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Ralf Kornhuber Rainer Roitzsch 

Seif Adaptive Finite Element Simulation 
of Reverse Biased pn-Junctions 

Abst rac t . The potential distribution of reverse biased pn-junctions can 
be described by a double obstacle problem for the Laplacian. This prob­
lem is solved by a self adaptive Finite Element Method involving automatic 
termination criteria for the iterative solver, local error estimation and local 
mesh refinement. Special attention is paid to the efficient resolution of the 
geometries typically arising in semiconductor device simulation. The algo­
rithm is applied to a reverse biased pn-junction with multi-step field plate 
and stop-electrode to illustrate its efficiency and reliability. 
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Introduction 
Traditionally Finite Difference Methods are very popular in the field of semi­
conductor device simulation. This may be due to the fact that the usual 
geometries have an approximately rectangular structure and that the initial 
amount of programming work is comparably small. Nevertheless in recent 
years the built in inflexibility of Finite Difference Methods turned out to 
be increasingly disadvantageous. Especially the automatic reduction of un­
knowns based on self adaptive methods is difficult to perform in usual finite 
difference framework. Hence Finite Element Methods based on triangular or 
quadrangular elements have become more and more attractive. 

In the present paper the self adaptive approach derived in [11] is applied 
to the simulation of reverse biased pn-junctions which mathematically turns 
out to be a double obstacle problem for the Laplacian. The main idea is to 
approximate the solution iß not only by means of one fixed triangulation but 
to construct a suitable sequence %,%,... oi triangulations on which if) is 
approximated. Here the information contained in Tk and the approximation 
\Üfc is used inductively to design the new triangulation Tk+i on the next level. 
Naturally the initial triangulation To is assumed to be comparatively coarse. 

The main ingredients of the presented self adaptive algorithm are as follows 

• Resolution of the geometry with a minimal number of nodes by allowing 
acute angles for initial triangles t £ %. 

• Acceleration of the iterative solver by good start iterates. 

• Automatic choice of termination criteria for the iterative solver. 

• Local mesh refinement based on local error estimation involving the 
improvement of acute angles. 

The paper is organized as follows. In the first chapter we state the physical 
problem which is then transformed in a suitable weak formulation to which 
Finite Element Methods can be applied. We further recall a simple iterative 
scheme for the solution of the discrete problem. The second chapter contains 
a detailed description of the self adaptive algorithm. Numerical results are 
reported in Chapter 3. 
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1. P reliminaries 

1.1 Physical Modelling 

We consider a device occupying a bounded polygonal domain 0 C IR whose 
stationary behavior is ruled by the drift-diffusion equations [19] 

- div(eVrf>) = q(D -n + p) 

d i v j n = qR, Jn = q(DnVn - finnViP) (1.1) 

divjp = -qR, Jp = -q{DpVp + wW) 

where usually the electric potential ip and the carrier concentrations n and 
p for holes and electrons are unknown while the permittivity e, the doping 
profile D, the elementary charge q, the electron and hole diffusivities Dn 

and Dp, the electron and hole mobilities fin and /ip, and the recombination-
generation rate R are given parameters of the problem. 
The boundary du of 0 is split into (ohmic) contacts dttc and insulating 
segments dftj. This leads to Dirichlet boundary conditions for if), n and p 
on due and vanishing electric field V0 and current densities Jn, Jp on düj. 
This model whose advantages and limits are thoroughly discussed in [20] can 
be considerably simplified under strongly reverse bias conditions. 
Let us consider a pn-junction 7 separating a p-region ttp from the remaining 
device as shown in Figure 1.1. 

Figure 1.1 Planar pn-junction with single-step field plate 

Assume that a constant negative voltage - ^0 is applied to the anode Co C 
düc attached to Qp, while the voltage at all other contacts is kept zero. Then 
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the carriers are sucked away from the junction 7 leaving a depletion region 
ClD where ideally no carriers are present and the potential is bounded by 
— 0O and zero. 

n = p = 0 , - 0 O < 0 < 0 on ttD . (1.2) 

The depletion region fiß separates the remaining parts Cl+ and fi_ of the 
domain fi. For large 0o the total depletion assumption 

(1.3) 
n = 0 , p = -D , V0 = 0 on fi_ 

n = D , p = 0 , V ^ = 0 o n ( ] + 

holds. Substituting (1.2) and (1.3) in (1.1) we obtain 

0 = — 0o on H_ 

-d iv(eV0) = qD o n O D (1.4.a) 

0 = 0 on fi+ . 

We additionally assume that the potential 0 and the electric field V 0 are 
continuous across the inner boundaries T_ = Ü_ PI ftp and T+ = Ö+ H Üß, 

0 = —i/'o , V0 • n_ = 0 on T_ 
' (1.4.b) 

0 = 0 , V f n + = 0 o n r + 

with n_, n+ denoting the unit normals on F_, T+ respectively. Note that 
the free boundaries T_, T+ together with 0 are unknowns of problem (1.4) 
which is completed by the boundary conditions. 

{ -0o on Co 

{ 0 on düc\Co (1 , x 

" • = 0 . 
dn 

dQ 

Remark 1.1 

Using an appropriate scaling introduced by BREZZI [9] the drift diffusion 
equations (1.1) become singularly perturbed as 0O —> 00. Then (1.4) is 
recovered as the corresponding reduced problem. See [17] for details. 

Remark 1.2 

Note that the Laplace equation in (1.4.a) only holds where the permittivity 
e is smooth. It has to be replaced, by a suitable flux balance condition at 
jump discontinuities of e due to different materials. 
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1.2 Finite Element Approximation 

In order to apply Finite Element Methods to (1.4) we need a suitable weak 
formulation of the problem allowing for solutions which are not twice differ-
entiable. Now it is well known that in the simple case of the pure Laplacian 

- div(eVt/>) = qD on 0, (1.5) 

with boundary conditions (1.4.c), the appropriate weak problem turns out 
to be the minimization of the energy functional 

F(<p) = \a{tp,<p)-l{<p) (1-6) 

over all ip 6 H and 

H = {<p € H\H) \<p = -ip0on Co, <p = 0 on dÜc\C0} . 

Here Jff
1(f2) denotes the space of all quadratic summable functions with 

quadratic summable derivative provided with the norm 

\\<p\\= ^<p2(x,y) + <pl{x,y) + <p2
y(x,y)d(x,yf) . (1.7) 

The bilinear form a(-, •) and the functional / are defined by 

a(Vi»V2) = / eVtpi • Vip2d(x,y) , <pu<p2 € H (1.8) 

l(<p) = q f D<pd(x,y) , veH. (1.9) 
Jet 

Now our actual problem (1.4) amounts to the solution of the Lacplace equa­
tion (1.5) under the additional constraints that 

~V>o <</> < 0 o n 0 . (1.10) 

Hence it is straightforward to choose the following problem as a weak formu­
lation of (1.4). 

Find if) 6 K with K = {<p G H\ — rpo < y> < 0 a.e. on Ü} so that 

F(1>)<F{<p), tpeK. (l.H) 
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Remark 1.3 

Let e be piecewise constant and strictly positive. Then the weak problem 
(1.11) has a unique solution r/> € K. Further any smooth solution of (1.11) 
is a solution of the classical problem(1.4). See [4] for details. 

Let T be a triangulation of Q,. More precisely, T is a set of triangles such 
that Vl is the union of all triangles t G T and such that the intersection of 
two triangles t,t' E T either consists of a common edge or a common vertex 
or is empty. We further require that all points separating due from dtti are 
vertices of T. The set of all continuous functions on fi which are linear on 
each t E T is called S{T). 

We want to approximate the exact solution ip by a finite element solution 
$ E S(T). This corresponds to the minimization of the functional F over 
the subset of finite element functions Kr = K f\ S(T), i.e. 

Find $ e Kr with KT = K f\ S(T) so that 

F{V)<F(<p), ipeKr- (1.12) 

Remark 1.4 

It is easily seen that (1.12) has a unique solution \I> E Kr C S(T). Further 
it is shown in [14] for quasiuniform triangulations that 

110-* | | - ^ 0 

if the maximal length h of the edges of the triangulations tends to zero. 
Though first order convergence is shown in a variety of cases (see [14] for 
further references) there is no paper known to the authors treating the case 
of a general polygonal domain. In this case a pure elliptic model problem 
is considered in [2]. Using weighted Besov norms it is shown that in the 
case of properly distributed nodes the error measured in H1 (17) behaves like 
0{N1I2) with N denoting the number of unknowns. 

1.3 Solution of the Resulting Discrete Problem 

Before we state a simple iterative method to compute the finite element 
approximation $ , we give a more convenient reformulation of the discrete 
problem (1.12). 
Let V be the set of nodes of the triangulation T. Then for all p £ V we 
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define basis functions Ap G S(T) with the property 

Then each <p G S(T) has the representation 

p€P 

where y>p = </?(p) are the values of ip at the nodes p £ P . As boundary 
conditions are imposed on the solution \P of (1.12) we have 

p 1 o , p e düc\Co ' p e Fc 

for all Dirichlet boundary points Vc = V C\ due- Hence \P can be written as 

* = * c + £ * A > (1-13) 
P € P \ ^ C 

with the known function 

®c = E * A e 5(T) (1.14) 
P€VC 

representing the Dirichlet data and the unknown values ^ p at the remaining 
nodes p G Vo = V\Vc- For convenience we assume that 

V0 = {pi,...,pN} (1.15) 

is ordered in some suitable way and At- = XPi,i = 1 , . . . , N. Then substituting 
(1.13) in problem (1.12) we obtain the equivalent formulation. 

Find a vector £ = (tfjjjlj G KN with 

KN = {<£=(<pi)l1e\RN\-4>o<<Pi<0, i = l,...,N} (1.16.a) 

such that 
£ T ( A £ -h)= min <pT(A<p - 6) (1.16.b) 

In (1.16.b) the matrix A and the vector b are given by 

A=(a«)S=i, 4= (Mill and 
«tj = |«(Aj,A,) , i,j = l,...,N (1.17) 

^/(AO-aCtfc.A,-), i = l , . . . , iV. 
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We have obtained an N dimensional minimization problem (1.16.b) on the 
bounded set K^ C \RN• The following iterative algorithm is replacing this 
difficult iV-dimensional constraint minimization by N simple onedimensional 
constraint minimizations in each iteration step. 

We start with some initial guess i ° = (^r°)-^1. Then in the computation of 
a component ty\ of the next iterate }&} all other components are kept fixed 
(either taken from *&0 or already computed). This is reducing (1.16.b) to 
a one dimensional quadratic minimization problem on the interval [—V'OJO] 
whose solution $} can explicitly be computed. The method may be improved 
by using not ty] but the weighted average of $*• and $} as the new iterate. 
We obtain the following iterative method for the solution of (1.16). 

For a given v-th iterate *." = (*-')-I1 

the next iterate vJJ"+1 = (^rJ'+1)^.1 is computed according to 

^+1 = io% + (1 - w)$- + 1 / 2 (1.18.a) 

with 

$ H-l/2 

' 0 , tf ? > 0 

** , - 0 o < # * < 0 (1.18.b) 

and 

Note, that in the case K^ = IR the well-known Gauß-Seidel method with 
relaxation is recovered. Hence (1.18) is frequently called projected Gauß-
Seidel method or relaxation method. It is shown for instance in [10] that 
the sequence vp", i/ = 0,1, produced by (1.18) is convergent to }&_ for all 
u = [0,2]. See [14] for an optimal choice of u. Finally it should be mentioned 
that this method has been applied in the field of semiconductors by ADLER 
et al. [1] and FALCK et al. [12]. 



2. The Self Adaptive Finite Element 
Algorithm 
To produce an approximate finite element solution $ with given tolerance 
TOL, 

|| «5 - V || < TOL (2.1) 

we may choose some triangulation T and hope that (2.1) is fulfilled. A more 
sophisticated way amounts to regard not only $ but also T as unknown of 
the problem. Ideally we desire a triangulation T providing an accurate ap­
proximation in the sense of (2.1) at least computational cost, i.e. with the 
smallest possible number of nodes. Such a triangulation may be sought by 
try and error but this may become a quiet unefficient procedure. The self 
adaptive multilevel approach presented in this section automatically deter­
mines a suitable triangulation together with the corresponding approximate 
solution up to the desired accuracy. 

Starting with an intentionally coarse triangulation % let us assume that a 
triangulation Tk, k > 0, is given. Then the algorithm reads as follows. 

Algorithm 2.1 Self Adaptive Finite Element Algorithm 

Step 1: Compute the finite element approximation VP* with respect to the 
triangulation Tk-

Step 2: Determine a subset T'k C Tk where ^ is deemed too inaccurate. 

Step 3: Refine the triangles t € T'k to obtain a finer triangulation 7jt+i. 

Step 4: If Tk+i ^ Tk go to Step 1 with Tk replaced by Tk+i else stop. 

This approach is widely used in self adaptive methods. See for instance [6] 
or [11]. In general the efficiency increases with the ratio NK/NO where K 
denotes the level on which the desired accuracy is reached and Nk is the 
number of unknowns on level k. 

To apply the concept to our actual problem (1-11) we have to describe the 
three first steps of Algorithm 2.1 in detail. This is done in the following three 
sections. 

2.1 Solution of the Discrete Problem 

In Section 1.3 we have stated the projected Gauß-Seidel method with re­
laxation (1.18) providing a sequence \I/°, ty\, ... converging to the desired 
solution ^k of the discrete problem (1.12) with T = Tk- To complete Step 1 
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of Algorithm 2.1 we have to choose a startiterate ^ ° , and a stopping criterion 
deciding which iterate $£ gives a sufficiently accurate approximation ^ of 

Let us first consider the choice of a startiterate ^ ° . On the coarsest triangu-
lation 7o where each iteration step is comparably cheap we choose the quite 
crude initial guess 

*2(p):=-W2, * = 0, (2.2) 
for the unknown values at the non-Dirichlet points p. For k > 0 the approx­
imation ^jt-i €: S(Tk-i) on the previous level is expected to be a good guess 
for $*.. Hence we choose 

tf° := / { _ ! * * _ ! , h > 0 , (2.3) 

with /*_! denoting the prolongation from Tk-\ to Tk-

Obviously we cannot achieve the exact solution $k °f the discrete problem 
by the projected Gauß-Seidel method or any other iterative scheme. But in 
general $>k itself is only an approximation for the exact solution tp. Hence 
we only need to compute an approximation $k °f ^k which is preserving the 
order of discretization accuracy. More precisely we want *&* to satisfy the 
relation 

\\*k-Vk\\<c\\tl>-Vk\\ (2-4) 

with some constant c « 1. Of course the unavailable terms in (2.4) have 
to be replaced by suitable approximations. Using an approach developed by 
DEUFLHARD et al. [11] we first consider the discretization error 

e * = | | ^ - * f c | | 

Assume that k > 1. Then some guess e^_i for Ek-i is available from the 
error estimation that has been carried out in Step 2 of Algorithm 2.1 on the 
previous level. Hence ejt is replaced by e/t-i according to 

£fc = pk£k-i ( 2 -5) 

with pk reflecting the variation of the discretization error if Tk-\ is replaced 
by 7fc. In view of Remark 1.4 we assume 

||V-*fc|| = o(iv;1/2), * = o,i... 

with Nk denoting the number of unknowns on level k. Hence 

~pk = *(JWW01/a (2-7) 

with some damping factor s , 0 < s < l i s a natural choice for an approxi­
mation pk of pk- In the numerical example presented in Chapter 3 the value 
s = 0.5 is selected. 

(2.6) 
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Remark 2.1 

Following [11] it is easily shown that the order of discretization (2.6) is pre­
served by i&k i k = 0 , 1 , . . . if 

| | * f c - * f c | | < / 5 * | | ^ - * * - ! ! ! , * = 1,2,... (2.8) 

holds with pk defined in (2.7) and (2.4) is satisfied for k = 0. 

As a consequence of Remark 2.1 we have to make sure that (2.4) holds for 
k = 0. Because of the lack of a posteriori information the error estimation is 
carried out after a certain number of steps of the iteration (1.16) to provide 
a new guess e0 for the discretization error e0- The iteration is stopped if 

| | *S " * o | | < *>eo 

with some safety factor s0, 0 < s0 < 1. In the present version s0 = 0.1 is 
selected. Though this procedure increases the amount of work on the initial 
level it does not deteriorate the over all efficiency of the algorithm as long as 
the initial triangulation is comparably coarse. 
In the next step we have to find a guess 5% for the iteration error 

appearing on the left hand side of (2.4). First recall the general error estimate 

^<j^-m+1-n\\ (2-9) 

for fixpoint iterations like the projected Gauß-Seidel scheme with Lk < 1 
denoting the contraction number of the algorithm. It is well known that for 
large v the ratio 

k wn-n-'w 
gives a good approximation of the convergence rate Lk- Hence after a certain 
minimal number uQ of iterations 6% is approximated by 

k = T^k\\n
+1-ni»>vo. (2.io) 

In the actual version of the algorithm VQ = 10 is selected. 

Remark 2.2 

Unfortunately in the case of the projected Gauß-Seidel scheme Lk tends to 
one for an increasing number of unknowns. Hence the use of this method and 
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the corresponding error estimate (2.10) is limited to reasonable grid sizes. As 
illustrated in Chapter 3 this is sufficient for technical accuracy. 

Finally the explicit evaluation of the if1-norm || • || is too expensive for 
numerical purposes. Hence || • || is replaced by | • | with 

M = ( £ T A ^ i , £ = ( £ . ) & (2.11) 

for each ip € S(Tk) represented by 

Nk 

:'=1 

corresponding to (1.13). Recall that A is the stiffness matrix defined in 
(1.17). 

R e m a r k 2.3 

The norm | • | may be interpreted as a discrete analogue of the energy norm 

III " I I I , 
IIMII = («(v,?))», ^ e ^ ( n ) (2.12) 

which is equivalent to || • || on the subspace H. 

2.2 Local Error Estimation 

In Step 2 of Algorithm 2.1 we have to determine a subset T£ of Tk for re­
finement. This will be done on the basis of a local error estimate which is 
presented in this section. As the exact solution t/> is out of reach, the approxi­
mation ^k computed in Step 1 will be compared with another approximation 
$ of ^ of higher order. For this reason we first derive the discrete problem 
resulting from a piecewise quadratic ansatz. Then this problem is simplified 
to obtain a less expansive guess of the local error. For ease of presentation 
the subscript k denoting the actual level is suppressed in the sequel. 

Let 
£o = {ei,...,eM} 

denote the set e0 of edges of triangles of T = 7jt which are not part of dtic-
We define 

V2 = {P?,...,P
Q

M} 
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as the set of midpoints pf of e,-, i = 1 , . . . , M. Then following the lines of 
Section 1.3 for each edge e,-, i = 1 , . . . , M, we define the piecewise quadratic, 
continuous function /i; satisfying 

m(p) = o, pev0 

M ^ j ~ \ o, i^j ' p e ^ ° • 

Recall that Vo denotes all nodes of T which are not lying on dSlc- Then 
any continuous, piecewise quadratic function <p on fi satisfying the boundary 
conditions has the representation 

N M 

ip = $ c + E ^ + E vfjN = ^c + <fL + VQ (2-14) 
« = 1 3 = 1 

with $c and Afc, i = l , . . . , iV, taken from the preceeding section. Note, 
that the coefficients (pf are not the nodal values of tp at the midpoints Pj , 
j = 1 , . . . ,M. In fact 

V(P?) = V? + J W - + V ^ ) (2-15) 

holds with p j - , pj+ G "P denoting the vertices of the edge tj = (pj-,pj+) with 
midpoint pj . 

Let Q(T) denote all functions with a representation (2.14). Then the piece-
wise quadratic approximation $ G Q{T) of the exact solution ip of problem 
(1.11) is determined as follows. 

Find $ G Kj- with the property 

F{*)<F(<p)y <pel<?, (2.16) 

and 

K?{<P € Q(T)\ - 0o < <p(p) < 0, p G Vo U 7>0
Q} • 

Note that K® (£_ K as the constraints may be violated between the nodal 
points p G ? o U VQ . Substituting the representations 

N M 

* = * c + E * fA« + E *?/** = * c + * L + * Q (2.17) 
t'=i i= i 

and (2.14) in (2.16) we obtain an equivalent version corresponding to (1.14). 

Find3LL = (flf )£ a and$LQ = (tf? ^ unto ( ^ , £ Q ) G #JV,M, 

/ ^ , M = { ( ^ , ^ Q ) = ( ^ , . . . , ^ , ^ , - . . , ^ ) e l R ; v + M | 

- 0 o < v f < O , z' = l , . . . , iV, (2.18.a) 

- ^ o < V ? + Kvj '++¥>i-)<0> i = l , . - . , M } 

13 



and 

AQLAQQ i I £<? 

L 
min (2.18.b) 

Here ALL := A and b :— b are taken from (1-17) and AQL := A\Q with 

ALQ = (<$){£•;;•*)> AOQ = («g°)&* > ^ = (*?)£l 

are given by 

a£g = i a ^ ^ A , ) , t = 1,...,JV, j = l , . . . , M 

ag g = | a ( W > W ) , i , i = l , . . . , M (2-19) 
6? = J(/*j)-a(tfc,Pj)> j = l , . . . , M 

where a(-, •) and /(•) are defined in (1.8) and (1.9). Note that as an outcome 
of (2.15) the unknowns $f, i — 1 , . . . , N and tyf, j = 1 , . . . , M are coupled 
by the set of constraints KN,M-
Recall that we have computed an approximation ^ of ^ and that 

||$ _i|r| | = | | $ L - $ + ^ | | (2.20) 

is intended to be a guess for the discretization error. As it is much too expen­
sive to compute $L and \I>Q explicitly from (2.16) or (2.18) we replace \tL , \&Q 

by approximations $lL, tyQ which are obtained from a suitable simplification 
of (2.18). First it is easily seen that (2.18.b) can be rewritten as 

( ! Y ( A L L ! L - bL) + mT(AQQ$LQ - LQ) = , L min (2.21) 

with r? e IRM defined by 

LQ = LQ ( £ i ) = f _ 2AQL$LL (2.22) 

Now (2.21) is approximated by decoupling the linear and the quadratic part 

{3L)T{ALL<SL -bL) = min (2.23) 
<fiL€KN 

and 

(±Q)T(AQQ±Q-rQ($L))= min (2.24) 
<£?€KM{<SL) 

with the set of constraints KM C IR defined by 

KM = KM(*L) = { £ Q = to)}*! € IRM| 

-V>o<Y>? + f ( ^ + + ^ < 0 j = l , . . . , M } 
(2.25) 

with ej = (pj-, p j + ) , j = 1 , . . . , M. 
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Remark 2.5 

Note that the splitting of (2.21) in (2.23) and (2.24) results from one step of 
a Block-Gauß-Seidel method for (2.21) applied to the startiterate (0,0). 

Recall that $ = tyf, is the exact solution of the linear part (2.23). Hence we 
choose 

fL = $ . (2.26) 

The efficient treatment of the quadratic part requires further simplification. 
The problem is localized substituting the matrix AQQ by the diagonal 

DQQ = (4Q)f=i • (2-27) 

so that we end up with 

(iO>«iC-r«(i))= ™ . <2'28> 
Now the solution l i of (2.28) can be easily computed. We obtain 

H,Q 

*+, *$>*+ 

wi th 

tfV = <j $*, tfj < #* < * t , j = 1 , . . . , M (2.29) 

- J?/„<?.« 
JJ % = rfla 

where again p j - , pj+ £ "P are denoting the vertices of the edge ej with 
midpoint pj G Vo, j = 1,...,M. 

Remark 2.6 

A corresponding approach has been introduced by DEUFLHARD et al. [11] in 
the case of purely elliptic problems where also a mathematical justification is 
given. The present case will be further investigated in a forthcoming paper. 

Having determined # L and § Q from (2.26) and (2.29) the expensive H1-
norm || • || is again replaced by a discrete energy norm defined by 

|</ + „«I = ((£)T V + (£Q)TDQQ<pQy/2 (2.30) 
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where we have used the representation (2.14). Using the iteration error es­
timate 8 = 6k computed in the preceeding section this finally leads to the 
discretization error estimate 

e^(s + mTDQQ^y/2. (2.31) 

Based on the defect $>® we now determine a set of edges £'k C £k which is 
marked for refinement. Recall that £0 = {e i , . . . , e^f} C £ denotes the subset 
of edges which are not part of dflc- Of course we want an edge ej £ £0 to 
lie in £' if 

is comparably large. More precisely the elements of £' are selected as follows. 
Assume that k > 1 and an edge e £ So results from subdividing an edge E 
being part of a triangulation on a lower level. Then an extrapolation of r/(e) 
on the next level yields 

* - <Mr • (2'32'a) 
If a father E of e is not present we set 

rje = 0 . (2.32.b) 

Finally £' is defined by 

£' = {e £ So\rj(e) > 7?max} 

using the maximum ?7max of all r)e, e £ SQ. This strategy has been originally 
proposed in [3] and is used in a way suggested in [8]. 

If k = 0 then rjmax is replaced by the arithmetic mean of all ??(e), e £ £Q. 

2.3 Refinement techniques 

In the preceding section we have determined a subset of edges £'k G £k which 
are marked for refinement. Now the subset Tk' C Tk contains all triangles 
with at least one edge lying in £'k. Before we describe how the refinement 
of the triangles t £ Tk is actual performed we briefly discuss the problems 
resulting from typical geometries of semiconductor devices. 

Due to the fabrication process a device usually exhibits a horizontal layer 
structure as shown in Figure 2.1. Here the width of different layers may 
vary over 3 or 4 orders of magnitude. For this reason a corresponding coarse 
triangulation To consisting of "nice" triangles (with interior angles bounded 
from above and below by about 7r/2 and 7r/4) may not be very coarse at all 
so that the multi-level efficiency decreases significantly. 
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Figure 2.1 Typical geometry 

Here one remedy also used in the presence of curved boundaries is to start 
with a less awkward geometry, and to approximate simultaneously not only 
the solution but also the geometry. The other possibility which is considered 
here is to allow "nasty" triangles for %. If necessary these triangles may be 
improved by so-called blue refinements as shown in Figure 2.2. 

Figure 2.2 Blue refinement 

More precisely, blue refinement is performed if the following three conditions 
hold. For the denotation we refer to Figure 2.3. 

(B 1) The quadrangle (t,t') is a candidate for blue refinement. 

(B 2) No bisection of e, e' is intended but at least one of the edges E, E' or 
D is marked for refinement. 

(B 3) The angles a, a' are the minimal angles in the triangles t, t'. 

Of course the nasty triangles t G % are candidates for blue refinement on 
the initial level. This property is expressed by a mark on the corresponding 
diagonal and is inherited in the refinement process. 

The conditions (B 2) and (B 3) make sure that the intended bisections match 
with blue refinement and that the minimal interior angles are really improved. 
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E' 

Figure 2.3 Denotation 

Remark 2.7 

Note that blue refinements have been introduced in [16] under quite different 
circumstances. Here the situation is less complicated, as the candidates for 
blue refinement are known a priori. 

We are left with triangles which do not satisfy the conditions (B) but have 
at least one edge that is marked for refinement. In this case a triangle is 
subdivided in four similar subtri angles according to Figure 2.4. Obviously 
this so-called red refinement does not affect the interior angles. 

Figure 2.4 Red refinement 

Figure 2.5 Green closure 
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To remedy irregular nodes resulting from blue or red refinement an additional 
green closure is used as shown in Figure 2.5. Note that the interior angles 
may deteriorate if green refined triangles are further subdivided. Hence all 
green refinements are skipped in advance of each new refinement step. 

Remark 2.8 

After subdivision of all edges e 6 £'k by red or blue refinement further re­
finement may be necessary or blue refinements may have to be skipped for 
structural reasons. We will not go into details here but refer to the pioneering 
work of BANK et al. [7] and [5] or LEINEN [16] for recent results. Structural 
problems of blue refinements are discussed in [18]. 
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3. Numerical Results 

To illustrate the behavior of the self-adaptive algorithm presented in the 
preceding chapter let us consider a planar pn-j unction with multi-step field 
plates. The example is due to [13]. 

The geometry fi is given in Figure 3.1. Note that the representation is not in 
scale. Otherwise the different steps of the field plates ranging from 0.08//m 
to 8.68/zm would not be visible. The permittivity e is given by e = e0 e r 

with the permittivity in vacuum 

eo = 8.854 • 10 -14 As 
Vera 

modified by er = < 
1 air 

3.9 oxide 
11.7 silicon 

(3.1) 

in the different materials. The doping function D has the values 

in p 

D = 
-1017 cm'3 

1 0 ^ i^m~ ^ in n + 

8-1013 cm~3 

m p' 
in n"1 

in n~ 

Finally the elementary charge q is given by 

q = 1.602 • 10~19As 

(3.2) 

(3.3) 

The boundary conditions are of Dirichlet-type at the contacts Co, C\, C? 
and at the boundary ABC DE of the considered region. At the contacts we 
apply the following voltage 

iM 8Ur 

-i/>0 on C0 

0 on d 
0 on C2 

(3.4) 

with tpQ = 1000 V. Along AB a linear increase of the potential is assumed 
which then is kept zero along BCDE. Finally the device is assumed to be 
isolated along dQi = FG so that 

on 
= 0 (3.5) 

dÜ! 

Using the program BOXES described in [18] we obtain the initial triangu-
lation % depicted in Figure 3.2. Note that % contains triangles with very 
acute angles but requires only the comparatively small number of 267 nodes. 
With the help of BOXES we may remove these "nasty" triangles by succes­
sive blue refinement to produce a different triangulation 7o with reasonable 
triangles but about 2500 nodes. Hence "nice" initial triangles have to be 
paid by numerical efficiency. 
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The level curves of the initial solution ty0 are shown in Figure 3.3. 

Now we start the self adaptive algorithm 2.1 with the desired accuracy 

| |* - 0| | < TOL (3.6) 

and TOL = 10 - 6 . Of course other termination criteria as for instance the 
variation of the computed breakdown voltage may be reasonable. Using the 
criterion (3.6) the algorithm stops after 9 refinement steps. The correspond­
ing triangulation 7g is depicted in Figure 3.4. Note that the acute angles 
have disappeared in the regions of strong refinement and that the nodes are 
concentrated at the reentrant corners. Figure 3.5 showing the corresponding 
approximation * 9 confirms the high resolution in this most important area. 
The final figures illustrate the situation along the silicon/oxide interface. The 
potential ^g is depicted in Figure 3.6 while Figure 3.7 shows the norm of the 
electric field |"V^9| which is of special importance for the blocking capability 
of the device. Note that the concentrations of points on the right hand side -
where the potential is equal to zero - does not result from adaptive refinement 
but from the resolution of the geometry by the initial triangulation (com­
pare Figure 3.2). All computations have been carried out on a SPARC 1+ 
workstation requiring 67 seconds of computation time. 

\»>n/s>>»>>»wi'>> »> ;•>•»;>?•/;///;;;;;;>;////, 

'f'/'SSS/MStsStSSt / H, 

C Q : A n o d e 

»/»tniWiJiiliii/li/HSSfJii?;/,/,,/!/}, 

z>,,*,.. C i : S t o p - « I « c t r o d e £ 

T: x 

B 

"1 

S i l i c o n 

/'/>>JS/.iiv/>i'.iWS///'/w///t//>i »;/////>/////H/tim/>»/>/>///j///////////////////)/////• 
', - • C n ' C a l h o d « ', 

j / . . » . » / / / / / / / / / / / 
u 2 : u a i n o o « , i I 

Figure 3.1 Geometry of the computational domain 
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Figure 3.2 Initial triangulation generated by BOXES 

Figure 3.3 Level curves of initial solution $o corresponding to % 
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Figure 3.4 Final triangulation % obtained by self-adaption refinement 

Figure 3.5 Level curves of final solution <Pg corresponding to 7g 
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Figure 3.6 Potential \tg along the silicon/oxide interface 
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Figure 3.7 Norm of the electric field |V$9| along the silicon/oxide interface 
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