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THE CAYLEY TRICK, LIFTING SUBDIVISIONS AND THE BOHNE-DRESS
THEOREM ON ZONOTOPAL TILINGS

BIRKETT HUBER, JÖRG RAMBAU, AND FRANCISCO SANTOS

ABSTRACT. In 1994, Sturmfels gave a polyhedral version of the Cayley Trick of elimi-
nation theory: he established an order-preserving bijection between the posets of coher-
ent mixed subdivisions of a Minkowski sum A1 + · · ·+Ar of point configurations and
of coherent polyhedral subdivisions of the associated Cayley embedding C (A1� � � � �Ar).

In this paper we extend this correspondence in a natural way to cover also non-
coherent subdivisions. As an application, we show that the Cayley Trick combined
with results of Santos on subdivisions of Lawrence polytopes provides a new indepen-
dent proof of the Bohne-Dress Theorem on zonotopal tilings. This application uses a
combinatorial characterization of lifting subdivisions, also originally proved by Santos.

1. INTRODUCTION

The investigations in this paper are motivated from several directions. Our point of
departure is the polyhedral version of the Cayley Trick of elimination theory given by
STURMFELS in [20, Section 5]. The Cayley Trick is originally a method to rewrite a
certain resultant of a polynomial system as a discriminant of one single polynomial with
additional variables [8, pp. 103ff. and Chapter 9, Proposition 1.7]. Its applications are
in the area of sparse elimination theory and computation of mixed volumes [6, 9, 10, 12,
13, 22].

Mixed subdivisions of the Minkowski sum of a family A1, . . . ,Ar ⊂ R
d of polytopes

were introduced in [10, 13, 20]. The polyhedral Cayley Trick of Sturmfels says that
coherent mixed polyhedral subdivisions of the Minkowski sum of A1, . . . ,Ar ⊂ R

d are in
one-to-one refinement-preserving correspondence to coherent polyhedral subdivisions
of their Cayley embedding C (A1, . . . ,Ar) ⊂ R

r−1 ×R
d . (For definitions of this and the

following see Section 2.) More precisely, it establishes a strong isomorphism between
certain fiber polytopes. In Theorem 3.1, we extend this isomorphism to an isomorphism
between the refinement posets of all induced subdivisions, no matter whether coherent
or not. This extension needs a more combinatorial approach than the one used in [20].
We carry it out in Section 3 after introducing the relevant concepts in Section 2.
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Our second motivation is that there are applications of the Cayley trick in specific
cases which are of intrinsic interest. The most striking one is the Bohne-Dress Theo-
rem [4] (see also [5, 17, 23]) about zonotopal tilings, to which we devote Section 5,
after giving a preliminary result in Section 4. Other applications of the Cayley trick to
triangulations of hypercubes and of products of simplices will appear in [19].

A zonotope is the affine projection of a hypercube, or equivalently, a Minkowski sum
of segments. A zonotopal tiling is a subdivision induced by this projection (i.e., a subdi-
vision into smaller zonotopes in certain conditions, see for example [23]). The Bohne-
Dress Theorem states that there is a one-to-one correspondence between the zonotopal
tilings of a zonotope Z and the single-element lifts of the oriented matroid M (Z) as-
sociated to Z. Our version of the Cayley trick, in turn, tells us that zonotopal tilings
of Z are in one-to-one correspondence with polyhedral subdivisions of its Cayley em-
bedding, which in this case is a Lawrence polytope. (Lawrence polytopes have been
studied in connection to oriented matroid theory, see [5, 23], but their property of be-
ing Cayley embeddings of segments has never been pointed out before.) To close the
loop, polyhedral subdivisions of a Lawrence polytope where shown to correspond to
single-element lifts of the oriented matroid by SANTOS [18], via the concept of lifting
subdivisions introduced in [5, Section 9.6]. We include a proof of this last equivalence
in the realizable case (Proposition 5.2). It is based on a geometric characterization of
lifting subdivisions (Theorem 4.2), also originally contained in [18], to which we devote
Section 4. In this way, this paper contains a complete new proof of the Bohne-Dress
Theorem (Theorem 5.1). It turns out that of the three equivalences in Theorem 5.1, the
most transparent is the one given by the Cayley trick, which is exhibited in this paper
for the first time.

Our final motivation concerns functorial properties of subdivision posets. Given an
affine map between polytopes, can one draw conclusions about the induced map between
the corresponding posets of polyhedral subdivisions? For example, the intersection of a
subdivision with an affine subspace yields again a subdivision of the intersection poly-
tope. In fact, it turns out that the isomorphism given by the Cayley Trick is exactly a
map of this type. We think it would be of interest to investigate such maps in a more gen-
eral framework (even if they do not produce isomorphisms), in relation to the so-called
generalized Baues problem for polyhedral subdivisions (see [15, 16] for information on
this problem).

2. PRELIMINARIES

2.1. Subdivisions of point configurations. By a point configuration A in Rd we mean
a finite labeled subset of Rd . We allow A to have repeated points which are distinguished
by their labels. The convex hull conv(A) of A is a polytope.

A face of a subconfiguration B ⊆ A is a subconfiguration Fω ⊆ B consisting of all the
points on which some linear functional ω ∈ (Rd )∗ takes its minimum over A . Given two
subconfigurations B1 and B2 of A we say that they intersect properly if the following
two conditions are satisfied:

• B1 ∩B2 is a face of both B1 and B2;
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• conv(B1)∩ conv(B2) = conv(B1 ∩B2).

A subconfiguration of A is said to be full-dimensional if it affinely spans Rd . In that
case we call it a cell. It is simplicial if it is an affinely independent configuration. Fol-
lowing [2] and [8, Section 7.2] we say that a collection S of cells of A is a (polyhedral)
subdivision of A if the elements of S intersect pairwise properly and cover conv(A) in
the sense that

∪B∈S conv(B) = conv(A).

Cells that share a common facet are adjacent. The set of subdivisions of A is partially
ordered by the refinement relation

S1 ≤ S2 : ⇐⇒ ∀B1 ∈ S1, ∃B2 ∈ S2 : B1 ⊂ B2.

The poset of subdivisions of A has a unique maximal element which is the trivial subdi-
vision {A}. The minimal elements are the subdivisions all of whose cells are simplicial,
which are called triangulations of A .

The following characterization has already been proved for triangulations by de Loera
et al. in [7]. (It is a consequence of parts (i) and (ii) of their Theorem 1.1.) Here we
include a proof for subdivisions, whose final part follows the proof of their Theorem
3.2.

Lemma 2.1. Let A by a point configuration. Let S be a collection of cells of A . Then, S
is a subdivision if and only if the following conditions are satisfied:

(i) There is a point in conv(A) that is contained in the convex hull of exactly one cell
of S.

(ii) Any two adjacent cells in S lie in opposite halfspaces with respect to their common
facet.

(ii) For every B ∈ S and for every facet F of B, either F lies in a facet of conv(A) or
there is another B′ ∈ S adjacent to B in the facet F.

Proof. If S is a subdivision, it is easy to verify that it satisfies (i), (ii), and (iii): First,
no point in the relative interior of conv(B) for a cell B ∈ S can lie in the convex hull of
any other cell in S, or the two cells would intersect improperly. This proves (i). If two
adjacent cells lie in the same side of the hyperplane supporting their common facet then
they cannot intersect properly, which proves (ii). Finally, if a facet F of a cell B ∈ S does
not lie in a facet of conv(A), let p be a point beyond that facet (i.e., outside conv(B) but
very close to a relative interior point of conv(F)). Since the subdivision S covers A , the
point p has to lie in conv(B′) for some cell B′ ∈ S. The only way in which B and B′ can
intersect properly is being adjacent in the facet F . This proves (iii).

Let us now suppose that S satisfies (i), (ii), and (iii). We will prove that S is a sub-
division. Consider the union H of all the hyperplanes spanned by subsets of A . The
connected components of conv(A) \H are called chambers of A . They are open sets
whose closures are convex polytopes, cover conv(A), and intersect properly. Two differ-
ent points in the same chamber are contained in the same number (actually in the same
collection) of convex hulls of cells of S. We call this number the covering number of a
specific chamber.
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Let C1 and C2 be two chambers which are adjacent (i.e., whose closures have a com-
mon facet D). Properties (ii) and (iii) imply that C1 and C2 have the same covering
number, equal to the number of cells in S which cover both C1 and C2 plus the number
of facets of cells of S whose convex hull contains D. (Such facets are facets of exactly
one cell covering C1 and one covering C2.) Since any two chambers can be connected
by a sequence of adjacent chambers (e.g., take generic points in the two chambers and
consider the chambers which intersect the segment joining them) we conclude that all
the chambers have the same covering number.

On the other hand, let p be a point satisfying the conditions in (i) and let B be the
unique cell of S with p ∈ conv(S). Let C be a chamber contained in conv(B) and with p
in its closure. Then C has covering number 1 and, thus, all the chambers have covering
number 1. As a conclusion, the union conv(A)\H of all the chambers is an open dense
subset of conv(A) each of whose points lies in the convex hull of exactly one cell of S.
This implies in particular that S covers A , since the subset ∪B∈S conv(B) is closed.

Finally we prove that every pair of cells in S intersect properly. Let B1,B2 ∈ S. The
inclusion conv(B1 ∩B2) ⊂ conv(B1)∩ conv(B2) always holds. For the reverse one, let
Fi be the minimal face of Bi with conv(B1)∩ conv(B2) ⊂ conv(Fi), i = 1,2. Below we
will prove F1 is a face of B2 too. By symmetry, F2 is a face of B1, which clearly implies
B1 ∩B2 = F1 = F2. Thus, B1 ∩B2 is a common face of B1 and B2. From this we get
conv(B1)∩ conv(B2)⊂ conv(F1)⊂ conv(B1 ∩B2). This finishes the proof.

Thus, we only need to prove that F1 is a face of B2 using the above hypotheses. For
each cell B ∈ S having F1 as a face, consider the convex polyhedral cone

F1 + pos(B−F1) = {λq+(1−λ)p : p ∈ F1, q ∈ B, λ ≥ 0}.
We claim that conv(A) is contained in the union of such cones. Suppose a point b of

conv(A) lies outside their union. Then b “sees” a facet τ of some cone F1+ pos(B−F1),
where B ∈ S. Let F be the corresponding facet of B. It contains F1. By the choice of
τ, there is no B′ ∈ S having F as a facet and lying in the halfspace containing b. This
violates either condition (ii) or (iii) for B.

Let a be any point in conv(B1)∩ conv(B2) and in the relative interior of conv(F1).
(It exists since F1 is the minimal face of B1 covering conv(B1)∩ conv(B2), which is
convex.) The above implies that a neighborhood of a in conv(A) is covered by cells in
S which have F1 as a face. Since there are generic points of conv(B2) arbitrarily close to
a and no generic point can be covered by two different cells in S, one of the cells having
F1 as a face is B2.

2.2. Induced subdivisions. Now let P ⊂ R
p be a polytope, and let π : Rp → R

d be
a linear projection map. We can consider the point configuration A arising from the
projection of the vertex set of P. An element in A is labeled by the vertex of P of which
it is considered to be the image. In other words, π induces a bijection from the vertex
set of P into A , even if different vertices of P have the same projection.

A subdivision S of A is said to be π-induced if every cell of S is the projection of the
vertex set of a face of P. With these conditions, S contains the same information as the
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collection of faces of P whose vertex sets are in S. In this sense one can say that a π-
induced subdivision of A is a polyhedral subdivision whose cells are projections of faces
of P. (This statement is not very accurate; see [14, 15, 23] for an accurate definition of
π-induced subdivisions in terms of faces of P.)

Every non-zero linear functional φ ∈ (Rp)∗ defines a π-induced subdivision Sφ as
follows: φ gives a factorization of π into a map (π,φ) : Rp → R

d × R and the map
ρ : Rd ×R → R

d which forgets the last coordinate. For any element a ∈ A let aP denote
the unique vertex of P of which it is considered to be the image by π. For any face F
of the (d+1)-dimensional polytope (π,φ)(P) we denote by AF the collection of points
AF := {a ∈ A : (π,φ)(aP) ∈ F}. A face F of (π,φ)(P) is called lower if its exterior
normal cone contains a vector whose last coordinate is negative. With this notation,
Sφ := {AF ⊂ A : F is a lower face of (π,φ)(P)} is a π-induced subdivision of A . The
subdivision Sφ is called the π-coherent subdivision of A induced by φ, and a π-induced
subdivision is called π-coherent if it equals Sφ for some φ.

Said in a more compact form, a subset B ⊂ A is a cell of Sφ if and only if there is a
linear functional φ′ : Rd → R such that B is the subset of A where φ′ ◦ π+ φ takes its
minimum value. (For example, Sφ is the trivial subdivision if and only if φ factors by π.)

The poset of π-induced subdivisions excluding the trivial one is denoted by ω(P,π).
The minimal elements in it are the subdivisions for which every cell comes from a
dim(A)-dimensional face of P. They are called tight π-induced subdivisions. The sub-
poset of π-coherent subdivisions is denoted by ωcoh(P,π). It is isomorphic to the face
lattice of a certain polytope of dimension dim(P)− dim(A), called the fiber polytope
Σ(P,π).

See [1, 23] for more information on π-induced subdivisions and fiber polytopes.

2.3. Weighted Minkowski sums. Mixed subdivisions. Let Ai := {a(1)
i , . . . ,a(mi)

i } be
point configurations in Rd .

Their Minkowski sum ∑r
i=1 Ai is defined to be the set of all points which can be ex-

pressed as a sum of a point from each Ai, i.e.,
r

∑
i=1

Ai := {a1 + · · ·+ar : ai ∈ Ai } .

A vector λ = (λ1, . . . ,λr) in Rr−1 with ∑r
i=1 λi = 1 and 0 < λ1, . . . ,λr < 1 is a weight

vector. For a weight vector λ the weighted Minkowski sum is defined by
r

∑
i=1

λiAi := {λ1a1 + · · ·+λrar : ai ∈ Ai } .

The configuration ∑r
i=1 λiAi has ∏r

i=1 mi points, some perhaps repeated.
A cell (i.e., full-dimensional subset) B ⊂ ∑r

i=1 λiAi will be called a Minkowski cell if
B = λ1B1+ · · ·+λrBr for some non-empty subsets Bi ⊂ Ai, i = 1, . . . ,r. A mixed subdi-
vision of the weighted Minkowski sum of A1, . . . ,Ar is a subdivision of the configuration
∑r

i=1 λiAi whose faces are all Minkowski cells. (There is not complete agreement in the
literature concerning this definition. See Remark 2.4.) Minkowski cells are called fine if
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it does not properly contain any other Minkowski cell. A mixed subdivision is fine if all
its faces are fine.

We can consider the cartesian product of point configurations as a Minkowski sum
where all the point configurations lie in complementary affine subspaces. This leads to
the following natural projection.

Definition 2.2 (Weighted Minkowski Projection). Let A1, . . . ,Ar be point configurations
in R

d , and let P1, . . . ,Pr be polytopes in R
p1 , . . . ,Rpr , resp., the vertex sets of which

affinely project to A1, . . . ,Ar via

Pi := vert(Pi)
πi→ Ai, 1 ≤ i ≤ r.

Moreover, let λ = (λ1, . . . ,λr) be a weight vector. We define

λΠM := λ1π1 + · · ·+λrπr :

{
P1 ×·· ·×Pr → λ1A1 + · · ·+λrAr,
(p1, . . . , pr) �→ λ1π1(p1)+ · · ·+λrπr(pr);

The projection λΠM is specially interesting if the polytopes Pi involved are simplices.
The proof of the following fact is just a check of definitions.

Lemma 2.3. Suppose that the polytopes Pi of Definition 2.2, are all simplices. Then, a
subdivision of λ1A1 + · · ·+λrAr is (fine) mixed if and only if it is (tight) λΠM-induced.

Remark 2.4. There is some confusion in the literature concerning the definition of
mixed subdivisions of the Minkowski sum ∑r

i=1 Ai of the family of point configura-
tions {A1, . . . ,Ar}. First of all, in most of the literature it is assumed that the number
of configurations equals the dimension of the ambient space (i.e., d = r) because this
is the case in the applications to zero-dimensional polynomial systems. However, the
geometric proofs involved work the same without this assumption.

Pedersen and Sturmfels [13, page 380] defined mixed subdivisions to be the sub-
divisions ΠM-induced for the projection ΠM : P1 × ·· · × Pr → A1 + · · ·+Ar of our
Lemma 2.3. Sturmfels [20, page 213] defined coherent mixed subdivisions as the ones
which are ΠM-coherent. This is the same as we do. However, for the applications it is
interesting to pose the following additional property: that in every cell B = B1+ · · ·+Br
of the subdivision the different Bi’s lie in complementary subspaces. (This assumption
allows to compute the mixed volume of A1 + · · ·+Ar by summing up the volumes of
some cells of the subdivision.) It seems that Pedersen and Sturmfels [13] implicitly as-
sume that all mixed subdivisions have this property, since they say (p. 380) “the mixed
volume . . . is the sum of volumes of the parallelotopes in Δ”. In [20] the additional
property is explicitly mentioned and said to hold for all fine mixed subdivisions (which
are called tight there). In other literature the property is taken as part of the definition
of mixed subdivision [10, 12]; ΠM-induced subdivisions without this property are just
called subdivisions of the r-tuple (A1, . . . ,Ar).

Finally, there seems to be agreement to call tight subdivisions the minimal elements
in the poset of subdivisions induced by a projection in general [1, 15, 16, 23] and fine
mixed those for the particular case of mixed subdivisions [10, 12], with the exception of
[20] mentioned above. We have chosen to follow this convention.
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2.4. The Cayley embedding. We call the Cayley embedding of A1, . . . ,Ar the follow-
ing point configuration in Rr−1 ×R

d . Let e1, . . . ,er be a fixed affine basis in Rr−1 and
µi : Rd → R

r−1 ×R
d be the affine inclusion given by µi(x) = (ei,x). Then we define

C (A1, . . . ,Ar) := ∪r
i=1µi(Ai)

The Cayley embedding of point configurations from complementary affine subspaces
equals the join product of the point configurations. (For the purpose of this paper we
can define the join product P1 ∗ · · · ∗Pr of several point configurations with Pi ⊂ R

pi to
be their Cayley embedding C (P1, . . . ,Pr) ⊂ R

r−1 ×R
p1 ×·· ·×R

pr .) Hence, we have
the following natural projection.

Definition 2.5 (Cayley Projection). Let A1, . . . ,Ar be point configurations in R
d , and

let P1, . . . ,Pr be polytopes in Rp1 , . . . ,Rpr , resp., the vertex sets of which affinely project
to A1, . . . ,Ar via

Pi := vert(Pi)
πi→ Ai, 1 ≤ i ≤ r.

Define

ΠC := C (π1, . . . ,πr) :

{
P1 ∗ · · · ∗Pr → C (A1, . . . ,Ar),

(ei, pi) �→ (ei,πi(pi)).

Again, the following lemma is obvious since a join of simplices is a simplex.

Lemma 2.6. If Pi is a simplex for all 1 ≤ i ≤ r then every subdivision of C (A1, . . . ,Ar)
is ΠC induced.

3. THE CAYLEY TRICK

In this section we state and prove the Cayley Trick for induced subdivisions.

Theorem 3.1 (The Cayley Trick for Induced Subdivisions). Let A1, . . . ,Ar be point con-
figurations in Rd . Moreover, let P1, . . . ,Pr be polytopes in Rp1 , . . . ,Rpr , resp., the vertex
sets of which affinely project to A1, . . . ,Ar via

Pi := vert(Pi)
πi→ Ai, 1 ≤ i ≤ r.

Then for all weight vectors λ = λ1, . . . ,λr there are the following isomorphisms of
posets:

ω(P1 ×·· ·×Pr,λ1π1 + · · ·+λrπr)∼= ω(P1 ∗ · · · ∗Pr,C (π1, . . . ,πr));

ωcoh(P1 ×·· ·×Pr,λ1π1 + · · ·+λrπr)∼= ωcoh(P1 ∗ · · · ∗Pr,C (π1, . . . ,πr)).

The second of the two equivalences above follows from [20, Theorem 5.1] and is
stated only for completeness. The structure of the proof of the first one is as follows:
first, we represent the Minkowski sum as a section of the Cayley embedding, then we
define an explicit order-preserving map that carries the isomorphism. Finally, we show
that the canonical inverse construction is well-defined and order-preserving. A “guide
line” of the proof is indicated in Figure 1.
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A1

A2

λ1A1 +λ2A2

FIGURE 1. A “One-picture-proof” of the Cayley Trick.

Lemma 3.2. Let A1, . . . ,Ar ⊂R
d be point configurations. Moreover, let λ= (λ1, . . . ,λr)

be a weight vector. (Recall this implies that λi > 0 ∀i and ∑r
i=1 λi = 1.) Moreover, let

W (λ) := {λ1e1 + · · ·+λrer}×R
d ⊂ R

r−1 ×R
d .

Then the scaled Minkowski sum λ1A1 + · · ·+λrAr ⊂ R
d has the following represen-

tation as a section of the Cayley embedding C (A1, . . . ,Ar) in Rr−1 ×R
d :

λ1A1 + · · ·+λrAr
∼= C (A1, . . . ,Ar)∧W (λ)

:=
{

conv
{
(e1,a1), . . . ,(er,ar)

}∩W (λ) : (e1,a1), . . . ,(er,ar) ∈ C (A1, . . . ,Ar)
}
,

Moreover, F is a facet of λ1A1+ · · ·+λrAr if and only if it is of the form F =F ′∧W (λ)
for a facet F ′ of C (A1, . . . ,Ar) containing at least one point (ei,ai) for all 1 ≤ i ≤ r.

Remark 3.3. On the level of convex hulls the above representation for the Minkowski
sum polytope is nothing else but the ordinary intersection of the Cayley embedding poly-
tope with the affine subspace W (λ). We need the slightly more complicated version for
point configurations stated above because in convex hulls—as subsets of a Euclidean
space—we cannot keep track of multiple points.
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Proof of Lemma 3.2. Define qe(λ) := λ1e1 + · · ·+λrer ∈ Rr−1, so that

W (λ) = {qe(λ)}×R
d .

Analogously, for any sequence a = (a1, . . . ,ar) of points with ai ∈ Ai we set qa(λ) :=
λ1a1 + · · ·+λrar ∈ R

d . Then the intersection point conv
(
(e1,a1), . . . ,(er,ar)

)∩W (λ)
equals (qe(λ),qa(λ)) ∈ R

r−1 × R
d . But this is, by definition, a point in the scaled

Minkowski sum—via the natural identification W (λ)∼= {qe(λ)}×R
d =W (λ)—and ev-

ery point in the Minkowski sum has this description.
The remark about the facets follows from the fact that a facet F′ of C (A1, . . . ,Ar) in

R
r−1 ×R

d intersects W (λ) if and only if it contains at least one point (ei,ai) for each
1 ≤ i ≤ r and that a linear functional is minimized on F′ over C (A1, . . . ,Ar) if and only
if its projection to W (λ) is minimized on F ∧W (λ).

In order to keep the notation lean, we identify the embedding of the weighted Minkowski
sum into Rr−1 ×R

d in the previous proof with the ordinary weighted Minkowski sum.
The Cayley embedding C (A1, . . . ,Ar) corresponding to the weighted Minkowski sum
λ1A1 + · · ·+λrAr will be denoted by (λ1A1 + · · ·+λrAr)∨W (λ). That is, we have

(λ1A1 + · · ·+λrAr)∨W (λ) = C (A1, . . . ,Ar),

C (A1, . . . ,Ar)∧W (λ) = λ1A1 + · · ·+λrAr.

Of course, this notation extends to subconfigurations as well.
The following proposition states that the “intersection” with W (λ) induces an order-

preserving map from ω(P1 ∗ · · · ∗Pr,ΠC) to ω(P1 ×·· ·×Pr,λΠM).

Proposition 3.4. Let S be a ΠC-induced subdivision of C (A1, . . . ,Ar) and

S∧W (λ) := {B∧W (λ) : B ∈ S} .
Then

(i) S∧W (λ) is a λΠM-induced subdivision of λ1A1 + · · ·+λrAr;
(ii) S < S′ implies (S∧W (λ))< (S′∧W (λ));

(iii) S∧W (λ) is tight if S is tight;
(iv) S∧W (λ) is ΠC-coherent if S is λΠM-coherent.

Proof. Every cell B in a subdivision of a Cayley embedding is again a Cayley embed-
ding. Therefore, by Lemma 3.2, B∧W (λ) is a mixed subconfiguration in the Minkowski
sum. Since for a cell in a ΠC-induced subdivision S of C (A1, . . . ,Ar) to be full-dimen-
sional it must contain a point (ei,ai) with ai ∈ Ai for every 1 ≤ i ≤ r, every cell in S
intersects W (λ) in a full-dimensional subconfiguration of λ1A1 + · · ·+λrAr, thus defin-
ing a cell. This cell is clearly a projection of a face of the product P1 ×·· ·×Pr under
λΠM.

The incidence structure and proper intersections are not affected by intersection with
W (λ) by Lemma 3.2. Hence, by Lemma 2.1 we get (i).

Property (ii) is obvious, (iv) is part of [20, Theorem 5.1] and (iii) follows from (ii).

The following proposition provides the inverse order-preserving map. Its proof is not
difficult but nevertheless non-trivial; the extension of the polyhedral Cayley Trick from
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coherent to general induced subdivisions requires ingredients that are not necessary for
the coherent case.

Proposition 3.5. Let S be a λΠM-induced subdivision of λ1A1 + · · ·+λrAr and

S∨W (λ) := {B∨W (λ) : B ∈ S} .
Then

(i) S∨W (λ) is a ΠC-induced subdivision;
(ii) S < S′ implies (S∧W (λ))< (S′∧W (λ));

(iii) S∨W (λ) is tight if S is tight;
(iv) S∨W (λ) is coherent if S is coherent.

Proof. Again, properties (ii) and (iii) are obvious, and (iv) follows from [20].
In order to prove (i), let S be a λΠM-induced subdivision of λ1A1 + · · ·+λrAr. For

every cell B in S there is a unique cell B∨W (λ) in C (A1, . . . ,Ar) with B∨W (λ)∧W(λ)=
B. Let W ′(λ) = {qe(λ)}× R

p1 × ·· · × R
pr be the fiber of W (λ) under ΠC : Rr−1 ×

R
p1 ×·· ·×R

pr → R
r−1 ×R

d . The cell B is a projection of a face F of P1 ×·· ·×Pr,
and therefore the face F ∨W ′(λ) of P1 ∗ · · · ∗Pr—recall that this equals P1 ×·· ·×Pr ∨
W ′(λ)—projects to B∨W (λ).

For the collection of cells S∨W (λ) we need to show—by Lemma 2.1—that

(i) there is a point in convC (A1, . . . ,Ar) that is contained in exactly one cell of S∨
W (λ)

(ii) adjacent cells lie on different sides of the hyperplane that supports their common
facet;

(iii) for every facet F of a cell B ∈ S∨W (λ) either F is contained in a facet of the
configuration C (A1, . . . ,Ar) or there is another cell B′ ∈ S containing F as a facet.

First, we prove (i). Since the Minkowski sum is contained in the Cayley embedding
as a section and S is a subdivision of the Minkowski sum, i.e., S satisfies conditions
(i), (ii), and (iii), we find a point p ∈ conv(λ1A1 + · · ·+λrAr) that is contained in the
convex hull convB of exactly one cell B of S. Therefore, p is uniquely contained in
conv(B∨W (λ)) ⊃ convB where B∨W (λ) ∈ S∨W (λ), which completes (i). Let B1 ∨
W (λ) and B2 ∨W (λ) be two adjacent cells in S∨W (λ) with common facet F . Let H be
the hyperplane supporting F . We show that B1 ∨W (λ) and B2 ∨W (λ) lie on different
sides of H, which proves (ii). To this end, assume B1 ∨W (λ) and B2 ∨W (λ) lie on the
same side of H. Then B1 = B1 ∨W (λ)∧W(λ) and B2 = B2 ∨W (λ)∧W(λ) lie on the
same side of H ∧W (λ) while F ∧W (λ) is the common facet of B1 and B2, supported by
H ∩W (λ): contradiction to (ii) for S.

In order to prove (iii) we only need to observe that incidences are preserved by ∨W (λ).

See Figure 2 for an illustration of the situation.

Remark 3.6. It is not true in general that a proper intersection of non-adjacent cells in
the Minkowski sum implies a proper intersection of the corresponding cells in the Cayley
embedding. See Figure 3 for an easy example.

10



C (A1,A2)⊂ R
2 ×R

d

1
2A1

1
2P1 × 1

2P2 ⊂ R
(p1+p2) P1 ∗P2 ⊂ R

2 ×R
(p1+p2)

P2

W

A2

A1

1
2A2

1
2A1 +

1
2A2 ⊂ R

d

ΠM ΠC

W ′

P1

P2

P1

FIGURE 2. Affine picture for r = 2 and P1 = P2 = [0,1]: product and
Minkowski sum are intersections of join resp. Cayley embedding with
the affine subspace W = {x1 = x2,x1 + x2 = 1}.

A1

A2

1
2A1 +

1
2A2

FIGURE 3. Two properly intersecting cells in the Minkowski sum whose
counterparts in the Cayley embedding intersect improperly.

Propositions 3.4 and 3.5 imply Theorem 3.1. This one, in turn, has the following
corollaries. The first one is straightforward.

Corollary 3.7. Weighted Minkowski sums ∑r
i=1 λiAi of a point configuration A1, . . . ,Ar

have isomorphic posets of subdivisions for all weights λ.

In the following result we call geometric (polyhedral) subdivision of a convex poly-
tope P a family of polytopes contained in P which cover P and intersect properly. If

11



P = conv(A) for a point configuration A then any subdivision S of A has an associated
geometric subdivision {conv(B) : B ∈ S} of P . Reciprocally, a geometric subdivision K
of P equals {conv(B) : B ∈ S} for some subdivision S of A if and only if every element
of K has vertex set contained in A (but the subdivision S of A is not unique, in general).

Given a family A1, . . . ,Ar of point configurations and a geometric subdivision K of
the polytope conv(∑r

i=1 λiAi) we say that K is mixed if there is a mixed subdivision
S of ∑r

i=1 λiAi with K = {conv(B) : B ∈ S}. A necessary condition for this to happen
is that each polytope Q in K can be written as Q = conv(∑r

i=1 λiBi}) for certain subsets
Bi ⊂Ai, i= 1, . . . ,r. But this condition is not sufficient, as the following example shows:
Consider the Minkowski sum of two squares of side 1 divided into four squares of side
1. There are 96 ways of introducing two diagonals in the four squares, and all of them
provide geometric subdivisions satisfying the extra condition. But not all are mixed. (In
this example a necessary and sufficient condition is that the two diagonals be drawn in
non-adjacent squares.)

Corollary 3.8. Let A1, . . . ,Ar be a family of point configurations, and let K,K′ be geo-
metric subdivisions of conv(∑r

i=1 λiAi). Suppose that K is a refinement of K′ (i.e., every
cell of K′ is a union of cells of K) and that K is mixed. Then K′ is mixed too.

Proof. An easy consequence of Theorem 3.1 is that a geometric subdivision of the geo-
metric Minkowski sum conv(∑r

i=1 λiAi) is mixed if and only if it is the intersection
of the geometric subdivision of conv(C (A1, . . . ,Ar)) associated to some subdivision of
C (A1, . . . ,Ar) with the affine subspace W (λ).

We suppose that K is the intersection with W (λ) of a geometric subdivision K of
conv(C (A1, . . . ,Ar)) and that K equals {conv(B) : B ∈ S} for some subdivision S of
C (A1, . . . ,Ar). Let K = {Q1, . . . ,Qk}, K′ = {Q′

1, . . . ,Q
′
l} and K = {Q1, . . . ,Qk} with

Qi = Qi ∩W (λ) for each i = 1, . . . ,k.
Since K refines K′, for each j = 1, . . . , l we can write Q′

j as a union of some of the

Qi’s. We define Q′
j to be the union of the corresponding Qi’s, and let K′ := {Q′

1, . . . ,Q
′
l}.

We claim that K′ is a geometric subdivision of conv(C (A1, . . . ,Ar)). If this is true then
it is obvious that K′ is the geometric subdivision associated to some subdivision S′ of
C (A1, . . . ,Ar) and that K′ is the intersection of K′ with W (λ), which finishes the proof.

The only non-obvious parts in the claim are that the unions Q′
j are convex and that

they intersect pairwise properly. We prove these two facts in the following lemma.

Lemma 3.9. Let K be a geometric subdivision of the geometric Cayley embedding
conv(C (A1, . . . ,Ar)). Let Q and R denote unions of cells in K.

1. If there is a weight vector λ for which Q∩W (λ) is convex, then Q is convex.
2. Suppose Q and R are convex. If there is a weight vector λ0 for which Q∩W(λ0)

and R∩W (λ0) intersect properly then Q and R intersect properly.

Proof. 1. Let Q = {Q1, . . . ,Ql} where the Qi’s are cells in the subdivision K. Since the
Qi’s intersect properly, for every weight vector λ the intersections Q1 ∩W (λ), . . . ,Ql ∩
W (λ) intersect properly. Also, the polytopes Qi ∩W (λ) for different values of λ are
normally equivalent. Thus, if Qi ∩W (λ0) and Qj ∩W (λ0) share a face then Qi ∩W (λ)
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and Qj ∩W (λ) must share “the same” face for every λ (or otherwise Qi and Qj intersect
improperly). This implies that Q∩W (λ0) and Q∩W (λ) are combinatorially equivalent
polyhedral complexes and their boundaries are combinatorially and normally equivalent
convex polytopes. Even more, their faces are labeled in the same (unique) way as inter-
sections of faces of Q with W (λ0) and W (λ) respectively. In particular, Q∩W(λ) is a
convex polytope for every λ.

Suppose now that Q is not convex. Let p and q be points in Q such that the segment
[p,q] is not contained in Q and sufficiently generic so that [p,q] intersects the boundary
of Q in the relative interior of a facet F of Q. Let F+ be the exterior open halfspace to
that facet. One of p and q is in F+, suppose that it is p and let λ be the weight for which
p ∈W (λ). Then, F+∩W (λ) is the halfspace exterior to the facet F ∩W (λ) of Q∩W (λ)
and p ∈ F+∩W (λ). This means p �∈ Q∩W (λ), a contradiction.

2. Let F0 = Q∩R∩W (λ0) be the common face in which Q∩W (λ0) and R∩W (λ0)
intersect. F0 can be expressed as a union (F1 ∪ · · · ∪Fk)∩W (λ0) where each Fi is a
face of one of the Qj’s in K whose union equals Q. This expression is unique (up to
reordering) if it is not redundant (i.e., if Fi ∩W (λ0) has the same dimension as F0 for
every i). In the same way, F0 = (G1∪· · ·∪Gk′)∩W (λ0), where the Gi’s are now faces of
the cells of K whose union is R. The fact that the Fi’s and Gj’s intersect properly (since
they are all faces of cells of the subdivision K) together with (F1 ∪ · · · ∪Fk)∩W (λ0) =
(G1 ∪ · · · ∪Gk′)∩W (λ0) for the weight λ0 implies that each Fi equals a Gj and vice
versa. Thus, Q and R intersect properly, in the face F1 ∪· · ·∪Fk = G1 ∪· · ·∪Gk′.

4. LIFTING SUBDIVISIONS

Throughout this section let A = {a1, . . . ,an} ⊂ R
d be a fixed point configuration of

dimension d, and let M denote the oriented matroid of affine dependences of A , which

has rank d +1 and ground set {1, . . . ,n}. A lift of M is an oriented matroid M̂ of rank

d+2 with ground set {1, . . . ,n+1} which satisfies M̂ /(n+1) = M .

Every lift M̂ of M induces a subdivision S
cM

of A as follows: a subset σ ⊂ {1, . . . ,n}
is (the set of indices of the elements of) a cell in S if and only if σ is a facet of M̂ not con-
taining n+1 (a facet in an oriented matroid is the complement of a positive cocircuit [5,
Chapter 9]). The subdivisions of A which can be obtained in this way are called lifting
subdivisions. They were formally introduced in [5, Section 9.6], with some of the ideas
coming from [3]. The process is a combinatorial abstraction (as well as a generalization)
of the definition of regular subdivisions of A . In particular, every regular subdivision of
A is a lifting subdivision. The converse is not true since a subdivision being regular or
not does not depend only on the oriented matroid M of affine dependences of A .

This section is devoted to providing a characterization of lifting subdivisions of A
which does not explicitly involve the oriented matroid M . The results of this section
come from [18], where they are proved in a more general context: the oriented matroid
M involved needs not be realizable. (A concept of subdivision of a non-realizable ori-
ented matroid was also introduced in [5, Section 9.6].) We include here a proof in the
realized case for completeness.
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Definition 4.1. Let S be a subdivision of the point configuration A . For each subset
B⊂ A , let SB be a subdivision of A . We say that the family of subdivisions S = {SB}B∈A
is consistent if for every subset B ⊂ A the following happens:

(i) For every cell τ ∈ SB and for every B′ ⊂ B, τ∩B′ is a face of a cell of SB′.
(ii) For every affine basis σ of Rd contained in B if σ is contained in a cell of Sσ∪{b}

for every b ∈ B\σ, then σ is contained in a cell of SB as well.

We say that the family is consistent with S if, moreover, S = SA .

Condition (i) says that the subcomplex of SB induced by the elements of any B′ ⊂ B
is a subcomplex of SB′. Condition (ii) is void unless B affinely spans A and has at least
d+3 elements. The main result of this section is:

Theorem 4.2. Let S be a subdivision of a point configuration A . Then, the following
conditions are equivalent:

(i) S is a lifting subdivision.
(ii) There is a family S of subdivisions of the subsets of M which is consistent with S.

Lifts of an oriented matroid M are duals to the extensions of the dual oriented ma-
troid M ∗ and vice versa. The following statements are the dualized version of results
by Las Vergnas [11] on extensions of oriented matroids (see also [5, Section 7.1]): If

(M̂ ,{1, . . . ,n+ 1}) is a lift of (M ,{1, . . . ,n}), then for every circuit C = (C+,C−) of
M precisely one of (C+ ∪ {n+ 1},C−), (C+,C− ∪ {n+ 1}), and (C+,C−) is a cir-

cuit of M̂ . Thus, a lift is characterized by its circuit signature, which is a function
λ : C →{+1,−1,0} where C is the set of circuits of M and s(C)=+, − or 0 in the three
cases mentioned above, respectively. The function λ clearly satisfies λ(−C) = −λ(C),
but this property is not enough for a function λ : C → {+1,−1,0} to represent a lift.
The necessary and sufficient condition for this is that λ defines a lift on every corank 2
restriction of M . Even more, in corank 2 there is a list of only three forbidden subcon-
figurations which can prevent λ from representing a lift [5, Theorem 7.1.8].

For proving Theorem 4.2 we will first show how a consistent family of subdivisions
of A induces a circuit signature function λ. We recall that a point configuration B of
corank 1 (i.e., with two more points than its affine dimension) has exactly one circuit
C = (C+,C−) (up to sign reversal) and three subdivisions, defined as follows:

S(B,C+) := {B\{a} | a ∈C+},
S(B,C−) := {B\{a} | a ∈C−}, S(B,C0) := {B}.

We will say that the three subdivisions above give positive, negative and zero sign to the
circuit C, respectively. We recall that C =C+∪C− denotes the support of C.

Lemma 4.3. Let M denote the oriented matroid of affine dependences of A and C its
set of circuits. Let S = {SB}B⊂A be a family of subdivisions of the subconfigurations of
A which is consistent with S.

Define a circuit signature function λS : C → {−1,0,+1} as follows. For each circuit
C of M , let B be a corank 1 subset of A having C as a circuit. Let λS (C) be +1, −1 or
0 if SB equals S(B,C+), S(B,C−), and S(B,C0), respectively. Then,
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(i) The function λS is well-defined (it does not depend on the choice of the subset B)
and satisfies λS (−C) =−λS (C).

(ii) If λS defines a lift M̂ of M , then SA is the lifting subdivision induced by that lift.

Proof. (i) Let C be a circuit of M and C its support. Then, C is already a corank 1 subset
of A having C as a circuit. Moreover, any other such subset B contains C, so that the
first condition of consistency easily implies that SB gives the same sign to the circuit C
as SC. That λ(−C) =−λ(C) is trivial.

(ii) Suppose that λS defines a lift M̂ of M . We want to prove that SA equals the

lifting subdivision of A induced by M̂ A subdivision of a point configuration can be
specified by saying which simplices (i.e., affine bases) of A are contained in cells of the
subdivision. Thus, it will suffice to show that for every basis σ of A , σ is contained in

a cell of SA if and only if it is contained in a facet of M̂ not containing the additional
element n+1.

If σ lies in a facet of M̂ not containing n+1, then σ lies in a facet of M̂ (σ∪{b,n+1})
not containing n+1 for every b ∈ A \σ. Thus, σ lies in a cell of the restriction Sσ∪{b}
for every such b and in a cell of SA by condition (ii) of consistency.

Conversely, suppose that σ is contained in a cell of SA . Since σ is a basis in M ,

σ∪ {n+ 1} is a basis in M̂ . Lat Cσ denote the cocircuit of M̂ which vanishes in σ,
oriented so that it is positive at n+ 1. We will prove that Cσ is non-negative, which

implies that σ lies in a facet not containing n+1 of M̂ . If Cσ is negative on some element
b ∈ A\σ, let C = (C+,C−) be the unique circuit of A contained in σ∪{b}, oriented so
that b∈C+. (Since σ is independent, b is in the support of C.) Since Sσ∪{b} is clearly the
lifting subdivision induced by the lift of σ∪{b} given by λS (C) and since σ is in a cell
of the subdivision Sσ∪{b} by condition (i) of consistency, we have that λS(C) is different
from + (the sign of C at b). But this implies that either (C+,C−) or (C+,C−∪{n+1}) is

a circuit in the lifted oriented matroid M̂ , which violates orthogonality with the cocircuit
Cσ: contradiction. (Observe that the support of the circuit and the cocircuit intersect only
in b in the first case and in b and n+1 in the second, but not orthogonally.)

Lemma 4.4. In the same conditions of Lemma 4.3, suppose moreover that A has corank
2. Then, the circuit signature λS induced is the circuit signature of a lift of M .

Proof. Without loss of generality, we assume that A has no coloops. In other words,
that for every element a ∈ A its deletion A \{a} has corank 1. Otherwise the statement
follows easily by induction on the cardinality of A , by simply removing that coloop.

In these conditions, for each element a ∈ A the deletion A \ a has a unique circuit
Ca (up to a sign), which is given a certain sign by λS . The Gale transform A∗ of A
is a vector configuration of rank 2, whose cocircuits are the complements of the lines
generated by vectors of the configuration. We can picture λS (Ca) by putting a + and a −
sign on the two sides of the vector a, in the way indicated by λS(Ca) if this is non-zero
and putting zeroes if λS (Ca) = 0.

One of the characterization by Las Vergnas of valid cocircuit signatures for extensions
of the oriented matroid M ∗ is a list of three forbidden subconfigurations of rank three
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FIGURE 4. Forbidden subconfigurations for a cocircuit signature in rank 2.

with three elements a , b and c (see [5, Theorem 7.1.8, part (3)]). They correspond
with the three rows of pictures in Figure 4, respectively. The pictures in a row are
all the different reorientations of each forbidden subconfiguration. We only need to
show that none of them can appear in the Gale diagram of A , when we picture λS as
indicated above. Observe that a zero in a vector v of the picture means that SA\{v} is a
trivial subdivision, while a + on one side of v means that, for every w on that side of
v, A \ {v,w} is a cell in SA\{v}. With this we can discard the different possibilities as
follows:

(1) In the first row of pictures we have zero signs for Ca and Cc, but not for Cb. This
implies that SA\{a} and SA\{c} are trivial subdivisions, so that the simplex σ = A \{a,c}
is contained in a cell of each. Taking B = A in condition (ii) of consistency we conclude
that σ is contained in a cell τ of S. Taking B = A and B′ = A \{c} in the first condition
of consistency, that τ \ {c} is a cell in SA\{c}. Since SA\{c} is the trivial subdivision,
a ∈ τ. In the same way one proves c ∈ τ. But then, τ contains A \ {b} and this would
imply that SA\{b} is trivial as well, which is not the case.

(2) In the pictures of the second row we have a unique zero sign, in Ca. Again this
implies that SA\{a} is the trivial subdivision. We have labeled all the cases so that the
vector a of the Gale transform lies on the positive side of the vector b and the negative
side of the vector c. In terms of the subdivisions, this implies that A \ {a,b} ∈ SA\{b}
but A \{a,c} �∈ SA\{c}.

Taking σ = A \{a,b} and B = A , the second condition of consistency tells us that σ
lies in a cell τ of S. In the same way as before we can prove that b ∈ τ, so that either
τ = A or τ = A \ {a}. But then, the first condition of consistency with B′ = A \ {c}
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implies that either SA\{c} is trivial (which would imply a zero on c in the picture) or
A \{a,c} ∈ SA\{c} (which we have said to be false).

(3) Here we consider the two reorientation cases separately:
(3.a) In the picture of the left, {a,b,c} is the support of a spanning positive circuit

of A∗, so that its complement is a simplicial facet of A . Thus, there is a cell τ in S
containing A \{a,b,c}. Suppose that a ∈ τ, i.e., A \{b,c} ⊂ τ. Then, the first condition
of consistency with B′ = A \ {b} tells us that A \ {b,c} lies in a cell τ \ {b} of SA\{b}.
But this is impossible since the picture implies that A \{a,b} is a cell in SA\{b} and the
two simplices A \ {b,c} and A \ {a,b} intersect improperly. Similar contradictions are
obtained by assuming b ∈ τ or c ∈ τ.

(3.b) Now the hyperplane spanned by A \ {a,b,c} has b in one side and a and c in
the other. The picture tells us that A \ {a,b} is a simplex in both SA\{b} and SA\{a}, so
that it is contained in a cell τ of S, by condition 2 of consistency with B′ = A \ {a,b}.
Moreover, a ∈ τ or b ∈ τ would imply, respectively, that SA\{b} is trivial or SA\{a} is
trivial, which is not true since we have no zeroes in λS . Thus, τ = A \{a,b} is a cell in
S.

But then, the first condition of consistency implies that A \{a,b,c} is a face of a cell
in SA\{c}. Since SA\{c} is not trivial, either A \ {a,c} or A \ {b,c} is in SA\{c}. This
would imply that one of a or b is in the positive side of the vector c in the picture, which
is not the case.

Poof of Theorem 4.2. For the implication from (i) to (ii), let M̂ be the lifting of M
inducing the lifting subdivision S. Then the different restrictions of M̂ provide liftings
of the restrictions of M and, in particular, a family S of (lifting) subdivisions of the
different subsets of A . It can be checked easily (see [18]) that S is consistent with S.

The implication from (ii) to (i) follows from lemmas 4.3 and 4.4. Part 1 of Lemma
4.3 implies that S defines a cocircuit signature, which is the cocircuit signature of a
lift by Lemma 4.4 and then part 2 of Lemma 4.3 implies that S is the associated lifting
subdivision.

5. ZONOTOPES, LAWRENCE POLYTOPES AND THE BOHNE-DRESS THEOREM

Let A = {a1, . . . ,an} be a point configuration spanning the affine space Rd . Let us
consider Rd embedded as the affine hyperplane of Rd+1 where the last coordinate equals
1. A usual way of representing such a point configuration is by an n× (d + 1) matrix
whose i-th column has the coordinates of ai in the first d rows and a 1 in the last one.
This matrix, which we still denote A , has rank d +1. In these conditions the Lawrence
lifting of A is defined (see [21]) to be the point configuration corresponding to the matrix

Λ(A) :=

(
A 0
I I

)
,

where I is the identity matrix of size n×n and 0 the zero matrix of size n×(d+1). (The
2n column vectors of the matrix Λ(A) affinely span a non-linear affine hyperplane of
R

n+d+1 , so it represents a point configuration with 2n points in dimension n+d which
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we still denote Λ(A).) The convex hull of this configuration is called the Lawrence
polytope associated with A . It turns out that all the points in Λ(A) are vertices of this
polytope.

By reordering the columns of Λ(A) we see that the Lawrence polytope can be re-
garded as the Cayley embedding of the n segments Oai ⊂ R

d+1 . I.e:

Λ(a1, . . . ,an) = C (Oa1, . . . ,Oan).

The Minkowski sum of a collection of segments is a zonotope and its mixed subdivi-
sions are usually called zonotopal tilings [23, Section 7.5]. We will call zonotope asso-
ciated with the point configuration A (and denote Z(A)) the Minkowski sum ∑n

i=1 Oai.
Thus, the Cayley trick gives a correspondence between zonotopal tilings of the zonotope
Z(A) and polyhedral subdivisions of the Lawrence polytope Λ(A).

Finally, let MA be the oriented matroid of affine dependences between the points in
A . (It coincides with the oriented matroid realized by the columns of the n× (d + 1)
matrix defined at the beginning of this section.) The lifts of MA defined in the previous
section are partially ordered by weak maps, a lift being lower in this poset if it is “more
generic” or “more uniform” see [5, Chapter 7]. (More precisely, the circuit signature
function of the lower lift is obtained from that of the higher by setting some zeroes to +
or −.)

This section is devoted to prove the following Theorem:

Theorem 5.1 (Bohne-Dress, Santos). Let A be a point configuration. The following
posets are isomorphic:

(i) The poset of zonotopal tilings of Z(A).
(ii) The poset of lifts of the oriented matroid MA .

(iii) The poset of subdivisions of the Lawrence polytope Λ(A).

The equivalence of the first two posets is the so-called Bohne-Dress theorem for poly-
topes (see [5, Theorem 2.2.13], [23, Theorem 7.32], [17]). We provide a new proof of
the Bohne-Dress theorem as follows: Our Theorem 3.1 directly implies the isomorphism
between the first and last posets. The equivalence of the last two was proved in [18, Sec-
tion 4.2] in the general case of perhaps non-realizable oriented matroids; the proof is
reproduced below for completeness.

Proposition 5.2. Let A be a point configuration with oriented matroid MA , and let
Λ(A) be the associated Lawrence polytope, with oriented matroid MΛ(A). Then:

(i) Two different lifts of MΛ(A) produce different associated lifting subdivisions.
(ii) Every subdivision of Λ(M ) is a lifting subdivision.

(iii) The poset of lifts of MΛ(M ) and the poset of lifts of MA are isomorphic.

Thus, the poset of lifts of MA and the poset of subdivisions of Λ(A) are isomorphic.

Proof. Throughout the proof we will denote by b1, . . . ,bn,e1, . . . ,en the vertices of the
Lawrence polytope, that is to say the columns of the matrix

Λ(A) :=

(
A 0
I I

)
.
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Observe that the complement of every pair {ei,bi} is a facet of the Lawrence polytope.
The following are some other very special properties of Λ(A).

Let C = (C+,C−) be a circuit of Λ(A). The structure of the matrix clearly implies
that whenever an element bi or ei is in C+ the companion ei or bi is in C− and vice versa.
In other words, the support of every circuit has the form {bi : i ∈ J }∪{ei : i ∈ J }, for
some J ⊂ {1, . . . ,n}. On the other hand, the structure of the matrix also shows that such
a subset of vertices is always (the set of vertices of) a face of Λ(A).

If B is now an arbitrary subset of the vertices of Λ(A), let B0 = {bi ∈ B : ei ∈ B}∪
{ei ∈ B : bi ∈ B}. Every element p ∈ B\B0 is a coloop in B. In other words, for every
subset B of the vertices of Λ(A), conv(B) is an iterated cone over the face conv(B0) of
Λ(A). These facts will be crucial in the proof of the three statements:

(i) The circuit signature functions of two different lifts will necessarily give different
sign to a certain circuit C of Λ(A). But this implies that the associated lifting subdivi-
sions are different, since they are different in the face of Λ(A) spanned by the support
of that circuit.

(ii) This is a sort of converse of the previous assertion. Since every subset B of the
vertices of Λ(A) is an iterated cone over a face conv(B0), a subdivision S of Λ(M ) gives
a unique way to subdivide B in a way consistent with S: cone the subdivision of the face
conv(B0) induced by S over the elements in B\B0. Let {SB}B⊂Λ(A) denote the family of
subdivisions so obtained. The first condition of consistency is trivially satisfied by this
family. For proving the second one we will use induction on the dimension of the subset
B involved.

Let σ be a basis contained in B such that for every b ∈ B \σ we have that σ is in a
cell of the subdivision Sσ∪{b}. Since σ is full-dimensional, it must contain at least one
of each pair of vertices bi and ei of Λ(A), for every i ∈ {1, . . . ,n}. On the other hand,
since the case σ = Λ(A) is trivial, σ contains an element ei or bi whose companion ei or
bi is not in σ. Let a be such an element, and let us denote its companion by a.

Since {a,a} is the complement of the set of vertices of a facet of Λ(A), by induction
on the dimension we assume that σ\ {a} lies in a cell of SB\{a�a}. If a �∈ B this implies
that σ lies in a cell of SB. If a ∈ B we still can conclude that either σ or σ\ a∪{a} lie
in a cell of SB. So suppose that the second happens, and let τ be that cell. We will proof
that a ∈ τ as well.

Consider the corank 1 subconfiguration B′ = σ∪{a} of B. By the first condition of
consistency, τ∩B′ is a face of a cell in SB′. On the other hand, since B′ is of the form
σ∪{b}, σ lies in a cell of SB′ by hypothesis. Thus, both B′\{a}=σ and B′\{a}⊂ τ∩B′

lie in cells of SB′. Since B′ \ {a,a} is a face of B′, this implies that SB′ is the trivial
subdivision. Finally, since τ∩B′ is full dimensional because it contains σ \ {a}∪{a},
τ∩B′ is a cell of S′

B and, thus, a ∈ τ, as we wanted to prove.
(iii) Let A∗ be a Gale transform of A , represented as a matrix of size n× (n−d−1)

whose row space row(A∗) is an orthogonal complement of row(A). Then, the matrix
(A∗,A∗) of size 2n× (n−d−1) represents a Gale transform of Λ(A). In other words,
the oriented matroid dual to MΛ(A) is obtained from the dual of MA by adjoining an
antiparallel element to every element. Then, it is trivial that the two duals have the
same posets of extensions (for example, via the topological representation theorem of
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oriented matroids; also via Las Vergnas characterization of extensions by cocircuit sig-
nature functions). Since lifts of an oriented matroid are duals to extensions of its dual,
the result is proved.

Once we have proved parts 1, 2, and 3 we have a bijection between the two posets we
are interested in. That this bijection is a poset isomorphism is trivial.
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[5] A. BJÖRNER, M. LAS VERGNAS, B. STURMFELS, N. WHITE AND G. ZIEGLER, Oriented Ma-

troids, Cambridge University Press, Cambridge 1992.
[6] J. CANNY AND I. EMIRIS, Efficient incremental algorithms for the sparse resultant and the mixed

volume, J. Symbolic Computation 20 (1995), 117–149.
[7] J. A. DE LOERA,S. HOSTEN,F. SANTOS AND B. STURMFELS, The polytope of all triangulations

of a point configuration, Doc. Math. J. DMV 1 (1996), 103–119.
[8] I. M. GEL’FAND, M. M. KAPRANOV AND A. V. ZELEVINSKY, Multidimensional Determinants,

Discriminants and Resultants, Birkhäuser, Boston 1994.
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