Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

Takustralle 7
D-14195 Berlin-Dahlem
Germany

D. STALLING, M. ZOCKLER, O. SANDER, H.C. HEGE

Weighted Labelsfor 3D Image Segmentation

Preprint SC 98-39 (December 1998)



Weighted Labels for 3D Image Segmentation

D. Stalling, M. Zockler, O. Sander, H.C. Hege
December 1998

Abstract

Segmentation tools in medical imaging are either based on edit-
ing geometric curves or on the assignment of region labels to image
voxels. While the first approach is well suited to describe smooth con-
tours at subvoxel accuracy, the second approach is conceptually more
simple and guarantees a unique classification of image areas. How-
ever, contours extracted from labeled images typically exhibit strong
staircase artifacts and are not well suited to represent smooth tissue
boundaries. In this paper we describe how this drawback can be cir-
cumvented by supplementing region labels with additional weights.
We integrated our approach into an interactive segmentation system
providing a well-defined set of manual and semi-automatic editing
tools. All tools update both region labels as well as the correspond-
ing weights simultaneously, thus allowing one to define segmentation
results at high resolution. We applied our techniques to generate 3D
polygonal models of anatomical structures.

1 Introduction

Realistic patient models are an essential prerequisite for modern computer-
aided medical treatment planning, e.g., in radiation therapy, hyperthermia,
or surgery. The generation of such models — either polygonal or volumet-
ric ones — requires accurate segmentation of a stack of tomographic images.
In order to represent smooth tissue boundaries or small structures like ves-
sels, ideally segmentation results should be defined at subvoxel accuracy. In
particular, this is true if large slice distances are used.

In principle, segmentation results may be represented in two ways, either
using geometric primitives, e.g., polylines or splines, or by defining addi-
tional region labels for each voxel. The first approach has the advantage
that smooth tissue boundaries can be defined even for low resolution input



images. On the other hand, the method is more or less limited to 2D image
segmentaion. In order to generate 3D models, typically separate 2D contours
are defined in consecutive slices of a stack of tomographic images. These con-
tours are then connected by polygons [2]. Problems occur, if the topology
of contours in neighbouring slices changes, e.g. in case of a branching point.
Morover, in general it is difficult to guarantee that individual contours don’t
overlap. However, this is an important requirement if consistent patient
models are to be generated later on.

The second approach, labeling of image voxels, makes it easy to classify
all parts of the image in an unambiguous way. A great variety of 2D and 3D
segmentation algorithms directly generate region labels. In addition, region
labels can be edited interactively in an intuitive way. Interactive editing plays
an important role in many practical applications, since often fully automatic
algorithms aren’t available today. Appropriate interactive tools are well-
known from traditional paint box systems. The user first selects parts of an
image and then assigns these parts to certain regions or tissue types.

A severe drawback of the straight-forward labeling approach is that the
accuracy of the segmentation results is limited to the resolution of the un-
derlying image data. The tissue boundaries will inevitably show staircase
artifacts. Of course, one remedy to this problem would be to super-sample
the original image data. However, while the resolution of the segmentation
results would be improved the staircase artifacts still remain. Thus, in many
situations, for example, when surface curvature is to be computed, super-
sampling is not an adequate alternative. In addition, super-sampling requires
a huge amount of additional memory to store region labels at subvoxel level.

In this paper we present an alternative method to improve the resolution
of segmentation results represented by region labels. In addition to the labels
themselves we store additional weights loosely indicating the confidence of
the assignment of a voxel to a particular region. Based on this confidence
information smooth tissue boundaries can be extracted. The approach is
similar to standard iso-contouring algorithms such as marching cubes or its
2D analogon [3]. Besides the probability model itself we also present tools
allowing one to update region labels and weights interactively in a consistent
way.

In the following we first describe the general idea of improving resolution
by introducing additional weights. We then discuss how such representations
can be edited interactively. Finally, we present some results obtained by
applying our technique to 3D grid generation.



2 General Approach

One motivation for our work was the observation that contours or surfaces
extracted from medical data sets by means of an iso-contour algorithm such
as marching cubes are quite smooth and well-formed. In this section we
dicuss why this is the case and how the same effect can be obtained by
introducing suitable weights for each pixel or voxel.

2.1 Binary Classifications and Isocontours

Imagine an arbitary scalar function f sampled on a regular 2D grid. Assume
that the grid is sufficiently fine so that f can be reconstructed in each cell
from its corner values using bilinear interpolation. In order to extract isocon-
tours of this function corresponding to a certain threshold f. we may process
each grid cell independently. Whenever at the corners of a cell there are func-
tion values below and above f. then the cell is intersected by an isocontour.
Since a quadrilateral cell has four corners, in total there are 24 = 16 different
configurations, 14 of which actually correspond to an intersection. However,
note that a binary classification of cell vertices alone does not uniquely de-
termine contour topology in the interior of a cell, even if f is interpolated
bilinearly. Ambiguities arise, if two values above and below the threshold are
located at opposite corners of a cell. Nevertheless, inside a cell isocontours
are usually approximated by straight line segments, c.f. Fig. 1. In order to
find the position of an isocontour vertex on a cell’s edge, the function values
are interpolated linearly and a displacement coordinate u is computed using

U = f c f 1

fo—fi

If u equals 0.5 the edge is intersected exactly in the middle. Now, notice that
the same result can be obtaind by introducing two weights w™ and w™ per

(a (b) (c) (d)

Figure 1: In order extract an iso-contour a function f is sampled on a regular 2D
grid. Inside each grid cell contours are approximated by straight line segments.

(1)




vertex, namley
wz;t:C:td(fi_fc)a (2)

with arbitrary constants ¢ and d. A value w™ > w™ indicates that a vertex
is above the threshold, while a value w™ < w™ indicates that it is below. An
isocontour just separates these two regions. In this case we can compute u
as follows,

wf B wfr f c f 1

u =

(3)

The situation is illustrated in the following figure:

Inside a grid cell each weight is obtained in the same way as the function f,
namely by means of bilinear interpolation. In this way the cell is separated
into two different regions. In one regions there is w™ > w~ while in the
other region there is w™ < w~. The isocontour just corresponds to points
where both weights are equal. Of course, isocontours of a 3D function can
be defined in the same way by introducing weights on the vertices of a 3D
hexahedral grid.

2.2 Multiple Labels

The results of the previous section are easily generalized to cases where more
then two different labels occur. Instead of two weights w™t and w~ we then
have n different numbers w®, k = 1...n, one for each label or tissue type.
Given some rule to interpolate these values inside a grid cell, a partioning of
the cell is defined by taking the maximum value w®). On tissue boundaries
two of the w®) are equal. In contrast to the binary case there are also points,
where three or more regions join, At these points more than two weights are
equal.

The approach outlined above provides an elegant way to define a partion-
ing into regions. However, in case of arbitrary weights complex topological
configurations may occur. In particular, an edge of a cell may be intersected
by more than one line segment. In order to simiplfy the situation we there-
fore enforce all but the maximum weight at each vertex to be equal. In this



case only two different weights w occur at a vertex, and edges are intersected
at most once. This is illustrated in the following figure:

w®
w®

w@ wk
w@ k)

I : I
u

Another advantage of enforcing the non-dominant weights to be equal
is, that the amount of memory needed to store the segmentation results is
reduced dramatically. A further simplification is achieved by assuming that
the maximum weight is in range 128...255 and that the alternate weights are
implicitely given by 255 — w,,,4,. In this case only one byte additional storage
is needed per voxel.

Like in the binary case, region boundaries are approximated by straight
line segments inside a grid cell. However, in addition to the binary config-
urations some more complex cases have to be considered. If the maximum
weights at the corners of a cell are associated to three different labels, at
most two points can occur where the corresponding regions join, provided all
weights are interpolated inside a cell. However, if the two corners assigned
to the same label are located along a common edge, then there is only one
such point inside the cell. The position of this point can be evaluated ex-
actly and a result as shown is Fig. 2 (a) is obtained. On the other hand, if
the two labels are located at opposite corners, there is either no intersection
point, c.f. Fig. 2 (b), or two of them. Two intersection points usually also
occur, if every corner is assigned to a different label. For case of simplicity,
configurations containing two intersection points are approximated by only
two straight line segments as shown in Fig. 2 (¢) and (d).

(a) (b) (c) (d)

Figure 2: The figure shows how region boundaries defined by considering maxi-
mum interpolated weights are approximated by straight line segments.




3 Editing Weights

In the previous section we showed how smooth tissue boundaries can be ob-
tained by supplementing the region labels with additional weights w. We
now want to dicuss how labels and weights can be edited interactively in a
consistent way. In our implementation labels are usually not modified di-
rectly. Instead, certain areas of an image are first selected using tools like
the magic wand (region growing), the brush (painting), or the lasso (contour-
ing). In this respect, the system resembles a traditional paint box system.
Selected areas are usually visualized by a semi-transparent red layer on top
of the CT or MR image to be segmented. Selected pixels may be added to
a particular region or may be substracted from it. The selection is not a
binary flag but is a number w, between 0 and 255. The label of a pixel is
only changed if wy is at least 128. In this case w is set to w,. However, if
a pixel already was assigned to the current label, w is only updated if w; is
bigger than the old weight. Due to our weighting model all other labels at
this pixel automatically receive a weight of 255 — w. If the selection is less
than 128, the label itself is never changed, but the weight w is set to 255 —w,
provided the new value is bigger than the old one. These rules ensure that
boundaries remain smooth if editing operations are performed locally.

Our task is to design interactive segmentation tools which set the selection
properly. In particular, w, should be close to 255 in the interior of a selected
area, but should linearly drop to 0 at its boundary. The transition area
should be at least two pixels wide, so that any intersected edge completely
falls into it.

3.1 Magic Wand

The magic wand implements a region growing algorithm similar to the iso-
contouring algorithm discussed in Sect. 2.1. The user clicks at some point
into the image. The grey value at this point together with a user-defined
tolerance determines a lower bound f~ and an upper bound f*. Starting
from the seed point all connected pixels within this range are selected. The
value w, of a selected pixel is determined as follows:

{128+d<f+—f>, iff > (/7 +/1)/2 n
1284+d(f—f7), if<(f~+f")/2

The values are clamped to the interval 0...255. d is a constant factor deter-
mining the width of the transition region. Note, that in contrast to ordinary
region growing the growing operation must be continued even if values smaller
than f~ or bigger than f* are encountered. Only in this way a transition

s



region containing weights smaller than 128 can be obtained. This is an es-
sential prerequisite for defining smooth boundaries. We therefore continue
region growing until a local minimum smaller than f~ or a local maximum
bigger than f* is found. This strategy yields smooth boundary curves but
also ensures that no unconnected regions arise.

3.2 Brush and Lasso

The brush and the lasso allow the user to select pixels by painting and con-
touring. Subvoxel accuracy, i.e., weights somewhere between 0 and 255, can
only be achieved if the image is magnified on the screen. In this case only
parts of a pixel may be covered by a brush or by a hand-drawn contour. It
turns out that the coverage itself is not suited to compute proper values w;.
Instead, we incorporate a transition region into a brush. Within this region
the selection linearly varies from 0 to 255. In order to determine wy for a
given pixel, the brush is sampled at the center of that pixel. The transition
region is chosen two pixels wide. For the lasso we proceed similarly. Given a
hand-drawn polyline we compute the normal vectors of the contour in order
to define a proper transition region. Again this region is sampled at the pixel
centers. Ideally, instead of direct sampling a fast scan-conversion algorithm
similar to those used for drawing anti-aliased polygons should be applied.

Instead of being defined manually contours may also be obtained from
active contour models or snakes algorithms. Such algorithms are well suited
to modify a hand-drawn contour so that it fits the underlying image data.
Obviously, contours generated automatically can be processed in the same
way as hand-drawn contours.

3.3 Smoothing

Filters provide an alternative way for editing weights. We distinguish two
variants, smoothing and resampling. For smoothing we generate n inter-
mediate intermediate images, one for each region. These images are zero
everywhere except for pixels belonging to the current region. At these pixels
the weights of the input image are copied. Then all n images are blurred
using a Gaussian filter. Each pixel is assigned to the region corresponding
to the maximum blurred intensity, c.f. Fig. 3. The maximum intensity itself
determines the weight for that pixel. This filter operation not only produces
smooth boundaries, but also removes isolated (noisy) pixels.

Of course, smoothing can also be performed for 3D images. This is often
useful in order to obtain smooth segmentation results in case of large slice
distances. Instead of performing 2D blurs, for every label we average three



labels

blurred images weights

Figure 3: A smoothing filter for weighted labels can be implemented by smooth-
ing intermediate images for each label. Determing the maximum intensity of all
intermediate images yields new labels with associated weights.

binary images corresponding to neighbouring slices. If a whole 3D volume is
to be processed and if many labels occur, performance issues become relevant.
In order to avoid redundant computations we proceed as follows.

The main algorithm is straightforward. We take the first three slices,
split them into 3n intermediate images as described above and buffer the
results. After computing slice 0 as the weighted average of only the first
two buffers, this allows us to compute slice 1. The last buffer can now
be used to hold the intermediate images of the next slice. This process is
repeated for the whole 3D image. Unfortunately, while this is pretty fast,
large images with lots of different regions need a lot of buffer space. More
precisely, we need three buffers containing 2D images for every region that
appears anywhere in the whole dataset. This can easily amount to several
dozens of megabytes. Therefore we have implemented a second algorithm
which doesn’t buffer intermediate images for all regions but computes them
on the fly. In this case only space for three single intermediate images must
be allocated in addition to the final slices itself. However, since a smoothed
intermediate image is needed in the computation of three resulting slices,
Gaussian filtering is performed three times for each region instead of just
once. Nevertheless, this strategy is advisable in situations where memory is
short.

To further speed up either algorithm, in a preprocessing step we determine
for each label in each slice whether it is present at all, and if so the smallest
bounding axially parallel rectangle. All further convolving and averaging
operations can then be restricted to that rectangle, which reduces processing
time immensely.



3.4 Resampling

Often it is necessary to reduce the resolution of a labeled image for subsequent
operations. In particular, this is true if 3D polygonal surfaces are to be
extracted. Ordinary resampling filters cannot be applied to labeled images,
since labels cannot be interpolated. For example, if two regions indicated by
labels 0 and 2 have a common boundary, the labels must not be averaged to
1 since this may denote a completely different material.

However, if the zoom factor is an integer number, i.e., if n x n pixels
are combined into a new one, then it is easy to update labels and weights
in a consistent way. We simply take the label with maximum accumulated
weights. The accumulated weight divided by the number of pixels being
averaged yields the weight for the new pixel.

4 Application

We applied the techniques described above to treatment planning in regional
hyperthermia. In this application a 3D polygonal grid of the abdominal
region of a patient has to be produced. The patient model is generated using
a stack of about 60 CT images, typically with a distance of one centimeter.
At least fatty tissue, muscles, bones, and the tumor need to be identified. The
main requirement for segmentation is not to achieve accuracy at a diagnostic
level. Instead, smooth contours should be generated in order to ease further
processing.

4.1 Segmentation of 2D-Slices

The first step in the segmentation process is thresholding. In this way fatty
tissue, muscles, and bones are identified. Then usually the smoothing filter
described in Sect. 3.3 is applied. Additional corrections can be performed
using the brush or lasso. These tools are also used to separate the tumor
itself. The boundary curves between different tissue types can be displayed
either with weights being ignored or being considered correctly. Switching
between both display styles is a useful feature and gives an idea of how the
weights are set. An example is shown in Fig. 4. The complete segmentation
process including definition of inner organs takes about 1-2 hours for 40-60
slices.



Figure 4: Contours extracted from a labeled CT image. In (a) pixel boundaries
are shown and no weights are considered. Taking weights into account yields much
smoother results (b).

10



4.2 3D Grid Generation

In order to produce a 3D polygonal mesh describing the tissue interfaces we
proceed very similar to the 2D iso-contouring algorithm outlined in Sect. 2.1.
Instead of generating line segments for 2D pixels we create triangles for 3D
voxels. The triangle vertices are shifted according to the weights defined
at the cell corners. The method generalizes the standard marching cubes
algorithm and uses lookup tables, too [1]. A resulting model is shown in
Fig. 5. The smoothness of the surfaces ensures that in a subsequent step
standard techniques can be applied to reduce the number of triangles of the
model.

5 Summary

We presented a weighting model which allows us to represent segmentation
results using region labels at significantly improved resolution. The method
is able to describe smooth contours in 2D and 3D. We described how weights
associated to a pixel can be computed using simple thresholding or region
growing, and how this information can be edited interactively using tools
like brush or lasso. Smoothing and resampling filters provide another way
to modify the weights. Our method can be used to generate realistic 3D
polygonal models for medical treatment planning.

References

[1] H.-C. Hege, M. Seebaf}, D. Stalling, M. Zéckler, A Generalized Marching
Cubes Algorithm Based on Non-Binary Classifications, ZIB Preprint SC
07-05, Berlin, 1997.

[2] B. Geiger, Three-dimensional modeling of human organs and its applica-
tion to diagnosis and surgical planning. Technical Report 2105, Institut
National de Recherche en Informatique et Automatique, Dec. 1993.

[3] W.E. Lorensen, H.E. Cline, Marching cubes: A high resolution 3D surface
construction algorithm, Computer Graphics 21:4 (1987), pp. 163-169.

11



piib kT Y ‘

1R
1{: i

l“‘ ‘

&¥

Figure 5: Polygonal model of a human pelvis. For the model at the top only
region labels have been considered, while for the one at the bottom weights were
taken into account.

12



