122, 1948.

[13] C. W. Song, A. Lokshina, J. G. Rhee, M. Patten, and S. H. Levitt. Im-
plication of blood flow in hyperthermic treatment of tumors. IEEE Trans.
Biomed. Engrg., 31:9–16, 1984.

11


