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Abstract

The paper compares computational aspects of four approaches to compute conservation laws of single
differential equations or systems of them, ODEs and PDEs. The only restriction, required by two of the
four corresponding computer algebra programs, is that each DE has to be solvable for a leading derivative.
Extra constraints may be given. Examples of new conservation laws include non-polynomial expressions,
an explicit variable dependence and conservation laws involving arbitrary functions. Examples involve the
following equations: Ito, Liouville, Burgers, Kadomtsev-Petviashvili, Karney-Sen-Chu-Verheest, Boussi-
nesq, Tzetzeica, Benney.

1 Introduction

As is well known, conservation laws play an important role in Mathematical Physics. The knowledge of
conservation laws is useful in the numerical integration of partial differential equations (PDEs) [21], for
example, to control numerical errors. Also, the investigation of conservation laws of the Korteweg de Vries
equation was the starting point of the discovery of a number of techniques to solve evolutionary equations [26]
(Miura transformation, Lax pair, inverse scattering technique, bi-Hamiltonian structures). The existence of a
large number of conservation laws of a PDE (system) is a strong indication of its integrability. Conservation
laws play an important role in the theory of non-classical transformations [23],[24] and in the theory of
normal forms and asymptotic integrability [25]. Programs described below are able to find conservation laws
involving the independent variables explicitly. Finding such conservation laws is a good challenge for the
inverse scattering technique.

The purpose of the methods described below is to pose as few restrictions as possible on the differential
equations (DEs) to be investigated. For example, it is not assumed that any Lie-symmetries are known,
nor that the equations are equivalent to the Euler-Lagrange equations of a variational problem. Instead we
attempt to solve the conservation law condition directly. The strategy will be to make a local ansatz involving
only the dependent variables and their derivatives. Further, the order of the derivatives is bounded in order
to obtain an over determined PDE problem which subsequently is solved with the computer algebra package
Crack [33], [34].

In an earlier paper [35] three of the methods were discussed with emphasis put on the computer algebra
algorithms involved. In this paper we present an additional fourth method and compare these methods in
terms of complexity and functionality.

The rest of the paper is organized as follows. In section 2 a reminder on issues of the equivalence
of conservation laws will provide the motivation for the four approaches which are explained in section 3
followed by an overview. In section 4 related computer algebra programs are shortly described and examples
are given. Extensions of the basic usage of these programs are discussed in section 5. We start with comments
on the equivalence of conservation laws.
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2 The equivalence of conservation laws

We adopt the notation of the book of Olver [27] where the question of equivalence of conservation laws is
described in more detail in chapter 4.3. Independent variables will be denoted by x = (x1, x2, . . . , xp). The
differential equations are Δ(x, u(n)) = 0 (i.e. Δ1 = 0, . . . ,Δq = 0), for q functions u = (u1, u2, . . . , uq), u(n)

denoting u-derivatives of order up to n. We will use J as a multiple index denoting partial derivatives,
for example, uα

J will stand for an partial derivative of arbitrary order and DJ will denote multiple total
differentiations. The multiplicity of partial derivatives with respect to one variable can be indicated with a
number, for example, ∂(5)u/((∂t)2(∂x)3) = u2t3x.

The conservation law that is to be fulfilled by solutions of Δ = 0 is DivP = 0 with conserved current
P = (P 1, . . . , P p). This amounts to finding P i such that DivP = 0 modulo Δ = 0 and DJΔ = 0. To have
a way of counting conservation laws and of comparing them, they have to be put into an invariant form.
Two conservation laws DivP = 0 and Div P̃ = 0 are equivalent if 0 = Div(P − P̃ ) = DivR is a trivial
conservation law.

i) The first kind of triviality is the case that R = 0 for all solutions of Δ = 0, i.e. P and P̃ differ only by
multiples of Δ and DJΔ. A way to cure this equivalence is to solve the system Δ = 0 and its prolongations
DJΔ = 0 for certain derivatives uα

J and to substitute them in P . If the conservation laws are not yet
calculated but one wants to prevent the calculation of equivalent conservation laws then the equations Δ = 0
need not be solvable for some derivatives uJ . In that case one just drops the dependency of P on a leading
derivative of uJ and all derivatives of uJ from the beginning of the calculation.

ii) The second kind of triviality occurs if DivR = 0 for all functions u = f(x), i.e. if R is a curl. The way
to cure this kind of equivalence is to calculate characteristic functions Qν of a conservation law which are
called integrating factors in the case of ordinary differential equations (ODEs) in the following way.

DivP = 0 (mod Δν = 0, DJΔν = 0) (1)

⇐⇒ ∃QJ
ν : DivP =

∑
ν,J

QJ
νDJΔν (identically in all x, uα

J ) (2)

=
∑
ν,J

DJ(Q
J
νΔν)−DJ(Q

J
ν )Δν (repeatedly) (3)

= DivR+
∑
ν

QνΔν (4)

It is known ([27], p. 272) that for a totally non degenerate system Δ = 0, the equivalence class of conservation
laws DivP = 0 is determined uniquely by the characteristic functions Qν up to equivalence of type i). To
calculate the Qν one uses the fact that the Euler operators Eν =

∑
J (−D)J∂/∂u

ν
J acting on an expression

give identically zero iff this expression is a divergence, where the D are total derivatives. Conditions for the
Qν are therefore

∀ν : 0 = Eν

(∑
μ

QμΔμ

)
=
∑
J

(−D)J

(
∂

∂uν
J

∑
μ

QμΔμ

)
. (5)

On the space of solutions Δμ = 0 this gives

0 =
∑
μ,J

(−D)J

(
Qμ

∂Δμ

∂uν
J

)∣∣∣∣∣∣
Δμ=0

∀ν. (6)

Conditions (6) are known as adjoint symmetry conditions which are necessary but not sufficient for the Qμ

to be characteristic functions of first integrals.
iii) For any two conservation laws 0 = DivP and 0 = Div P̃ , 0 = Div(P + P̃ ) is also a conservation law.

By determining conservation laws with characteristic functions of successively increasing order, constant
multiples of characteristic functions of lower order can be dropped.
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iv) In the case of (systems of) ODEs the characteristic functions are called integrating factors, and P is
a scalar, called a first integral. Any arbitrary function of first integrals is a first integral as well.

The four approaches described in the following four sections are to solve conditions (1), (4) with R = 0,
(5) and (6).

3 The four approaches

3.1 A first approach

The first approach is to solve
DivP = 0 (mod Δν = 0, DJΔν = 0) (7)

directly.
The condition (7) is made over determined by restricting the P i to be differential expressions in the u of

some order k. Characteristic features of this approach are

(+) A single, short first order PDE is to be solved.

(0) Characteristic functions have to be computed from P in a straight forward calculation (described in
[35]). This is done within the computer algebra programConLaw1 which implements the first approach
as part of the whole computation.

(−) It would be computationally expensive for a corresponding computer program to drop free functions
which correspond to trivial conservation laws during the solution of (7)1. Hence, the condition (7)
has to be solved in full generality and trivial conservation laws have to be dropped afterwards. That
means that the task for the computer program is unnecessarily hard through the presence of the trivial
conservation laws in the general solution. A rule of thumb says that the difficulty in solving a linear
over determined PDE (system) depends less on the order or size of the PDE but more on the complexity
of the result2. That means the trivial conservation laws will complicate the solution of (7), the more
so the more independent variables are present.

(−) In most cases the expressions for the P i are more complicated than the expressions for the characteristic
functions Qμ which by the above rule of thumb indicates a more difficult computation than the solution
of equations involving only Qμ.

To illustrate and compare all four approaches we will apply each to finding conservation laws of the sin-Gordon
equation

utx − sin(u) = 0. (8)

If the program ConLaw1 is called to find conservation laws with conserved current P t, P x of order 0, then
it will reply that it is not applicable. This is because Div P would be of first order in u, so equation (8) could
not be used to substitute utx and therefore only trivial conservation laws would result.

Details of higher order investigations are given in table 1 below. u(n) stands for all derivatives of u of

order 0 to n. u
(n)

tx stands for all derivatives of utx up to order n, for example, u
(1)

tx would be the derivatives

utx, u2tx, ut2x. Finally, u(n)/u
(k)
tx stands for all derivatives of u up to order n apart from utx and all its

derivatives up to order k. The conservation laws are given in the appendix (in the table only the equation
number is referenced). For each conservation law in the appendix (apart from the first) there exists another
one resulting from the exchange t ↔ x.

1An algorithm for that is given in [35].
2For example, if an over determined PDE (system) has no solution then a differential Gröber Basis calculation will quickly

produce PDEs of lower and lower order until a contradiction is reached. On the other hand, if a PDE system has arbitrary
functions in its general solution (as is the case with the PDE (7)) then computing a differential Gröbner Basis will not produce
a system that is solvable by only integrating ODEs.
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The times given in the table are measured on a 266 MHz Pentium PC running a 80 MByte Reduce
3.6 session under Linux using the Sep. 1998 version of the program Crack for solving the over determined
conditions. The 80 MByte were not necessary. For example, it is possible (using ConLaw2 which implements

the 4th method described below) to investigate up to 4th order laws with 4 MByte and up to 7th order laws
with 8 MByte. To get this high in order with relatively low memory consumption, one has to give in Crack
the study of integrability conditions a higher priority than the integration of equations. The price is a higher
computing time. The times in the last column are to be understood only as very rough indicators3. They
depend sensitively on the order of priorities with which modules are to be used within the program Crack
(see the manual [33] and about its availability the end of the section 6).

When condition (7) is solved, the P i that are calculated initially do not contain utx nor its derivatives.
Only when the characteristic function Q is computed using (2)-(4) then utx is introduced through R in (4) .
Finally ConLaw1, returns the conservation law in the form (9) below, i.e. with P i and Q.

order no of independent functions to cons. time to
of P i terms variables, [no of var.] compute, [no of arg.] laws solve (7)

found

1 8 t, x, u(2)/utx, [7] P t, P x(t, x, u(1)), [5] (26),(27) 9 sec

2 12 t, x, u(3)/u
(1)
tx , [9] P t, P x(t, x, u(2)/utx), [7] (28) 38 sec

3 18 t, x, u(4)/u
(2)
tx , [11] P t, P x(t, x, u(3)/u

(1)
tx ), [9] none4 34 min

low

4 26 t, x, u(5)/u
(3)
tx , [13] P t, P x(t, x, u(4)/u

(2)
tx ), [11] memory

Table 1: The program ConLaw1 applied to compute conservation laws of the
sin-Gordon equation.

3.2 A second approach

The next approach consists in solving

DivP =
∑
ν

QνΔν (9)

directly, i.e. finding P i, Qμ that satisfy (9) identically in xi, uα
J . Equations Δ = DJΔ = 0 are not used for

substitutions in (9) but they are used to reduce dependencies of the Qμ.
The problem becomes over determined by restricting the order of the Qμ, i.e. Qμ = Qμ(x, u

(k)) for some
k and by taking Qμ mod Δ, DJΔ, i.e. having Qμ independent of one u-derivative (and their derivatives) from
each one of the equations Δν . If Qμ would be allowed to depend on all variables which occur in (9) then this
equation could simply be solved algebraically, by eliminating one of the Qμ. But that would mean division
through one Δμ and therefore Qμ being singular for solutions of Δμ = 0.

The second approach has the following characteristics:

3For example, the computing times reported in [35] are now (10 months later) reduced by a factor of more than ten for higher
orders.

4Crack was not able to solve all equations completely because the general solution of (7) involves free functions (related to
trivial conservation laws) which complicates the problem considerably for the computer program.
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(+) The conservation law condition (9) is a single first order PDE as in the first approach.

(+) By calculating characteristic functions and furthermore characteristic functions modulo Δ = 0, conser-
vation laws are uniquely characterized.

(+) The effort in formulating conditions is as low as in the first approach.

(+) The P i and Qμ are computed in one go.

(0) The number of functions to compute is higher than in the first approach and also the number of jet-
variables (derivatives of u) because no substitutions are done in (9). The resulting complication is not
too big as more variables means a higher over determination and simplification.

(−) If the order of Δ is n and the order of Qμ is chosen to be k then the order of P i at the start of the
computation has to be max(k, n) − 1. In this approach the investigations with k < n are not much
simpler than the case k = n. This matters when the order n of Δ and the number p of variables x
are high. Therefore this approach is not very efficient for low order conservation laws of high order
equations.

For example, for zeroth order conservation laws (k = 0) of the Kadomtsev-Petviashvili equation (16)
the P i are taken initially as functions of the 23 variables t, x, y, u, ut, ux, uy, utt, . . . , uyy, uttt, . . . , uyyy

and the conservation law condition (9) is a condition in 38 variables (including the 4th u-derivatives).
That is a much harder problem than the corresponding conditions (5),(6). For example, in this case

condition (5) is a single 4th order PDE in also 38 variables but for only one function Q of only four
variables!

(−) When looking for conservation laws with the first method, gradually increasing the order of the con-
served current P gives each conservation law in its lowest order form, i.e. a form where P is of minimal

order. This is not necessarily the case using the 2nd method. The transformation (4) adding R to P
may increase the order of P . This implies an increase of complexity having to go up in order to get the
equivalent conservation law. To give an example, the Tzetzeica equation uxt = eu − e−2u (analysed in
[30],[22]) has the conservation law

0 = Dt

[
3u 2

xxx − 5u 3
xx + 15u 3

xxu
2
x + u6

x

]
+

Dx

[−3eu
(
u 2
xx + 2uxxu

2
x + 2u4

x

)− 3e−2u
(
2u 2

xx − 8uxxu
2
x + u4

x

)]
with a third order conserved current. (In [22] an infinite list of conservation laws is given.) Bringing
the above conservation law to the form (9) as it would be found with the second method, it becomes

6
(
uxxxxx + 5uxxxuxx − 5uxxxu

2
x − 5u 2

xxux + u5
x

) (
utx − eu + e−2u

)
= Dt

[
3u 2

xxx − 5u 3
xx + 15u 2

xxu
2
x + u6

x

]
+

Dx 3
[
2utxuxxxx − 2utxxuxxx + 5utxu

2
xx − 10utxuxxu

2
x

+eu
(
2uxxxux − 2uxxxx − 6u 2

xx + 8uxxu
2
x − 2u4

x

)
+e−2u

(
2uxxxx + 4uxxxux + 3u 2

xx − 2uxxu
2
x − u4

x

)]
with a 4th order conserved current.

Applying the program ConLaw3 that corresponds to the above method to the sin-Gordon equation (8) gives
the following table.
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order no of independent functions to cons. time to
of Q terms variables, [no of var.] compute, [no of arg.] laws solve (9)

found

0 10 t, x, u(2), [8] P t, P x(t, x, u(1)), [5] none 3 sec
Q(t, x, u), [3]

1 10 t, x, u(2), [8] P t, P x, Q(t, x, u(1)), [5] (26),(27) 8.3 sec

2 10 t, x, u(2), [8] P t, P x(t, x, u(1)), [5] none 0.2 sec
Q(t, x, u(2)/utx), [7]

3 16 t, x, u(3), [12] P t, P x(t, x, u(2)), [8] low

Q(t, x, u(3)/u
(1)
tx ), [9] memory

Table 2: The program ConLaw3 applied to compute conservation laws of the
sin-Gordon equation.

3.3 A third approach

Instead of calculating the conserved current P i directly, the third approach is to calculate characteristic
functions Qμ first and from them P i afterwards using formulas of Anco & Bluman [2],[3],[5] in a form
described in [35] or using repeatedly the Crack routine for integrating exact DEs. The condition as derived
in [27],[2] is:

0 =
∑
J

(−D)J

(
∂

∂uν
J

∑
μ

QμΔμ

)
∀ν. (10)

Typical features are:

(+) Equations (10) are equivalent to (9) and therefore necessary and sufficient.

(+) The usually more complicated P i are eliminated and as in the 2nd method, no trivial conservation laws
are calculated which otherwise unnecessarily complicate the calculation.

(+) The highest u-derivatives in conditions (10) are of the order 2n where n is the order of the u-derivatives
in
∑

μ QμΔμ. The harder the problem, i.e. the higher n and the higher the number of variables, the
more u-derivatives occur only explicitly in (10) and can be used for a direct separation (splitting).
Higher over determination simplifies the solution of (10).

(−) Equations (10) consist of as many equations as there are dependent variables uμ and the unknown

functions Qμ appear with nth order derivatives.

(−) For an increasing order of the Qμ, number of uν and number of xi, the size of (10) can soon become
unmanageable.

Applying the program ConLaw4 that corresponds to the above method to the sin-Gordon equation (8) gives
the following table 3. The striking feature of this approach is the quick increase of the size of conditions.
Apart from the order 0 case they increase by a factor of about 7 which itself is increasing slightly with the
order. The size of conditions prevents going higher in the order. On the other hand, the completeness of
conditions generated simplifies the solution in difficult cases and speeds up the solution of the over determined
system as long as it is not too large from the beginning.
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order no of independent functions to cons. time to
terms variables, [no of var.] compute, [no of arg.] laws solve (10)

found h:min:sec

0 7 t, x, u(1), utx, [6] Q(t, x, u), [3] none 0.7 sec

1 22 t, x, u(2), [8] Q(t, x, u(1)), [5] (26) 2.8 sec

2 154 t, x, u(3), [17] Q(t, x, u(2)/utx), [7] none 4.7 sec

3 1116 t, x, u(4), [24] Q(t, x, u(3)/u
(1)
tx ), [9] (28) 5 min 17 sec

4 8402 t, x, u(5), [34] Q(t, x, u(4)/u
(2)
tx ), [11] none 10 h 49 min5

5 64064 t, x, u(6), [41] Q(t, x, u(5)/u
(3)
tx ), [13] - > 2 days

Table 3: The program ConLaw4 applied to compute conservation laws of the
sin-Gordon equation.

3.4 A fourth approach

Projecting conditions (10) into the solution space we obtain

0 =
∑
μ,J

(−D)J

(
Qμ

∂Δμ

∂uν
J

)∣∣∣∣∣∣
Δμ=0

∀ν. (11)

Characteristic features of this method are similar to those of the third method with the following modifica-
tions:

(+) The conditions usually involve fewer terms than in the third approach which can be decisive but as the
conditions (11) are not sufficient, they are less over determined and may be harder to solve than those
in the third approach.

(−) After computing the Qμ, it has to be checked whether P i exist that satisfy DivP =
∑

ν QνΔν

([2],[3],[4],[35]). If they do not exist then the Qμ correspond to an adjoined symmetry but not to
a conservation law.

(−) If the 4th method finds adjoined symmetries which are not conservation laws, then the question remains
unanswered whether there are linear combinations of the adjoined symmetries which are conservation

5This time was nearly completely spent to formulate the condition and to separate it into 823 individual equations for Q.

Then already the 3rd step gave that Q can not depend on 4th order derivatives.
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laws. For example, the program ConLaw2 applying the third method finds 5 first integrals for the
ODE y′′ + y = 0 with an integrating factor at most linear in y′:

cos(x)2y′ + cos(x) sin(x)y, 2 cos(x)2y − 2 cos(x)y′ sin(x)− y, cos(x), sin(x), y′,

whereas the program using the 4th method finds 4 such conservation laws with integrating factors

−2 cos(x)2y′ − 2 cos(x) sin(x)y + y′, cos(x), sin(x), y′

and 4 adjoint symmetries

cos(x)y′y + sin(x)y2, cos(x)y2 − y′ sin(x)y, − cos(x)2y + cos(x)y′ sin(x), y.

What becomes obvious is that the conditions of the 4th approach are not sufficient as they have 8

instead of 5 solutions, and also that the 4th approach can miss conservation laws. It did not see that
the fourth + 2 times the third adjoint symmetry do give a conservation law.

Applying the program ConLaw2 that corresponds to the above method to the sin-Gordon equation (8) gives
the following table. The typical feature of this approach is the slower increase of the size of conditions.
Apart from the order 0 case they increase by a factor of about 2 which itself is increasing slightly with the
order. Compared with the previous method the size of conditions grows slower which allows going higher
in the order. Because the conditions that are generated are only necessary, not sufficient, they are slightly
more difficult and expensive to solve. This causes longer running times for low order investigations. Time
limitations could be overcome to some extend by faster computers.
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order no of independent functions to cons. time to
of Q terms variables, [no of var.] compute, [no of arg.] laws solve (11)

found h:min:sec

0 6 t, x, u(1), [5] Q(t, x, u), [3] none 1 sec

1 21 t, x, u(2)/utx, [7] Q(t, x, u(1)), [5] (26) 4.3 sec

2 45 t, x, u(3)/u
(1)
tx , [9] Q(t, x, u(2)/utx), [7] none 12 sec

3 99 t, x, u(4)/u
(2)
tx , [11] Q(t, x, u(3)/u

(1)
tx ), [9] (28) 50 sec

4 202 t, x, u(5)/u
(3)
tx , [13] Q(t, x, u(4)/u

(2)
tx ), [11] none 2 min 43 sec

5 435 t, x, u(6)/u
(4)
tx , [15] Q(t, x, u(5)/u

(3)
tx ), [13] (29) 16 min 10 sec

6 870 t, x, u(7)/u
(5)
tx , [17] Q(t, x, u(6)/u

(4)
tx ), [15] none 49 min 20 sec

7 1836 t, x, u(8)/u
(6)
tx , [19] Q(t, x, u(7)/u

(5)
tx ), [17] (30) 8 h

8 3643 t, x, u(9)/u
(7)
tx , [21] Q(t, x, u(8)/u

(6)
tx ), [19] none 5 h 22 min

9 7434 t, x, u(10)/u
(8)
tx , [23] Q(t, x, u(9)/u

(7)
tx ), [21] (31) 25 h

Table 4: The program ConLaw2 applied to compute conservation laws of the
sin-Gordon equation.

3.5 Overview

Arranging the methods as in the table below one can compare rows I,II and columns A,B.

A B

I Div P |Δμ=0 = 0 0 =
∑

μ,J(−D)J

(
Qμ

∂Δμ

∂uν
J

)∣∣∣
Δμ=0

∀ν

II Div P =
∑

ν QνΔν 0 =
∑

J (−D)J

(
∂

∂uν
J

∑
μ QμΔμ

)
∀ν

9



Table 5: The four approaches arranged in a table.

I-II: The conditions in row I are to be solved in the space of solutions (|Δμ=0), in row II they are not. This
means that methods of row I can not be applied if equations or constraints Δμ = 0 can not be solved for a
leading derivative but methods of row II can. Due to these substitutions the conditions in row I have fewer
terms and involve fewer jet-variables (derivatives of u) than conditions in row II. The complexity of conditions
and the number of conservation laws up to some order obtained in row I depend on whether Δμ = 0 is used
to substitute lower order u-derivatives by higher ones or higher ones by lower ones. There are two reasons
for this.

1) Substitutions based on 0 = Δ in Q may give extra restrictions for Q. For example, determining Q of
conservation laws for the Korteweg de Vries equation 0 = Δ = ut − uxxx − uux and restricting Q to be of

2nd order, then a substitution ut = uxxx + uux would imply Q = Q(t, x, u, ux, uxx), whereas a substitution
uxxx = ut − uux would not restrict Q.

2) If a lower u-derivative is substituted by higher ones using 0 = Δ in the conservation law conditions in
row I then such substitutions may increase the order of u-derivatives in which the conservation law conditions
have to be satisfied identically. By that the desired effect of lowering the number of u-derivatives in which
the conditions have to be fulfilled identically is lost. For example, condition IB for Δ = utt − u 2

xxt is

0 = Qtt+2(Quxxt)xxt which includes up to 6th order u-derivatives (if Q is not of higher than 3rd order). By
substituting utt = u 2

xxt the order would increase to seven.
Hence, substituting lower order u-derivatives by higher order u-derivatives gives more over determined

conditions for a less general ansatz. Such conditions are easier to solve, which may allow higher orders of Q
to be investigated. However, one then may miss conservation laws of some order in P or Q.

These aspects are not an issue in row II as no substitutions are made there.
A-B: In column A the single first order conservation law condition itself is to be solved, and in column B
the integrability conditions of column A, which result when the conserved current P is eliminated are to be
solved. Conditions in column B involve as many equations as there are functions uμ and they are of the
same order as the highest derivatives of uμ in Δμ = 0. Conditions in column B are more straight forward to
solve, they can be separated with respect to many high order jet-variables and yield highly over determined
systems. The disadvantage of methods in column B is that already their formulation may exceed available
computational resources. Another potential problem with using methods in column B is the following. If
linear PDEs remain unsolved like the heat equation when investigating the Burgers equation (14) then the
program will usually not be able to compute P from the Qμ. A way out is to use methods IB or IIB to get
Qμ and to use that as input to get P from method IIA.

Differences between the approaches are amplified with problems that involve an increasing number of
PDEs and an increasing number of independent variables.

4 The computer algebra programs

The names of computer algebra programs for the four approaches are: IA: ConLaw1,IB: ConLaw2, IIA:
ConLaw3, IIB: ConLaw4. They and the program Crack for solving the over determined conditions are
written in the computer algebra system REDUCE. Algorithms for extracting conservation laws from the
general solution of the over determined system and for computing Q from P and P from Q are described in
[35].

Compared to other computer algebra programs, the package Crack has a wide variety of techniques
for solving over determined PDE-systems. This allows the following new features as compared with other
computer programs, a list of which and a short description is given in [13]:

• In all four computer programs P as well as Q are computed.
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• By solving systems of over determined differential equations it is possible to find conservation laws with
non-polynomial, even non-rational P,Q.

• If memory requirements are not too high then the program will make a definite statement about the
existence of conservation laws of a given order. In the majority of these cases the program will find the
explicit form of the conservation law, otherwise it will return unsolved equations.

• It is possible to find conservation laws with an explicit dependence of P,Q on the independent variables.

• There is no limit on the number of DEs nor the number of independent variables to be investigated for
conservation laws other than a limit through the complexity of computations. Although not demon-
strated in this paper, the program is able to handle ordinary differential equations (ODEs) as well.

• It is possible to determine values of parameters in the DE such that conservation laws exist.

• For each of the four programs ConLaw1..4 an ansatz for P i and/or Qμ can be input to specify
conservation laws to be calculated.

The recently published program of Göktaş and Hereman [9] makes a polynomial ansatz for conservation
laws and finds the coefficients in this ansatz by solving a linear algebraic system of equations. Compared with
that, the programs ConLaw1..4 are able to find more general conservation laws and to make a definitive
statement in case the order is not too high to complete the computations. On the other hand, the program
of Göktaş and Hereman was recently extended to handle differential-difference systems [10],[11],[12].

Before showing examples which highlight the special abilities of ConLaw1..4 a comment to the treatment
of ODEs shall be made. Although all methods and programs are applicable equally well to ODEs, the form
of the ansatz for the integrating factor or for the first integral to be made will usually be different. An nth
order ODE has always first integrals of order n − 1 and any arbitrary function of first integrals is a first
integral as well. In order to obtain an over determined system of conditions, the ansatz for a conservation
law must not contain functions of all variables x, y, y′, . . . , y(n−1) but, for example, a polynomial in y(n−1)

with arbitrary functions of x, y, y′, . . . , y(n−2) as coefficients or any other combination of functions of less than
n+ 1 variables, see also [5] for more details.

Further examples:
Example:

The Ito equations for two functions u = u(t, x), v = v(t, x) read [16]

ut = uxxx + 6uux + 2vvx

vt = 2(uv)x.

Conserved densities P t for the first 7 conservation laws calculated by the corresponding program ConLaw1
which in turn calls Crack to solve condition (7), are

u, v, u2 + v2, u2
x − 2u3 − 2uv2, (4uv2 − v2x)/v

3,

u 2
xx − 10uu 2

x − 4vvxux + 5u4 + 6u2v2 + v4, ((2vvxx − 4uv2 − 3v 2
x )

2 + 16v6)/v7

(P x is not shown due to its length). Somewhat surprisingly 2 of the 7 conservation laws have a non-polynomial
expression for P t and as far as the author knows therefore have not been known so far.

Example:
The following equations [17] describe low - frequency Alfvén waves propagating parallel to an external mag-
netic field in a relativistic electron-positron plasma [31]. Typical for them is the symmetry with respect to
interchanging the two functions u = u(t, x), v = v(t, x) due to the same charge-to-mass ratio for both kinds
of particles. The equations are

Δ1 = ut + rx = 0, with r = u(u2 + v2) + uxx,

Δ2 = vt + sx = 0, with s = v(u2 + v2) + vxx. (12)
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The equations themselves have the form of conservation laws. We find the following additional ones:

4uΔ1 + 4vΔ2 = Dt[2(u
2 + v2)] +

Dx[4uuxx − 2u 2
x + 4vvxx − 2v 2

x + 3(u2 + v2)2]

4rΔ1 + 4sΔ2 = Dt[(u
2 + v2)2 − 2u 2

x − 2v 2
x ] +

Dx

[
4utux + 4vtvx + 2u 2

xx + 2v 2
xx + 4(u2 + v2)×(

(3(u2 + v2)t− x)(uut + vvt) + uuxx + vvxx
)]

4(xu− 3tr)Δ1 + 4(xv − 3ts)Δ2 =

Dt

[
3t(
(
2u 2

x + 2v 2
x − (u2 + v2)2

)
+ 2x(u2 + v2)

]
+

Dx2
[
(uut + vvt)

(−x2 + (u2 + v2)
(
6tx− 9t2(u2 + v2)

))
−3t(u2 + v2)3 + 3x(u2 + v2)2 + 2x(uuxx + vvxx)− 3tr2

−3ts2 − 2uux − 2vvx − xu 2
x − xv 2

x − 6tutux − 6tvtvx
]

Whereas the first two are known [31], the last one shows an explicit x, t-dependence and is new. Further

investigation provides that no conservation laws exist with the characteristic functions Qμ of 3rd or 4th order
(if ut, vt are substituted due to (12)).

Example:
The following equation of Gibbons and Tsarev [8]

0 = zxx + zyzxy − zxzyy + 1 (13)

is unusual in that it has already 5 conservation laws of first order. Characteristic functions contain x, y
explicitly. Up to first order they are:

1, zy, 3z2y + 2zx + 3x, 2z3y + 3zxzy + 4zyx+ y,

10z4y + 6z2x + 24zxz
2
y + 20zxx+ 30z2yx+ 12zyy + 2z + 15x2,

3z5y + 6z2xzy + 10zxz
3
y + 18zxzyx+ 4zxy + 12z3yx+ 6z2yy + 12zyx

2 + 2zyz + 6xy.

Example:
The Liouville equation for a function u = u(x, y) reads

Δ = uxy − eu.

Conservation laws of order zero found by ConLaw2 are

(fx + fux)Δ = Dx(−euf) +Dy(fxux + fu 2
x/2), f = f(x) arbitrary

(gy + guy)Δ = Dy(−eug) +Dx(gyuy + gu 2
y /2), g = g(y) arbitrary.

Because the ansatz made is investigated in full generality, any free functions in the conservation law will be
found if the conditions can be solved completely by Crack. Otherwise the remaining conditions are returned
as in the following example.

Example:
The Burgers equation in the form

Δ = ut − uxx − 1

2
u 2
x = 0, u = u(t, x) (14)

has zeroth order conservation laws

feu/2Δ = Dt(2fe
u/2) +Dx(e

u/2(2fx − fux)) (15)
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with f = f(t, x) satisfying the linear reverse heat equation 0 = ft + fxx.
6

The occurrence of free functions in the conservation law indicates linearizability of Δ = 0, which is the
case for both previous examples. The following example involves more than 2 variables.

Example:
The Kadomtsev-Petviashvili equation for u = u(t, x, y) with the abbreviation

w = ut + 2uux + uxxx

is
0 = Δ = wx − uyy. (16)

Its zeroth order conservation laws include an arbitrary function c = c(t):

cΔ = Dx(cw) +Dy(−cuy) (17)

cyΔ = Dx(cyw) +Dy(cu− cyuy) (18)

(2cx+ cty
2)Δ = Dt(−2cu) +

Dx

(
(2cx+ cty

2)w − 2cuxx − 2cu2
)
+ (19)

Dy

(−(2cx+ cty
2)uy + 2ctuy

)
(6cxy + cty

3)Δ = Dt(−6cyu) +

Dx

(
(6cxy + cty

3)w − 6cyuxx − 6cyu2
)
+ (20)

Dy

(−(6cxy + cty
3)uy + 3ctuy

2 + 6cxu
)
.

It is somewhat remarkable that although equation (16) does not involve ut but only uxt nevertheless the
conserved density P t in the last two conservation laws involves u and not ux.

In the following section we give examples for an extension of our method to compute non-local conservation
laws and report on the possibility to determine parameters in the equation such that conservation laws exist.

5 Extending applicability

5.1 Non-local conservation laws

The implementations of the four methods have a common limitation: the characteristic functions Q and the
conserved current P must depend functionally only on a finite number of derivatives of the u. No dependencies
on integrals are possible. The same restriction is usually made when generators of Lie-symmetries are
determined for differential equations. Whereas this restriction is less severe when calculating symmetries
of PDEs, it is a serious restriction for the determination of conservation laws. To give an example, the
Burgers equation in the form

Δ = ut − uxx − uux = 0, u = u(t, x) (21)

has as low order conservation law only the trivial one Dtu − Dx(ux + u2/2) = 0. In order to include
dependencies on

∫
u dx one could set u = vx for some function v(x, t) and investigate conservation laws

depending on derivatives of v and also v itself. For the Burgers equation such a substitution alone is not
enough. In addition one has to realize that (21) can be integrated with respect to x to f(t)t = vt − vxx − v 2

x

for some function f = f(t). Renaming v − f → u gives (14) and its conservation laws (15).
To give a further example, we consider the Boussinesq equation describing surface water waves whose

horizontal scale is much larger than the depth of the water [1],[14]

utt − uxx + 3uuxx + 3u 2
x + αuxxxx = 0. (22)

6Although already used in [2], [35] this example is shown again as it also serves to demonstrate an extension to non-local
conservation laws in section 5.
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Calculating conservation laws, using (22) to substitute uxxxx, the only characteristic functions Q up to 4th

order are 1, x, t, xt. On the other hand, substituting u = vx, integrating (22) with respect to x and renaming
v − f → v gives

vtt − vxx + 3vxvxx + αvxxxx = 0 (23)

having 2 conservation laws with characteristic functions 1, t which x-differentiated give the conservation laws
above with characteristic functions 1, t. In addition two new conservation laws with characteristic functions
vx, vt result. Repeating this step again: v = wx, x-integration of (23), w − f → w gives

wtt − wxx + 3/2w 2
xx + αwxxxx = 0 (24)

with three third order conservation laws. Two of them have characteristic functions wxxx, wxxt which corre-
spond to the above conservation laws with characteristic functions vx, vt. In addition one extra conservation
law with Q = wtxx − wtxxwxx + wtxwxxx − 2

3wttt exists.
A third example is the Kadomtsev-Petviashvili equation already discussed above7. After a substitution

u = vx, x-integration of (16) and v − f → v the equation is

0 = [vt + v3x + v 2
x ]x − v2y.

Apart from conservation laws equivalent to (17),(18) three new conservation laws result with characteristic
functions

−c2ty
2 − 2ctx+ 4cvx

−c3ty
3 − 6c2txy + 12ctyvx + 24cvy,

−c4ty
4 − 12c3txy

2 + 24c2ty
2vx − 12c2tx

2 + 48ctxvx + 96ctyvy + 48ctv + 144cvt.

Conserved currents are omitted due to their length. Repeating this transformation again does not yield
conservation laws with characteristic functions of order less than three.

The purpose of this paragraph was to show that even if computer algebra programs ConLaw, Crack
do only allow the investigation of local conservation laws depending on a finite number of derivatives of the
unknown functions, we still may be able to enlarge the range of search by a contact transformation and
integration of the PDE.

In the next section we extend the computation of conservation laws to the computation of parameters
such that conservation laws exist.

5.2 Differential equations with parameters

In applications it is common that the DEs contain parameters and usually it would be desirable to know
conservation laws which are valid for all possible values of these parameters. But as the example below shows,
often conservation laws exist only for special values of parameters. Even if these parameter values are not of
interest from the application side of view, the conservation laws valid for these values can at least be used,
for example, to test numerical code. Another purpose for determining parameters together with conservation
laws could be to find integrable equations from a more general class of equations.

The problem to determine parameters such that conservation laws exist is potentially much harder than
determining conservation laws which are valid for any values of these parameters. This is because the
problem becomes non-linear. Expressions may become unmanageably large and many sub cases may have
to be considered. To use ConLaw1..4 for such calculations one only has to specify in its call the names of
parameters to be computed (more details in the ConLaw manual).

Example:
The 5’th order Korteweg - de Vries equation

ut + αu2ux + βuxu2x + γuu3x + u5x = 0 (25)

7The hint to try KP for this extension was given by Alan Fordy.
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with constant parameters α, β, γ includes well known special cases [7], [9], [15], [19], [28]: for α = 30, β =
20, γ = 10 the Lax equation [20], for α = 5, β = 5, γ = 5 an equation due to Sawata, Kotera [29] and Dodd and
Gibbon [6], for α = 20, β = 25, γ = 10 an equation due to Kaup [18] and Kupershmidt, for α = 2, β = 6, γ = 3
an equation due to Ito [16].

The following zeroth and first order conservation laws are calculated with ConLaw1 (omitting P x due
to its length in the last two of these conservation laws):

• Q = 1, P t = u

• α = β = γ = 0 : As (25) becomes linear, a conservation law is obtained with a characteristic function
Q = Q(x, t) satisfying the adjoint PDE Qt +Q5x = 0 with P t = Qu.

• α = 0, γ = β/3 : Q = x2, P t = x2u

• α = 0, γ = β/3 : Q = x, P t = xu

• γ = β/2 : Q = 2u, P t = u2

• α = 1
10 (−2β2 + 7βγ − 3γ2) :

Q = 60uxxt(β − 3γ) + 6u2t(2β2 − 7βγ + 3γ2) + 60x
P t = 30u2

xt(−β + 3γ) + u3t(4β2 − 14βγ + 6γ2) + 60ux

• α = 1
10 (−2β2 + 7βγ − 3γ2) :

Q = 30uxx + 3u2(2β − γ),
P t = −15u2

x + u3(2β − γ)

We find the same conservation laws as found by the program of Göktaş and Hereman and in addition a few
conservation laws with explicit x, t-dependence.

6 Summary

Four approaches to find conservation laws have been compared with respect to their complexity and other
characteristic features.

In a number of examples, conservation laws have been given, some of them new, which show that the
programs ConLaw1..4 and Crack can be used to find local, not necessarily polynomial, conservation laws
with explicit variable dependence and free functions. The programs are, in principle, applicable to problems
with arbitrarily many equations, functions and variables.

The programs including a manual and a test file are available via ftp from
ftp.maths.qmw.ac.uk, directory pub/tw. A demo web page which allows the use of ConLaw for problems
of restricted size, is accessible from
http://cathode.maths.qmw.ac.uk/demos.html. The package will be submitted to the REDUCE network
library.
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8 Appendix:
Conservation Laws of the sin-Gordon equation

In this appendix conservation laws for the sin-Gordon equation

utx − sin(u) = 0

are shown as they have been computed by ConLaw1-4 and as they are refered to in tables above. They are
not new, we provide them only to illustrate computer results. Except for the first conservation law, for all
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the following there is an additional conservation law due to the x ↔ t symmetry. These results are further
examples of the ability of the programs to compute non-polynomial conservation laws.

2(tut − xux)(utx − sin(u)) = Dt

[
2 cos(u)t− u2

xx
]
+Dx

[−2 cos(u)x+ u2
t t
]

(26)

2ut(utx − sin(u)) = Dt [2 cos(u)] +Dx

[
u2
t

]
(27)

(8u3t + 4u3
t )(utx − sin(u)) = Dt

[
4 cos(u)u2

t + 8utxu2t − 8u2t sin(u)
]
+Dx

[−4u2
2t + u4

t

]
(28)

2(−8u5t − 20u3tu
2
t − 20u2

2tut − 3u5
t )(utx − sin(u)) (29)

= Dt2
[−8 cos(u)u3tut + 4 cos(u)u2

2t − 3 cos(u)u4
t − 8utxu4t − 20utxu2tu

2
t

+8u4t sin(u) + 8u3tu2tx + 12u2tu
2
t sin(u)

]
+ Dx

[−8u2
3t + 20u2

2tu
2
t − u6

t

]

8(−16u7t − 56u5tu
2
t − 224u4tu2tut − 168u2

3tut − 280u3tu
2
2t − 70u3tu

4
t − 140u2

2tu
3
t − 5u7

t )

×(utx − sin(u)) (30)

= Dt8
[
16u6t sin(u)− 16utxu6t − 16 cos(u)u5tut + 16 cos(u)u4tu2t − 8 cos(u)u2

3t

−40 cos(u)u3tu
3
t − 20 cos(u)u2

2tu
2
t − 5 cos(u)u6

t − 56utxu4tu
2
t − 112utxu3tu2tut

−56utxu
3
2t − 70utxu2tu

4
t + 16u5tu2tx − 16u4tu3tx + 40u4tu

2
t sin(u) + 56u3tu2txu

2
t

+160u3tu2tut sin(u) + 40u3
2t sin(u) + 30u2tu

4
t sin(u)

]
+ Dx

[
64u2

4t − 224u2
3tu

2
t + 112u4

2t + 280u2
2tu

4
t − 5u8

t

]

2(−128u9t − 576u7tu
2
t − 3456u6tu2tut − 7296u5tu3tut − 6720u5tu

2
2t − 1008u5tu

4
t

−4416u2
4tut − 24192u4tu3tu2t − 8064u4tu2tu

3
t − 5824u3

3t − 6048u2
3tu

3
t − 24864u3tu

2
2tu

2
t

−840u3tu
6
t − 6384u4

2tut − 2520u2
2tu

5
t − 35u9

t )

×(utx − sin(u)) (31)

= Dt2
[
128u8t sin(u)− 128 cos(u)u7tut + 128 cos(u)u6tu2t − 128 cos(u)u5tu3t + 64 cos(u)u2

4t

−448 cos(u)u5tu
3
t − 1344 cos(u)u4tu2tu

2
t − 1568 cos(u)u2

3tu
2
t − 1344 cos(u)u3tu

2
2tut

−560 cos(u)u3tu
5
t + 336 cos(u)u4

2t − 840 cos(u)u2
2tu

4
t − 35 cos(u)u8

t − 1008ut,xu4tu
4
t

−576ut,xu6tu
2
t − 2304ut,xu5tu2tut − 4992ut,xu4tu3tut − 4416ut,xu4tu

2
2t − 128ut,xu8t

−5184ut,xu
2
3tu2t − 4032ut,xu3tu2tu

3
t − 4256ut,xu

3
2tu

2
t − 840ut,xu2tu

6
t + 128u7tu2t,x

−128u6tu3t,x + 448u6tu
2
t sin(u) + 128u5tu4t,x + 576u5tu2t,xu

2
t + 2688u5tu2tut sin(u)

−576u4tu3t,xu
2
t + 4480u4tu3tut sin(u) + 1152u4tu2t,xu2tut + 4032u4tu

2
2t sin(u)

+560u4tu
4
t sin(u) + 1920u2

3tu2t,xut + 5824u2
3tu2t sin(u) + 3264u3tu2t,xu

2
2t

+1008u3tu2t,xu
4
t + 4480u3tu2tu

3
t sin(u) + 3360u3

2tu
2
t sin(u) + 280u2tu

6
t sin(u)

]
+ Dx

[−128u2
5t + 576u2

4tu
2
t − 1280u3

3tut − 3264u2
3tu

2
2t − 1008u2

3tu
4
t + 2128u4

2tu
2
t

+840u2
2tu

6
t − 7u10

t

]
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