
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ALEXANDER MARTIN

Integer Programs with Block Structure

Preprint SC 99-03 (Februar 1999)

Alexander Martin

Integer

Programs

with

B l o c k S t r u c t u r e

Habilitationsschrift

Technische Universität Berlin

Juni 1998 (überarbeitet Februar 1999)

Acknowledgments

At this point I would like to thank some people who accompanied my way to this
thesis during the last six years.

First of all, my special thanks go to Martin Grötschel who provided me with
a very nice working atmosphere at ZIB. He gave me all the freedom for my own
research and still supplied me with all his support. I am also very grateful to Bob
Bixby. We became friends over the last years. He was the one who understood
my needs and desires during the most difficult days and helped me to follow the
right path. I also cannot thank Robert Weismantel enough for his collaboration and
friendship. We had lots of lively discussions on various research and non-research
topics that pushed me in the right direction.

In particular, I would like to thank all my coauthors for a wonderful cooperation
and their permission to use our joint work here. Chapter 2 is joint work with
Carlos Ferreira and Robert Weismantel and is published in Ferreira, Martin, and
Weismantel [1996]. The contents of Chapter 3 is a summary of papers together with
Martin Grötschel and Robert Weismantel (see Grötschel, Martin, and Weismantel
[1995], and [1996a, 1996b, 1996c, 1996d, 1997]). Chapter 4 is joint work with
Geir Dahl and Mechthild Stoer and is published in Dahl, Martin, and Stoer [1995].
Chapter 5 is partially together with Robert Weismantel, in particular Section 5.4
that appeared as a preprint (see Martin and Weismantel [1997]). Chapter 6 is
jointly with Ralf Borndörfer and Carlos Ferreira and is published in Borndörfer,
Ferreira, and Martin [1998]. Finally, Chapter 7 is joint work with Bob Bixby, see
Bixby and Martin [1995], and Chapter 8 with Robert Weismantel, see Martin and
Weismantel [1998]. To all these people, to my colleagues and friends Ralf Borndörfer
and Andreas Löbel, and to our secretaries Bettina Kasse und Sybille Mattrisch I
express my deepest thanks for their support, for reading, criticism, and all the
inspiring discussions on various topics of this thesis.

I gratefully acknowledge the support of the Konrad-Zuse-Zentrum für Infor-
mationstechnik Berlin, the support by the German Academic Exchange Service
(DAAD) within the project PROBRAL, the support by Telenor Research, Norway,
and by the Center for Research on Parallel Computing (CRPC), Houston, Texas.

Last, but not least my warmest thanks are to my wife Gabriele. She constantly
took care of all my needs and gave me all the support I needed. She and our daughter
Alina build the home from which I drew the mental power for my profession. Thank
you, Gabi, I dedicate this thesis to you.

Berlin, June 1998 Alexander Martin

i

Contents

1 Introduction 1

I Real-World Models with Block Structure 3

2 The Multiple Knapsack Problem 7
2.1 Introduction . 7
2.2 The Multiple Knapsack Polytope: Some Observations 10
2.3 The 0/1 Knapsack Polytope . 11
2.4 Joint Inequalities . 13

2.4.1 The Multiple Cover Inequality 13
2.4.2 Extension of Facet-defining Inequalities 14

2.5 Algorithmic Aspects . 16
2.5.1 Separation Algorithms . 16
2.5.2 Primal Heuristics . 18
2.5.3 Further Issues . 18

2.6 Computational Results . 19

3 The Steiner Tree Packing Problem 25
3.1 Introduction . 25
3.2 The Steiner Tree Packing Polyhedron: Basic Results 30
3.3 Joint Inequalities . 33

3.3.1 Alternating Cycle Inequalities 33
3.3.2 Grid Inequalities . 36
3.3.3 Critical Cut Inequalities . 38

3.4 Algorithmic Aspects . 38
3.4.1 Separation Algorithms . 38
3.4.2 A Primal Heuristic . 41
3.4.3 Further Issues . 43

3.5 Computational Results . 45

4 A Multicommodity Flow Problem 53
4.1 Introduction . 53
4.2 Mathematical Model . 54
4.3 Polyhedral Properties . 57

4.3.1 Knapsack Inequalities . 57
4.3.2 Strengthened Cut Inequalities 58
4.3.3 Hypomatchable Inequalities 59

4.4 Algorithmic Aspects . 62
4.4.1 Separation Algorithms . 62
4.4.2 The Primal Heuristic . 64

4.5 Computational Results . 64

iii

iv CONTENTS

II General Integer Programs: Recognizing and Exploiting
Block Structure 69

5 Solving General Mixed Integer Programs 73
5.1 Preprocessing . 74
5.2 Branch-and-Bound Strategies . 83

5.2.1 Node Selection . 83
5.2.2 Variable Selection . 84

5.3 Cutting Planes from the Literature 89
5.4 Mixed Integer Weight Inequalities 98

5.4.1 The Family of Mixed Integer Weight Inequalities 99
5.4.2 A Family of Mixed Integer Knapsack Polyhedra 101
5.4.3 Experiments with Mixed Integer Weight Inequalities 102

6 Recognizing Block Structure 105
6.1 Introduction . 105
6.2 Integer Programming Formulation 108
6.3 Polyhedral Investigations . 110

6.3.1 Block-Discernible Inequalities 111
6.3.2 Block-Invariant Inequalities 113

6.4 Algorithmic Aspects . 119
6.4.1 Separation and LP-Management 119
6.4.2 Primal Heuristics . 124
6.4.3 Problem Reduction . 125
6.4.4 Further Issues . 126

6.5 Computational Results . 126
6.5.1 The Miplib Problems . 127
6.5.2 Steiner Tree Packing Problems 133

7 Parallelizing the Dual Simplex Method 135
7.1 Introduction . 135
7.2 Dual Simplex Algorithms . 136
7.3 Outline of the Data Distributed Implementation 140
7.4 An Implementation Using PVM . 142
7.5 A Shared Memory Implementation 145
7.6 An Implementation Using PowerC 148

8 The Intersection of Knapsack Polyhedra 157
8.1 Feasible Set Inequalities . 157
8.2 Bounds on the Lifting Coefficients 159
8.3 Connection to Chvátal-Gomory Cuts 162
8.4 Consecutively Intersecting Knapsacks 164
8.5 Separating Feasible Set Inequalities 167
8.6 Computational Results . 173

9 Conclusions 175

A Notation 177

B Branch-and-Cut Algorithms 181

C Lifting 185

D Problem Data 187

List of Figures

2.1 Non-zero structure of a multiple knapsack integer program 8

3.1 Non-zero structure of a Steiner tree packing integer program 27
3.2 A switchbox routing problem . 29
3.3 A knock-knee . 30
3.4 Dimensions of Steiner tree packing polyhedra 31
3.5 Illustration of an alternating cycle inequality 33
3.6 Illustration of a 3× 2 grid inequality 36
3.7 Illustration of a 5× 2 grid inequality in a complete graph 37
3.8 Illustration of a critical cut inequality 38
3.9 Separation of Steiner partition inequalities 39
3.10 Deletion of preassigned edges . 46

4.1 Non-zero structure of a PIPE integer program 56

6.1 Decomposing a matrix into bordered block diagonal form. 107

7.1 Speed up of Shared memory version: All problems 147
7.2 Speed up of Shared memory version: “aa”-problems 148
7.3 Speed-up of PowerC version: All problems 153
7.4 Avg. speed-up of PowerC version: All problems 153
7.5 Speed-up of PowerC version: “aa”-problems 154
7.6 Avg. speed-up of PowerC version: “aa”-problems 154

v

vi LIST OF FIGURES

List of Tables

2.1 Reduced cost fixings for some multiple knapsack instances. 19
2.2 Design of main frame computers: Problem data 19
2.3 Results for problems from the design of mainframe computers 19
2.4 Results for reduced examples from the design of main frame computer 20
2.5 Layout of electronic circuits: Problem data 21
2.6 Results for problems arising in the layout of electronic circuits 21
2.7 Results for different reductions of problem example cl2 21
2.8 Sugar cane alcohol production: Problem data 22
2.9 Results for problems from sugar cane alcohol production 22
2.10 Impact of individual and joint inequalities on random examples . . . 22

3.1 Progress by using special Steiner partition inequalities 44
3.2 Switchbox routing problems: Data 45
3.3 Results for the knock-knee model . 47
3.4 Added cutting planes for the knock-knee model 47
3.5 Results for the knock-knee model without joint inequalites 48
3.6 Results for the Manhattan model . 50
3.7 Comparing the knock-knee and Manhattan model 50
3.8 Best solutions for the Manhattan model 51

4.1 Pipe selection and routing problems: Data 65
4.2 Results when installation of express pipes is for free 66
4.3 Results when installation costs for express pipes are low 67
4.4 Results when installation costs for express pipes are significant . . . 67
4.5 Results when installation costs for express pipes are high 67

5.1 SIP with default parameter settings 75
5.2 CPLEX with default parameter settings 76
5.3 Presolve statistics for Miplib-problems 82
5.4 SIP using best first search . 85
5.5 SIP using depth first search . 86
5.6 SIP using best projection . 87
5.7 SIP when branching on most infeasible variable 90
5.8 SIP when branching on variables by exploiting pseudo costs 91
5.9 SIP using strong branching . 92
5.10 SIP with extended weight inequalities 96
5.11 SIP without extended weight inequalities 96
5.12 SIP with GUB knapsack inequalities 98
5.13 SIP without GUB knapsack inequalities 98
5.14 SIP with mixed integer weight inequalities 103
5.15 SIP without mixed integer weight inequalities 104

6.1 Decomposing Miplib-problems into 2 blocks (Part I) 128

vii

viii LIST OF TABLES

6.2 Decomposing Miplib-problems into 2 blocks (Part II) 129
6.3 Decomposing Miplib-problems into 4 blocks (Part I) 131
6.4 Decomposing Miplib-problems into 4 blocks (Part II) 132
6.5 Steiner tree packing problems: Data 133
6.6 Decomposition of Steiner tree packing matrices (Part I) 133
6.7 Decomposition of Steiner tree packing matrices (Part II) 134

7.1 CPLEX profiles for some LP problems 140
7.2 Diagram of Algorithm 7.3.1 . 142
7.3 Netlib results on a local area network 143
7.4 Larger models on a local area network 144
7.5 Larger models on a SUN S20-502 . 144
7.6 Larger models on an SP2 . 144
7.7 Large airline models on an SP2 using all 8 nodes. 145
7.8 Shared memory version on a SUN S20-502 146
7.9 Shared memory version on a 75 Mhz Silicon Graphics R8000 149
7.10 PowerC run times on 1 to 4 processors 155

8.1 SIP without feasible set inequalities 174
8.2 SIP with feasible set inequalities . 174

D.1 Problem statistics for Netlib LP problems. 188
D.2 Problem statistics for Netlib LP problems. 189
D.3 Problem statistics for non-Netlib LP problems. 190
D.4 Problem statistics for Miplib-problems 191

Chapter 1

Introduction

The study and solution of linear integer programs lies in the heart of discrete op-
timization. Many different kinds of problems in science, technology, business, and
society can be modeled as linear integer programming problems. It is not in the
least surprising that there is no unique method that solves all integer programming
problems. Among the most successful methods are currently LP based branch-and-
bound algorithms where the underlying linear programs (LPs) are possibly strength-
ened by cutting planes. For example, most commercial integer programming solvers
or special purpose codes for problems like the traveling salesman problem are based
on this method.

In this thesis we study and solve integer programs with block structure, i. e.,
problems that after the removal of certain rows (or columns) of the constraint
matrix decompose into independent subproblems. The matrices associated with
each subproblem are called blocks and the rows (columns) to be removed linking
constraints (columns). Integer programs with block structure come up in a natural
way in many real-world applications. The blocks often model certain objects or
decisions in a division of a company, in a technical unit, or in a time period. These
individual blocks are linked by a couple of constraints that model the fact that the
objects must share certain resources or that model possible interactions between the
decisions that cover the whole company, technical process, or time horizon. Just
to name some concrete examples, the applications range from vehicle scheduling,
see Löbel [1997], over problems in telecommunication, see Section 4, to stochastic
integer programming, see Stougie and van der Vlerk [1997] or Carøe, Ruszczyński,
and Schultz [1997] for a recent application.

The methods that are widely used to tackle integer programs with block struc-
ture are decomposition methods. The idea is to decouple the linking constraints
(variables) from the problem and treat them at a superordinate level, often called
master problem. The resulting residual subordinate problem then decomposes into
independent subproblems that often can be solved more efficiently. Decomposition
methods now work alternately on the master and subordinate problem and itera-
tively exchange information to solve the original problem to optimality. Two well
known examples of this approach are Dantzig-Wolfe decomposition (Dantzig and
Wolfe [1960]) and Benders decomposition (Benders [1962]). Soumis [1997] gives a
survey on different decomposition methods for linear and integer programs. We re-
mark that decomposition methods are not only used to solve integer programs. They
also play a prominent role in combinatorial optimization, for example in the solu-
tion of certain graph theoretic problems (see, for instance, Robertson and Seymour
[1990]) or of problems in connection with matroids (see, for instance, Truemper
[1992]).

In Part I we follow a different approach. We treat the integer programming prob-

1

2 CHAPTER 1. INTRODUCTION

lem as a whole and keep the linking constraints in the formulation. We consider the
associated polyhedra and investigate the polyhedral consequences of the involved
linking constraints. The variety and complexity of the new inequalities that come
into play is illustrated on three different types of real-world problems. The applica-
tions arise in the design of electronic circuits, in telecommunication and production
planning. We develop a branch-and-cut algorithm for each of these problems, and
our computational results show the benefits and limits of the polyhedral approach
to solve these real-world models with block structure.

Part II of the thesis deals with general mixed integer programming problems,
that is integer programs with no apparent structure in the constraint matrix. We
will discuss in Chapter 5 the main ingredients of an LP based branch-and-bound
algorithm for the solution of general integer programs. Chapter 6 then asks the
question whether general integer programs decompose into certain block structures
and investigate whether it is possible to recognize such a structure. The remaining
two chapters exploit information about the block structure of an integer program.
In Chapter 7 we parallelize parts of the dual simplex algorithm, the method that is
commonly used for the solution of the underlying linear programs within a branch-
and-cut algorithm. In Chapter 8 we try to detect small blocks in the constraint
matrix and to derive new cutting planes that strengthen the integer programming
formulation. These inequalities may be associated with the intersection of several
knapsack problems. We will see that they significantly improve the quality of the
general integer programming solver introduced in Chapter 5.

Part I

Real-World Models with
Block Structure

3

5

In the first part of this thesis we discuss three different real-world applications
whose mathematical formulations give rise to integer programs with block struc-
ture. With these integer programs are associated certain polyhedra and our main
focus will be the study of these polyhedra. In particular, we address the following
questions:

Do the inequalities associated with the individual polyhedra, i. e., the polyhedra
resulting from the single blocks, yield strong or even facet-defining inequalities for
the packing polyhedron, i. e., the polyhedron corresponding to the original problem?
What kind of new inequalities, inequalities that join/combine individual blocks,
come into play? Are these joint inequalities tractable in the sense that they can
be efficiently separated? Are these inequalities helpful within a branch-and-cut
algorithm to solve practical problem instances?

It would be bold to claim that we can give answers to these questions for any
integer program with block structure. What we want to do however is to (partially)
answer these questions for three particular models arising from real-world problems.
We will see that the associated integer programs inherit well known structures that
play an important role in polyhedral combinatorics: the knapsack problem and the
set packing, -partitioning, and -covering problem.

In the first application we will discuss, the multiple knapsack problem, the blocks
consist of knapsack problems and the linking constraints are set packing and set
partitioning inequalities, respectively. The second model, the Steiner tree packing
problem, has also set packing constraints in the linking part, whereas the blocks
turn out to be of set covering type. The third is somehow a combination of the first
two models, the blocks consist of set covering constraints and the linking constraints
are knapsack inequalities which in turn are linked by set packing constraints.

The real-world applications that lead to these integer programming models range
from the design of electronic circuits and super computers, over production planning
problems to network design problems in telecommunication.

The outline of the forthcoming three chapters is as follows: In the introductory
sections we outline the applications that give rise to the particular integer programs
with block structure and present the mathematical formulations. We then present
briefly some basic results of the associated polyhedra followed by a discussion of the
individual inequalities, i. e., the inequalities resulting from the individual blocks .
The main section in each chapter is devoted to joint inequalities, inequalities that
combine the individual blocks. Finally, we summarize our computational experi-
ences with a branch-and-cut algorithm that are based on the described inequalities.
We will point out various difficulties that arise when turning these inequalities into
an algorithmic tool and show what problem sizes are solvable with such an approach.

We will not present all the details in each of these sections/chapters. We refrain
in particular from giving all the sometimes long and very technical proofs. Details
hereto may be found in the cited literature. We rather want to emphasize the
difficulties that come up in trying to understand the associated packing polyhedra,
and give an impression to what extent this understanding might help in solving
practical problems.

6

Chapter 2

The Multiple Knapsack
Problem

2.1 Introduction

In this chapter we study integer programs with block structure where the blocks
result from knapsack problems and the linking constraints are of set packing type.
We will encounter the knapsack problem and its associated polytope in different
sections of this thesis, see, beyond this chapter, Sections 4.3.1 and 5.4 or Chapter 8.
Here, we discuss a canonical generalization of the (single) knapsack problem, where
instead of just one knapsack a set M of knapsacks is available to which a given set
of items can be assigned to. This problem, called the (weighted) multiple knapsack
problems, is defined as follows: Given a set N of items with weights fi > 0, i ∈ N ,
a set M of knapsacks with capacities Fk > 0, k ∈ M , and an objective function
cik, i ∈ N, k ∈ M , which reflects the profit if item i is assigned to knapsack k. The
task is to find an assignment of a subset of the set of items to the set of knapsacks
that yields maximum profit.

We denote by MKw (N,M, f, F, c) an instance of the weighted multiple knapsack
problem, i. e., a set N of items, a set M of knapsacks, a weight vector f = (fi)i∈N ,
a capacity vector F = (Fk)k∈M , and an objective function c ∈ RN×M . We intro-
duce variables x ∈ RN×M with the interpretation xik = 1 if item i is assigned to
knapsack k and xik = 0 otherwise. The weighted multiple knapsack problem can
be formulated as the following integer program.

max
∑
i∈N

∑
k∈M

cikxik

(i)
∑
i∈N

fixik ≤ Fk, for all k ∈ M ;

(ii)
∑
k∈M

xik ≤ 1, for all i ∈ N ;

(iii) 0 ≤ xik ≤ 1, for all i ∈ N, k ∈ M ;

(iv) xik ∈ {0, 1}, for all i ∈ N, k ∈ M.

(2.1)

The constraints (2.1) (i) are called knapsack inequalities, the constraints (2.1) (ii)
SOS (Special Ordered Set) inequalities, and those in (2.1) (iii) trivial inequalities.
Figure 2.1 illustrates the structure of the constraint matrix of (2.1).

The multiple knapsack polytope PMK (N ×M, f, F) is defined as the convex hull

7

8 CHAPTER 2. THE MULTIPLE KNAPSACK PROBLEM

k k k k k k

k k k k k k

k k k k k k

p p p

p p p

p p p

p p p

p p p

p p p

Figure 2.1: Structure of the multiple knapsack integer program with |M | = 3 and
|N | = 6: The letter ’k’ shows a non-zero entry in a knapsack constraint, the letter
’p’ indicates a non-zero entry in an SOS constraint, which is a special set packing
constraint.

of all feasible solutions of the multiple knapsack problem that is

PMK (N ×M, f, F)= conv{x ∈ RN×M : x satisfies (2.1) (i)− (iv)}.(2.2)

Before investigating the multiple knapsack polytope in detail, let us point out
the applications that motivated the study of this polytope. The problems we have in
mind arise in three different applications, namely in the layout of electronic circuits,
in the design of processors for main frame computers and in the sugar cane alcohol
production in Brazil.

The first problem arises in the (global) design of a main frame computer. We are
given a set of electronic components, whose size is typically between 200 and 1000.
The most important property of the electronic circuits – for our purposes – is the
area that these components cover. The electronic components have to be integrated
on printed circuit boards, multi chip modules or other devices. Each of these devices
(whose number is usually between 5 and 10) is defined by several technical properties
that we do not intend to describe here. Two properties of devices are important for
us. Every device k has a capacity Fk, representing its “area” or the weight it can
hold and a cut capacity Sk, describing the number of wires that can be connected
to this device. The electronic components have certain contact points, called pins,
from which wires can extend to pins of other components. In the logical design
phase it is determined which pins of which components have to be connected by a
wire to ensure certain functional properties. It is customary to call a collection of
pins that have to be connected a net.

The task is to assign the electronic components to the devices in such a way that
a certain objective function is minimized and a number of technical side constraints
are satisfied. Among them are two essential requirements.

• For each device k the sum of the areas of the electronic components that are
assigned to this device must not exceed the capacity Fk.

• The number of nets that must leave some device k must not exceed its cut
capacity Sk.

The mathematical problem that arises by thoroughly modeling all (or at least
the most important) aspects of this question is a rather complicated integer pro-
gram. The full model appears to be hopelessly difficult – at least for the present
state of integer programming technology. Thus, we investigated a hierarchy of
combinatorial relaxations of the complete model. A first relaxation of the general
model is the multiple knapsack problem, where we neglect the nets completely and
concentrate on the packing aspect of the problem. In knapsack terminology, the

2.1. INTRODUCTION 9

items correspond to the electronic components and the devices to the knapsacks.
An appropriate objective function for the multiple knapsack problem is determined
heuristically. For more details we refer the reader to Ferreira, Grötschel, Kiefl,
Krispenz, Martin, and Weismantel [1993].

The second application we have in mind arises in the layout of electronic circuits.
Here, one major subproblem (the so-called placement problem) is to assign a set of
logical units (cells) to locations on a given rectangle (silicon) subject to certain tech-
nical side constraints, see also the somewhat more detailed description on page 27.
In general, cells are of rectangular shape and have a particular weight representing
their area. Due to the inherent complexity of the placement problem and its large
scale (typically up to several thousands of cells have to be assigned), it is further
decomposed in practice. In a first step, the given rectangle is subdivided and it is
determined which cells are assigned to which of the subareas such that the total
weight of the cells that are assigned to the same subarea does not exceed the corre-
sponding area capacity. This process of iteratively subdividing areas and assigning
cells to subareas is continued until every subarea contains at most one cell. If we
interpret cells as items and subareas as knapsacks, we can associate with every prob-
lem arising in this decomposition scheme a multiple knapsack problem. In fact, the
multiple knapsack problem does not reflect the complete situation, since – besides
the area requirements – there are many additional side constraints which are to be
taken into account and a complicated objective function must be minimized which
strongly depends on the underlying fabrication technology. Nevertheless, solving
the corresponding multiple knapsack problems seems to be a reasonable starting
point to attack the much more complicated placement problems.

The third application arises in the sugar cane alcohol production in Brazil. Since
the late 70’s, sugar cane alcohol has been used in Brazil as fuel for cars and plays
an important role in Brazilian agriculture. Farmers sell their sugar cane to alcohol
producers. The producers themselves collect the sugar cane from the farmers and
deliver it to one of their factories. Each plantation i produces a certain amount fi
of sugar cane, and each factory k is able to treat a maximum amount Fk of sugar
cane. The problem, from the side of the alcohol producer, is now to decide which
plantation production to deliver to which factory such that the capacity constraints
are satisfied and the transportation cost is minimized. The transportation cost of
delivering the production of plantation i to factory k is proportional to the produc-
tion of the plantation and the distance between the plantation and the factory. We
obtained two real data instances of this problem. In both instances the plantations
must be distributed to 4 factories. In the first instance there are 450 plantations
while in the second one are 370.

In detail, the chapter is organized as follows. In Section 2.2 we report on some
basic results for the multiple knapsack polytope and related polyhedra. Section
2.3 is devoted to the 0/1 knapsack polytope, i. e., the special case of the multiple
knapsack problem where |M | = 1. In Section 2.4 we describe joint inequalities,
inequalities that combine at least two knapsacks. Section 2.5 is devoted to separa-
tion algorithms for the described classes of inequalities and to our primal heuristics.
Further implementation issues are also discussed in this section. We have tested our
branch-and-cut algorithm on instances arising in the applications mentioned above.
The computational results we obtained are shown in Section 2.6.

Other work on the multiple knapsack problem includes the following. The multi-
ple knapsack problem and especially the single knapsack problem have been exten-
sively treated in the literature from an algorithmic point of view, see the excellent
book of Martello and Toth [1990]. However, the multiple knapsack polytope PMK

and generalizations of it have not been studied to the same extent. In a few papers

10 CHAPTER 2. THE MULTIPLE KNAPSACK PROBLEM

we find investigations in this direction. Gottlieb and Rao [1990a], [1990b] study the
generalized assignment problem, a generalization of the multiple knapsack problem,
where every item i may have a particular weight fik for each knapsack k. They
present some new classes of inequalities for the associated polytope P and show
that the non-trivial facet-defining inequalities from the 0/1 knapsack polytope are
facet-defining for P as well. Also related is the work by Crowder, Johnson, and Pad-
berg [1983] who solve general 0/1 linear programs via a cutting plane algorithm,
where they interpret each row of the constraint matrix as a knapsack problem and
use single knapsack inequalities to strengthen the LP relaxation. This approach is
very common to solve general integer programs, see Chapter 5 for more details.

2.2 The Multiple Knapsack Polytope: Some Ob-

servations

Let an instance MKw (N,M, f, F, c) of the weighted multiple knapsack problem be
given. For the study of the multiple knapsack polytope PMK (N ×M, f, F) we may
neglect the objective function c and denote from now on an instance of the multiple
knapsack problem by MK (N,M, f, F), where the prefix “weighted” is omitted.

It will turn out that we often refer to subinstances of the problem where certain
items are not feasible for certain knapsacks. Thus, we define the polyhedron in
a more general framework. For T ⊆ N × M , let A := {i ∈ N : there exists a
knapsack k ∈ M with (i, k) ∈ T } and B := {k ∈ M : there exists an item i such
that (i, k) ∈ T }. We define the multiple knapsack polytope by

PMK (T, f, F) := conv{x ∈ {0, 1}T :
∑

i:(i,k)∈T

fixik ≤ Fk, k ∈ B,∑
k:(i,k)∈T

xik ≤ 1, i ∈ A}.(2.3)

The polytope corresponding to the multiple knapsack problem defined in Section
2.1 coincides with PMK (N × M, f, F), which we often abbreviate by PMK. It is
easy to see that PMK is full dimensional if and only if fi ≤ Fk for all i ∈ N and
k ∈ M . Similarly, the dimension of the polytope PMK (T, f, F) equals |T | if and
only if fi ≤ Fk for all (i, k) ∈ T . In the following we assume that fi ≤ Fk for all
(i, k) ∈ T . The trivial inequalities xik ≥ 0 define facets of PMK for all i ∈ N, k ∈ M .
In case m ≥ 2, the SOS constraints define facets of PMK as well.

The multiple knapsack problem is a generalization of the (single) 0/1 knapsack
problem, where |M | = 1. That is, we are given some knapsack of capacity F ∈ N
and a set N of items, each having some weight fi ∈ N and some profit ci ∈ R. The
problem is to find a subset of items whose total weight fits into the knapsack and
that maximizes the total profit. In analogy to the definitions of MKw,MK, and
PMK, we denote by K (N, f, F) and Kw (N, f, F, c), respectively, an instance of the
(weighted) knapsack problem, and by

PK (N, f, F) := conv{x ∈ {0, 1}N :
∑
i∈N

fixi ≤ F}(2.4)

the knapsack polytope.

Obviously, PK (N, f, Fk) yields a relaxation of PMK (N × M, f, F) for every
k ∈ M , and hence the question arises whether knowledge about these individual
knapsack polyhedra can be used to describe the corresponding multiple knapsack
polytope. Indeed, the answer to this question is yes. All non-trivial facet-defining

2.3. THE 0/1 KNAPSACK POLYTOPE 11

inequalities associated with the single knapsack polytopes are inherited by PMK

(cf. Gottlieb and Rao [1990a]). More precisely, let V ⊆ N and k ∈ M and suppose
aTx ≤ α is a non-trivial facet-defining inequality of PK (V, f, Fk), then aTx ≤ α
defines a facet of PMK (V ×M, f, F), where a ∈ RV ×M with ail := ai if l = k and
ail := 0 otherwise, for i ∈ V .

We call a valid inequality aTx ≤ α for PMK (N ×M, f, F) individual if there is
some k ∈ M such that ail = 0 for all l ∈ M \ {k}. Otherwise, we call the inequality
joint. In the following we deal with the single knapsack polytope PK (N, f, F).

2.3 The 0�1 Knapsack Polytope

Consider an instance K (N, f, F) of the knapsack problem, i. e., a set N = {1, . . . , n}
of items with weights fi, i ∈ N, and a capacity F , and the polytope PK (N, f, F)
as defined in (2.4). In this section we summarize results known for 0/1 knapsack
polytope PK (N, f, F).

The knapsack polytope PK (N, f, F) is full dimensional if and only if fi ≤ F for
all i ∈ N , which we assume in the following. If there exists a subset S ⊆ N and an
element s ∈ S such that

∑
i∈S fi > F and

∑
i∈S\{s} fi < F , then the polyhedron

{x ∈ [0, 1]N : fTx ≤ F} is not integral. If fi = 1 for all i ∈ N , then the polyhedron
{x ∈ [0, 1]N : fTx ≤ F} is integral. The trivial inequalities xi ≥ 0 define facets
of the knapsack polytope. Every facet-defining inequality aTx ≤ α that is not a
positive multiple of the trivial inequalities xi ≥ 0 satisfies a ≥ 0 and α > 0.

A set S ⊆ N is a cover if its weight exceeds the capacity, i. e., if
∑

i∈S fi > F .
With the cover S one can associate the cover inequality∑

i∈S

xi ≤ |S| − 1

that is valid for the knapsack polyhedron PK (N, f, F). If the cover is minimal, i. e.,
if
∑

i∈S\{s} fi ≤ F for all s ∈ S, the inequality is called minimal cover inequality

(with respect to S).
In Balas [1975], Padberg [1975], Hammer, Johnson, and Peled [1975], andWolsey

[1975] it was shown that the minimal cover inequality defines a facet of PK (S, f, F).
Laurent and Sassano [1992] showed that n minimal cover inequalities suffice to de-
scribe the knapsack polytope if the vector f = (f1, . . . , fn) is weakly superdecreas-
ing, i. e., if

∑
i≥q fi ≤ fq−1, for all q = 2, . . . , n

Another well-known class of individual inequalities are (1, k)-configuration in-
equalities that were introduced by Padberg [1980]. A (1, k)-configuration consists of
an independent set S, i. e., a set S such that

∑
i∈S fi ≤ F , plus one additional item

z such that every subset of S of cardinality k, together with z, forms a minimal
cover. A (1, k)-configuration S ∪ {z} gives rise to the inequality∑

i∈S

xi + (|S| − k + 1)xz ≤ |S|,

which is called (1, k)-configuration inequality (with respect to S∪{z}). Note that a
minimal cover S is a (1, |S|− 1)-configuration, and vice versa, a (1, k)-configuration
inequality (with respect to S ∪ {z}) that satisfies k = |S| is a minimal cover. In
Padberg [1980] it was shown that the (1, k)-configuration inequality defines a facet
of PK (S∪{z}, f, F). Padberg also proved that if the set N of items defines a (1, k)-
configuration, then the convex hull of the associated knapsack polyhedron is given
by the trivial inequalities and the set of all (1, l)-configuration inequalities defined
by T ⊆ N \ {z}, where T ∪ {z} is a (1, l)-configuration for some l ≤ k.

12 CHAPTER 2. THE MULTIPLE KNAPSACK PROBLEM

Inequalities derived from both covers and (1, k)-configurations are special cases
of extended weight inequalities that have been introduced by Weismantel [1997].

Consider a subset T ⊆ N with f(T) < F and let r := F − f(T). The inequality∑
i∈T

fixi +
∑

i∈N\T
(fi − r)+xi ≤ f(T).(2.5)

is called weight inequality with respect to T . The name weight inequality reflects
that the coefficients of the items in T equal their original weights and the number
r := F − f(T) corresponds to the residual capacity of the knapsack when xi = 1
for all i ∈ T .

Weight inequalities are needed to describe the knapsack polyhedron when the
weights of all items are equal to 1 or greater than F/2. Indeed in this case, the
weight inequalities together with the trivial inequalities, the original knapsack in-
equality and the (lifted) minimal cover inequality

∑
i∈N :fi≥�F

2 �+1 xi ≤ 1 describe

the knapsack polytope completely.

There is a natural way to extend weight inequalities by (i) replacing the original
weights of the items by relative weights and (ii) resorting to the method of sequential
lifting, see Appendix C. To introduce this extension we need the following definition.

Let T ⊆ N such that f(T) ≤ F . For every v ∈ N, the covering number of v
associated with T denoted by φ(v) and defined as

φ(v) := min{|S| : S ⊆ T, f(S) ≥ v}.(2.6)

The covering number of the sum of two numbers plus one is an upper bound
for the sum of the covering number of the single numbers, i. e., for v, w ∈ N with
v + w ≤ f(T), the relation φ(v + w) + 1 ≥ φ(v) + φ(w) holds.

We will prove this statement in a more general setting in Lemma 8.2.3. The
relation will be used later to bound the coefficients of the extended weight inequality,
which is defined as follows.

Let T ⊆ N , f(T) ≤ F , define r := F −f(T) and denote by S the subset of N \T
such that fi ≥ r for all i ∈ S. The (uniform) extended weight inequality associated
with T and the permutation π1, . . . π|S| of the set S is of the form∑

i∈T

xi +
∑
i∈S

wixi ≤ |T |,(2.7)

where wπ1 = φ(fπ1 − r), and, for i = 2, . . . , |S|, wπi is the exact lifting coeffi-
cient obtained by applying Algorithm C.2 from Appendix C, i. e., wπi = |T | −
max{∑j∈T∪{π1,... ,πi−1} wjzj : z ∈ PK (T ∪ {π1, . . . , πi−1}, fT∪{π1,... ,πi−1}, F − fπi).

Extended weight inequalities subsume the family of minimal cover and (1, k)-
configuration inequalities, since for some (1, k)-configuration S ∪ {z} we have wz =
φ(fz − r) = |S| − k + 1. Extended weight as well as weight inequalities are valid
for the knapsack polytope, see Weismantel [1997]. As the definition of an extended
weight inequality requires the solution of an integer program for each item not in the
starting set T , it is important to have bounds on the lifting coefficients. Weismantel
showed that

φ(fi − r)− 1 ≤ wi ≤ φ(fi − r),(2.8)

which also follows from Proposition 8.2.2 (b) and Theorem 8.2.4. The algorithmic
use of this relation is that one can derive sufficient and easy to verify conditions
under which the lifting coefficient wi can be set to the upper bound φ(fi − r). We
will exploit such a condition in the development of our separation algorithm for
extended weight inequalities that we discuss in Section 5.3. Moreover, Weismantel

2.4. JOINT INEQUALITIES 13

[1997] generalizes uniform extended weight inequalities to inequalities with arbitrary
weights in the starting set T . For further references on the 0/1 knapsack polytope,
see Aardal and Weismantel [1997].

2.4 Joint Inequalities

Besides individual inequalities there are classes of joint inequalities that are valid
for the multiple knapsack polytope. In this section we present some of the joint
inequalities we have found for the multiple knapsack polytope. These inequalities
will be used in our cutting plane algorithm for solving practical problem instances.
We refer the reader interested in further (facet-defining) inequalities to Ferreira,
Martin, and Weismantel [1996] and Ferreira [1994]. In addition to the notation in
Appendix A we denote by eik the unit vector in the vector space RN×M and define,
for a vector x′ ∈ {0, 1}N×M and some knapsack k ∈ M , Bk(x

′) := {i ∈ N : x′
ik =

1}.

2.4.1 The Multiple Cover Inequality

In Wolsey [1990] it was observed that, given sets S ⊆ N and J ⊆ M with f(S) >
F (J), the inequality ∑

j∈J

∑
i∈S

xij ≤ |S| − 1

is valid for the polytope PMK. If |J | ≥ 2 a set of items S with the property
f(S) > F (J) is called a multiple cover (with respect to J) and the corresponding
inequality multiple cover inequality. A set of items S is called a minimal multiple
cover (with respect to J), if f(S) > F (J) and, for all s ∈ S, there exists a valid
assignment of all items in S \ {s} to the knapsacks in J .

One can easily convince oneself that the multiple cover inequality does not always
define a facet of PMK. Thus, the question arises what are (necessary and sufficient)
conditions under which the multiple cover inequality defines a facet. We have
investigated this question and it turns out that, in general, these conditions are
rather complicated and involve many (probably) unavoidable technicalities. We do
not present the details here. However, the conditions simplify if we consider the
special case of the multiple knapsack problem where the knapsack capacity values
are all equal.

Theorem 2.4.1 Let MK (N,M, f, F) be an instance of the multiple knapsack prob-
lem where Fk = Fl for all k, l ∈ M . Let S ⊆ N be a minimal multiple cover for
some J ⊆ M . Then, the multiple cover inequality∑

i∈S

∑
j∈J

xij ≤ |S| − 1

defines a facet of PMK (S × J, f, F) if and only if there exists an item i ∈ S and a
valid assignment x′ of the items in S\{i} to the knapsacks in J such that |Bk(x

′)| �=
|Bl(x

′)| for some k, l ∈ J, k �= l.

Proof. We first prove that the condition is sufficient. Set a :=
∑

i∈S

∑
j∈J eij

and α := |S| − 1. The inequality aTx ≤ α is clearly valid. Let us prove that
it defines a facet of PMK (S × J, f, F). Suppose that bTx ≤ β defines a facet of
PMK (S × J, f, F) such that EQ (aTx ≤ α) ⊆ EQ(bTx ≤ β). Let i0 be an index
such that fi0 = min{fi : i ∈ S} and let x1 denote a valid assignment of the items

14 CHAPTER 2. THE MULTIPLE KNAPSACK PROBLEM

in S \ {i0} to the knapsacks in J . Obviously, x1 is in EQ(aTx ≤ α). Also, notice
that for all k ∈ J and i ∈ Bk(x

1), the vector x1 − eik + ei0k is an element of
EQ (aTx ≤ α). Thus, bTx1 = bT (x1 − eik + ei0k), yielding bik = bi0k. Moreover,
since the capacities of the knapsacks are all equal, we can exchange the items of
every pair of knapsacks and repeat the same arguments as above. Summing up, we
conclude that, for every k ∈ J , there exists a constant ck such that bik = ck for all
i ∈ S.

In order to prove that ck = cl for k �= l, k, l ∈ J , let i ∈ S be an item and let x′

denote a valid assignment of the items in S \ {i} to the knapsacks in J such that
|Bk(x

′)| �= |Bl(x
′)| for some k, l ∈ J, k �= l as required in the condition. Since all

knapsacks have the same capacity, we can construct a valid assignment x′′ = (x′′
ij)

via:

x′′
ij :=

⎧⎨⎩
x′
il, for all i ∈ S, j = k,

x′
ik, for all i ∈ S, j = l,

x′
ij , otherwise.

Clearly, x′ and x′′ belong to the face EQ (aTx ≤ α). Thus, bTx′ = bTx′′, yielding

|Bk(x
′)|ck + |Bl(x

′)|cl = |Bk(x
′)|cl + |Bl(x

′)|ck.

This implies ck = cl. Due to the uniform knapsack capacities, we can apply this
construction for all other knapsacks and, finally obtain that bTx ≤ β and aTx ≤ α
are equal up to multiplication with a scalar, which completes the first part of the
proof.

It remains to be shown that the condition is necessary. Suppose it is not satisfied,
i. e., for all x ∈ EQ(aTx ≤ α) and k, l ∈ J, k �= l, |Bk(x)| = |Bl(x)| holds. In this

case, all x ∈ EQ(aTx ≤ α) satisfy the equation
∑

i∈S xik = |S|−1
|J| , for all k ∈ J .

Thus, the inequality cannot be facet-defining.

2.4.2 Extension of Facet-defining Inequalities

In this subsection we present a general procedure that allows the extension of partic-
ular classes of inequalities. As we will see this procedure can be iteratively applied
starting, for instance, from a minimal or multiple cover inequality. This way we
obtain many new valid and facet-defining inequalities.

Theorem 2.4.2 Let an instance MK (N,M, f, F) of the multiple knapsack problem
be given, sets A ⊆ N , B ⊆ M and an inequality aT y ≤ α that is facet-defining for
PMK (A×B, f, F) and that satisfies the following additional requirement:

(�) For all Ã ⊆ A with |Ã| ≥ 2 the following holds: every assignment y ∈
PMK (A×B, f, F) with yik = 0 for all i ∈ Ã, k ∈ B, satisfies aT y ≤ α−|Ã|+1.

We choose a positive integer r ≤ min{|N\A|, |M\B|}, non-empty sets T1, . . . , Tr

that are mutually disjoint subsets of N \ A, and a subset {k1, . . . , kr} of M \ B.
Let us further define βv := max{|G| : G ⊆ Tv, f(G) ≤ Fkv}, v = 1, . . . , r. Then, the
inequality

aTx+
r∑

v=1

∑
i∈A∪Tv

xikv ≤ α+
r∑

v=1

βv(2.9)

is valid for the polytope PMK (A × B ∪ ⋃r
v=1((Tv ∪ A) × {kv}), f, F) if and only

if T̃v ∪ {i} is a cover with respect to kv for all i ∈ A, T̃v ⊆ Tv, |T̃v| = βv and
v = 1, . . . , r.

2.4. JOINT INEQUALITIES 15

Proof. For the ease of notation let us refer to inequality (2.9) by bTx ≤ β and set
Q := A×B.

We first prove that the condition is necessary. Suppose, there exists an index
v ∈ {1, . . . , r}, an item i0 ∈ A and a set T̃v ⊆ Tv, |T̃v| = βv such that T̃v ∪ {i0}
is not a cover with respect to kv. Let T̃w ⊆ Tw, w ∈ {1, . . . , r} \ {v}, |T̃w| = βw,
f(T̃w) ≤ Fkw .

There exists an assignment y′ ∈ EQ(PMK (Q, f, F), aT y ≤ α) with y′i0k =

0 for all k ∈ B, because aT y ≤ α defines a facet. Set x′ = (x′
ik) via:

x′
ik :=

⎧⎪⎪⎨⎪⎪⎩
y′ik, for all (i, k) ∈ Q,

1, for all i ∈ T̃w, k = kw, w ∈ {1, . . . , r} \ {v},
1, for all i ∈ T̃v, k = kv,
0, otherwise.

Since T̃v ∪ {i0} does not define a cover with respect to knapsack kv, x
′ + ei0kv is

a valid assignment yielding bT (x′ + ei0kv) = aT y′ +
∑

w∈{1,... ,r}\{v} βw + βv + 1 >

α+
∑r

v=1 βv. This implies that the condition is necessary, indeed.
In order to prove the converse direction, let us assume that the inequality is

not valid for the polytope PMK (Q ∪⋃r
v=1(Tv ∪ A) × {kv}, f, F), i. e., there exists

an assignment x ∈ PMK (Q ∪ ⋃r
v=1((Tv ∪ A) × {kv}), f, F) with bTx > β. Set

T̃v := {i ∈ Tv : xikv = 1} and Av := {i ∈ A : xikv = 1}, v = 1, . . . , r. Since the
inequality aT y ≤ α holds for all y ∈ PMK (Q, f, F), there exists some v ∈ {1, . . . , r}
satisfying |Av ∪ T̃v| > βv. Let V ⊆ {1, . . . , r} denote the subset of knapsacks with
|Av ∪ T̃v| > βv for all v ∈ V . Due to the condition, every subset of Tv of cardinality
βv and one element from A defines a cover with respect to kv (v ∈ V). This implies
that |T̃v| ≤ βv − 1, thus forcing Av to be greater or equal than two, which holds for
all v ∈ V . Moreover, Av ∩ Aw = ∅ for all v, w ∈ V, v �= w. Summing up, due to
requirement (�) we obtain

bTx ≤ α−
∑
v∈V

|Av|+ 1 +
∑

v∈{1,... ,r}\V
βv +

∑
v∈V

(|T̃v|+ |Av|)

≤ α−
∑
v∈V

|Av|+ 1 +
∑

v∈{1,... ,r}\V
βv +

∑
v∈V

(βv + |Av|)− |V |

= β + 1− |V | ≤ β.

This contradicts the assumption that x is a point violating the inequality. Thus,
the inequality is valid, which completes the proof.

If we strengthen the requirements and conditions of Theorem 2.4.2, the extended
inequality will also be facet-defining. The subsequent theorem (which we give with-
out a proof) states necessary and sufficient conditions for the extended inequality
to be facet-defining.

Theorem 2.4.3 We assume the same assumptions as in Theorem 2.4.2. In addi-
tion, we require that Tv ∪ {i} is a minimal cover with respect to knapsack kv for all
i ∈ A and v = 1, . . . , r. Then, the inequality

(2.4.3) aTx+

r∑
v=1

∑
i∈A∪Tv

xikv ≤ α+

r∑
v=1

|Tv|

defines a facet for PMK (A×B∪⋃r
v=1(Tv ∪A)×{kv}, f, F) if and only if, for every

v ∈ {1, . . . , r}, there exist a subset Ã ⊆ A with |Ã| ≥ 2, an item tv ∈ Tv, and an
assignment y ∈ PMK (A×B, f, F) such that aT y = α−|Ã|+1, yik = 0 for all i ∈ Ã,
k ∈ B and f(Tv \ {tv}) + f(Ã) ≤ Fkv .

16 CHAPTER 2. THE MULTIPLE KNAPSACK PROBLEM

The two theorems can easily be generalized by using instead of A × B any ar-
bitrary “starting sets” T ⊆ N × M . At first sight, the requirement (�) seems to
be quite restrictive, but it turns out that many inequalities satisfy this condition.
For example, the minimal cover and multiple cover inequality are such inequalities.
Moreover, when we apply Theorem 2.4.3 to the minimal cover or multiple cover
inequality, respectively, the resulting extended inequality still satisfies requirement
(∗). Thus, a repeated extension in the “spirit” of Theorem 2.4.3 is possible. More-
over, one can convince oneself that, for example, the r-fold repetition of this “ex-
tension procedure” (i. e., at each time we extend the original inequality by one set
of items Tv and one knapsack kv) leads to an inequality which is different from
the one obtained by a simultaneous extension with sets T1, . . . , Tr and knapsacks
k1, . . . , kr is applied to the original inequality.

2.5 Algorithmic Aspects

In this section we briefly discuss the separation algorithms for the classes of inequal-
ities presented in Sections 2.2 and 2.4 and present our primal heuristics. We also
point to features that supplement the general description given in Appendix B in
order to solve problems of practical size.

Let us first note that for the applications we have in mind all items must be
assigned to the knapsacks, i. e., the SOS constraints must be satisfied with equality.
Thus, instead of using the SOS constraints we actually work with the corresponding
equalities

∑
k∈M xik = 1 (i ∈ N). From now on, we will call a solution feasible for

the multiple knapsack problem only if all items are assigned to the knapsacks, i. e.,
if all SOS constraints are satisfied with equality. In addition, in all applications the
problems are formulated as minimization problems unlike the integer programming
formulation in (2.1), and we treated them as such.

We also point out that our initial linear program in the algorithm is composed
of the knapsack inequalities, the SOS inequalities and the trivial inequalities 0 ≤
xik ≤ 1, for all i ∈ N , k ∈ M . Thus, we may assume in the following that the
actual LP solution satisfies these constraints.

2.5.1 Separation Algorithms

All the classes of inequalities shown in the previous section are generalizations of
cover inequalities. Obviously, the problem of finding a minimum (with respect to
some weighting of the items) cover is NP-hard, because it reduces to the single
knapsack problem. It turns out that also the separation problem for the minimal
cover inequality reduces to the single knapsack problem, implying that it is NP-
hard, see Ferreira [1994] or Klabjan, Nemhauser, and Tovey [1996]. Though these
results do not prove that all the other separation problems are NP-hard as well,
we strongly conjecture that they are. Thus, we put our emphasis on developing
separation heuristics, which we will discuss in the following.

Among the individual inequalities we separate minimal cover and (1, k)-confi-
guration inequalities. We implemented various greedy-type heuristics for these two
classes, see Ferreira, Martin, and Weismantel [1996]. We will come across some
of the issues of these separation procedures in Section 5.3 where we outline the
separation of extended weight inequalities. Here we focus on the separation of joint
inequalities.

Our procedure for separating multiple cover inequalities is a two-stage process.
First, we determine a set M of candidate sets M ′ ⊆ M . For each of these sets
M ′ ∈ M we then try to determine a set of items that defines a multiple cover. The
latter problem is solved by applying our minimal cover separation routine to the

2.5. ALGORITHMIC ASPECTS 17

“aggregated” knapsack with capacity F (M ′), see also Borndörfer and Weismantel
[1997a]. More precisely, suppose, x̄ ∈ RN×M is the current fractional point and
M ′ ⊆ M is the set of knapsacks for which we want to find a multiple cover. We define
the instance K (N, f, C) of the single knapsack problem by setting C := F (M ′).
Moreover we define a new fractional point, y ∈ RN say, where yi :=

∑
k∈M ′ x̄ik for

all i ∈ N . With input K (N, f, C) and y, the routines for finding minimal cover
inequalities are called. If these calls yield a violated minimal cover inequality, it
is transformed back to the original space and, hence, corresponds to a violated
multiple cover inequality.

Unfortunately, there are 2|M| − (|M | + 2) different sets of knapsacks for which
we could perform the algorithm just described. This would, even for small |M |,
result in an immense running time. Therefore, we generate a set M of candidates
M ′ ⊆ M according to some heuristic rules which we briefly explain now. For every
item i ∈ N we determine Bi := {k ∈ M : x̄ik > 0}, where x̄ is the current LP
solution. If 2 ≤ |Bi| ≤ |M | − 1, we consider Bi as one candidate set for which
we try to find a multiple cover as described before. In case Bi = M , we simply
add all subsets of M of cardinality |M | − 1 to the set M of candidate sets. The
idea for this (heuristic) selection of the candidate sets is that Bi is a subset of
knapsacks where still (at least) one item is in conflict with its “correct position”.
Thus, additional inequalities are needed that provide further information on how
to handle this conflict. Proceeding this way, the number of different candidate sets
that are generated does not exceed the number |N |+ |M | − 1.

The final separation procedure we are using in our implementation deals with
a special class of inequalities as described in Theorem 2.4.2. Let S be a cover with
respect to some knapsack k, let l ∈ M \{k} and T ⊆ N \S. Obviously, the minimal
cover inequality

∑
i∈S xik ≤ |S| − 1 satisfies property (�) of Theorem 2.4.2. Thus,

due to Theorem 2.4.2 the inequality∑
i∈S

(xik + xil) +
∑
i∈T

xil ≤ |S|+ |T | − 1(2.10)

is valid for the polytope PMK if and only if T ∪{i} is a cover with respect to l for all
i ∈ S. We call this inequality an extended cover inequality. We have implemented a
heuristic procedure for finding extended cover inequalities along the following lines.

Algorithm 2.5.1 Separation of Extended Cover Inequalities.

(1) Choose two knapsacks k, l ∈ M , k �= l and solve the linear program:
min

∑
i∈N (1.0− x̄ik − x̄il)si∑
i∈N fisi > Fk

0 ≤ si ≤ 1 for all i ∈ N.

(2) Set S := {i ∈ N : si > 0}.
(3) Reduce S to a minimal cover.
(4) Let smin be an item in S with minimum weight.
(5) Solve the linear program:

min
∑

i∈N\S(1.0− x̄il)ti∑
i∈N\S fiti > Fl − fsmin

0 ≤ ti ≤ 1 for all i ∈ N \ S.
(6) Set T := {i ∈ N \ S : ti > 0}.
(7) Reduce T so that T ∪ {smin} is a minimal cover.
(8) Lift the extended cover inequality with respect to S, T , k and l

(for lifting see Appendix C).

18 CHAPTER 2. THE MULTIPLE KNAPSACK PROBLEM

The success of the discussed separation algorithms is documented in Section 2.6.

2.5.2 Primal Heuristics

We have implemented several LP-based heuristics in order to obtain good upper
bounds on the value of the optimal solution. These heuristics are based on rounding
the current linear programming solution x̄.

In the first heuristic we proceed as follows. We set F ′
k := Fk for all k ∈ M and

determine the item i whose value max{x̄ik : k ∈ M and fi ≤ F ′
k} is maximum. Let

i∗ be the “maximum” item and k∗ the corresponding knapsack. We assign i∗ to
knapsack k∗ and update the value F ′

k∗ by setting F ′
k∗ := F ′

k∗ − fi∗ . We continue
this way until a feasible solution is found (i. e., all items are assigned) or no further
item can be assigned.

The second heuristic differs from the first one by selecting the item that is
assigned next randomly. More precisely, we determine a random sequence of the
items, and, according to this sequence, we compute max{x̄ik : k ∈ M and fi ≤ F ′

k}.
If there exists no more feasible knapsack for item i we stop. Otherwise, we assign
item i to a knapsack k∗ where the maximum value is attained, update F ′

k∗ and
continue.

In the third heuristic, we interpret each vector (x̄ik)k∈M , for i ∈ N , as a prob-
ability distribution, i. e., we assign item i to knapsack k with probability x̄ik. The
sequence according to which the items are chosen is again randomly determined.
This procedure is performed several times depending on a parameter that is a mul-
tiple of the number of fractional variables.

It turns out that none of these heuristics is superior to the others. In most ex-
amples, the first two procedures are more successful at the very beginning, whereas
the third one performs better in the sequel.

Moreover, we have implemented an improvement heuristic that is based on the
ideas of Fiduccia and Mattheyses [1982]. The procedure runs in a number of passes.
Each pass starts with the currently best feasible solution. Now we try to change
the solution by moving an item from one knapsack to another such that the new
solution is still feasible. Among all feasible moves we choose the best one and fix the
corresponding item for the current pass. Note that we also perform the move if it
leads to a worse solution. This way it might be possible to get out of locally optimal
solutions. The pass ends if all items have been moved or if there is no feasible move
for the not yet considered items. Among these at most |N | new solutions we choose
the best one and update the globally best solution.

It turns out that these three primal heuristics together with the improvement
heuristic perform quite well and even find the optimal solution in many cases, see
next section.

2.5.3 Further Issues

In Appendix B we have already discussed the general outline of a branch-and-cut
algorithm. Our algorithm basically follows this scheme. Here we want to stress just
one aspect that was important for the solution of practical problem instances.

We found that fixing variables by the reduced cost criterion is very effective
for some of the problem instances (for an explanation of reduced cost fixing, see
Appendix B). Table 2.1 shows for some examples the number of variables (in
percentages) that are fixed by this procedure. For a description of the problems
including the reduction parameter in Column Red. see the next section. As we see,
it is possible to fix up to 90% of the variables.

2.6. COMPUTATIONAL RESULTS 19

Problem Red. Variables fixed

cl2 0.0% 2565 (23.54%)
cl2 4.0% 2135 (19.59%)
dm1 36.8% 89 (8.79%)
dm2 30.0% 1256 (27.12%)
sa1 0.0% 1653 (91.83%)
sa2 0.0% 1072 (72.43%)

Table 2.1: Reduced cost fixings for some multiple knapsack instances.

2.6 Computational Results

In this section we report on computational experiences with our cutting plane based
algorithm. We have tested the algorithm on multiple knapsack problem instances
arising in the design of main frame computers, in the layout of electronic circuits
and in the production of sugar cane alcohol.

Before presenting the results in detail, let us make some general comments on our
experiences with the problem instances. As described in Section 2.5, we have sep-
arated cover, (1, k)-configuration, multiple cover and extended cover inequalities.
The number of cover and (1, k)-configuration inequalities we found are approxi-
mately the same for all examples. For joint inequalities, however, the situation is
different. Almost all violated joint inequalities are multiple covers. In fact, for only
one example were extended covers found. We do not know whether the extended
cover inequalities are indeed rare in these particular problem instances, or whether
the performance of our separation heuristic is too poor. In the following tables we
will just distinguish between individual and joint inequalities.

Let us first focus on the class of problems that arise in the design of main
frame computers. We obtained the problem instances from Siemens-Nixdorf, Mu-
nich. Table 2.2 summarizes the data. Instances coming from this application are
abbreviated by dm in the tables. Column 2 and 3 give the number of items and
knapsacks, respectively, whereas in Columns 4 and 5 the total weight of the items
and the total sum of the capacities are shown.

Problem |N | |M | ∑
i∈N fi

∑
k∈M Fk

dm1 257 4 83827 132704
dm2 772 6 284608 423972

Table 2.2: Design of main frame computers: Problem data

Table 2.3 presents the solutions obtained by our algorithm. Neither individual
nor joint inequalities where necessary to obtain the objective function value of an
optimal solution, which was already found by the primal heuristics in the first
iteration. The CPU Times are in seconds obtained on a Sun SPARC 4/50.

Problem Opt. Sol. Ind. Ineq. Joint Ineq. CPU Time

dm1 236250 0 0 1.62
dm2 81120 0 0 5.92

Table 2.3: Results for problems from the design of mainframe computers

The fact that both problem instances are trivial is not surprising, since the total

20 CHAPTER 2. THE MULTIPLE KNAPSACK PROBLEM

sum of the knapsack capacities is much bigger than the sum of the weights of the
items. The reason for that is that after assigning the items to the devices the
nets must be connected by wires which requires a certain amount of space. The
real amount of space that is necessary for connecting the wires is not available in
advance. Thus, the numbers in Column 5 of Table 2.2 are only a rough estimate.
A usual procedure in practice is to start with some initial capacities of the devices
and try to find a solution that assigns the modules to the devices and connects
the nets by wires. If this succeeds, the capacities of the devices are reduced, the
whole problem is solved again, and it is continued in this way until no further area
reduction is possible. In fact, one of the main goals in the design of main frame
computers is to reduce the available amount of space as far as possible. So, from a
practical point of view a very interesting question is how far the capacities of the
devices can be reduced at most. We followed this question and iteratively reduced
the total amount of the knapsack capacities.

Problem Red. Opt. Sol. Ind. Ineq. Joint Ineq. B&B CPU

dm1 36.75% 236250 18 15 1 8.78
dm1 36.8% 236250 18 15 1 8.87
dm2 27% 81134 9 16 1 40.75
dm2 28% 81176 42 41 1 5:22.25
dm2 29% 81204 25 29 1 1:08.30
dm2 30% 81302 33 15 1 36:41.92
dm2 31% 81486 2547 3308 105 485:22.03
dm2 32% 81736 44 62 5 56:35.20

Table 2.4: Results for reduced examples from the design of main frame computer

Table 2.4 summarizes our results. A reduction of 36.85% in example dm1 and
a reduction of 33% in example dm2 leads to infeasibility, since the total available
knapsack capacity is less than the sum of the weights of the items. Column 2 shows
the amount of reduction, Columns 3 to 6 present the value of the optimal solution,
the number of individual and joint inequalities found by our separation algorithms,
the number of branch-and-bound nodes, and the total CPU Time (min:sec). The
percentage of separation time is between 20% and 50% for these examples. All,
except the last two, problem instances in Table 2.4 are solved to optimality without
branching.

Let us now turn to the examples arising in the layout of electronic circuits. Table
2.5 summarizes the data. Here, the instances are abbreviated by the symbol cl in
the tables. The ratio between the total weight of the items and the total available
knapsack capacity is much closer to one than it is the case for the instances in Table
2.2. One might expect that these instances are more difficult than the original dm
examples.

However, the results are very similar. The first lower bound provides the value
of the optimal solution in almost all examples. A possible explanation for this fact is
that in these examples the weights of the items are similar and that there are many
items with small weights and identical objective function value for all knapsacks. In
all cases for which the value of the first LP is already equal to the value of the optimal
solution our primal heuristics find an optimal solution in the first iteration of the
algorithm. The only non-trivial example is cl2, where indeed individual and joint
inequalities were necessary to find the optimal solution. In Table 2.6 we show the
value of an optimal solution, the number of individual and joint inequalities found
by our separation algorithms and the total CPU Time (min:sec). Here, about 50%

2.6. COMPUTATIONAL RESULTS 21

Problem |N | |M | ∑
i∈N fi

∑
k∈M Fk

cl1 2292 16 9522 10000
cl2 681 16 2571 2704
cl3 2669 16 6762 7104
cl4 1021 16 4031 4240
cl5 68 16 260 288
cl6 6112 16 25392 26672

Table 2.5: Layout of electronic circuits: Problem data

of the CPU Time was spent in the separation routines.

Problem Opt. Solution Ind. Ineq. Joint Ineq. CPU Time

cl1 2292 0 0 3:58.53
cl2 939.99 143 46 11:40.97
cl3 2669 0 0 3:26.42
cl4 1021 0 0 28.43
cl5 472 0 0 1.73
cl6 6112 0 0 25:28.62

Table 2.6: Results for problems arising in the layout of electronic circuits

Again, as in the design of main frame computers it is an interesting problem to
determine the minimum area for which the problems still have a feasible solution.
We created some problem instances by reducing the total amount of the capacities
for the knapsacks until the total weight of the items exceeds the total available
knapsack capacity. Even here, we solve all reduced examples, except the reduced
instances of cl2, in the first iteration, a very astonishing fact. The reduced instances
of cl2 are much more difficult. In all but one example the first lower bound does not
give the optimal objective function value. To solve these problems to optimality
without branching not only individual inequalities but also joint inequalities were
necessary. Table 2.7 presents the results. Note that a reduction of 5% leads to
infeasibility, since in this case the total sum of the knapsack capacities is less than
the total weight of the items.

Problem Red. Opt. Sol. Ind. Ineq. Joint Ineq. CPU Time

cl2 1% 946.99 164 94 11:18.48
cl2 2% 946.99 88 44 8:26.70
cl2 3% 960.99 163 119 14:33.45
cl2 4% 967.99 204 157 19:12.63

Table 2.7: Results for different reductions of problem example cl2

Our third set of instances comes from the application in sugar cane alcohol
production. In Table 2.8 we show a description of the instances (they are abbreviated
by sa in the tables). Column 2 and 3 give the number of plantations and factories,
respectively, whereas in Columns 4 and 5 the total weight of the items (plantation
production) and the total sum of the capacities of the factories are shown.

In contrast to the other two applications, different knapsacks have different
capacities. Moreover, the weights of the items (the production of the plantations)
cover a wide range of numbers. These instances appear to be more difficult for our

22 CHAPTER 2. THE MULTIPLE KNAPSACK PROBLEM

Problem |N | |M | ∑
i∈N fi

∑
k∈M Fk

sa1 450 4 97714 106346
sa2 370 4 82914 97224

Table 2.8: Sugar cane alcohol production: Problem data

code than the previous ones and we cannot solve these problems without branching.
Our results are summarized in Table 2.9. About 20% of the CPU time was spent
in the separation routines.

Problem Opt. Sol. Ind. Ineq. Joint Ineq. B&B CPU Time

sa1 14592921 110 14 121 57:28.68
sa2 11733362 15 9 48 19:33.73

Table 2.9: Results for problems from sugar cane alcohol production

The number of cutting planes compared to the number of branch and cut nodes
is quite small. So, the question may arise, why not just branch and bound? How-
ever, by adding no cutting planes we were not able to prove optimality within several
hundreds of branch and bound nodes. Thus, the individual and joint inequalities
(though quite few) are important to solve these instances in reasonable time. Cer-
tainly, the numbers also indicate that there is still a lack of good inequalities for
these instances.

An interesting peculiarity of most practical problem instances is that the first
lower bound is quite close to the value of the optimal solution. The reason for this
is that, for many items i ∈ N , the objective function coefficients cik, k ∈ M , are
similar. However, the gap between the lower bound and the upper bound after the
first iteration is larger by far. Only when individual and especially joint inequalities
are added, the linear programming solution provides structural information such
that the primal heuristics find good upper bounds or even an optimal solution.
This fact can also be observed by running random examples.

|N | |M | Average Gap Average Gap Average Gap
after first LP after Indiv. Ineq. after Joint Ineq.

50 4 561.0 231.4 (41.2%) 36.6 (6.5%)
100 4 265.4 164.0 (61.8%) 78.6 (29.6%)
150 4 355.2 149.2 (42.0%) 114.2 (32.3%)
200 4 335.4 117.0 (34.9%) 75.2 (22.4%)
300 4 332.0 112.4 (33.9%) 100.6 (30.3%)
400 4 210.5 154.8 (73.5%) 90.0 (42.8%)
500 4 171.0 41.5 (24.3%) 38.2 (22.4%)

Table 2.10: Impact of individual and joint inequalities on random examples

Table 2.10 provides typical results for random problems. The first two columns
give the number of items and the number of knapsacks. The weights of the items
are randomly chosen from the interval [5, 300], the objective function coefficients are
random numbers in the interval [1, 1000], and the knapsack capacities are randomly
computed such that

∑
k∈M Fk ≤ α

∑
i∈N fi, where α is a random number chosen

from [1.05, 1.3]. We have created four different problems with the same number

2.6. COMPUTATIONAL RESULTS 23

of knapsacks and items. The numbers in Column 3 to 5 show the average over
the absolute values of the gaps between the upper bounds and the lower bounds
after the first iteration, after no further violated individual inequalities were found,
and after no further violated joint inequalities were found. The number in brackets
give the improvement of the gap in percentage. Although we cannot solve most of
these random examples to optimality without branching, the results confirm that
the gap between the lower and an upper bound is substantially decreased by using
individual and joint inequalities.

Chapter 3

The Steiner Tree Packing
Problem

3.1 Introduction

The type of problems we consider in this chapter lead to integer programs with block
structure, where the blocks consist of certain set covering problems and where the
linking constraints are of set packing type as in Chapter 2. As we will see, this
constellation gives rise to new problems and questions. For example, it is no longer
easy to determine a feasible solution. This fact has a strong impact on the study of
the associated polyhedron and its facet-defining inequalities. We start by defining
the problem we are going to consider.

Given a graph G = (V,E) and a node set T ⊆ V , we call an edge set S ⊆ E a
Steiner tree for T if, for each pair of nodes s, t ∈ T, the graph (V (S), S) contains a
path from s to t. In this chapter we investigate the following problem that we call
the (weighted) Steiner tree packing problem.

Problem 3.1.1 (The weighted Steiner tree packing problem)

Instance:
A graph G = (V,E) with positive, integer capacities ce ∈ N and non-negative
weights we ∈ R+ , e ∈ E.
A list of node sets N = {T1, . . . , TN}, N ≥ 1, with Tk ⊆ V for all k =
1, . . . , N .

Problem:
Find edge sets S1, . . . , SN ⊆ E such that

(i) Sk is a Steiner tree in G for Tk for all k = 1, . . . , N ,

(ii)

N∑
k=1

|Sk ∩ {e}| ≤ ce for all e ∈ E,

(iii)

N∑
k=1

∑
e∈Sk

we is minimal.

If requirement (iii) in Problem 3.1.1 is omitted we call the corresponding problem
the Steiner tree packing problem without the prefix “weighted”. A feasible solution
of Problem 3.1.1 is a collection of Steiner trees S1, . . . , SN that satisfy (i) and (ii).
It is convenient to order the sets Sk and call an N -tuple (S1, . . . , SN) of edge sets a
Steiner tree packing or packing of Steiner trees if the sets S1, . . . , SN form a feasible
solution of the Steiner tree packing problem.

25

26 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

We denote by STPw (G,N , c, w) an instance of the (weighted) Steiner tree pack-
ing problem, i. e., a graph G = (V,E), a net list N = {T1, . . . , TN}, N ∈ N, edge
capacities ce, e ∈ E, and edge weights we, e ∈ E. If we neglect the edge weights and
consider the Steiner tree packing problem as a feasibility problem, we denote an
instance by STP (G,N , c). In the application we have in mind it is usual to call the
list of node sets N a net list. We follow this custom. The number N denotes the
cardinality of the net list. Any element Tk ∈ N is called a set of terminals or a net
and the nodes t ∈ Tk are called terminals. Instead of net Tk we will often simply
say net k. To avoid the discussion of (trivial) special cases we assume throughout
this chapter that every terminal set of a net list N has at least cardinality two and
that N ≥ 1.

Our definition of a Steiner tree slightly differs from the terminology most fre-
quently used in the literature. A Steiner tree is usually supposed to be a tree. Our
definition, however, simplifies notation and is more convenient for the polyhedral
investigations in the following. A Steiner tree that is a tree and whose leaves are
terminals is called edge-minimal. Accordingly, a Steiner tree packing (S1, . . . , SN)
is called edge-minimal, if each Sk is edge-minimal.

It is not surprising that the Steiner tree packing problem and its weighted form
are NP-complete or NP-hard, respectively, even in special cases. For example, the
following variants are hard.

If we restrict the weighted Steiner tree packing problem to N = 1 and ce = 1,
for all e ∈ E, we obtain the problem of finding a minimal Steiner tree in G. This
problem isNP-hard even if G is restricted to be planar or a grid graph (Karp [1972],
Garey and Johnson [1977]). Futhermore, it is NP-complete to decide whether there
exists a feasible solution for the Steiner tree packing problem. Results here are due
to Kramer and van Leeuwen [1984], who proved that the problem of finding N
edge-disjoint paths is NP-complete. Similarly, it was shown in Korte, Prömel, and
Steger [1990] that it is NP-complete to decide whether a packing of two Steiner
trees exists.

Let us now present an integer programming formulation for the weighted Stei-
ner tree packing problem STPw (G,N , c, w), given by a graph G = (V,E) with edge
capacities ce ∈ N, e ∈ E, and weights we, e ∈ E, and a net list N = {T1, . . . , TN}.
Besides the notation in Appendix A we use the following. We consider the N · |E|
– dimensional vector space RE × . . . × RE which we abbreviate by RN×E . The
components of a vector x ∈ RN×E are indexed by xk

e for k ∈ {1, . . . , N}, e ∈
E. For a vector x ∈ RN×E and k ∈ {1, . . . , N} we denote by xk ∈ RE the
vector (xk

e)e∈E . Instead of x = ((x1)T , . . . , (xN)T)T ∈ RN×E we often write x =
(x1, . . . , xN) if the meaning of the symbols is clear from the context. We call
the vector (χS1 , . . . , χSN) ∈ RN×E the incidence vector of a Steiner tree packing
P = (S1, . . . , SN). We will often abreviate the incidence vector of a Steiner tree
packing P by χP . Consider the following integer program.

min

N∑
k=1

∑
e∈E

wex
k
e

(i) xk(δ(W)) ≥ 1, for all W ⊂ V, W ∩ Tk �= ∅, (V \W) ∩ Tk �= ∅,
k = 1, . . . , N.

(ii)

N∑
k=1

xk
e ≤ ce, for all e ∈ E.

(iii) 0 ≤ xk
e ≤ 1, for all e ∈ E, k = 1, . . . , N.

(iv) xk
e ∈ {0, 1}, for all e ∈ E, k = 1, . . . , N.

(3.1)

3.1. INTRODUCTION 27

c c c

c c c c

c c

c c c

c c c c c

c c c

c c c c

c c

c c c

c c c

c c

c c c c c

c c c c

c c c

c c c c

c c c c

c c c c c

p p p

p p p

p p p

p p p

p p p

p p p

Figure 3.1: Structure of a Steiner tree packing integer program with |E| = 6 and
N = 3: The letter ’c’ indicates a non-zero entry in a Steiner cut inequality, which
is a special set covering constraint. The letter ’p’ shows a non-zero entry in the
capacity constraints, which are special set packing inequalities.

The inequalities (3.1) (i) are the so-called Steiner cut inequalities. The inequal-
ities (3.1) (ii) are called capacity inequalities and the ones in (3.1) (iii) trivial in-
equalities.

Obviously, each incidence vector of a Steiner tree packing satisfies (3.1) (i) –
(iv) and vice versa, each vector x ∈ RN×E satisfying (3.1) (i) – (iv) is the incidence
vector of a Steiner tree packing. Thus, the weighted Steiner tree packing problem
can be solved via (3.1). Figure 3.1 shows the structure of such an integer program.

Let us define the Steiner tree packing polyhedron, denoted by PSTP (G,N , c), to
be the convex hull of all incidence vectors of Steiner tree packings. We have

PSTP (G,N , c) = conv{x ∈ RN×E : x satisfies (3.1) (i), . . . ,(iv)}.(3.2)

If N = 1 and c = 1l, i. e., ce = 1 for all e ∈ E, we also refer to PSTP (G, {T1}, 1l)
as the Steiner tree polyhedron. The aim of the following two sections will be to study
PSTP (G,N , c) and to describe this polyhedron partially by valid and facet-defining
inequalities.

The motivation for studying the Steiner tree packing problem and the polytope
PSTP (G,N , c) arises from the design of electronic circuits. The design of electronic
circuits is a hierarchical process consisting of several phases. The beginning is a
description of the task the circuit to be designed must perform. Such a task can
be viewed as a complex logical function that consists of many elementary logic
operations. Usually several of these elementary logic operations are combined into
a logical unit (for example an adder). In the logical design phase chip designers
specify which of these predefined logical units are to be used, and determine which
of the chosen logical units must be connected by wires so that the chip performs in
the way it is supposed to.

28 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

The logical units are also called cells. Each cell is characterized by its width, its
height, its contact points (so-called terminals) and its electric properties. A net is a
set of terminals that must be connected by a wire (as specified in the logical design
phase). The list of cells and the list of nets are the input of the second phase, the
physical design. Here, the task is to assign the cells to a certain rectangular area and
connect (route) the nets by wires. The physical design problem is, of course, more
complicated than the sketch above suggests, since certain design rules have to be
taken into account, an objective function is to be minimized, etc. The design rules
strongly depend on the given layout style and specify, for instance, the distance two
nets must stay apart, whether certain cells are preassigned to certain locations and
so on. This applies especially to the objective function. Usually, the primary goal
is to minimize the whole area of the chip or, if the chip area is fixed in advance, to
guarantee routability, i. e., to solve the problem of placing the cells on the chip such
that there exists a feasible solution to the routing problem.

However, routability can hardly be measured and expressed in terms of an ob-
jective function. Thus, minimizing the total length of all routes is very often used
instead. Another reason for minimizing the routing length is that an electronic
circuit with small routing length usually needs little area on the whole. Thus, min-
imizing the overall area is (somehow) implicitly taken into account by minimizing
the routing length.

Any reasonably precise version of the physical design problem is NP-hard, even
very simple models are. Moreover, most real-world problem instances involve sev-
eral thousands of cells and nets, so that today’s algorithmic knowledge makes it
very improbable that they can be solved to optimality. Therefore, the physical de-
sign problem is (heuristically) decomposed into subproblems. The first subproblem
typically consists of finding appropriate locations for the cells (placement problem).
Subsequently, the nets must be realized by wiring the appropriate terminals (rout-
ing problem) and finally, a compaction step is performed if required. This process
is iterated with different parameters if the final result is not satisfactory.

We are interested in the routing problem. That is, we are given a list of nets.
Each net consists of a set of terminals. The terminals specify the points at which
wires have to contact the cells. The routing problem is to connect the nets by wires
on the routing area subject to certain technical side constraints. As mentioned
above, the objective usually is to minimize the overall wiring length.

The routing itself takes place on so-called layers. Each layer is divided into tracks
on which the wires run. The tracks and the vias, the points where wires change the
layers, must meet certain distance requirements. In practice, the routing problem
itself is again decomposed because of its inherent complexity and large scale. In the
global routing phase the homotopy of the nets is determined, i. e., it is determined
how the wires “maneuver around the cells”. Thereafter, in the detailed routing
phase the wires are assigned to the layers and tracks according to the homotopy
specified in the global routing step. This decomposition scheme gives rise to many
variants of the routing problem.

A number of the routing problems resulting from this approach can be modeled
as a (weighted) Steiner tree packing problem. We will illustrate two examples in
the following.

For modeling the global routing problem, the routing area is subdivided into
subareas. This is done in a way such that the resulting subareas have certain special
properties, for instance, they contain no holes (i. e., there are no cells located within
the areas) or they have simple shapes (for example, rectangles). These subareas
are represented by the nodes or the edges of some graph. We describe the node
representation. Here, two nodes are connected by an edge, if the corresponding
subareas are adjacent. Let G = (V,E) denote the resulting graph. Additionally, a
capacity cuv ∈ N is assigned to an edge uv ∈ E limiting the number of nets that

3.1. INTRODUCTION 29

may run between the subareas associated with the two endnodes of this edge. The
weight of an edge wuv corresponds to the distance between the two midpoints of
the according subareas. Every terminal of a net is assigned to that node, whose
corresponding subarea contains the terminal or is closest to the position of the
terminal. The global routing problem consists in routing all nets in G such that the
capacity constraints are satisfied and the total wiring length is as small as possible.
Obviously, this task defines an instance of the weighted Steiner tree packing prob-
lem.

21

24 17 16 4 7 6 5 9 8 9 12 15 24 15 10 23 1 22 18
18

22

2

23

18

21

11

20

18

20

24

19

3

1518119212015141513859671242
15

14

13

11

24

1

9

2

17

12

16

4

10

3

Figure 3.2: A switchbox routing problem

After having solved the global routing problem every subarea that corresponds to
a node in the global routing graph must be routed in detail. The number of different
detailed routing models which are studied in the literature or which are used in
practice is tremendous. We want to focus on one variant of the detailed routing
problem, called switchbox routing problem (see Figure 3.2). Here, the underlying
graph is a complete rectangular grid graph and the terminal sets are located on
the four sides of the grid. Remember that the task of detailed routing is to assign
the wires to layers and tracks. Detailled routing problems, and thus also switchbox
routing problems, are classified by distinguishing whether or to which extent the
layers are taken into account while the nets are assigned to tracks. Here, the
following models are of special interest.

Multiple layer model Given a k layered grid graph (that is a graph obtained by
stacking k copies of a grid graph on top of each other and connecting related
nodes by perpendicular lines), where k denotes the number of layers. The
nets have to be routed in a node disjoint fashion. The multiple layer model is
well suited to reflect reality. The disadvantage is that in general the resulting
graphs are very large.

Manhattan model Given a (subgraph of a) complete rectangular grid graph. The
nets must be routed in an edge disjoint fashion with the additional restriction
that nets that meet at some node are not allowed to bend at this node, i. e., so-
called knock-knees (cf. Figure 3.3) are not allowed. This restriction guarantees
that the resulting routing can be realized on two layers at the possible expense
of causing long detours.

30 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

Figure 3.3: A knock-knee

Knock-knee model Again, a (subgraph of a) complete rectangular grid graph is
given and the task is to find an edge disjoint routing of the nets. In this model
knock-knees are possible. As we will see in Section 3.5, the wiring length of
a solution in this case is sometimes smaller than in the Manhattan model.
The main drawback is that the assignment to layers is neglected. Brady and
Brown [1984] have designed an algorithm that guarantees that any solution
in this model can be routed on four layers. It was shown in Lipski [1984] that
it is NP-complete to decide whether a realization on three layers is possible.

As in the case of the global routing problem the weighted Steiner tree pack-
ing problem is a natural mathematical model of the switchbox routing problem
in the knock-knee mode. As we will see later in this chapter, also the switchbox
routing problem in the Manhattan model may be modeled as a weighted Steiner
tree packing problem by adding additional linear constraints. All examples that
this computational study reports on are instances of these two types of switchbox
routing problems. Both problems are NP-complete (Sarrafzadeh [1987], Szyman-
ski [1985]). Of course, we only sketched some of the routing problems arising in
the design of electronic circuits and that can be modeled as Steiner tree packing
problems. For more details on this subject we refer to the book of Lengauer [1990].

3.2 The Steiner Tree Packing Polyhedron: Basic
Results

In this section we discuss some basic properties of the Steiner tree packing polyhed-
ron, including a discussion of its dimension, the manipulation of valid inequalities,
the lifting of single Steiner tree inequalities and a discussion of the trivial and
capacity inequalities.

Let us first consider the dimension. Since it is already NP-complete to decide
whether the Steiner tree packing problem has a feasible solution (Kramer and van
Leeuwen [1984], Korte, Prömel, and Steger [1990]), it is obviously also NP-complete
to decide the dimension of Steiner tree packing polyhedron.

This result does not give much hope for a successful study of Steiner tree packing
polyhedra of general instances STP (G,N , c). Figure 3.4 shows some examples and
the corresponding dimensions. The affine hull of the polytope of Figure 3.4 (b) is
given by x1

34 = 0, x2
34 = 1; that of the polytope of Figure 3.4 (d) by x1

12 = 1, x2
12 =

0, x1
23 = 0, x2

23 = 1, for instance. The dimension jumps appear to be rather erratic.

We have decided to study the Steiner tree packing polyhedron for special prob-
lem instances for which the dimension can be determined easily and to look for
facet-defining inequalities for these special instances. Clearly, such an approach
is only sensible if the results can be carried over (at least partially) to practically
interesting instances as they occur, for example, in the design of electronic circuits.

3.2. THE STEINER TREE PACKING POLYHEDRON: BASIC RESULTS 31

1 2

1 2

(a)

1 2

dim(P) = 12 dim(P) = 8

(b)

1

3

434 3

34 2

dim(P) = -1

(c)
dim(P) = 2

(d)

Figures (a) to (d) show some examples and the dimension of the corresponding polyhe-

dron. The two terminal sets are drawn as rectangles or cycles respectively (T1={1,2}, T2=

{3,4} or T2={2,3} resp.) and P abbreviates PSTP (G,N ,1l). The polyhedron in (a) is full di-

mensional. Deleting the edge with endnodes 1 and 2 (Figure (b)) decreases the dimension by

4. If additionally the edge connecting nodes 3 and 4 (Figure (c)) is deleted, there even does

not exist any feasible solution. Figure (d) shows an example in which the underlying graph

is complete but the corresponding polyhedron is not full dimensional.

Figure 3.4: Dimensions of Steiner tree packing polyhedra

It has turned out that an instance STP (G,N , c), where the graph G is com-
plete, the net list N = {T1, . . . , TN} is disjoint, i. e., Ti ∩ Tj = ∅ for all i, j ∈
{1, . . . , N}, i �= j, and the capacities are equal to one (c = 1l), is a suitable case.
The following lemma shows that the Steiner tree packing polyhedron is full dimen-
sional in this case.

Lemma 3.2.1 Let G = (V,E) be the complete graph with node set V, |V | ≥ 3, and
edge capacities ce = 1, e ∈ E. Furthermore let N = {T1, . . . , TN} be a disjoint net
list with T1, . . . , TN ⊆ V . Then,

dim (PSTP (G,N , c)) = N · |E|.
Proof. Let λ be a vector with λTx = 0 for all x ∈ diff (PSTP (G,N , c)). We have to
show that λk

e = 0 for all e ∈ E and k ∈ {1, . . . , N}. Let e ∈ E be an arbitrary edge
with endnodes u and v. We choose Steiner trees Sk, k ∈ {1, . . . , N}, as follows. If
e ∈ E(Tk), set Sk = [t : Tk] for some t ∈ V \ {u, v}. Such a node t exists since
|V | ≥ 3. Otherwise, set Sk = E(Tk). SinceN is a disjoint net list, P = (S1, . . . , SN)
defines a packing of Steiner trees with e /∈ P . Thus, P ′ = (S1, . . . , Sk∪{e}, . . . , SN)
is a Steiner tree packing as well and we get λk

e = λT (χP ′ − χP) = 0.

In order to, at least partially, carry over results for the special instance described
in Lemma 3.2.1 to any problem instance, we have to discuss how inequalities must
be modified if the underlying graph is manipulated using operations such as node
splitting or addition, deletion or contraction of an edge. The following lemma
summarizes the results of Grötschel, Martin, and Weismantel [1996a].

32 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

Lemma 3.2.2 Consider an instance STP (G,N , c) of the Steiner tree packing prob-
lem and let aTx ≥ α be a valid or facet-defining inequality for PSTP (G,N , c).

Deleting an edge. Deletion of an edge preserves validity. However, if aTx ≥ α
is facet-defining the new inequality after deletion need not be facet-defining as
well.

Adding an edge. Adding an edge preserves validity and the property of being
facet-defining if the variables that correspond to the new edge are exactly lifted
(for a discussion of lifting, see Appendix C).

Splitting a node. If we split a node and assign coefficients of zero to the new edge
for all nets, the inequality stays valid. However, as in the case of deletion,
it need not be facet-defining (even if we determine the coefficients by exact
lifting).

Contracting an edge. In this case, the new inequality (that is obtained after
deleting all coefficients corresponding to the contracted edge) need not be valid
any more.

We have seen in Chapter 2 that single knapsack inequalities also define facets
for the multiple knapsack polyhedron. The proof of this result is rather straight-
forward. Under some mild assumption the same can be shown for the Steiner tree
inequalities.

Theorem 3.2.3 Let G = (V,E) be the complete graph with node set V and N =
{T1, . . . , TN}, N ≥ 2, a disjoint net list. Let āTx ≥ α, ā ∈ RE , be a non-trivial
facet-defining inequality for PSTP (G, {T1}, 1l). Then, aTx ≥ α defines a facet of
PSTP (G,N , 1l), where a ∈ RN×E denotes the vector with a1e = ā1e, a

k
e = 0 for all

k = 2, . . . , N, e ∈ E.

The proof of Theorem 3.2.3 is very technical and by far not obvious and we refer
the interested reader to Grötschel, Martin, andWeismantel [1996a]. As in the case of
the multiple knapsack problem this result implies that, in order to obtain a complete
characterization of some Steiner tree packing polyhedron PSTP (G,N , c), for all nets
of the net list, all individual Steiner tree polyhedra PSTP (G, {T }, c), T ∈ N , must
be known completely. Note that there are examples where the trivial inequalities
define facets for PSTP (G, {T }, c), but not for PSTP (G,N , c). The following theorem
gives necessary and sufficient conditions for the trivial and capacity inequalities to
be facet-defining in case N ≥ 2 (the case N = 1 was solved in Grötschel and Monma
[1990]).

Theorem 3.2.4 Let STP (G,N , c) be a Steiner tree packing instance where N is
disjoint and G is complete. Let e ∈ E and k ∈ {1, . . . , N}. Then,

(i) the inequality xk
e ≥ 0 defines a facet of PSTP (G,N , c) if and only if |V | ≥ 5

or e /∈ E(Tk);

(ii) the inequality xk
e ≤ 1 defines a facet of PSTP (G,N , c) if and only if ce ≥ 2;

(iii) the inequality
∑N

k=1 x
k
e ≤ ce defines a facet of PSTP (G,N , c) if and only if

ce ≤ N − 1.

3.3. JOINT INEQUALITIES 33

3.3 Joint Inequalities

In this section we consider inequalities that combine two or more nets. We will
proceed in the following way. First, we describe each inequality. All inequalities we
are going to consider are of the form aTx ≥ α, a ≥ 0. The coefficients of some of
the edges will turn out to be zero for all nets. We call these edges zero edges and
the graph induced by the zero edges the zero graph. We will use the structure of
the zero graph to name the inequalities. This has the following reasons. The zero
graph is structured in such a way that there exists no Steiner tree packing for the
nets involved in this graph. Therefore, each feasible solution must use edges whose
coefficients are different from zero. This means that each inequality is in some sense
(but not necessarily uniquely) determined by the zero graph.

We will always define the inequalities for an arbitrary instance without guar-
anteeing that the inequality is also valid for the corresponding polyhedron. In the
subsequent theorem we characterize the instances for which the inequality is valid.
Here, additional edges get value zero for some single nets (we typically denote these
sets by F1, . . . , FN). In order to show that the inequalities are also facet-defining
these edge sets F1, . . . , FN must usually satisfy very technical restrictions. The re-
sults can often be generalized, for example, by modifying the net list or by adding a
node. In this section we concentrate on the validity of the corresponding inequalities
at the expense of giving proofs that the inequalities are facet-defining. In particular,
the proof that the corresponding inequalities are facet-defining requires essentially
the same scheme. We illustrate this scheme on one sample. For specific proofs of
the remaining statements we refer the interested reader to Martin [1992].

3.3.1 Alternating Cycle Inequalities

Definition 3.3.1 Let G = (V,E) be a graph and N = {T1, T2} a net list. We
call a cycle F an alternating cycle with respect to T1, T2, if F ⊆ [T1 : T2] and
V (F) ∩ T1 ∩ T2 = ∅ (see Figure 3.5). Moreover, let F1 ⊆ E(T2) and F2 ⊆ E(T1) be
two sets of diagonals of the alternating cycle F with respect to T1, T2. The inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ 1
2 |F | − 1

is called an alternating cycle inequality.

T

T

1

2

1

2

F

F

F

Figure 3.5: Illustration of an alternating cycle inequality

It is not difficult to see that the basic form of an alternating cycle inequality,
i. e., F1 = F2 = ∅, is valid for PSTP (G,N , 1l), but in general, it is not facet-defining.
The sets F1 and F2 are used to strengthen the basic form; in fact, choosing them
appropriately we can obtain facet-defining inequalities.

The sets of diagonals F1 ⊆ E(T2) and F2 ⊆ E(T1) are called maximal cross
free with respect to F , if F1 and F2 are cross free (for a definition of cross free,

34 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

see Appendix A), and each diagonal e1 ∈ E(T1) \ F2 crosses F1 and each diagonal
e2 ∈ E(T2) \ F1 crosses F2 (see Figure 3.5 for an example). Then, the following
theorem holds.

Theorem 3.3.2 Let G = (V,E) be the complete graph with node set V and let
N = {T1, T2} be a disjoint net list with T1 ∪ T2 = V and |T1| = |T2| = l, l ≥ 2.
Furthermore, let F be an alternating cycle with respect to T1, T2 with V (F) = V
and F1 ⊆ E(T2), F2 ⊆ E(T1). Then, the alternating cycle inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ l − 1

is valid for PSTP (G,N , 1l) if and only if F1 and F2 are cross free. It is facet-defining
if and only if F1 and F2 are maximal cross free.

Proof. Set Ek = E \ (F ∪ Fk), k = 1, 2 and a = (χE1 , χE2). First, we prove that
aTx ≥ l − 1 is valid if F1 and F2 are cross free. It suffices to show that for every
packing of Steiner trees (S1, S2), |(S1 ∩ E1) ∪ (S2 ∩ E2)| ≥ l − 1 holds (note that
c = 1l).

Let (S1, S2) be any Steiner tree packing. W. l. o. g. S1 and S2 are edge-minimal.
Set T ′

1 = {t ∈ T1 : δ(t) ∩ F ⊆ S2} and T ′
2 = {t ∈ T2 : δ(t) ∩ F ⊆ S1}. Since

S1 and S2 are edge-minimal and |F | = 2l, we have that |T ′
1| + |T ′

2| ≤ l − 1. This
implies that T1 \T ′

1 and T2 \T ′
2 are non-empty. Therefore, at least |T ′

1|+ |T ′
2| edges

e ∈ S1 ∩E1 ∪ S2 ∩E2 are necessary to connect T ′
1 with T1 \ T ′

1 and T ′
2 with T2 \ T ′

2.
Consider the remaining terminals T1 \ T ′

1 and T2 \ T ′
2. Set ki = κ

(
(V (Si), Si \ Fi)

)
for i = 1, 2, where κ(Ĝ) denotes the number of components of graph Ĝ. Since F1

and F2 are cross free, we obtain k1 + k2 ≤ l + 1. Thus,

aT (χS1 , χS2) ≥ (|T ′
1|+ |T ′

2|) + (|T1 \ T ′
1|+ |T2 \ T ′

2| − (k1 + k2))
≥ |T1|+ |T2| − (k1 + k2) ≥ l − 1.

Let us now outline the proof that aTx ≥ l− 1 defines a facet of PSTP (G,N , 1l).

Suppose bTx ≥ β is a facet-defining inequality of PSTP (G,N , 1l) such that Fa =
{x ∈ PSTP (G,N , 1l) : aTx = l − 1} ⊆ Fb = {x ∈ PSTP (G,N , 1l) : bTx = β}. In the
following we show that b is a multiple of a.

In the first two steps we show that for any coefficient ake = 0, k ∈ {1, 2} there
exists a Steiner tree packing P with aTχP = l − 1 and e /∈ P . This implies bke = 0.

(1) bke = 0 for e ∈ F, k = 1, 2.
Choose S1 = F \ {e} and S2 = [t : T2], t ∈ T2. Furthermore set S′

1 = S1 ∪ {e}.
Then P = (S1, S2) and P ′ = (S′

1, S2) are Steiner tree packings with χP , χP ′ ∈ Fa

and 0 = bT (χS′
1 , χS2)− bT (χS1 , χS2) = b1e. Analogously we obtain b2e = 0.

(2) bke = 0 for e ∈ Fk, k = 1, 2.
Choose S1 = F and S2 = [t : T2], t ∈ T2. Furthermore set S′

1 = S1 ∪ {e}. Then
P = (S1, S2) and P ′ = (S′

1, S2) are Steiner tree packings with χP , χP ′ ∈ Fa and
0 = bT (χS′

1 , χS2)− bT (χS1 , χS2) = b1e. Analogously we obtain b2e = 0.

Next, we prove that the coefficients of edges that connect terminals of the same
net are equal. This is done by constructing two Steiner trees inside the subgraph
induced by the corresponding terminal set that differ only in two edges.

(3) bke = bke′ for e, e
′ ∈ E(Tk), k = 1, 2.

Let e = uv with u, v ∈ T1. Set S2 = F and S1 = [v : T1]. Let e′ ∈ [u : T1] \ {e}
and S′

1 = S1 \ {e} ∪ {e′}. Then P = (S1, S2) and P ′ = (S′
1, S2) are Steiner tree

3.3. JOINT INEQUALITIES 35

packings with χP , χP ′ ∈ Fa and 0 = bT (χS′
1 , χS2) − bT (χS1 , χS2) = b1e′ − b1e for all

e, e′ ∈ δ(u), u ∈ T1. Analogously we obtain b2e = b2e′ .

In the remainder of the proof set k̄ = 1, if k = 2, and k̄ = 2, if k = 1.

In steps (4) and (5) we fix the remaining coefficients of one net. To this end we
use the structure of the zero graph, the properties fullfilled by F1 and F2 and the
fact proved in (3).

(4) bke = bke′ for e
′ ∈ E(Tk), e ∈ [Tk : Tk̄], k = 1, 2.

Let e = uw with u ∈ T1, w ∈ T2 and v ∈ T1 such that vw ∈ F . Choose
S2 = F \ δ(v), S1 = [u : T1] and S′

1 = S1 \ {uv} ∪ {uw} ∪ {vw}. Then P =
(S1, S2) and P ′ = (S′

1, S2) are Steiner tree packings with χP , χP ′ ∈ Fa and 0 =
bT (χS′

1 , χS2) − bT (χS1 , χS2) = b1uw + b1vw − b1uv = b1uw − b1uv, because b1vw = 0 (see
(1)). This together with (3) proves the statement. Analogously we obtain b2e = b2e′ .

(5) bke = bke′ for e ∈ E(Tk̄) \ Fk, e
′ ∈ E(Tk), k = 1, 2.

Let e = uv ∈ E(T2) \ F1. Since F1 and F2 are maximal cross free, there exists
an edge u2v2 ∈ F2 which crosses e. Let u−, v+ ∈ T1 such that u−u, vv+ ∈ F
and uv crosses u−v+. Choose S1 = [u− : T1] and S2 = F . Furthermore set
S′
1 = S1 \ {u−v+} ∪ {u−u, uv, vv+} and S′

2 = S2 \ {u−u, vv+} ∪ {u2v2}. Then
P = (S1, S2) and P ′ = (S′

1, S
′
2) are Steiner tree packings with χP , χP ′ ∈ Fa and

0 = bT (χS1 , χS2) − bT (χS′
1 , χS′

2) = b1u−v+ − b1uv. This together with (3) proves the
statement. Analogously we obtain b2e = b2e′ .

It remains to be shown that the coefficients of different nets are equal. We prove
this by constructing two Steiner tree packings; in the first solution the Steiner tree
for net 1 uses only zero edges, whereas in the second solution zero edges are only
used by net 2.

(6) b1e = b2e′ for e ∈ E(T1), e
′ ∈ E(T2).

Let e = uv ∈ E(T1) and e′ = wx ∈ E(T2). Choose S1 = [u : T1], S2 =
F, S′

1 = F and S′
2 = [w : E(T2)]. Then P = (S1, S2) and P ′ = (S′

1, S
′
2) are

Steiner tree packings with χP , χP ′ ∈ Fa and 0 = bT (χS′
1 , χS′

2) − bT (χS1 , χS2) =∑
i∈T2\{w} b

2
iw −∑i∈T1\{u} b

1
iu = (l − 1) · b2xw − (l − 1) · b1vu because of (3). So we

obtain b1e = b2e′ .

(1) - (6) imply that b is a multiple of a.

It remains to be shown that F1 and F2 are maximal cross free if aTx ≥ l − 1
defines a facet of PSTP (G,N , 1l).

First, we show that F1 and F2 have to be cross free. Suppose, F1 and F2 are not
cross free. Then, there exist two crossing diagonals e1 = u1v1 ∈ F1 and e2 = u2v2 ∈
F2. Let u−

1 , v+1 ∈ T1 such that u−
1 u1, v1v

+
1 ∈ F and u1v1 crosses u−

1 v
+
1 . Choose

S1 = [u−
1 : T1] \ {u−

1 v
+
1 } ∪ {u−

1 u1, u1v1, v1v
+
1 } and S2 = F \ {u−

1 u1, v1v
+
1 } ∪ {u2v2}.

Then, (S1, S2) is a Steiner tree packing with aT (χS1 , χS2) = l − 2, a contradiction.

Finally, we show that F1 and F2 are maximal cross free. Suppose, this is not the
case. Let F ′

1 ⊆ E(T2) and F ′
2 ⊆ E(T1) such that F1∪F2 ⊂ F ′

1∪F ′
2 and F ′

1 and F ′
2 are

maximal cross free. Due to first part of this proof (χE\(F∪F ′
1), χE\(F∪F ′

2))Tx ≥ l− 1
defines a facet of PSTP (G,N , 1l). Summing up this facet-defining inequality together
with the valid inequalities x1

e ≥ 0 for all e ∈ F ′
1 \ F1 and x2

e ≥ 0 for all e ∈ F ′
2 \ F2

we obtain aTx ≥ l− 1. Thus, aTx ≥ l− 1 does not define a facet of PSTP (G,N , 1l),
a contradiction.

There are several ways to extend alternating cycle inequalities, for instance
by adding parallel edges or adding additional nodes. Depending on whether the
new coefficients are lifted sequentially (and in which order) or simultaneously var-
ious inequalities come up. We do not describe these possibilities here and refer to
Grötschel, Martin, and Weismantel [1996a].

36 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

3.3.2 Grid Inequalities

Definition 3.3.3 Let G = (V,E) be a graph and N = {T1, T2} be a net list. Fur-
thermore, let Ĝ = (V̂ , Ê) be a subgraph of G such that Ĝ is a complete rectangular
h × 2 grid graph with h ≥ 3. Assume that the nodes of V are numbered such
that V̂ = {(i, j) : i = 1, . . . , h, j = 1, 2}. Moreover, let (1, 1), (h, 2) ∈ T1 and
(1, 2), (h, 1) ∈ T2. We call the inequality

(χE\Ê , χE\Ê)Tx ≥ 1

a h× 2 grid inequality.

If we consider in the following a complete rectangular h× 2 grid graph, which is
a subgraph of a given graph G = (V,E), we always assume for the ease of notation
that the node set V is numbered such that the nodes of the grid graph have a
numbering as assumed in Definition 3.3.3.

Theorem 3.3.4 Let Ĝ = (V̂ , Ê) be a complete rectangular h × 2 grid graph with
h ≥ 3. Let J1 and J2 be the two columns of Ĝ. Let N = {T1, T2} be a net list
where T1 = {(1, 1), (h, 2)} and T2 = {(1, 2), (h, 1)}. Furthermore, let G = (V,E) be
a graph with V̂ ⊆ V, Ê ⊆ E such that [V (J1) : V (J2)] is a cut in G. Set F = Ê
and let F1, F2 ⊂ E \ F . Then, the inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ 1

is valid for PSTP (G,N , 1l) if and only if for all u, v ∈ V (F), u �= v, there does not
exist a path from u to v in (V, Fk) for k = 1, 2 (see Figure 3.6).

T

T

1

2

1

2

F

F

F

Figure 3.6: Illustration of a 3× 2 grid inequality

Proof. The validity of the inequality is easy to see. There obviously does not exist
a Steiner tree packing in (V (F), F), since all nodes of V (F) have degree at most
three (with respect to F) and the terminal nodes have degree two (with respect to
F). Since in addition, for every u, v ∈ V (F), u �= v there does not exist a path from
u to v in (V, Fk) for k = 1, 2, the inequality is valid. On the other hand, if there
exist nodes u, v ∈ V (F), u �= v and a path from u to v in (V, Fk) for some k ∈ {1, 2},
one can easily construct a Steiner tree packing violating the inequality.

We also worked out necessary and sufficient conditions such that the inequal-
ity in Theorem 3.3.4 is facet-defining (see Martin [1992], Grötschel, Martin, and
Weismantel [1995]). In Theorem 3.3.4 the underlying graph G does not need to be
complete. In the following we give a formulation for complete graphs.

3.3. JOINT INEQUALITIES 37

Theorem 3.3.5 Let G = (V,E) be the complete graph with node set V and let
E′ ⊂ E be an edge set such that (V,E \ E′) is a complete rectangular h × 2 grid
graph with h ≥ 3. Let N = {T1, T2} be the net list, where T1 = {(1, 1), (h, 2)} and
T2 = {(1, 2), (h, 1)}. Set F = E′ and let F1, F2 ⊂ E \ F . Finally, set k̄ = 3− k for
k = 1, 2. Then, the inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ 1

is valid for PSTP (G,N , 1l) if and only if F1 and F2 satisfy the following properties
(see Figure 3.7):

(i) Fk ⊆ Fk := {[(i, k̄), (i+ 1, k)] : i = 1, . . . , h− 1} for k = 1, 2.

(ii) For all [(ik, k̄), (ik + 1, k)] ∈ Fk, k = 1, 2 holds i1 �= i2.

T

T

1

2

1

2

F

F

F

Figure 3.7: Illustration of a 5× 2 grid inequality in a complete graph

Proof. First, we prove that (i) and (ii) are sufficient. Let P = (S1, S2) be an
arbitrary Steiner tree packing. W. l. o. g. S1 and S2 are paths. Suppose that a

TχP =
0. For the same reason as in the proof of Theorem 3.3.4 there does not exist a
Steiner tree packing in (V, F). This implies that (S1 ∩ F1) ∪ (S2 ∩ F2) �= ∅. Let
[(ik, k̄), (ik+1, k)] ∈ (S1∩F1)∪(S2∩F2) such that ik is minimal. We consider the case
k = 1 (the case k = 2 can be shown analogously). Obviously, Jk ⊂ Sk for k = 1, 2,
where Jk = {[(i, k), (i + 1, k)] : i = 1, . . . , i1 − 1}. Since [(ik, k̄), (ik + 1, k)] ∈ S1

and S1 is a path, we obtain that either [(i1, 1), (i1, 2)], [(i1 + 1, 1), (i1 + 1, 2)] ∈ S1

or [(i1, 1), (i1 + 1, 1)], [(i1, 2), (i1 + 1, 2)] ∈ S1. In the first case set W = {(i, j) :
i = 1, . . . , i1 − 1, j = 1, 2} ∪⋃i∈I{[(i, 2), (i + 1, 2)]}, where I = {i ∈ {i1, . . . , h} :
[(i, 2), (i+1, 1)] ∈ F1 ∩S1 and [(i′, 2), (i′+1, 1)] ∈ F1 ∩S1 for all i′ = i1, . . . , i− 1}.
In the second case set W = {(i, j) : i = 1, . . . , i1, j = 1, 2}. Properties (i) and (ii)
imply that (δ(W) ∩ (F ∪ F2)) \ S1 = ∅. Since (1, 2) ∈ W and (h, 1) ∈ V \ W , it
follows that (a2)TχS2 ≥ 1, a contradiction.

It can be checked that the two conditions (i) and (ii) are also necessary.

If we add the condition “F1 and F2 are maximal with respect to (i) and (ii)” in
Theorem 3.3.5, we obtain that these three conditions are necessary and sufficient
for the grid inequality to be facet-defining (Martin [1992]).

38 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

3.3.3 Critical Cut Inequalities

Definition 3.3.6 Let G = (V,E) be a graph with edge capacities ce ∈ N, e ∈ E.
Moreover, let N = {T1, . . . , TN} be a net list. For a node set W ⊆ V we define
S(W) := {k ∈ {1, . . . , N} : Tk ∩W �= ∅, Tk ∩ (V \W) �= ∅}.
(a) We call a cut induced by a node set W critical for STP (G,N , c), if s(W) :=

c(δ(W))− |S(W)| ≤ 1.

(b) If V1, V2, V3 is a partition of V such that δ(V1) is a critical cut and if T1∩V1 = ∅
and T1 ∩ Vi �= ∅ for i = 2, 3, we call the inequality

x1([V2 : V3]) ≥ 1

a critical cut inequality with respect to T1. (See Figure 3.8.)

V V

V1

2 3

Consider the partition V1,V2,V3 in Figure 3.8. Suppose the capacities of the edges are equal

to one. Then, δ(V1) is a critical cut. The critical cut inequality says that the net depicted

by black rectangles must use at least one of the edges of [V2:V3].

Figure 3.8: Illustration of a critical cut inequality

The critical cut inequality is valid for PSTP (G,N , c) for, suppose not, there
exists a Steiner tree packing (S1, . . . , SN) with |S1 ∩ δ(V1)| ≥ 2. This implies that
0 ≤ c(δ(V1)\S1)−|S(V1)| ≤ c(δ(V1))− 2−|S(V1)| ≤ −1, since 1 /∈ S(V1) and δ(V1)
is critical, a contradicition.

It turns out that under certain conditions this inequality is also facet-defining.
Such details are reported in Martin [1992] and Grötschel, Martin, and Weismantel
[1995].

All inequalities described are used in our branch-and-cut algorithm that we
describe in the next section. The interested reader will find further classes of facet-
defining inequalities in Grötschel, Martin, and Weismantel [1996c].

3.4 Algorithmic Aspects

In this section we discuss the separation problem of the classes of inequalities pre-
sented in the last two sections and describe a primal heuristic. Moreover, we point
to several implementation aspects that suplement the general branch-and-cut algo-
rithm described in Appendix B.

3.4.1 Separation Algorithms

We present in this subsection the main ideas of our separation algoirthms. The
complete separation algorithms and the associated correctness proofs are quite com-
plicated. For more information on this issue we refer the reader to Martin [1992]
and Grötschel, Martin, and Weismantel [1996d].

3.4. ALGORITHMIC ASPECTS 39

Separation of the Steiner Partition Inequalities

Due to Theorem 3.2.3 every facet-defining inequality for the Steiner tree polyhedron
yields a valid and, in case G is complete and the net list is disjoint, a facet-defining
inequality for PSTP (G,N , c). We focus here on one class of facet-defining inequal-
ities that was characterized in Grötschel and Monma [1990] and generalizes the
Steiner cut inequalities (3.1) (i). Let G be a graph and T ⊆ V be a terminal set.
We call a partition V1, . . . , Vp, p ≥ 2, of V a Steiner partition with respect to T , if
Vi ∩ T �= ∅ for i = 1, . . . , p. The inequality

x(δ(V1, . . . , Vp)) ≥ p− 1

is called Steiner partition inequality. It is valid for PSTP (G, {T }, 1l) and Grötschel
and Monma have characterized conditions under which it defines a facet. Though
the corresponding separation problem is NP-complete in general (see Grötschel,
Monma, and Stoer [1992]), there exist special cases for which it can be solved in
polynomial time. One of these special cases is obtained if we restrict the graph G to
be planar and the set of terminal nodes T to lie on the outer face of G. This special
case is of particular practical interest, because it includes the switchbox routing
problem. The main idea of the algorithm for solving the separation problem in this
case is as follows.

t t

t

t

2

4

5

1t t

t

2

4

5

1

t

d

d

d

dd

1

5

2

3

4

t t

t

t

t

2

3

4

5

1t t

t

t

2

4

5

1

t

d

d

d

dd

3

1

5

2

3

4

(b)(a)

(c) (d)

t 3 t 3

V V

V
V

1 2

3
4

Figure 3.9: Separation of Steiner partition inequalities

Without loss of generality we can assume that G is 2-node connected (otherwise
the graph can be decomposed). Thus, the edge set that encloses the outer face of
G is a cycle. Suppose the terminal set T = {t1, . . . , tz} is numbered in a clockwise
fashion along this cycle. Now, consider the dual graph G∗ = (V ∗, E) of G and
subdivide the node representing the outer face in z nodes d1, . . . , dz such that
every edge belonging to a path in G from ti to ti+1 on the outer face is now incident
to di+1 for i = 1, . . . , z. Let GD = (VD, E) denote the resulting graph and set
D = {d1, . . . , dz} (cf. Figure 3.9 (a) and (b)).

40 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

It turns out that under mild assumptions every edge set S = δ(V1, . . . , Vi)
induced by a Steiner partition V1, . . . , Vi is in one-to-one correspondence with an
edge-minimal Steiner tree in GD with respect to some subset J ⊆ D (cf. Figure
3.9 (c) and (d)).

This equivalence yields that the problem of separating the class of Steiner par-
tition inequalities reduces to the problem of finding a subset J of D and an edge-
minimal Steiner tree in GD with respect to J . Given J , we can determine an optimal
Steiner tree in GD with respect to J by applying the dynamic programming ap-
proach proposed in Dreyfus and Wagner [1971] and Erickson, Monma, and Veinott
[1987]. Thus, the crucial point is to find the subset J ⊆ D. In Grötschel, Martin,
and Weismantel [1996d] we show that we can locally decide which terminal belongs
to an optimal solution. This observation can be taken into account by modifying
the recursion formula of the dynamic program appropriately.

The algorithm for separating the Steiner partition inequalities gives rise to sev-
eral heuristic procedures. Instead of calculating the optimal Steiner tree in GD we
heuristically determine Steiner trees. For more details, we again refer to our paper
Grötschel, Martin, and Weismantel [1996d].

Separation of the Alternating Cycle Inequalities

Consider an instance STP (G,N , c) of a Steiner tree packing problem with N =
{T1, T2}. How to find suitable pairs T1 and T2 will be discussed in the next sec-
tion. It is open whether the separation problem of alternating cycle inequalities for
PSTP (G,N , c) is solvable in polynomial time. We restrict our attention to the case
where G is planar and all terminals lie on the outer face of G. Here, our idea to
separate alternating cycle inequalities is to apply dynamic programming techniques
in a similar way as was done for finding Steiner partition inequalities.

Again, we show that alternating cycle inequalities are in a one-to-one mapping
with Steiner trees in an appropriate dual graph. In this case, however, these Steiner
trees have to satisfy many technical conditions.

In particular, these technical conditions cause that some edges are evaluated
differently for different nets. This is due to the fact that for the alternating cy-
cle inequality, edge sets F (edges which have a zero coefficient for both nets), F1

(edges which have a zero coefficient just for net 1) and F2 (edges which have a zero
coefficient just for net 2) are involved (cf. Theorem 3.3.2). Unfortunately, taking
all these constraints into account we obtain a dynamic program, whose optimum
solution does not necessarily correspond to the most violated alternating cycle in-
equality. Rather, the optimum value found by the dynamic program provides just
a lower bound for the most violated alternating cycle inequality. If this value is
non-negative, we can guarantee that there does not exist a violated inequality of
this type. Otherwise, there may exist a violated alternating cycle inequality, but the
algorithm terminates with an edge set that does not correspond to an alternating
cycle inequality (see Grötschel, Martin, and Weismantel [1996d]).

The relationship between alternating cycle inequalities and Steiner trees satis-
fying certain technical conditions in the appropriate dual graph gives rise to many
heuristics. Again, we have implemented, in addition to the dynamic program, an
algorithm that determines heuristically such Steiner trees and checks whether the
corresponding alternating cycle inequalities are violated.

Finding Critical Cuts

Remember that a cut induced by a set of nodes W is critical, if s(W) = c(δ(W))−
|S(W)| ≤ 1, where S(W) = {k ∈ {1, . . . , N} : Tk ∩ W �= ∅, Tk ∩ (V \ W) �= ∅}.
In the following we briefly explain why we concentrate on the problem of finding

3.4. ALGORITHMIC ASPECTS 41

critical cuts rather than on the separation problem for the critical cut inequalities
itself.

First, let us point out that, from a practical point of view, we are interested in
Steiner tree packings where each of the single Steiner trees is edge-minimal. Since
a positive objective function is minimized, we know in advance that the weight-
minimal Steiner trees are also edge-minimal, and we exploit this property to reduce
the problem size.

Suppose W ⊆ V is a node set and Tk is a set of terminals with Tk ⊆ W or
Tk ⊆ V \W . Then any edge-minimal Steiner tree for Tk that uses one edge of δ(W)
has to contain at least two of these edges. But, if δ(W) is a critical cut then at
most one edge of δ(W) can be used by the Steiner tree for Tk. Hence, the following
variables can be fixed accordingly, i. e.,

xk
e = 0, for all k ∈ {1, . . . , N} \ S(W), Tk ⊆ W, e ∈ E(V \W) ∪ δ(W);

xk
e = 0, for all k ∈ {1, . . . , N} \ S(W), Tk ⊆ V \W, e ∈ E(W) ∪ δ(W).

Let us now point out the relationship to the critical cut inequality. Consider
the situation in Definition 3.3.6 (b), where V1, V2, V3 is a partition of V such that
δ(V1) is a critical cut and T1 ∩ V1 = ∅ and T1 ∩ Vi �= ∅, i = 2, 3. Since δ(V1) is
critical, we can fix all variables x1

e to zero for e ∈ δ(V1). Thus, by fixing these
variables we can separate the critical cut inequalities via separating the Steiner cut
inequalities. For example, a Steiner cut inequality for T1 of the instance described
in Definition 3.3.6 (b) is x1(δ(V2)) = x1([V2 : V1])+x1([V2 : V3]) ≥ 1. By taking the
fixed variables into account we obtain the critical cut inequality x1([V2 : V3]) ≥ 1.

In the remainder of this subsection we briefly sketch the ideas how to find crit-
ical cuts. We restrict ourselves to instances STP (G,N , 1l), where G is a complete
rectangular grid graph and all terminal sets of the net list N lie on the outer face
of G. Here, we can show (Grötschel, Martin, and Weismantel [1995]) that, if there
exists a node set W ⊂ V, W �= ∅ that induces a critical cut, there exists

(i) a node w ∈ V such that δ(w) is a critical cut with respect to STP (G,N , 1l)
or

(ii) a horizontal or vertical critical cut with respect to STP (G,N , 1l). (A cut F is
called horizontal if there exists some i ∈ {1, . . . , h− 1} such that F = {uv ∈
E : u = (i, j) and v = (i + 1, j) for some j ∈ {1, . . . , b}}; a vertical cut is
defined analogously).

Based on this observation we can now develop an algorithm for finding critical
cuts. We check, for all nodes v ∈ V , whether δ(v) is critical. In addition, we
also check whether there exist critical vertical or horizontal cuts. If we do not
succeed in finding a critical cut, we can conclude that none exists. Otherwise, we
fix the corresponding variables. In order to find further critical cuts, we inductively
enlarge the node set W = {v} in all four possible directions of the grid in a greedy
like fashion. The variables of the critical cuts found this way are fixed accordingly.

Finally, we have developed a heuristic for separating grid inequalities that pro-
ceeds in a greedy-like fashion. Details can be found in Grötschel, Martin, and
Weismantel [1995].

3.4.2 A Primal Heuristic

This section is devoted to describing our primal heuristic. The idea of the heuristic
is to make use of the information given by the actual solution of the cutting plane
phase.

42 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

We have developed a sequential algorithm. We consider each terminal of a
net to be an (isolated) component. We iteratively connect two components of
a net according to an a-priori determined sequence. However, we do not apply
this scheme by routing one net completely after another, but we connect only two
components in each iteration. The success of such a procedure strongly depends on
the predefined sequence. In our algorithm this sequence is mainly determined by
the solution x̄ of the actual linear program. More precisely, we define a function
f depending on x̄ according to which the subsequent two components are selected.
(A detailed explanation of the function f is given below.) We try to connect the
two selected components via a shortest path. Since in a complete rectangular grid
graph a shortest path is not unique in general, we have implemented further criteria
according to which the choice is made. Besides others, these criteria depend on the
location of the terminals of the other nets, the position of the not yet connected
terminals of the same net and, again, on the solution x̄. For a detailed description of
these criteria we refer the reader to Martin [1992]. If it is possible to connect the two
components on a shortest path by taking the mentioned criterion into account, we
connect these two components and choose the next pair of components. Otherwise,
we recompute the function f and the sequence by taking the already connected
components into account. This iterative procedure is continued until all nets are
connected or no further components can be connected.

The crucial point for the success of the described heuristic is the choice of the
function f . For the definition of the function f let us assume that the nodes be num-
bered such that V = {(i, j) : i = 1, . . . , h, j = 1, . . . , b} and let Vl,r,t,d := {(i, j) :
i = l, . . . , r, j = t, . . . , d} for l, r ∈ {1, . . . , b}, l < r and t, d ∈ {1, . . . , h}, t < d.
Consider some net k ∈ {1, . . . , N}. Let Sk be the edge set that was already deter-
mined for connecting Tk, T

′
k the set of not yet connected terminals and Ĝ = (V, Ê)

the graph that is obtained from the given complete rectangular grid graph by delet-
ing all edges that are already used for the connection of terminals.

We consider the case Sk �= ∅ (in the case Sk = ∅ the function is defined similarly)
and let sk = (is, js) ∈ T ′

k and tk = (it, jt) ∈ V (Sk) be given. Determine l, r ∈
{1, . . . , b}, l < r and t, d ∈ {1, . . . , h}, t < d such that sk, V (Sk) ∈ Vl,r,t,d and

|Vl,r,t,d| is minimal. Set El,r,t,d = {e ∈ Ê(Vl,r,t,d) : x̄
k
e > 0} and suppose (Vs, Es) is

the component in (Vl,r,t,d, El,r,t,d) with sk ∈ Vs. Set

fx̄k(sk, tk) := |w(W (sk, tk)
)− ∑

e∈Es

we x̄
k
e |,(3.3)

where W (sk, tk) is a shortest path from sk to tk in Ĝ (with respect to w). We
choose those two components for being connected next that minimize this function
f .

The heuristic idea of this function is the following. We determine a graph
(Vl,r,t,d, El,r,t,d) which is the smallest rectangular grid graph containing both com-
ponents (often designated as the “minimal enclosing rectangle”). Inside the minimal
enclosing rectangle we compute the weighted sum (= ω) of those edges that are in
the same component as sk, where only edges with x̄k

e > 0 are considered. The value
ω is compared to the length (= λ) of a shortest path between the two nodes. If ω
is smaller than λ, we assume that the information from x̄k is too poor to decide
how to connect the two nodes. The smaller the difference, the less information and
the greater the value of f . On the other hand, if ω is greater than λ the two nodes
will be probably connected via a detour. The greater the difference, the greater the
value of f . Thus, we choose the components with value ω close to λ first.

Obviously all ideas mentioned so far are of heuristic nature and there is no
guarantee that we will obtain good results. However, due to many tests we have

3.4. ALGORITHMIC ASPECTS 43

performed this strategy seems to be reasonable.

3.4.3 Further Issues

We tuned the general branch-and-cut algorithm described in Appendix B to solve
practical Steiner tree packing problems. We briefly discuss some of the features
in this section. Further details on the implementation may be found in Grötschel,
Martin, and Weismantel [1996b].

One major problem we encountered is that the linear programs appeared to be
quite difficult. One of the reasons for this is probably that our linear programs have
many alternative optimum solutions and are simultaneously primally and dually
highly degenerate. Even CPLEX, a fast and robust code for solving linear programs,
had enormous difficulties to solve the linear programs.

A frequently used method to overcome such difficulties is to perturb the right-
hand side of the linear program. Since we are solving the problems with the dual
simplex method we must perturb the objective function of the weighted Steiner
tree packing problem. After many experiments and discussions with R.E. Bixby
(Rice University and ILOG) we decided to proceed as follows. Let ω ∈ RN×E with
ωk
e = we for all e ∈ E, k = 1, . . . , N be the original objective function. For each

terminal set Tk, we compute a Steiner tree Sk by applying a heuristic procedure and
determine random numbers εke ∈ [0, 1]. Then we use the objective function vector
w̃ ∈ RN×E defined by

w̃k
e := ωk

e − b εke − η, if e ∈ Sk, for k = 1, . . . , N ;

w̃k
e := ωk

e − b εke , if e /∈ Sk, for k = 1, . . . , N,

where η = 1
2(n+1) and b = min{10−5, 1

2 (n+1)} in the actual implementation. It

is easy to see that, if the given objective function is integer, an optimal Steiner
tree packing with respect to w̃ is also optimal with respect to ω and vice versa.
The success of the perturbation trick is very impressive, the running times can be
reduced by a factor of ten, see Grötschel, Martin, and Weismantel [1996b].

Another (polyhedral) preprocessing trick helped to increase the lower bounds
and to decrease the running time considerably. After “solving” the trivial initial
linear program by setting all variables to zero we do not call our general separation
routines; rather, we generate a particular class of Steiner cut and Steiner partition
inequalities for which we have heuristic reasons to believe that they form a sensible
set of “good” initial cutting planes.

Since the underlying graph is a complete rectangular grid graph, we add all
Steiner cut inequalities that are induced by a horizontal or vertical cut. The ad-
vantage is that these inequalities have pairwise disjoint support. In addition, for
multi-terminal nets we extend each Steiner cut inequality to a Steiner partition
inequality with right-hand side greater than two. For example, let |Tk| = p ≥ 3,
F = δ(W), W ⊂ V , be a vertical cut that induces a Steiner cut inequality. First,
we determine a Steiner partition W1, . . . ,Wq of W such that [Wi : Wi+1] is a hor-
izontal cut in (W,E(W)) for i = 1, . . . , q − 1 and q is maximal. The only node
sets of W1, . . . ,Wq that possibly contain more than one terminal are W1 and Wq.
For these two node sets we again determine a Steiner partition W 1

r , . . . ,W
lr
r for

r = 1 and r = q such that [W i
r : W i+1

r] is a vertical cut in (Wr , E(Wr)) and lr
is maximal. The same procedure is applied to the node set V \ W . Taking both
together we obtain (after renumbering) a Steiner partition W1, . . . ,Ws with s = p,
and x(δ(W1, . . . ,Ws)) ≥ p−1 defines a Steiner partition inequality. We extend each
horizontal and vertical cut that defines a Steiner cut inequality in this way. Ob-
viously, the resulting inequalities do not necessarily have disjoint support, but the

44 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

right-hand side is quite large. Let us denote all inequalities constructed in this way
and the Steiner cut inequalities induced by a horizontal or vertical cut by special
Steiner partition inequalities.

Iter. with special without special
Steiner part. ineq. Steiner part. ineq.

LP value CPU time LP value CPU time

1 0.00 0:02 0.00 0:02
2 456.56 0:05 196.87 0:05
3 457.57 0:11 351.13 0:11
4 457.59 0:22 374.20 0:27
5 457.60 0:38 389.38 1:12

10 459.00 6:18 425.25 7:54
15 460.66 17:36 440.42 22:03
20 461.70 33:33 447.07 43:21

Table 3.1: Progress by using special Steiner partition inequalities

Table 3.1 illustrates the progress we obtain for example difficult switchbox by us-
ing the special Steiner partition inequalities after solving the initial linear program.
Column 1 presents the number of cutting plane iterations. Column 2 and 3 (resp. 4
and 5) give the LP objective value and the accumulated CPU-time (in min:sec)
by using (resp. not using) the special Steiner partition inequalities after the first
iteration. The results are impressive. The lower bound we obtain within five sec-
onds after the second iteration by adding the special Steiner partition inequalities
is much better than after running the algorithm with the separation algorithms for
the Steiner partition inequalities discussed above for more than forty minutes.

Next, we want to deal with the separation of the alternating cycle inequalities.
The separation algorithms we have outlined (the dynamic program as well as the
heuristics) need a pair of nets as input. The problem we are concerned with is to
choose one (or several) “good” pairs of terminal sets for which we want to execute
the separation algorithms. If we would call one of these algorithms for all net pairs,
we would obtain a non-acceptable running time, because the number of calls is
quadratic in the number of nets. Note that we encountered a similar problem for
the separation of multiple cover inequalities, see page 17.

In order to overcome this problem here, we try to exploit the information given
by the primal heuristic. Remember that two components are gradually connected
via a shortest path. If this is not possible, another net must block this path.
Obviously the two nets concurrently prefer certain edges in this case. Moreover,
this situation indicates that the information provided by the linear programming
solution is too poor to decide which of the nets is forced to make a detour, see
the definition of the function f in (3.3). Hence, we conclude that more inequalities
combining these nets are necessary. Thus, we call the separation algorithms for the
alternating cycle inequalities for nets that are in conflict due to the information of
the primal heuristic. Practical experiments have shown that the number of such
conflicts is sublinear in the number of nets and that strongly violated alternating
cycle inequalities can be obtained for such conflicting net pairs.

We want to point out that not only the linear program solution supplies impor-
tant information for the primal heuristic. But also conversely, the primal heuristic
indicates which type of inequalities are promising for a further execution of the
cutting plane algorithm. In our opinion this interplay of the methods for determing
the lower and upper bound is essential in order to solve large scale problems.

3.5. COMPUTATIONAL RESULTS 45

3.5 Computational Results

In this section we report on computational experiences with our branch-and-cut
algorithm. We have tested the algorithm on switchbox routing problems that are
discussed in the literature. Table 3.2 summarizes the data. Column 1 presents
the name used in the literature. In Column 2 and 3 the height and width of the
underlying grid graph is given. Column 4 contains the number of nets. Columns 5
to 9 provide information about the distribution of the nets; more precisely, Column
5 gives the number of 2-terminal nets, Column 6 gives the number of 3-terminal nets
and so on. Finally, the footnotes state the references to the papers the examples
are taken from.

Example h w N Distribution of the Nets
2 3 4 5 6

difficult switchboxa 15 23 24 15 3 4 1 1

more difficult 15 22 24 15 3 5 0 1
switchboxb

terminal intensive 16 23 24 8 7 5 4 0
switchboxc

dense switchboxc 17 15 19 3 11 5 0 0

augmented dense 18 16 19 3 11 5 0 0
switchboxc

modified dense 17 16 19 3 11 5 0 0
switchboxb

pedagogical 16 15 22 14 4 4 0 0
switchboxb

aBurstein and Pelavin [1983]
bCohoon and Heck [1988]
cLuk [1985]

Table 3.2: Switchbox routing problems: Data

In all examples as they were originally introduced in the literature, the under-
lying graph is given as follows. The graph is obtained from a complete rectangular
grid graph by removing the outer cycle, see Figure 3.10 (a). Hence, every terminal
is incident to a unique edge, and obviously, every Steiner tree must contain this
edge. It is easy to see that by contracting all pending edges an equivalent problem
is obtained, see Figure 3.10 (b). The graph resulting this way is a complete rectan-
gular grid graph with terminals on the outer face. This instance is the input to our
algorithm.

The first example difficult switchbox was introduced by Burstein and Pelavin.
The second one more difficult switchbox is derived from the first one by deleting the
last column. (More precisely, the edges [(i, 23), (i, 24)] of the first grid graph are
contracted for i = 1, . . . , 15 and parallel edges are deleted.) The net list is the same.
The difference in the distribution occurs (see Column 7 and 8), because an edge
whose endpoints belong to the same net is contracted. The third problem instance
was introduced by Luk, here each outer face node is occupied by a terminal. The
fourth switchbox routing problem is again due to Luk. Up to now it was not known
whether a solution for this example exists, if the Manhattan or 2-layer model is used.
Based on this example two variants can be obtained. One, called augmented dense

46 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

switchbox, has an additional column on the right, the other, called modified dense
switchbox, has an additional column near the middle and an additional row on the
buttom. The last example was introduced by Cohoon and Heck. They illustrated
their algorithm on this problem.

1 3 1 2

6

1

2

4

5

3

1

2

4

5

1 2 4 5 6

6,1 3 1 2,3

5,1 2 4 6,55

4

2

1 1

2

4

(a) (b)

Figure 3.10: Deletion of preassigned edges

In all examples the edge weights as well as the edge capacities are equal to one.
Unfortunately, the problem instances do not fix the routing model (Manhattan,
knock-knee or multiple layer model). As outlined in the introduction the weighted
Steiner tree packing problem reflects the knock-knee model, and thus the results
of our algorithm apply to this case. A comparison of our results to results for the
Manhattan model (and 2-layer model) will be given in the next section.

The data in Table 3.2 gives rise to integer programming formulations with a
number of variables ranging from 9082 to 16728. As outlined in the last subsection
of Section 3.4 certain variables can be fixed a-priori. The number of variables fixed
this way ranges from 14% to 53%, resulting in a final number of variables between
4251 (for dense switchbox) and 13424 (for difficult switchbox).

In Table 3.3 the results we have obtained with our branch-and-cut algorithm
are summarized. Column 2 gives the best feasible solution, and Column 3 the best
lower bound. In Column 4 the percentage deviation of the best solution from the
best lower bound is given; more precisely, Column 4 contains the value w2−w3

w3
,

where w2 (resp. w3) is the corresponding value of Column 2 (resp. 3). Column 5
(resp. 6) gives the number of cutting plane iterations, i. e., the number of solved
linear programs, (resp. the number of nodes in the branching tree). Finally, the last
column reports on the running times. The values are stated in minutes on a Sun
Enterprise 3000 with a 168 MHz UltraSPARC processor. The two examples dense
switchbox and augmented dense switchbox marked with an asterix are stopped after
two days of computation, because no further progress could be achieved.

The numbers in Table 3.3 are quite encouraging. We solve 5 out of 7 problems to
optimality, and for the remaining two problem instances the lower bound in Column
3 guarantees that the best feasible solution deviates at most 0.5% from the optimal
solution. In our opinion the main advantage of our algorithm is that the quality
of an heuristically determined solution can be evaluated with the lower bound.
Especially, for problem instances arising in VLSI-Design, where in general only
heuristics are at hand, a cutting plane algorithm helps in analyzing the heuristics
and simultanously delivers a lot of knowledge about the problem itself.

The distribution of the cuts found is around the same for all problems, see
Table 3.4. We find individual (i. e., Steiner cut- and Steiner partition-) inequalities
in the thousands (between 3075 for modified dense switchbox and 23098 for dense
switchbox), around a factor of ten less alternating cycle inequalities (between 298 for
modified dense switchbox and 1851 for dense switchbox), and again around a factor

3.5. COMPUTATIONAL RESULTS 47

Example Best Sol Lower Bd Gap LPs B&B CPU-Time

difficult switchbox 464 464 0.0% 62 1 190:34

more difficult 452 452 0.0% 53 1 118:10
switchbox

terminal intensive 536 536 0.0% 895 17 2226:46
switchbox

dense switchbox� 441 439 0.5% 3420 27 2738:21

augmented dense 469 467 0.4% 361 1 2863:51
switchbox�

modified dense 452 452 0.0% 58 1 42:22
switchbox

pedagogical 331 331 0.0% 84 3 27:22
switchbox

Table 3.3: Results for the knock-knee model

of ten less h × 2 grid inequalities (at most 112 for terminal intensive switchbox).
Thus, as in the case of the multiple knapsack problem one might ask the question
whether joint inequalities help to solve the problems (faster). Indeed, they do. We
tested on the five instances we solve to optimality the influence when the separation
of joint inequalites is turned off. The results are much worse. We are not able to
solve terminal intensive switchbox within the time limit of 60 hours. Also pedagogical
switchbox is a disaster, we need 1817 branch-and-bound nodes to solve the problem,
whereas with joint inequalities only three are necessary. These numbers clearly show
the need of joint inequalities. The results are comfirmed by Grötschel, Martin, and
Weismantel [1995], where additonal separation strategies have been tested, and it
is always the best to separate all joint inequalites.

Example Steiner alternating h� 2
partition cycles grid

difficult switchbox 5236 747 16

more difficult 4383 556 18
switchbox

terminal intensive 15234 1072 112
switchbox

dense switchbox� 23098 1851 21

augmented dense 11152 1083 18
switchbox�

modified dense 3075 298 23
switchbox

pedagogical 3136 546 32
switchbox

Table 3.4: Added cutting planes for the knock-knee model

Nevertheless, even with the separation of joint inequalities one major problem
with our algorithm is its running time, where at least 90% of the total time for each
problem is spent in the solution of the linear programs. The numbers in the last
column of Table 3.3 are very high. One reason is that we are interested in an optimal

48 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

Example Best Sol Lower Bd Gap LPs B&B CPU-Time

difficult switchbox 464 464 0.0% 72 1 253:58

more difficult 452 452 0.0% 58 1 152:46
switchbox

terminal intensive 539 535 0.0% 561 7 3592:52
switchbox

modified dense 452 452 0.0% 427 1 2904:30
switchbox

pedagogical 331 331 0.0% 1933 1817 1301:09
switchbox

Table 3.5: Results for the knock-knee model without joint inequalites

solution or at least in the best lower and upper bound for each of the problems that
we can achieve with our approach. This is time consuming. In practice, heuristics
usually find feasible solutions for these instances in a few seconds. These running
times are certainly not reachable with our algorithm. However, the main advantage
of the cutting plane approach is to give a solution guarantee for the best known
feasible solution. We are not aware of any method used in practice that is able
to guarantee a certain quality of the feasible solutions found. From this point of
view, we have analyzed our results also. It turns out that, though the running time
behaviour is exponential, for all problem instances, the lower bound deviates from
the best feasible solution only by at most 5% percent after no more than a minute.

In our opinion these times are acceptable. However, we would like to point out
that these examples are quite small in comparison to problem sizes arising in other
practical applications for the design of electronic circuits. It is definitely a long-term
goal to apply branch-and-cut algorithms to instances of larger scale.

Comparing Routing Models

From a practical point of view a very interesting question with probably never end-
ing discussions is the question which routing model should be preferred: the knock-
knee model, the Manhattan model or the multiple layer model. To our knowledge
all methods from the literature use the Manhattan model or the 2-layer model. The
choice of the underlying model strongly influences the solvability of the problems.
The theory says that in the knock-knee model two layers may not suffice, whereas
in the Manhattan model (and the 2-layer model) they do. Moreover, there are
examples where there exists a solution in the 2-layer model, whereas it does not
in the knock-knee model. Figure 3.10 illustrates such an example (this example
is taken from Cohoon and Heck [1988]). On the other hand, one can expect that
the wiring length that is needed when Steiner trees are packed in the knock-knee
model is smaller than in case of the Manhattan model. But, does the knock-knee
model provide substantially shorter wiring lengths? We have tried to answer these
questions for the problem instances introduced in the last section.

To model the Manhattan routing style, where knock-knees are not allowed, we
have to introduce additional inequalities that make it impossible for two Steiner
trees to bend at the same node, see Figure 3.3.

Let STPw (G,N , 1l, w) be an instance of the (weighted) Steiner tree packing
problem, where G is a complete rectangular grid graph and uv, vw are two consec-
utive horizontal (or vertical) edges. Let N1, N2 be a partition of {1, . . . , N}. Then,
the constraint

3.5. COMPUTATIONAL RESULTS 49

∑
k∈N1

xk
uv +

∑
k∈N2

xk
vw ≤ 1(3.4)

is called Manhattan inequality.

It is easy to see that every edge-minimal packing of Steiner trees that satisfies,
for every pair of consecutive edges and for every 2-partition of the set of nets,
the corresponding Manhattan inequality (3.4) and the constraints (3.1) (i) – (iv)
corresponds to a feasible switchbox routing in the Manhattan style, and vice versa.

We extended and modified our branch-and-cut algorithm to handle switchbox
routing in the Manhattan style as well. All separation routines and all special fea-
tures (preprocessing, . . .) and implementation tricks (perturbation, . . .) discussed
so far can be taken over. In addition, we designed and implemented a separation
routine for the Manhattan inequalities (3.4), and some (minor) changes were needed
or useful to apply the code to Manhattan routing problems that we briefly discuss
now.

Our procedure for separating Manhattan inequalities works as follows. Let us
assume that the capacity inequalities are satisfied by the current LP solution x̄
(of course, this can be checked in linear time). Let uv ∈ E and vw ∈ E be
two horizontal edges that are incident to node v ∈ V (the same arguments ap-
ply to the case of two consecutive vertical edges). For every net k ∈ {1, . . . , N},
we determine max{x̄k

uv, x̄
k
vw}. Set N1 := {k ∈ {1, . . . , N} : x̄k

uv > x̄k
vw} and

N2 := {k ∈ {1, . . . , N} : x̄k
uv ≤ x̄k

vw}. If N1 = ∅ or N2 = ∅, we can conclude
that no violated Manhattan inequality exists, since the capacity inequalities are
all satisfied. Otherwise, N1, N2 is a partition of {1, . . . , N} and the inequality∑

k∈N1
xk
uv +

∑
k∈N2

xk
vw ≤ 1 is a Manhattan inequality with maximal left-hand

side. This procedure obviously solves the separation problem for the class of Man-
hattan inequalities.

We also modified the LP-based primal heuristic to guarantee that only Steiner
tree packings are feasible that contain no knock-knees. We omit the technical details
here. Finally, we exploit the fact that nets must not bend against each other in order
to fix variables at the initial phase of the code, for details see Grötschel, Martin,
and Weismantel [1997].

Table 3.6 summarizes our results. For all instances we could either find an opti-
mal solution or prove that the problem is infeasible. The latter situation occurred
in the two cases dense switchbox and modified dense switchbox. To our knowledge, it
was up to now open whether there exists a packing of Steiner trees in the Manhattan
model for these instances. Actually, the two examples modified dense switchbox and
augmented dense switchbox are extensions of the problem dense switchbox in which
additional tracks are added (augmented dense switchbox has an additional vertical
track on the right and modified dense switchbox has an additional vertical track near
the middle and an additional horizontal track at the bottom). In fact, these mod-
ifications had been introduced because no routing algorithm could find a feasible
solution for dense switchbox in any routing style. Whereas a Manhattan routing
is known for the problem augmented dense switchbox, the heuristics described in
the literature were unable to find one for modified dense switchbox. Our algorithm
yields a mathematical proof that, indeed, no routing routine can ever be successful
for the latter example.

Table 3.7 presents a comparison of the lower and upper bounds obtained with our
algorithm in the knock-knee and Manhattan style. The results are quite different
for different instances. For one example the wiring length in the Manhattan model

50 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

Example Best Sol. Lower Bd Gap LPs B&B CPU-Time

difficult switchbox 469 469 0.0% 148 3 380:54

more difficult 461 461 0.0% 424 7 977:57
switchbox

terminal intensive 537 537 0.0% 28 1 46:47
switchbox

dense switchbox - ∞ - 20 1 10:18

augmented dense 469 469 0.0% 30 1 53:30
switchbox

modified dense - ∞ - 47 1 75:28
switchbox

pedagogical 343 343 0.0% 350 29 240:60
switchbox

Table 3.6: Results for the Manhattan model

is just the same as in the knock-knee model though the solutions have indeed knock-
knees. For four other problem instances the wiring length in the Manhattan model
exceeds that in the knock-knee model by a small amount (for difficult switchbox
by 5 (= 1.1%), for more difficult switchbox by 9 (= 2.0%), for terminal intensive
switchbox by 1 (= 0.1%), and for pedagogical switchbox by 12 (= 3.6%)). Of course,
the shorter lengths in the knock-knee model must be paid by additional layers.
Since the percentage of increase in length is quite small one may tend to prefer the
Manhattan model. However, for the examples dense switchbox and modified dense
switchbox, for which we could prove that there does not exist a feasible solution
in the Manhattan model, we are able to find feasible solutions in the knock-knee
model. This makes the knock-knee model more attractive.

Example Knock-knee Model Manhattan Model
Lower Bd Upper Bd Lower Bd Upper Bd

difficult switchbox 464 464 469 469

more difficult 452 452 461 461
switchbox

terminal intensive 536 536 537 537
switchbox

dense switchbox 438 441 ∞ -

augmented dense 467 469 469 469
switchbox

modified dense 452 452 ∞ -
switchbox

pedagogical 331 331 343 343
switchbox

Table 3.7: Comparing the knock-knee and Manhattan model

3.5. COMPUTATIONAL RESULTS 51

Comparing running times we observe similar phenomena (see the last columns
in Tables 3.3 and 3.6). Some examples are quite easy for the knock-knee model but
rather hard for the Manhattan model, and vice versa, some are solved quite fast
in the Manhattan model, but are difficult in the knock-knee style. Based on these
results we cannot decide whether one model is superior to the other. The issue
of choosing the “correct” model must be left to practitioners and depends on the
chosen fabrication technology and the given design rules.

Finally, we have compared our results with those published in the literature. In
Table 3.8 we summarize the objective function values of the – to our knowledge –
best Manhattan solution reported in the literature (Column 2). No entry means
that we did not find any Manhattan solution for the corresponding problem instance
that was published in the literature. In Column 3 the objective function value
of the Manhattan solution that was obtained by our code is shown. The values
differ from those reported in Table 3.6 and Table 3.7, respectively, by the total
number of terminals of the original data due to preprocessing (see page 45 for further
explanations). For the examples dense switchbox and modified dense switchbox no
Manhattan solution exists which is indicated by the symbol “∗” in Column 3. For
the problem instance augmented dense switchbox the solution given in Luk [1985]
is optimal, whereas for the two problems difficult switchbox and terminal intensive
switchbox the solution found by our code improves the best solution reported in the
literature by 2.2% and 2.7%, respectively.

Example Best Manhattan Solution from
the Literature our Code

difficult switchbox 547a 535

more difficult - 527
switchbox

terminal intensive 632b 615
switchbox

dense switchbox - ∗
augmented dense 529b 529
switchbox

modified dense - ∗
switchbox

pedagogical - 400
switchbox

aJou, Lee, Sun, and Wang [1990]
bLuk [1985]

Table 3.8: Best solutions for the Manhattan model

Of course, there are further routing algorithms presented in the VLSI literature.
To our knowledge, all of them apply to the 2-layer model, see, for instance, Lin, Hsu,
and Tsai [1988], Joobbani and Siewiorek [1986], Cohoon and Heck [1988], Jou, Lee,
Sun, and Wang [1990], Gerez and Herrmann [1989], Tzeng and Séquin [1988]. A
comparison of the knock-knee or Manhattan model to the 2-layer model is difficult.
In the 2-layer model two different nets may run on the same horizontal or vertical
edges of the two layers. The number of consecutive edges that are used on both

52 CHAPTER 3. THE STEINER TREE PACKING PROBLEM

layers is usually limited in order to avoid so-called cross-talk problems. The value
of this upper bound depends on the design rules and technological constraints, but
is mostly neglected by the routing algorithms.

The fact that the wires can run on top of each other along arbitrary lengths may
lead to routings with shorter wiring lengths than in the Manhattan model, because
a solution in the Manhattan model is feasible for the 2-layer model. Nevertheless,
we have compared our Manhattan solutions to the best 2-layer solutions reported in
the literature. It turns out that for all examples for which a Manhattan solution ex-
ists, the objective function values are at most 1% worse than the objective function
values of the corresponding 2-layer solutions. In fact, for the two examples terminal
intensive switchbox and augmented dense switchbox the Manhattan solution provides
the same wiring length, and for more difficult switchbox we even find a better solu-
tion. For one of two examples (modified dense switchbox) for which a Manhattan
solution does not exist, the wiring length of the best 2-layer solution is by a value
of 2 shorter than the one of the optimal knock-knee solution. For dense switchbox,
we are not aware of any feasible routing that can be realized on two layers.

Chapter 4

A Multicommodity Flow
Problem

4.1 Introduction

A classical type of problems in combinatorial optimization that gives rise to integer
programs with block structure are multicommodity flow problems. Given some
graph G = (V,E) with edge capacities ce, e ∈ E, and possibly edge weights we, e ∈
E, and a set of demands (s1, t1), . . . , (sk, tk) of sizes d

1, . . . , dk, find integral flows
(or paths) fi of size di for i = 1, . . . , k such that the capacity constraints are met
(i. e., the sum of the flows using an edge must not exceeds its capacity) and, if edge
weights are given in addition, the sum of the weights of the flows is minimized.

Multicommodity flow problems are widely studied in the literature, see, for
instance, Lomonosov [1985], Frank [1990], Schrijver [1990], Ahuja, Magnanti, and
Orlin [1993] for interesting results and excellent surveys. Multicommodity flow
problems lead to integer programs with block structure by introducing flow variables
xi
e counting the flow of demand i over edge e. The blocks then model the individual

flows, see (A.1), and the linking constraints are the capacity constraints
∑k

i=1 x
i
e ≤

ce for each edge e ∈ E.

The multicommodity flow problem is also inherited by many problems with
practical applications, but usually not in its “pure” form as described here, see, for
instance, Stoer and Dahl [1994], Magnanti, Mirchandani, and Vachani [1995], Bien-
stock and Günlük [1996], Löbel [1997], or Alevras, Grötschel, and Wessäly [1998].
The (real-world) problems might on the one hand result from generalizations of the
multicommodity flow problem. We have discussed one such example, the Steiner
tree packing problem, in Chapter 3. If we require all nets to have cardinality two
and set the demands to one for all nets, the Steiner tree packing problem is a multi-
commodity flow problem. The other type of practical problems are multicommodity
flow problems where further side constraints and requirements on the flows have to
be satisfied.

In this chapter we deal with a real-world problem of the second type that we
encountered in telecommunication. We start by describing the application and our
motivation for studying this particular (multicommodity flow) problem.

A major trend in telecommunications is increased flexibility in terms of network
configuration and resource allocation. In particular communication paths in net-
works may be set up on a temporary basis and controlled by software in order to
meet changing demands due to, e.g., data communications or video applications.
Such paths (often called virtual paths) have the attractive feature of low processing

53

54 CHAPTER 4. A MULTICOMMODITY FLOW PROBLEM

time in the intermediate nodes. An important problem area concerns the manage-
ment of these capacitated paths, and we are concerned with such a problem in a
two-layered network.

The model we study is as follows: One is given a set of point-to-point traffic
demands that need to be routed in a so-called pipe-network. Each edge in this
network is called an express pipe. It has a fixed, uniform capacity measured in the
same units as the traffic demands. Each express pipe corresponds to a path in an
underlying physical transmission network. When an express pipe is established, it
uses resources in the transmission network, say, a fiber pair in a fiber cable. For
each edge in the transmission network, one has therefore an upper bound on the
number of pipes that can go through it. The problem is now to select some of
the given express pipes such that the traffic can be routed upon them, taking into
account express pipe capacity and physical link capacity. Costs are associated with
the establishment of express pipes and with the routing. When we use the term
“routing”, we don’t mean dynamic routing at call setup time. We focus rather
on the setup of the express pipes which accommodate forecasted traffic and are
not changed every few minutes. We also assume that the set of pipes to choose
from is given beforehand. Pipes are not generated dynamically in the course of the
algorithm.

One motivation for studying the routing and path-packing model comes from
routing and grouping in the PDH or SDH bandwidth hierarchy. There traffic, given
in units of 2 Mbit/sec, is switched onto systems of different fixed bandwidths. A
model involving several levels of networks and an LP-based solution method is
described in Lorentzen [1994].

Another application may be in ATM-networks. There traffic corresponds to
virtual circuits, which can be packed into virtual paths (our express pipes). Our
model should, however, be refined to capture this case better. Virtual paths take
many bandwidths in the physical network, not just one as in our model, and our cost
function does not exactly model the gains (less call control in intermediate nodes)
versus the disadvantages (splitting of bandwidth) of setting up virtual paths.

Park, Kang, and Park [1994] and Parker and Ryan [1994] describe integer pro-
gramming algorithms for routing (unsplittable) demands in a capacitated network
so as to maximize revenue and route as many demands as possible. This is the
bandwidth packing problem. Our model is distinguished from theirs in that our
model involves the intermediate pipe layer, and the demand routing is modeled
with flow variables instead of path variables.

This chapter is organized as follows. In Section 4.2 the integer linear program-
ming model for the mentioned problem is presented. The body of this work is a
polyhedral study in Section 4.3. Various classes of joint facet-defining inequalities
are introduced. Section 4.4 discusses the separation algorithms for the described
classes of inequalities and presents a primal heuristic. In the last section we report
on our computational results for some realistic problems.

4.2 Mathematical Model

In this section we give a mathematical formulation of the problem, describe it as
an integer linear programming model and introduce an associated polytope cor-
responding to the feasible solutions. Some basic properties of the polytope are
discussed.

The physical network of interest is modeled as an undirected graph N = (V, L)
with node set V corresponding to switching nodes and edge set L corresponding to
transmission lines (fiber cables). We call N the physical graph and its edges physical
edges (links). The traffic demands are modeled by the demand graph D = (V,K)

4.2. MATHEMATICAL MODEL 55

where each demand edge [uk, vk] ∈ K represents a traffic demand between the
endnodes uk and vk of size dk. (Typically, there are several isolated nodes in the
demand graph). The final element of our model is the pipe graph G = (V,E) where
each pipe (edge) e = [u, v] ∈ E corresponds to a [u, v]-path in the physical graph N .
A pipe may then represent a transmission path in the telecommunication network
(possibly set up for a limited time period) on which different traffic may be routed.
Note that G may contain many parallel edges. One may view the whole network
architecture as a two-level hierarchy. Sometimes more than two levels are of interest,
but we do not treat this case here.

The model also incorporates capacities in the following way. Each demand
should be routed in the pipe graph, i. e., each demand k = [u, v] uses some [u, v]-
path e1, . . . , et of pipe edges in G. We assume that the capacity of each pipe
e ∈ E is a constant B > 0 meaning that the total demand that may be routed
on each pipe may not exceed B. Furthermore, the number of selected pipes (in a
feasible solution) containing a physical link l ∈ L must not exceed the capacity cl
(we assume throughout that cl ≥ 1). This may correspond to the situation where
each pipe is allocated to an individual fiber pair on the fiber cable l ∈ L. Thus
we have capacity constraints in both levels of the network architecture, both for
“embedding” demands (connections) in the pipe graph, and for embedding pipes in
the physical network.

The problem of interest is to select pipes that are to be used and to determine
on which path of the selected pipe set each of the demands should be routed. The
cost function is the sum of the costs γe for selecting a pipe e and the costs ωk

e for
routing a demand k through pipe e. We call this problem of finding a minimum
cost pipe selection and routing the pipe selection and routing problem PIPE.

Note that if we neglect the pipe selection problem and are just interested in
the routing part the PIPE problem is a “pure” multicommodity flow problem as
discussed in the introduction with the additional restriction that the flows have to
be paths.

The PIPE problem can be shown to be NP-hard as it contains the edge-disjoint
path packing problem (see Kramer and van Leeuwen [1984]) as a special case.

We model the PIPE problem mathematically as the following integer linear
program

min
∑
e∈E

γeye +
∑
k∈K

∑
e∈E

ωk
ex

k
e

(i) xk(δG(W)) ≥ 1, for all W ⊂ V with uk ∈ W , vk �∈ W ,
k ∈ K;

(ii)
∑
k∈K

dkxk
e ≤ Bye, for all e ∈ E;

(iii)
∑
e:l∈e

ye ≤ cl, for all l ∈ L;

(iv) 0 ≤ xk
e ≤ 1, 0 ≤ ye ≤ 1, for all k ∈ K, e ∈ E;

(v) xk
e , ye integer for all k ∈ K, e ∈ E.

(4.1)

The 0/1 variable ye indicates whether pipe e ∈ E is selected, and the variable
xk
e indicates if demand k ∈ K uses (is routed on) pipe e ∈ E. Constraint (i)

assures that xk ∈ RE is the incidence vector of a pipe set containing a [uk, vk]-
path for each [uk, vk] ∈ K. Observe that these inequalities coincide with the Stei-
ner cut inequalities (3.1) (i) if the corresponding terminal set has cardinality two.
Constraints (ii) and (iii) reflect the capacity constraints in the pipe graph and

56 CHAPTER 4. A MULTICOMMODITY FLOW PROBLEM

c c c c

c c c

c c c c

c c c

c c c

c c c

c c c

c c

c c c

c c c

c c c c

c c c

c c c

c c c

c c c c

c c c c

c c c

c c c c

k k k k

k k k k

k k k k

k k k k

k k k k

k k k k

k k k k

p p p

p p p

p p p p

Figure 4.1: Structure of a PIPE integer program with |E| = 7, |K| = 3 and |L| = 3.
The letter ’c’ indicates a non-zero entry in an inequality from (4.1) (i), which are of
set covering type. ’k’ gives a non-zero entry of the knapsack constraints (4.1) (ii),
and ’p’ reflects a non-zero entry for the inequalities (4.1) (iii), which are of set
packing type.

the physical graph, respectively. Figure 4.1 shows the structure of the constraints
(4.1) (i) – (iii).

Let us denote by MCF (N,G,D,B, d, c, γ, ω) an instance of the PIPE problem,
where N = (V, L), G = (V,E), D = (V,K) are the physical, the pipe, and the
demand graph, B the pipe capacity, c = (cl)l∈L and d = (dk)k∈K are the capacity
and demand vectors, and γ = (γe)e∈E and ω = (ωk

e)e∈E,k∈K are the pipe and
routing cost vectors. If it is clear from the context we abbreviate an instance by
MCF. We introduce a family of integer polytopes associated with the model in (4.1):

PMCF (N,G,D,B, d, c) := conv{ (x, y) ∈ RK×E × RE :
(x, y) satisfies (4.1) (i) – (v) },(4.2)

where we write (x, y) instead of (xT , yT)T for convenience. Again, if it is clear from
the context we abbreviate PMCF (N,G,D,B, d, c) by PMCF. The polytope PMCF

has a complicated polyhedral structure, and an analysis of some of its properties is
given in the next section.

We shall assume from now on that the demand set K is partitioned into two
subsets K1 and K2 such that dk = 1 for k ∈ K1 and dk = B for k ∈ K2. (When
B = 1, we let K1 = ∅ and K2 = K.) This is of interest in SDH-applications, where
a fixed number of systems of low bandwidth fits into a system of higher bandwidth.
Furthermore, in our implementation and numerical experiments we have restricted
our attention to the parameter choice γe = γ for all e ∈ E and ωk

e = dkωe. If ωe is
the number of physical links in pipe e, then γ can be interpreted as follows. If we

4.3. POLYHEDRAL PROPERTIES 57

have the choice between installing a new direct pipe for a demand of value one and
using the spare capacity of an existing path of length less than γ in the physical
network, then the “long” path is preferred.

4.3 Polyhedral Properties

The goal of this section is to establish a number of properties of the polytope PMCF.
We study the dimension of PMCF and additional classes of (joint) inequalities that
define facets of this polytope. Let an instance MCF (N,G,D,B, d, c, γ, ω) be given.

The problem of deciding whether PMCF is non-empty (i. e., finding a feasible
solution in (4.1)) is NP-complete. This follows from the fact that the special case
of deciding the existence of edge-disjoint paths between specified terminals is NP-
complete, see Kramer and van Leeuwen [1984]. However, as in the case of the
Steiner tree packing problem (cf. Lemma 3.2.1) we can work out conditions under
which PMCF is full dimensional.

Proposition 4.3.1 PMCF is full dimensional if the PIPE instance MCF(e) =
MCF (N, (V,E \ {e}), D,B, d, c′, γ, ω) is feasible for each e ∈ E, where c′l = cl
for all l �∈ e and c′l = cl − 1 for all l ∈ e.

Proof. Assume that MCF(e) has a feasible solution for each e ∈ E. Also assume
that PMCF is contained in the hyperplane defined by the linear equation

∑
e∈E

aeye +
∑
k∈K

∑
e∈E

bkex
k
e = α.(4.3)

Let e ∈ E. By assumption there is a feasible solution (x, y) in (4.1) with ye = 0
and with capacity function c′. Define y′ ∈ RE by y′f = yf for f �= e and y′e = 1.
For each l ∈ e we then have

∑
e′:l∈e′ y

′
e′ ≤ c′l + 1 = cl, and it follows that (x, y′) is

feasible. Thus both (x, y) and (x, y′) satisfy (4.3) and this implies that ae = 0. As
e was arbitrary, we get a = 0. Furthermore, let x′ be obtained from x by setting
(x′)ke = 1 for some k. Then both (x, y′) and (x′, y′) are feasible in (4.1) and therefore
satisfy (4.3). This leads to bke = 0 for all k ∈ K and e ∈ E. Thus a = 0 and b = 0,
which contradicts that the inequality in (4.3) defines a hyperplane. Therefore PS
is full dimensional as claimed.

We remark that in the case when L = E, a necessary condition for PMCF to be
full dimensional is that MCF(e) is feasible for all e ∈ E.

All the inequalities in (4.1) define facets of PMCF whenever the pipe graph is
“dense” enough. We do not go into these details. Note that the only non-trivial indi-
vidual inequalities are the ones in (4.1) (i), because these inequalities completely de-
scribe the dominant of the path polytope conv{χP : P is a path from uk to vk}+
RE
+ , for each demand k ∈ K. This situation is different to the ones discussed in

Chapter 2 and 3, where complete descriptions for the polytopes associated with in-
dividual blocks are not at hand. That means that all new classes of (facet-defining)
inequalities we are discussing in the following are joint inequalities.

4.3.1 Knapsack Inequalities

Each inequality in (4.1) (ii) may be viewed as a knapsack inequality. In fact,
complementing variables ye, e ∈ E, i. e., using the linear transformation Te(y) = z
where ze = 1− ye, for each e ∈ E, we get the knapsack inequality

58 CHAPTER 4. A MULTICOMMODITY FLOW PROBLEM

∑
k∈K1

xk
e +B

∑
k∈K2

xk
e +Bze ≤ B.(4.4)

Each valid inequality for the knapsack polytope defined by (4.4) is also valid for
PMCF when setting ze = 1− ye. One particular class of inequalities that is valid for
the knapsack polytope defined by (4.4) are the cover inequalities, see the summary
in Section 2.3. Lifted cover inequalities read in our case as follows:

xk1
e +

∑
k∈K2

xk
e ≤ ye for all k1 ∈ K1.(4.5)

A combinatorial interpretation of such an inequality is that if more than one
demand is routed on e, then all these demands are K1-demands. In certain special
situations a complete linear description of knapsack polytopes has been found, see
Weismantel [1997]. It follows from the results of Weismantel [1997], see also page
12, that a complete linear description of the knapsack polytope defined by (4.4) is
given by the inequalities (4.4), (4.5) and the trivial inequalities.

Note that if |K1| ≤ B, then the knapsack inequality (4.1) (ii) is dominated by
the sum of cover inequalities. Under certain known conditions the cover inequalities
define facets of the knapsack polytope (see again Section 2.3). With suitable ad-
ditional assumptions on the PIPE instance MCF, the cover inequalities also define
facets of PMCF.

4.3.2 Strengthened Cut Inequalities

Consider a cut δG(W) in the pipe graph, where W and V \W are non-empty. Let
K ′ be the demands in K1 ∩ δD(W). Then

y(δG(W))−
∑
k∈K2

xk(δG(W)) ≥
|K ′|/B�(4.6)

is a valid inequality. To see this add the valid inequalities

• xk(δG(W)) ≥ 1 for all k ∈ K ′

• Bye −
∑

k∈K1
xk
e −B

∑
k∈K2

xk
e ≥ 0 for all e ∈ δG(W)

and divide the result by B. Then round the coefficients of the left-hand side of this
new inequality by adding an appropriate amount of xk

e ≥ 0, and round the right-
hand side. The resulting valid inequality is (4.6) which we call the strengthened cut
inequality. These inequalities can also be shown to be non-redundant for highly-
connected graphs G and N .

Theorem 4.3.2 The strengthened cut inequality (4.6) defines a facet of PMCF if
the following conditions are satisfied.

(i) |K ′|/B is not an integer and |K ′| > B.

(ii) There are at least max {
d(δD(w))/B� + 1 : w ∈ {u, v}} parallel [u, v]-pipes
between any u, v ∈ V , u �= v.

(iii) Each pipe has length one in N , and using all pipes does not violate the capacity
constraints in N .

4.3. POLYHEDRAL PROPERTIES 59

Proof. First, PMCF is full dimensional, because the conditions of Proposition 4.3.1
are satisfied. Consider a facet-defining inequality∑

e∈E

aeye +
∑
k∈K

∑
e∈E

akex
k
e ≥ α(4.7)

such that each root of (4.6) satisfies (4.7) with equality. As PMCF is full dimensional,
it suffices to show that the two inequalities (4.6) and (4.7) are equal up to a positive
scalar multiple.

For any set F ⊆ δG(W) of cardinality t :=
(1/B) d(δD(W))� there exists a root
with ye = 1 for e ∈ F and ye = 0 for e ∈ δG(W) \ F , where all demands in D[W]
and D[V \W] are routed on a direct pipe, and where all remaining demands [u, v]
with u ∈ W and v �∈ W are routed one by one on at most three pipes [u, r], [r, s]
and [s, v]. Here r ∈ W and s �∈ W are chosen such that [r, s] ∈ F , and [r, s] still
has free capacity. r = u and s = v is allowed. Demands in K2 should be routed
before demands in K1. Pipes [u, r] and [s, v] exist due to assumption (ii). Capacity
constraints in the physical network are not violated due to assumption (iii). The
described solution satisfies (4.6) and hence (4.7) with equality.

If E(W) is non-empty, then, by (ii), it contains at least one pipe not used by
the described root solution, so one can prove that ae = 0 by setting ye = 1. In a
similar manner one can prove ake = 0 for all e ∈ E(W) ∪ E(V \W) and all k ∈ K.
Because of condition (i) one pipe e in F still has a free capacity of at least one in
the root solution using F , and, moreover, there is one more pipe f which contains
demands of size one. This allows to prove ake = 0 for any of the demands k currently
routed through f . By exchanging e and f and rerouting the small demands one
can prove ake = 0 for e ∈ δG(W) and k ∈ K1. Now compare a root solution using
F ⊆ δG(W) with a root solution using F \ {e} ∪ {f} for arbitrary edges e ∈ F
and f ∈ δG(W) \ F . The routings in F \ {e} are supposed to be the same in both
solutions, and e is supposed to carry only demands of K ′ = K1∩δD(W). Note that,
because of condition (i), K ′ is not empty. Comparison of the two solutions proves
that ae = af . This is true for all e, f ∈ δG(W). Now compare a root solution using
F ⊆ δG(W) with the root solution in which an arbitrary edge e ∈ δG(W) \ F is
added to F , then ye and some xk

e for k ∈ K2 are set to one, and all other variables
stay the same. This proves that ake = −ae. Since e, k, and F were arbitrary, (4.7)
has the same coefficients as the strengthened cut inequality (4.6), hence it defines
a facet.

Note that condition (i) is also necessary for (4.6) to define a facet. Conditions
(ii) and (iii) are only of technical interest. They can probably be replaced by milder
conditions on the connectedness of G and N .

Remark 4.3.3 The strengthened cut inequalities may be generalized in the spirit
of the “flow-cutset inequalities” introduced in Bienstock, Chopra, Günlük, and Tsai
[1998]. Let F be a subset of δG(W). In the validity proof above the inequalities
xk(δG(W)) are added as before, but now the knapsack inequalities are added only
for e ∈ F . The resulting flow-cutset inequality is

y(F) +
∑
k∈K′

xk(δG(W) \ F)−
∑
k∈K2

xk(F) ≥
|K ′|/B�.

4.3.3 Hypomatchable Inequalities

We introduce and study a large class of inequalities called hypomatchable inequal-
ities.

Consider an instance MCF (N,G,D,B, d, c, γ, ω) of PIPE with B ≥ 2. Choose
an odd number of nodes V ′ = {v1, v2, . . . , vn} ⊆ V , and demands k1, k2, . . . , kn in

60 CHAPTER 4. A MULTICOMMODITY FLOW PROBLEM

K1 (not necessarily distinct) such that demand ki is incident to vi. Lastly, choose
a set F ⊆ E(V ′) with the property that if ki = kj then [vi, vj] is not in F . Denote
by K ′ the set of chosen demands with only one endpoint in V ′, and denote by K ′′

the set of chosen demands with two endpoints in V ′. Let F ′ be the set F together
with all edges [vi, vj] with ki = kj . Consider the inequality

y(F)−
∑
k∈K2

xk(F) +

n∑
i=1

xki(δG(vi) \ F ′) +
∑

k∈K′′

∑
e∈E:

e connects
uk and vk

xk
e ≥
n/2�,(4.8)

which we call a hypomatchable inequality, because, as we shall see later, the inequal-
ity has a good chance to be facet-defining when (V ′, F ′) defines a hypomatchable
graph.

Lemma 4.3.4 The hypomatchable inequality (4.8) is valid for PMCF.

Proof. Add the valid degree and cover inequalities

• xki(δG(vi)) ≥ 1 for i = 1, . . . , n and

• ye − xki
e −∑k∈K2

xk
e ≥ 0 and

ye − x
kj
e −∑k∈K2

xk
e ≥ 0 for each e = [vi, vj] ∈ F .

Divide both sides by two, and round up all coefficients on the left-hand side by
adding the corresponding non-negativity constraints 1

2x
k
e ≥ 0. Since the left-hand

side takes integer values for all (x, y) ∈ PMCF, one can round up the right-hand side
to get a valid inequality, namely (4.8).

As an illustration, consider a three-node example with nodes v1, v2, v3 and par-
allel pipes ei and e′i both with endnodes vi and vi+1 for i = 1, 2, 3 (v4 = v1). We
also let L = E, B = 4. Demand k is parallel to ek and dk = 1 for k = 1, 2, 3.
Let F := {e1, e2, e3} and define the fractional solution (x̄, ȳ) by x̄k

e = ȳe = 1/2 if
e ∈ F and x̄k

e = ȳe = 0 for e ∈ E \F . This solution corresponds to the non-integral
routing of each demand by splitting the flow equally along the two paths between
each pair of nodes on the triangle. One can verify that (x̄, ȳ) satisfies all the linear
inequalities in (4.1) as well as the knapsack and cover inequalities (4.4), (4.5), and
the strengthened cut inequalities (4.6). However, (x̄, ȳ) violates the hypomatchable

inequality y(F) +
∑3

i=1 x
ki(δG(vi) \ F) ≥ 2.

We discuss conditions under which a hypomatchable inequality is facet-defining.
We introduce some convenient terminology. For a graph H = (V, F) with an odd
number of nodes, we call M ⊆ F a supermatching if all nodes except one are
incident to exactly one edge of M , and the last node is incident to two edges of M .
A supermatching of H has (|V |+ 1)/2 edges.

Consider a root (x, y) of a hypomatchable inequality (4.8), i. e., (x, y) is a feasible
solution of (4.1) that satisfies (4.8) with equality. Let M := {e = [vi, vj] ∈ F ′ :
x
ki
e = 1 or x

kj
e = 1}. It can be seen that there is at most one isolated node in

(V ′,M), and that M is either a supermatching with
n/2� or a matching with
�n/2� edges.

A graph H = (W,F) is hypomatchable (see Lovász and Plummer [1986]) if
H [W \{v}] contains a perfect matching for each v ∈ W . Examples of hypomatchable
graphs include odd cycles and the complete graph on an odd number of nodes.

Remark 4.3.5 Every hypomatchable graph is connected.

Theorem 4.3.6 A hypomatchable inequality (4.8) defines a facet of PMCF if the
following conditions hold:

4.3. POLYHEDRAL PROPERTIES 61

(i) L = E, K = K ′ ∪K ′′;
(ii) G is a complete graph and |V ′| < |V | − 1;
(iii) GF ′ = (V ′, F ′) is hypomatchable.

Proof. Since the conditions of Proposition 4.3.1 are satisfied, PMCF is full dimen-
sional.

Consider a facet-defining inequality∑
e∈E

aeye +
∑
k∈K

∑
e∈E

akex
k
e ≥ α(4.9)

such that each root of (4.8) satisfies (4.9) with equality. As PMCF is full dimensional,
it suffices to show that the two inequalities (4.8) and (4.9) are equal up to a positive
scalar multiple.

We first describe a basic construction of roots of (4.8). Let M be a matching of
GF ′ of size �n/2� or a supermatching of GF ′ of size
n/2�. Set ye = 1 for e ∈ M
and ye = 0 for e ∈ F ′ \M . If vi is incident to at least one edge in M , route ki such
that xki(δG(vi) \ M) = 0. If vi is not incident to an edge in M (there can be at
most one such node) route ki such that xki (δG(vi) ∩ F ′) = 0. With L = E and G
complete it is always possible to find such a routing. Then (x, y) is feasible and a
root of (4.8).

For each e ∈ E\F ′ one can construct a root (x, y) of (4.8) with ye = 0 by choosing
a supermatching in the basic root construction and avoiding e in the routing. This
works because of |V ′| < |V |−1. For each e ∈ F ′\F one can construct a root (x, y) of
(4.8) with ye = 0 by choosing a maximum matching M of GF ′ that avoids e. That
is possible by condition (iii). By comparing these solutions with the corresponding
root solutions where ye is set to one, one proves that ae = 0 for each e ∈ E \ F .
Similarly, we derive ake = 0 for e ∈ E \ F and for those k ∈ K whose coefficient in
(4.8) is zero.

For given e = [vi, vj] ∈ F choose a perfect matching of GF ′ [V ′ \ {vi}] and
augment it to a supermatching M by adding edge e. With the basic construction
one may now create a root with ye = 1, xki

e = 1 and no other demand using e. By
setting xk

e = 1 for some k �= ki one obtains a new root. (Note that K contains only
small demands, because of the condition K = K ′ ∪K ′′.) This proves ake = 0. Since
e and k are arbitrary, and, moreover, ki �= kj , one gets ake = 0 for all e ∈ F and
k ∈ K.

For e = [vi, vj] ∈ F ′\F one can similarly prove that ake = 0 for all k �= ki (= kj).
Thus, whenever in (4.8) a coefficient of some variable is zero, then the corre-

sponding coefficient in (4.9) is zero.
Let e = [vi, vj] ∈ F and f ∈ δG(vi) \ F . We shall prove that ae = aki

f . Pick a
perfect matching M in GF ′ [V ′ \ {vi}]. If f ∈ F ′, augment this matching by edge
f . The basic routing construction can be done such that demand ki is routed on
edge f . Compare this solution to the one where demand ki uses edge e instead
of f . We get ae = aki

f for any e, f and ki chosen as above. If e ∈ F ′ \ F and

f ∈ δG(vi) \ F ′, a similar construction shows aki
e = aki

f .
Now let e, f , and g be three edges with endnode vi. When e and f are in F

and g �∈ F we have shown ae = aki
g = af . When e ∈ F , f ∈ F ′ \ F , and g �∈ F ′ we

have ae = aki
g = aki

f . Note that e, f ∈ F ′ \ F is not possible. By Remark 4.3.5 GF ′

is connected, and thus (4.9) is a scalar multiple of (4.8), showing that (4.8) defines
a facet of PMCF.

We note that conditions (i) and (ii) are present only to simplify the proof.
Either of them can be relaxed. Especially the restriction on the number and size
of demands is not necessary. Condition (iii) is probably necessary, but we have not
been able to prove this.

62 CHAPTER 4. A MULTICOMMODITY FLOW PROBLEM

In our computations we have chosen F to be an odd cycle. We call this subclass
of (4.8) cycle inequalities.

The hypomatchable inequalities may be extended into larger classes of facet-
defining inequalities using lifting techniques, see Appendix C. The idea is to shrink
certain node sets in some PIPE instance and thereby obtain a “smaller” related
instance for which a hypomatchable inequality is valid. The lifted inequality is
obtained by letting all edges that were shrunk get a coefficient zero. One can
show (under certain conditions on the subgraphs that are shrunk) that a lifted
hypomatchable inequality is non-redundant.

4.4 Algorithmic Aspects

In this section we discuss our separation algorithms and primal heuristic that are
incorporated in the branch-and-cut algorithm. In all other aspects our implemen-
tation basically follows the general description of a branch-and-cut algorithm given
in Appendix B. In the following let V ′ be the subset of V consisting of all endnodes
of demand edges (i. e., nodes uk and vk for [uk, vk] ∈ K).

4.4.1 Separation Algorithms

In the following we discuss separation algorithms for the cut inequalities (4.1) (i)
and (4.6), the cover inequalities (4.5), and the cycle inequalities (4.8).

As initial cuts, i. e., those cuts that set up the first LP, we use the trivial in-
equalities 0 ≤ xk

e ≤ 1, 0 ≤ ye ≤ 1, and the degree constraints xk(δG(u
k)) ≥ 1 and

xk(δG(v
k)) ≥ 1 for [uk, vk] ∈ K. In addition, we add some of the strengthened cut

inequalities in the following way. For each node v ∈ V ′, we check whether (d(δD(v))
modulo B) �= 0. If that is the case, we add the corresponding strengthened cut in-
equality to the initial LP. If not, we try to extend the node set W = {v} in a
greedy like fashion (by checking all neighbouring nodes of W) until we find a set
W satisfying (d(δD(W)) modulo B) �= 0 (in this case we add the strengthened cut
inequality induced by W to the initial LP) or the list of neighbours is empty. This
set of inequalities represents the first LP.

Let (x̄, ȳ) denote the actual LP solution. Since we add to the initial LP all
trivial inequalities, we can suppose in the following that all components of (x̄, ȳ)
are non-negative and less than or equal to one.

Cut inequalities

In order to solve the separation problem for the cut inequalities (4.1) (i) for a
particular demand k ∈ K, we have to decide whether the minimum cut capacity
between uk and vk is less than one where edge capacities are given by x̄k. This can
be done using any max-flow algorithm. We implemented the highest-label preflow
push algorithm suggested by Goldberg and Tarjan [1988] (see also Ahuja, Magnanti,
and Orlin [1993]). This algorithm runs in time O(|V ′|2√|E|).

We also use our max-flow algorithm to find violated strengthened cut inequal-
ities (4.6). We assign each edge e ∈ E the capacity max{0, ȳe −

∑
k∈K2

x̄k
e}, and

determine for each [uk, vk] ∈ K1 a minimum [uk, vk]-cut, δG(W
∗) say, for W ∗ ⊂ V .

If |δD(W ∗) ∩ K1|/B is not integer, we add the corresponding strengthened cut
inequality in case it is violated.

4.4. ALGORITHMIC ASPECTS 63

Cover inequalities

Separating the cover inequalities (4.5) is easy. Since the number of cover inequalities
is linear (in the number of demands and edges, see Section 4.3), we sequentially check
all of them for possible violation. Note that the total number of cover inequalities
may be very large (see next section), but only a fraction of them is needed to solve
the problem.

Cycle inequalities

We do not know whether the separation problem for the cycle inequalities (4.8) can
be solved in polynomial time (when F defines a cycle). The problem is that we
do not know how to find a low-weight cycle that only contains terminal nodes for
demands of value one. In the following we present a heuristic, where we first try to
find a minimum cycle with respect to a certain weight function, and then choose, if
possible, for each node in the cycle, the best demand of size one.

We first describe the weight function according to which we want to find a min-
imum cycle. Consider again (4.8) with F being a cycle with node set {v1, . . . , vn},
n odd, and k1, . . . , kn demands of size one such that demand ki terminates at node
vi (i = 1, . . . , n). Since the objective function is non-negative, the optimum integer
solution and also the current LP solution satisfy xki(δ(vi)) = 1. If we subtract this
equation (for i = 1, . . . , n) from the cycle inequality, we get

y(F)−
∑
k∈K2

xk(F)−
n∑

i=1

xki(δG(vi) ∩ F ′) +
∑

k∈K′′

∑
e∈E:

e connects
uk andvk

xk
e ≥ −�n

2 �.(4.10)

Suppose for a moment that we do not have parallel edges, and all demands
k1, . . . , kn are distinct. If we choose as edge weights, for uv ∈ E,

wuv := 0.5 + ȳuv −
∑
k∈K2

x̄k
uv −

∑
k∈K1:

{uk,vk}∩{u,v}�=∅

x̄k
uv,

then w(F)−0.5 exactly coincides with the difference between the left- and right-
hand side of (4.10), when F is an odd cycle and each node in the cycle has exactly one
incident demand of size one. Thus, if w(F) < 0.5 and F is odd, we have a violated
cycle inequality, otherwise not. If there are parallel edges {e1, . . . , ep}, p ≥ 2,
connecting nodes u and v, we aggregate these edges to a single edge, uv say, and
assign it the weight

wuv := 0.5 +
∑
i∈I

(
ȳei −

∑
k∈K2

x̄k
ei −

∑
k∈K1:

{uk,vk}∩{u,v}�=∅

x̄k
ei

)
,

where I := {i ∈ {1, . . . , p} : there exists some k ∈ K1 with x̄k
ei > 0}.

Now we determine an odd cycle F ∗ with “low” weight w(F ∗) (see below). If
some node on the cycle is incident only to demands of size B, the cycle is rejected.
Note that according to the definition of w, w(F ∗)−0.5 is a lower bound for the slack
of the most violated cycle inequality. Thus, if w(F ∗) ≥ 0.5, there is no violated
cycle inequality. Otherwise, we determine for each node vi the best possible demand
ki, i. e., we choose

ki := arg min
k∈K1:vi∈{uk,vk}

x̄k(δG(vi) \ F ∗).

It might be that the cycle inequality defined by our choices F ∗ and k1, . . . , k|F∗| no
longer yields a violated inequality, because the edge weights wuv do not reflect the
exact slack, when nodes have more than one incident demand of size one.

64 CHAPTER 4. A MULTICOMMODITY FLOW PROBLEM

There remains the problem of finding a minimum cycle F ∗ in an undirected
graph G = (V,E) with edge weights wuv , uv ∈ E, that may be negative. If the edge
weights are indeed arbitrary, the problem to determine a minimum cycle is NP-
complete. However, we can decide whether there is a cycle of negative weight and
if not, find a minimum cycle by transforming the problem to a perfect matching
problem (see Ahuja, Magnanti, and Orlin [1993]). Thus, we can decide whether
there exists a cycle of weight less than 0.5 which might give rise to a violated
inequality. Since a perfect matching algorithm is very time consuming and since such
an algorithm might return just one cycle, we preferred to implement the following
heuristic. Starting from each node v ∈ V , we determine a shortest spanning tree by
using Prim’s algorithm (Prim [1957]) and check all fundamental cycles to determine
whether their weight is less than 0.5. If the cycle is even, we contract one edge. This
results in many violated cycle inequalities, and for many instances this algorithm
finds a cycle of weight less than 0.5 whenever there is one.

4.4.2 The Primal Heuristic

Our primal heuristic is an iterative rounding heuristic, i. e., the idea is to fix a set
of fractional variables of the current LP solution to zero or one, solve the LP again,
and iterate this process until all variables are integer. The tuning parameters of
this heuristic are the order in which the fractional variables should be fixed in one
step and their number. It turned out that the heuristic in general worked best when
we just fix one fractional variable at a time and choose a fractional variable that is
close to one. Moreover, we fix all variables that are one to value one for the rest of
the heuristic.

If the heuristic does not change the linear program (except for fixing variables)
it frequently ends with an integral solution that violates one of the cut or cover con-
straints in (4.1), since not all of these constraints are contained in the LP. Therefore
we separate those inequalities for each fractional solution appearing in the course
of the heuristic. This unfortunately slows the heuristic down. In order to speed up
the separation process in the heuristic, we only add those cut inequalities (4.1) (i),
knapsack inequalities (4.1) (ii) and cover inequalities (4.5) that are violated by at
least 0.5 (the usual violation epsilon in the cutting plane phase is 0.1). Moreover,
we restrict the number of times the heuristic is called, depending on its success.
More precisely, we calculate (a) the ratio between the time spent in the heuristic
and the total time, and (b) the ratio between the number of times the heuristic
could improve the best solution and the number of times the heuristic was called.
If the “time” ratio is less than the “success” ratio, we call the heuristic, otherwise
not. Note also that we do not call the primal heuristic after each LP, but only after
the cutting plane phase for the current node is finished, i. e., we have not found any
more violated inequalities, and the current LP solution is fractional. The results in
the next section show that this strategy performs quite well. We obtain reasonably
good primal solutions by spending at most 30% (usually less than 10%) of the total
time in the heuristic.

4.5 Computational Results

In this section we report on the test runs performed with our branch-and-cut al-
gorithm. The code is implemented in C, and all results were obtained on a Sun
SPARC 20 Model 71. The examples are modified real-world examples with pipe
capacity B = 4. Table 4.1 summarizes the data. Column 2 and 3 show the number
of nodes and links of the physical network, Columns 4 and 5 contain the corre-
sponding information for the pipe graph. Here, |V ′| is the number of nodes incident

4.5. COMPUTATIONAL RESULTS 65

to some demand edge. Columns 6 and 7 give the number of demands of size one
and four. The last column gives the number of 0/1 variables in our IP formulation.
The numbers range from about 250 for the smallest problem up to 25000 variables.
The capacities cl in the physical network (not in the table) vary from 2 to 12 for
the “nw”-examples and from 4 to 48 for the “terb”-examples.

The test series in Table 4.1 are based on two physical networks. nw is an example
that approximates parts of the physical network of Norway. All other examples
whose name starts with “nw” are derived from nw. nw3 differs from nw in that it
contains some further physical links, that some more physical nodes are endnodes of
demands, and that the set of possible express pipes is extended. If the name contains
the letters “.0”, the link capacities (of the example without “.0”) are multiplied by
ten in order to see how the link capacities influence the solution. Examples ending
with “.p” have more express pipes than the corresponding example without “.p”.
The input pipes in the “.p”-examples were generated by finding for each demand
k a set of short [uk, vk]-paths (these were determined by adding certain edges to
shortest path trees). Example nw3.d1.p results from nw3.p by changing the size of
nine demands from B to one. The last three examples in Table 4.1 are typical for
local area networks. The demand graph of terbstar consists of node-disjoint stars.
The demands of terbco form a complete graph between the root nodes of these stars,
and the demand graph of terbstco is the union of these two demand graphs.

Example N G Demands Variables
|V | |L| |V ′| |E| size 1 size B

nw 27 44 5 22 2 8 242
nw.p 27 44 5 63 2 8 693
nw3 27 60 10 91 3 18 2002
nw3.p 27 60 10 191 3 18 4202
nw3.0 27 60 10 91 3 18 2002
nw3.0.p 27 60 10 191 3 18 4202
nw3.d1.p 27 60 10 191 12 9 4202
terbco 62 81 7 113 0 21 2486
terbstar 62 81 56 248 36 12 12152
terbstco 62 81 56 359 36 33 25130

Table 4.1: Pipe selection and routing problems: Data

Unfortunately, the network planners could not give us any reasonable numbers
for the cost of installing the express pipes. Thus, we performed different tests
varying the installation cost γ from 0 (which means that we get the express pipes
for free) up to 10 which results in rather high express pipe costs compared to the
routing costs. Costs ωk

e were set to dkωe, where ωe is the number of links in pipe e.

Table 4.2 through 4.5 summarize our tests. Column 2 gives the number of
inequalities of the initial LP, Columns 3 to 5 show the number of violated knapsack
(cf. (4.1) (ii) and (4.5)), cut (cf. (4.1) (i) and (4.6)), and cycle (cf. (4.10)) inequalities.
The number of LPs solved (including those in the primal heuristic) and the number
of solved branch-and-bound nodes are presented in Columns 6 and 7. Columns 8
and 9 show the global lower bound and the value of the best feasible solution after
the algorithm stopped. The total time (in CPU seconds) of the algorithm and the
time spent in the heuristic are given in the last two columns.

Looking at Table 4.2 with the results for γ = 0 we see that we can solve all
problem instances in the root node, i. e., we do not have to branch. Even more,
with the exception of terbstar and terbstco the solutions of the root LPs are integer,
since the primal heuristic has not been called. This indicates that the inequalities

66 CHAPTER 4. A MULTICOMMODITY FLOW PROBLEM

Example Cutting Planes LPs B&B LB UB Times (sec)
init knap cuts cycle Heur Total

nw 25 28 6 0 5 1 183 183 0.0 0.1
nw.p 25 71 0 0 11 1 156 156 0.0 0.2
nw3 52 125 30 18 8 1 287 287 0.0 0.6
nw3.p 51 224 3 17 19 1 243 243 0.0 1.7
nw3.0 52 63 33 4 12 1 287 287 0.0 0.5
nw3.0.p 51 46 1 4 4 1 227 227 0.0 0.4
nw3.d1.p 51 469 7 108 13 1 139 139 0.0 5.0
terbco 42 31 31 0 8 1 536 536 0.0 0.5
terbstar 150 1200 389 334 42 1 193 193 1.0 74.8
terbstco 192 3683 1194 1142 138 1 732 732 17.8 1483.0

Table 4.2: Results when installation of express pipes is for free

we separate are indeed important to solve the problems. Note that all “.p”-examples
have lower objective function value than their corresponding counter part without
“.p”. An interesting question is how the number and variability of the express pipes
influences the solutions. To completely answer this question and to find the best
feasible solution among all possible express pipes, our algorithm must be embedded
into a column generation approach. In case the network planners do not impose any
restrictions on the set of express pipes, it will be an interesting task for the future to
integrate the cutting plane and the column generation approach in order to obtain
the globally best solution. We cannot draw any conclusions from this test set on
whether the link capacities have an influence on the quality of the solution. For nw3
the optimum is the same, for nw3.p we obtain a better solution. A noteworthy fact
is that all “nw”-examples are solved within seconds. The “terb”-examples seem to
be harder, but still our algorithm provides the optimum solution after at most 25
minutes of CPU time.

For γ = 1 (see Table 4.3) the results are basically the same with slightly higher
running times. But, if we further increase γ to five (Table 4.4) or to ten (Table 4.5)
the situation changes. We still can solve all “nw”-examples within one minute, but
for terbstar and terbstco our algorithm gets stuck. We can give a solution guarantee
of 9% or less after about 3 hours of CPU time (which might be acceptable in
practice), but we almost cannot improve this gap any further, even if we spend
some more hours of CPU time. Since the express pipes are very expensive, the
algorithm tries to avoid using y-variables. What is missing are further inequalities
(like the hypomatchable inequalities) that force the y-variables to one whenever the
routing variables x are positive. Further research in this area will be necessary to
solve problems with larger values of γ.

4.5. COMPUTATIONAL RESULTS 67

Example Cutting Planes LPs B&B LB UB Times (sec)
init knap cuts cycle Heur Total

nw 25 24 7 0 6 1 197 197 0.0 0.1
nw.p 25 57 3 0 9 1 166 166 0.0 0.2
nw3 52 120 34 34 8 1 315 315 0.0 0.7
nw3.p 51 226 8 27 14 1 264 264 0.0 1.8
nw3.0 52 113 33 33 7 1 315 315 0.0 0.8
nw3.0.p 51 146 5 21 8 1 248 248 0.0 0.9
nw3.d1.p 51 532 14 112 29 1 156 156 0.1 8.6
terbco 42 47 32 0 10 1 557 557 0.0 0.6
terbstar 150 1385 384 511 23 1 241 241 0.6 107.0
terbstco 192 3431 1087 1056 93 1 801 801 2.5 1298.7

Table 4.3: Results when installation costs for express pipes are low

Example Cutting Planes LPs B&B LB UB Times (sec)
ini knap cuts cycle Heur Total

nw 25 24 7 0 6 1 253 253 0.0 0.1
nw.p 25 60 3 0 10 1 206 206 0.0 0.2
nw3 52 130 31 28 9 1 427 427 0.0 0.9
nw3.p 51 295 9 50 19 1 348 348 0.0 4.2
nw3.0 52 137 35 38 9 1 427 427 0.0 1.9
nw3.0.p 51 235 6 46 20 1 332 332 0.0 2.5
nw3.d1.p 51 757 15 159 31 1 217 217 0.0 16.9
terbco 42 56 26 0 8 1 641 641 0.0 0.5

terbstar 150 7821 3417 3202 3064 697 423 433 965.0 10003.3
12821 5194 5138 4950 1303 423 433 1386.9 20008.6
26186 10967 11332 9679 2632 424 433 1817.9 40014.0

terbstco 192 5365 1596 1833 1087 196 1064 1077 1320.2 10141.5
7270 2295 2643 1976 482 1065 1077 1894.6 20123.8

11938 4057 4885 3941 1126 1066 1077 2617.5 40000.8

Table 4.4: Results when installation costs for express pipes are significant

Example Cutting Planes LPs B&B LB UB Times (sec)
init knap cuts cycle Heur Total

nw 25 25 9 0 7 1 323 323 0.0 0.1
nw.p 25 76 3 0 16 1 256 256 0.0 0.3
nw3 52 199 42 39 25 1 567 567 0.0 3.9
nw3.p 51 442 17 167 88 1 453 453 0.0 16.4
nw3.0 52 184 42 36 20 1 567 567 0.0 3.7
nw3.0.p 51 389 16 168 100 1 437 437 0.0 15.7
nw3.d1.p 51 1078 35 259 78 1 292 292 2.4 56.3
terbco 42 64 25 0 8 1 746 746 0.0 0.5

terbstar 150 4840 5024 1518 1582 81 626 678 1038.5 10002.3
8732 10460 2883 2903 193 629 678 1464.9 20028.5

15728 19508 5491 5084 383 632 675 2888.8 40007.1

terbstco 192 4976 1330 1085 777 17 1370 1424 4143.3 10096.8
6278 2813 1657 1450 58 1374 1424 5438.5 20166.5
8773 5863 2575 2375 127 1378 1424 7263.0 40060.3

Table 4.5: Results when installation costs for express pipes are high

Part II

General Integer Programs:
Recognizing and Exploiting

Block Structure

69

71

In Part I of this thesis we got to know three different type of problems that lead
to integer programs with block structure. We showed to what extend polyhedral
methods can help to solve these problems. In particular, we encountered various new
classes of inequalities and realized how many, different, and complex inequalities are
necessary to describe the associated polyhedra. But, we also saw how important
these inequalities – individual as well as joint inequalities – are to solve problems
of realistic size. We finally noticed the limits of a branch-and-cut approach when it
comes to solve examples of large scale, even if we exploit all the structure that is
inherited by these problems.

Part II of this thesis is devoted to the solution of general mixed integer programs,
i. e., problems where a linear objective function is to be minimized subject to a
system of linear inequalities with the additional requirement that part or all of
the variables must be integer. The difference to Part I is that we have only this
integer program at hand and we do not know anything about the application that
led to this integer program. This especially means that we cannot exploit the
structure that is inherited by the application if it is not recognizable from the
integer programming formulation. It is therefore no wonder that one (major) part
of a general mixed integer programming solver is to perform a structural analysis of
the integer program to be solved. We will discuss this issue and further important
ingredients of a mixed integer programming solver in Chapter 5 by introducing our
implementation of such a solver.

The main focus of Part II is to investigate whether general integer programs
have block structure and whether it is possible to exploit such a structure in the
solution process. In Chapter 6 we develop an algorithm that allows to recognize
block structure in a general mixed integer programming formulation. The remaining
two chapters give two possibilities of exploiting block structure. The first, Chapter
7, deals with the dual simplex algorithm, the method is commonly used within a
branch-and-cut algorithm to solve the underlying linear programs. We have seen,
for instance, in Chapter 3 that a significant amount of time can be spent to solve
the underlying LPs when block structure is present. One way of speeding up the
solution of linear programs is to exploit parallelism and as we will see integer linear
programs with block structure are good candidates in this respect. In Chapter 8 we
try to exploit block structure polyhedrally. We derive a new family of inequalities
that is valid for general integer programs. These inequalities may be viewed as
individual inequalities in the sense discussed in Part I of this thesis. We will show
that incorporating these inequalities into an integer programming solver indeed
helps to solve mixed integer programs.

72

Chapter 5

Solving General Mixed
Integer Programs

The solution of general mixed integer programs is one of the challenging problems in
discrete optimization. The problems that can be modeled as mixed integer programs
arise, for instance, in science, technology, business, and environment, and their
number is tremendous. It is therefore no wonder that many solution methods and
codes exist for the solution of mixed integer programs, and not just a view of them
are business oriented, see Sharda [1995] for a survey on commercial linear and integer
programming solvers.

In this chapter we describe the implementation of a general mixed integer pro-
gramming solver, called SIP. SIP stands for Solving Integer Programs. One motiva-
tion for the development of SIP was to have an algorithmic frame that allows to
incorporate and practically evaluate new achievements in the theory of integer pro-
gramming. We get to know two examples in this respect in Section 5.4 and Chapter
8. SIP and many other successful integer programming solvers are branch-and-cut
algorithms. We will discuss the main ingredients of such an algorithm in this chap-
ter and we will see that some further aspects come into play that have not yet been
discussed for the branch-and-cut algorithms in Part I of this thesis. In particular,
we deal with preprocessing in Section 5.1, branch-and-bound issues in Section 5.2,
and cut generation in Sections 5.3 and 5.4.

As test set to evaluate the features to be discussed we use the library Miplib, a
collection of real-world mixed integer programming problems, see Appendix D for
details on the problem data. We show for some of the features the computational
effectiveness by comparing them to the default strategy used in SIP. Table 5.1
presents the results on the Miplib when using default SIP. For all our test runs we
supplied a time limit of 3600 CPU seconds and a limit on the number of branch-
and-bound nodes of one million. The first column gives the name of the problem,
followed by the number of branch-and-bound nodes and the number of added cutting
planes. In the next two columns the best dual and primal bound are presented.
Column Time shows the CPU seconds on a Sun Enterprise 3000 with four 168
MHz UltraSPARC processors1 and 1024 MB main memory. The gap in percentage

between the best lower and upper bound, i. e., the value 100· |upper bound - lower bound|
|lower bound| ,

can be read from the last column. The entry is positive if the problem could not
be solved within the limits; a dash means that SIP was not able to find a feasible
solution, in this case the problem does not contribute to the total sum of the gaps
in the last line of the table.

What one would like to have at this point is a comparison with other codes. This

1default SIP runs sequentially, i. e., we used just one of the processors.

73

74 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

is, however, very difficult. People have different machines with different storage
spaces, use different packages for the solution of subproblems like linear programs,
and so on. Comparable codes are in particular ABACUS, developed at the Univer-
sity of Cologne (Thienel [1995]), bc-opt, developed at CORE (Cordier, Marchand,
Laundy, and Wolsey [1997]), CPLEX, developed at Incline Village (CPLEX [1997]),
MIPO, developed at Columbia University (Balas, Ceria, and Cornuéjols [1996]), and
MINTO, developed at Georgia Institute of Technology (Nemhauser, Savelsbergh, and
Sigismondi [1994]). CPLEX is certainly one of the most frequently used codes, and it
has become customary to compare one’s own developments with CPLEX. We follow
this custom, but refrain from giving comparisons to all other mentioned codes.

In Table 5.2 we run the default strategy of CPLEX Version 5.0 on the Miplib.
However, we want to stress that such a comparison must be handled with caution,
although we have CPLEX available and can run it in the same environment. CPLEX
has so many alternative options and possible parameter settings that it is often
the case that the default strategy is not the best possible setting. The reason for
giving this comparison here is not to compare result by result, as there are always
problems where one code is better than the other and vice versa. All we want
to demonstrate at this point is that SIP can compete with state-of-the-art mixed
integer programming solvers, which can be seen from the summary lines in Tables
5.1 and 5.2.

5.1 Preprocessing

Preprocessing aims at eliminating redundant information from the problem formu-
lation given by the user and simultaneously tries to strengthen the formulation by
logical implications. Preprocessing can be very effective and sometimes it might not
be possible to solve certain problems without a good preprocessing. This includes,
for instance, Steiner tree problems, see Koch and Martin [1998], or set partitioning
problems, see Borndörfer [1998]. Typically, preprocessing is applied only once at
the beginning of the solution procedure, but sometimes it pays to run the prepro-
cessing routine more often on different nodes in the branch-and-bound phase, see,
for instance, Borndörfer [1998], Hoffman and Padberg [1991]. There is always the
question of the break even point between the running time for preprocessing and the
savings in the solution time for the whole problem. There is no unified answer to
this question. It depends on the individual problem, when intensive preprocessing
pays and when not. In the following we discuss the preprocessing options that are
incorporated in our code SIP and ways to implement them. Most of these options
are drawn from Andersen and Andersen [1995], Bixby [1994], Crowder, Johnson,
and Padberg [1983], Hoffman and Padberg [1991], and Suhl and Szymanski [1994].

We assume we are given a mixed integer program in the following form:

min cTx

s.t. Ax

⎧⎨⎩
≤
=
≥

⎫⎬⎭ b

l ≤ x ≤ u
x ∈ ZN × RC ,

(5.1)

where M,N , and C are finite sets with N and C disjoint, A ∈ RM×(N∪C) , c, l, u ∈
RN∪C , b ∈ RM . A variable xi, i ∈ N, is also called binary if li = 0 and ui = 1. If
some variable xj has no upper or lower bound, we assume that lj = −∞ or uj =
+∞, where ∞ might be something like 1010 in the implementation. Furthermore,
we denote by si ∈ {≤,=,≥} the sign of row i, i. e., (5.1) reads min{cTx : Axs b, l ≤
x ≤ u, x ∈ ZN × RC }. In order to avoid too many subcases in the following

5.1. PREPROCESSING 75

Example B & B Cuts Dual Bound Primal Bound Time Gap %

10teams 10370 0 922 924 3600.0 0.217

air03 8 0 340160 340160 6.7 0.000

air04 1220 0 56137 56137 1532.5 0.000

air05 3588 0 26374 26374 1696.8 0.000

arki001 100776 4 7579808.299 7646059.57 3600.1 0.874

bell3a 25146 0 878430.316 878430.316 45.3 0.000

bell5 337394 1 8966406.491 8966406.491 536.7 0.000

blend2 15055 5 7.598985 7.598985 122.4 0.000

cap6000 4323 2578 -2451418.742 -1236924 3604.0 49.543

dano3mip 1 0 576.2316203 - 3710.3 -

danoint 12655 0 62.94058146 70 3600.3 11.216

dcmulti 2637 0 188182 188182 14.6 0.000

dsbmip 867 0 -305.198175 -305.198175 42.7 0.000

egout 222 0 568.1007 568.1007 0.2 0.000

enigma 8002 524 0 0 24.2 0.000

fast0507 234 0 172.2530211 177 3604.8 2.756

fiber 783 372 405935.18 405935.18 16.9 0.000

fixnet6 1669 0 3983 3983 14.6 0.000

flugpl 7976 25 1201500 1201500 4.4 0.000

gen 11 20 112313.3627 112313.3627 0.3 0.000

gesa2 209525 33 25771445.96 25783761.56 3600.0 0.048

gesa2 o 264243 0 25711931.57 25823063.47 3600.0 0.432

gesa3 5297 0 27991042.65 27991042.65 97.1 0.000

gesa3 o 74472 0 27991042.65 27991042.65 1144.7 0.000

gt2 2215 5 21166 21166 3.2 0.000

harp2 23990 15966 -73944202.17 -70801289 3600.1 4.250

khb05250 2637 0 106940226 106940226 16.3 0.000

l152lav 3209 269 4722 4722 93.8 0.000

lseu 303 164 1120 1120 1.1 0.000

misc03 699 14 3360 3360 4.1 0.000

misc06 308 0 12850.86074 12850.86074 4.2 0.000

misc07 35585 0 2810 2810 378.8 0.000

mitre 1286 3865 115155 115155 1125.8 0.000

mod008 884 371 307 307 9.8 0.000

mod010 237 3 6548 6548 5.6 0.000

mod011 6108 0 -54558535.01 -54558535.01 2791.4 0.000

modglob 1000000 0 20652263.27 20763655.71 3495.8 0.539

noswot 1000000 179 -43 -41 2270.7 4.651

nw04 1827 0 16862 16862 732.9 0.000

p0033 77 53 3089 3089 0.1 0.000

p0201 507 136 7615 7615 5.0 0.000

p0282 1345 2308 258411 258411 38.3 0.000

p0548 1610 902 8691 8691 25.3 0.000

p2756 23151 6923 3113.257351 3141 3600.2 0.891

pk1 501934 0 11 11 1581.8 0.000

pp08a 1000000 0 5446.190476 8620 2092.7 58.276

pp08aCUTS 624198 0 6970.027419 7650 3600.0 9.756

qiu 17378 0 -132.873137 -132.873137 2326.5 0.000

qnet1 17694 12 16029.69268 16029.69268 1229.9 0.000

qnet1 o 3806 3 16029.69268 16029.69268 158.6 0.000

rentacar 105 0 30356760.98 30356760.98 53.2 0.000

rgn 2505 315 82.19999924 82.19999924 9.6 0.000

rout 200371 316 1048.991823 1079.19 3600.0 2.879

set1ch 841033 0 39920.71098 67819.5 3600.0 69.886

seymour 1947 0 406.4218572 438 3601.8 7.770

stein27 4666 0 18 18 8.0 0.000

stein45 54077 0 30 30 277.7 0.000

vpm1 1000000 0 19.5 20 1892.6 2.564

vpm2 555712 0 13.75 13.75 1368.7 0.000

Total (59) 8017878 35366 77823.6 226.547

Table 5.1: SIP with default parameter settings

76 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

Example B & B Cuts Dual Bound Primal Bound Time Gap %

10teams 5505 0 917 926 3600.3 0.981

air03 8 0 340160 340160 5.6 0.000

air04 1711 0 55869.31984 56223 3601.3 0.633

air05 4987 0 26226.4271 26539 3600.5 1.192

arki001 141554 0 7579899.334 7585039.428 3600.2 0.068

bell3a 30233 0 878430.316 878430.316 34.3 0.000

bell5 1000000 0 8935997.023 9050980.167 930.2 1.287

blend2 579295 0 7.598128134 7.598985 2148.1 0.000

cap6000 4458 2135 -2451464.477 - 3601.1 -

dano3mip 5 0 576.2317752 766.5 3601.8 33.019

danoint 16038 0 63.21257952 66.5 3600.1 5.201

dcmulti 2292 0 188163.3569 188182 10.4 0.000

dsbmip 233 0 -305.198175 -305.198175 13.9 0.000

egout 100 0 568.1007 568.1007 0.1 0.000

enigma 505 0 0 0 1.0 0.000

fast0507 321 0 172.2137727 176 3606.9 2.199

fiber 243 218 405924.1392 405935.18 8.4 0.000

fixnet6 602 0 3983 3983 3.8 0.000

flugpl 3347 0 1201500 1201500 1.1 0.000

gen 4 33 112313.3627 112313.3627 0.3 0.000

gesa2 467237 0 25701301.64 25806681.14 3600.1 0.410

gesa2 o 555856 0 25689188.34 25806648.16 3600.1 0.457

gesa3 12362 0 27988245.19 27991042.65 149.9 0.000

gesa3 o 26340 0 27988244.35 27991042.65 275.2 0.000

gt2 1000000 0 20690.519 21166 900.2 2.298

harp2 145929 600 -74092004.18 -73449312 3600.2 0.867

khb05250 9608 0 106930112 106940226 41.6 0.000

l152lav 7665 0 4722 4722 117.8 0.000

lseu 204 84 1120 1120 0.7 0.000

misc03 829 0 3360 3360 4.1 0.000

misc06 246 0 12850.20368 12851.07629 2.7 0.000

misc07 31880 0 2810 2810 318.1 0.000

mitre 722 692 115155 115155 124.2 0.000

mod008 3930 18 307 307 11.5 0.000

mod010 18 60 6548 6548 2.5 0.000

mod011 15872 0 -56369797.6 -51720755.22 3600.9 8.247

modglob 1000000 0 20695096.06 20742697.19 2156.9 0.230

noswot 1000000 0 -43 -40 1835.8 6.977

nw04 1408 0 16862 16862 405.7 0.000

p0033 13 18 3089 3089 0.0 0.000

p0201 468 73 7615 7615 5.1 0.000

p0282 122 544 258411 258411 1.6 0.000

p0548 232701 712 8636.5725 8691 3600.0 0.630

p2756 31805 3753 3111.874611 3164 3600.2 1.675

pk1 450428 0 10.99880209 11 1497.8 0.000

pp08a 1000000 0 5669.52381 7820 1301.5 37.930

pp08aCUTS 991547 0 7154.172779 7450 3600.0 4.135

qiu 10422 0 -132.8843756 -132.873137 1268.8 0.000

qnet1 380 0 16029.69268 16029.69268 19.2 0.000

qnet1 o 1757 0 16028.14901 16029.69268 44.6 0.000

rentacar 51 0 30356760.98 30356760.98 20.3 0.000

rgn 3802 0 82.19999914 82.19999924 4.4 0.000

rout 220860 0 1029.78509 1133.52 3600.0 10.073

set1ch 1000000 0 39114.77014 83033.75 2966.5 112.282

seymour 1376 0 406.3527263 443 3601.2 9.019

stein27 3772 0 18 18 4.9 0.000

stein45 66891 0 30 30 231.9 0.000

vpm1 382467 0 20 20 544.5 0.000

vpm2 1000000 0 13.20436986 13.75 2280.0 4.132

Total (59) 11470409 8940 80910.4 239.811

Table 5.2: CPLEX with default parameter settings

5.1. PREPROCESSING 77

discussion we assume without loss of generality that there are no “greater than or
equal” inequalities, i. e., si ∈ {≤,=}. We distinguish the following cases:

Empty Rows. Suppose there is some row i with no non-zero entry. If

si =

{ ≤
=

}
and

{
bi < 0

|bi| > 0

}
the problem is infeasible, otherwise row i can be removed.

Empty/Infeasible/Fixed Columns. For all columns j check the following: If

lj > uj ,

the problem is infeasible. If

uj = lj ,

fix column j to its lower (or upper) bound, update the right-hand side, and
delete j from the problem.

Suppose some column j has no non-zero entry. If{
lj = −∞
uj = ∞

}
and

{
cj > 0
cj < 0

}
the problem is unbounded (or infeasible in case no feasible solution exists).
Otherwise, if⎧⎨⎩

lj > −∞
uj < ∞

−lj = uj = ∞

⎫⎬⎭ and

⎧⎨⎩
cj ≥ 0
cj ≤ 0

⎫⎬⎭fix column j to

⎧⎨⎩
lj
uj

0

⎫⎬⎭ .

Parallel Rows. Suppose we are given two rows AT
i·x si bi and AT

j·x sj bj. Row i
and j are called parallel if there is some α ∈ R such that αAi· = Aj·. The
following situations might occur:

1. Conflicting constraints:

(a) si = ‘=’, sj = ‘=’, and αbi �= bj

(b) si = ‘=’, sj = ‘≤’, and αbi > bj

(c) si = ‘≤’, sj = ‘≤’, and αbi > bj (α < 0)

In any of these cases the problem is infeasible.

2. Redundant constraints:

(a) si = ‘=’, sj = ‘=’, and αbi = bj

(b) si = ‘=’, sj = ‘≤’, and αbi ≤ bj

(c) si = ‘≤’, sj = ‘≤’, and αbi ≤ bj (α > 0)

In any of these cases row j is redundant.

3. Range constraints:

(a) si = ‘≤’, sj = ‘≤’, and αbi = bj (α < 0)
The two inequalities can be aggregated into one equation.

(b) si = ‘≤’, sj = ‘≤’, and αbi < bj (α < 0)
In this case both inequalities can be aggregated into one range con-
straint of the form AT

i·x+ u = bi with 0 ≤ u ≤ bj − αbi.

78 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

The question remains how to find parallel rows. Tomlin and Welsh [1986]
describe an efficient procedure, when the matrix A is stored columnwise, and
Andersen and Andersen [1995] slightly refine this approach. The idea is to use
a hash function such that rows in different baskets are not parallel. Possible
hash functions are the number of non-zeros, the index of the first and/or the
last index of the row, the coefficient of the first non-zero entry, etc. In practice,
the baskets are rather small so that rows inside one basket can be checked
pairwise.

Duality Fixing. Suppose there is some column j with cj ≥ 0 that satisfies aij ≥ 0
if si = ‘≤’, and aij = 0 if si = ‘=’ for i ∈ M . If lj > −∞, we can fix column
j to its lower bound. If lj = −∞ the problem is unbounded or infeasible.
The same arguments apply to some column j with cj ≤ 0. Suppose aij ≤ 0 if
si = ‘≤’, aij = 0 if si = ‘=’ for i ∈ M . If uj < ∞, we can fix column j to
its upper bound. If uj = ∞ the problem is unbounded or infeasible.

Singleton Rows. If there is some row i that contains just one non-zero entry
aij �= 0, for some j ∈ N ∪ C say, then we can update the bound of column j
in the following way. Initially let −l̄j = ūj = ∞ and set

ūj = bi/aij if

{
si = ‘≤’, aij > 0 or
si = ‘=’

l̄j = bi/aij if

{
si = ‘≤’, aij < 0 or
si = ‘=’

If ūj < max{lj , l̄j} or l̄j > min{uj, ūj} the problem is infeasible. Otherwise,
we update the bounds by setting lj = max{lj , l̄j} and uj = min{uj, ūj} and
remove row i. In case variable xj is integer (binary) we round down uj to the
next integer and lj up to the next integer. If the new bounds coincide we can
also delete column j after updating the right-hand side accordingly.

Singleton Columns. Suppose there is some column j with just one non-zero entry
aij �= 0, for some i ∈ M say. Let xj be a continuous variable with no upper
and lower bounds. If si = ‘≤’ we know after duality fixing has been applied
that either cj ≤ 0 and aij > 0 or cj ≥ 0 and aij < 0. In both cases, there is
an optimal solution satisfying row i with equality. Thus we can assume that
si = ‘=’. Now, we delete column j and row i. After solving the reduced
problem we assign to variable xj the value

xj =
bi −

∑
k 	=j aikxk

aij
.

Forcing and Dominated Rows. Here, we exploit the bounds on the variables to
detect so-called forcing and dominated rows. Consider some row i and let

Li =
∑
j∈Pi

aij lj +
∑
j∈Ni

aijuj

Ui =
∑
j∈Pi

aijuj +
∑
j∈Ni

aij lj

(5.2)

where Pi = {j : aij > 0} and Ni = {j : aij < 0}. Obviously, Li ≤∑n
j=1 aijxj ≤ Ui. The following cases might come up:

5.1. PREPROCESSING 79

1. Infeasible row:

(a) si = ‘=’, and Li > bi or Ui < bi

(b) si = ‘≤’, and Li > bi

In these cases the problem is infeasible.

2. Forcing row:

(a) si = ‘=’, and Li = bi or Ui = bi

(b) si = ‘≤’, and Li = bi

Here, all variables in Pi can be fixed to its lower (upper) bound and all
variables in Ni to its upper (lower) bound when Li = bi (Ui = bi). Row
i can be deleted afterwards.

3. Redundant row:

(a) si = ‘≤’, and Ui < bi.

This row bound analysis can also be used to strengthen the lower and upper
bounds of the variables. Compute for each variable xj

ūij =

⎧⎨⎩
(bi − Li)/aij + lj , if aij > 0
(bi − Ui)/aij + lj , if aij < 0 and si = ‘=’
(Li − Ui)/aij + lj , if aij < 0 and si = ‘≤’

l̄ij =

⎧⎨⎩
(bi − Ui)/aij + uj , if aij > 0 and si = ‘=’
(Li − Ui)/aij + uj, if aij > 0 and si = ‘≤’
(bi − Li)/aij + uj, if aij < 0.

Let ūj = mini ūij and l̄j = maxi l̄ij . If ūj ≤ uj and l̄j ≥ lj , we speak of an
implied free variable. The simplex method might benefit from not updating
the bounds but treating variable xj as a free variable (note, setting the bounds
of j to −∞ and +∞ will not change the feasible region). Free variables will
always be in the basis and are thus useful in finding a starting basis. For
mixed integer programs however, it is in general better to update the bounds
by setting uj = min{uj, ūj} and lj = max{lj, l̄j}, because the search region
of the variable within an enumeration scheme is reduced. In case xj is an
integer (or binary) variable we round uj down to the next integer and lj up
to the next integer. As an example consider the following inequality (taken
from mod015 from the Miplib):

−45x6 − 45x30 − 79x54 − 53x78 − 53x102 − 670x126 ≤ −443(5.3)

Since all variables are binary, Li = −945 and Ui = 0. For j = 126 we obtain
l̄ij = (−443 + 945)/− 670 + 1 = 0.26. After rounding up it follows that x126

must be one.

Note that with these new lower and upper bounds on the variables it might
pay to recompute the row bounds Li and Ui, which again might result in
tighter bounds on the variables.

Coefficient Reduction. The row bounds in (5.2) can also be used to reduce co-
efficients of binary variables. Consider some row i with si = ‘≤’ and let xj

be a binary variable with aij �= 0.

If

⎧⎨⎩
aij < 0, Ui + aij < bi, set a′ij = bi − Ui,

aij > 0, Ui − aij < bi, set

{
a′ij = Ui − bi,
bi = Ui − aij ,

(5.4)

80 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

where a′ij denotes the new reduced coefficient. Consider the following inequal-
ity of example p0033 from the Miplib:

−230x10 − 200x16 − 400x17 ≤ −5(5.5)

All variables are binary, Ui = 0, and Li = −830. We have Ui+ai,10 = −230 <
−5 and we can reduce ai,10 to bi − Ui = −5. The same can be done for the
other coefficients, and we obtain the inequality

−5x10 − 5x16 − 5x17 ≤ −5(5.6)

Note that the operation of reducing coefficients to the value of the right-hand
side can also be applied to integer variables if all variables in this row have
negative coefficients and lower bound zero. In addition, we may compute the
greatest common divisor of the coefficients and divide all coefficients and the
right-hand side by this value. In case all involved variables are integer (or
binary) the right-hand side can be rounded down to the next integer. In our
example, the greatest common divisor is 5, and dividing by that number we
obtain the set covering inequality

−x10 − x16 − x17 ≤ −1.(5.7)

Aggregation. In mixed integer programs very often equations of the form

aijxj + aikxk = bi

appear for some i ∈ M, k, j ∈ N ∪C. In this case, we may replace one of the
variables, xk say, by

bi − aijxj

aik
.(5.8)

In case xk is binary or integer, the substitution is only possible, if the term
(5.8) is guaranteed to be binary or integer as well. If this is true or xk is
a continuous variable, we aggregate the two variables. The new bounds of
variable xj are lj = max{lj, (bi−aiklk)/aij} and uj = min{uj, (bi−aikuk)/aij}
if aik/aij < 0, and lj = max{lj, (bi − aikuk)/aij} and uj = min{uj, (bi −
aiklk)/aij} if aik/aij > 0.

Of course, aggregation can also be applied to equations whose support is
greater than two. However, this might cause additional fill in the matrix.
Hence, aggregation is usually restricted to constraints and columns with small
support; in SIP we only perform the discussed case of two variables.

Disaggregation. Disaggregation of columns is to our knowledge not an issue in
mixed integer programming, since this usually blows up the solution space. It
is however applied in interior point algorithms for linear programs, because
dense columns result in dense blocks in the Cholesky decomposition and are
thus to be avoided, see Gondzio [1994].

On the other hand, disaggregation of rows is an important issue for mixed
integer programs. Consider the following inequality (taken from the Miplib-
problem p0282)

x85 + x90 + x95 + x100 + x217 + x222 + x227 + x232 − 8x246 ≤ 0(5.9)

where all variables involved are binary. The inequality says that whenever
one of the variables xi with i ∈ S := {85, 90, 100, 217, 222, 227, 232} is one,

5.1. PREPROCESSING 81

x246 must also be one. This fact can also be expressed by replacing (5.9) by
the following eight inequalities:

xi − x246 ≤ 0 for all i ∈ S.(5.10)

Concerning the LP-relaxation, this formulation is tighter. Whenever any vari-
able in S is one, x246 is forced to one as well, which is not guaranteed in the
original formulation. On the other hand, one constraint is replaced by many
(in our case 8) inequalities, which might blow up the constraint matrix. How-
ever within a cutting plane procedure this problem is not really an issue,
because the inequalities in (5.10) can be generated on demand.

Probing. Probing is sometimes used in integer programming codes, see for instance
Suhl and Szymanski [1994]. The idea is to set some binary variable temporary
to zero or one and try to deduce further fixings from that. These implications
can be expressed in inequalities as follows:

(xj = 1 ⇒ xi = α) ⇒
{

xi ≥ li + (α− li)xj

xi ≤ ui − (ui − α)xj

(xj = 0 ⇒ xi = α) ⇒
{

xi ≥ α− (α− li)xj

xi ≤ α+ (ui − α)xj

(5.11)

As an example, suppose we set in (5.9) variable x246 temporary to zero. This
implies that xi = 0 for all i ∈ S. Applying (5.11) we deduce the inequality

xi ≤ 0 + (1 − 0)x246 = x246

for all i ∈ S which is exactly (5.10).

We have implemented all the described presolve tests (except probing) in SIP.
We apply the tests iteratively until all of them fail. In other words, we try to
strengthen the original formulation as far as possible. Table 5.3 shows our results
for the Miplib-problems. Columns 2 to 4 give the problem sizes (number of rows,
columns, and non-zeros) of the constraint matrix after presolve. For the original
data please refer to Table D.4. Columns 5 to 7 show the reductions in percentage,
for example the number of rows of problem 10teams could be reduced from 230 to
210 which is a reduction of 8.7%. Note that some examples have negative percentage
(misc03, p0282, p0548, p2756), because the number of rows (non-zeros) increased
by applying disaggregation as described on page 80. Sometimes the number of
rows is very high after disaggregation (for instance, p2756 has no less than 941
disaggregated rows and only 755 rows in the original formulation) and it seems to
be self-evident not to put these constraints in the integer programming formulation,
but to generate them on demand in the cutting plane phase. We have tested this
alternative and surprisingly, the cutting plane alternative yields worse results than
keeping all disaggregated rows in the linear program.

In summary, we see that presolve reduces the problem sizes in terms of number
of rows, columns, and non-zeros by around 10%. The time spent in presolve is
neglectable (25 seconds for all 59 problems). Interesting to note is also that for
some problems presolve is indispensable for their solution. For example, if we turn
off presolve for problem fixnet6, SIP is not able to solve the problem in hours.

Coming back to our initial, in general not answerable question, what is the best
trade-off between work/time spent in presolve and savings in the total running time.
Our answer to this question is to follow the strategy of detecting simple forms of re-
dundancy (the presented options are basically straight-forward), but doing this fast.

82 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

Example Absolute Values in Percentage Time

Rows Cols NZs Rows Cols NZs

10teams 210 1600 9600 8.7 21.0 21.0 0.10

air03 122 10755 91024 1.6 0.0 0.0 0.89

air04 777 8873 69933 5.6 0.3 4.2 1.26

air05 408 7195 50762 4.2 0.0 2.6 0.49

arki001 770 973 15583 26.5 29.9 23.8 0.25

bell3a 97 110 277 21.1 17.3 20.2 0.01

bell5 85 101 251 6.6 2.9 5.6 0.01

blend2 169 319 1279 38.3 9.6 9.2 0.03

cap6000 2095 5911 17908 3.7 1.5 62.9 0.53

dano3mip 3187 13873 79625 0.5 0.0 0.0 1.70

danoint 664 521 3232 0.0 0.0 0.0 0.06

dcmulti 272 548 1297 6.2 0.0 1.4 0.03

dsbmip 1126 1826 7142 4.7 3.2 3.0 0.16

egout 40 52 104 59.2 63.1 63.1 0.01

enigma 21 100 289 0.0 0.0 0.0 0.00

fast0507 484 63001 406865 4.5 0.0 0.6 9.00

fiber 290 1055 2465 20.1 18.7 16.3 0.10

fixnet6 477 877 1754 0.2 0.1 0.1 0.03

flugpl 15 15 38 16.7 16.7 17.4 0.00

gen 622 797 2064 20.3 8.4 20.4 0.08

gesa2 1392 1224 5064 0.0 0.0 0.0 0.15

gesa2 o 1248 1224 3672 0.0 0.0 0.0 0.14

gesa3 1344 1128 4872 1.8 2.1 1.5 0.14

gesa3 o 1200 1128 3552 2.0 2.1 2.0 0.10

gt2 28 173 346 3.4 8.0 8.0 0.01

harp2 100 1373 2598 10.7 54.1 55.5 1.26

khb05250 100 1299 2598 1.0 3.8 3.8 0.05

l152lav 97 1989 9922 0.0 0.0 0.0 0.05

lseu 27 89 262 3.6 0.0 15.2 0.01

misc03 95 153 1884 1.0 4.4 8.2 0.02

misc06 666 1409 3086 18.8 22.1 47.3 0.13

misc07 223 253 8356 -5.2 2.7 3.1 0.09

mitre 1657 10724 38416 19.3 0.0 3.2 0.52

mod008 6 319 1243 0.0 0.0 0.0 0.01

mod010 146 2655 11203 0.0 0.0 0.0 0.06

mod011 2332 6895 15874 47.9 37.1 28.7 1.39

modglob 287 387 925 1.4 8.3 4.4 0.02

noswot 171 121 681 6.0 5.5 7.3 0.03

nw04 36 87482 636666 0.0 0.0 0.0 3.79

p0033 14 33 79 12.5 0.0 19.4 0.00

p0201 113 195 1677 15.0 3.0 12.8 0.03

p0282 305 202 1428 -26.6 28.4 27.4 0.05

p0548 257 477 1522 -46.0 13.0 11.0 0.06

p2756 1653 2685 9306 -118.9 2.6 -4.1 0.49

pk1 45 86 915 0.0 0.0 0.0 0.01

pp08a 136 240 480 0.0 0.0 0.0 0.01

pp08aCUTS 246 240 839 0.0 0.0 0.0 0.01

qiu 1192 840 3432 0.0 0.0 0.0 0.06

qnet1 370 1417 4294 26.4 8.0 7.1 0.07

qnet1 o 332 1417 3929 27.2 8.0 6.8 0.06

rentacar 1426 3169 22531 79.0 66.8 46.2 1.67

rgn 24 180 460 0.0 0.0 0.0 0.00

rout 290 555 2115 0.3 0.2 13.0 0.03

set1ch 446 666 1301 9.3 6.5 7.9 0.10

seymour 4827 1255 33432 2.4 8.5 0.3 0.44

stein27 118 27 378 0.0 0.0 0.0 0.00

stein45 331 45 1034 0.0 0.0 0.0 0.01

vpm1 129 189 371 44.9 50.0 50.5 0.03

vpm2 129 189 455 44.9 50.0 50.4 0.04

Total 35469 252634 1602690 7.3 10.0 12.0 25.88

Table 5.3: Presolve statistics for Miplib-problems

5.2. BRANCH-AND-BOUND STRATEGIES 83

Of course, there are further and sometimes more sophisticated presolve operations
possible (see, for instance, Nemhauser and Wolsey [1988], Hoffman and Padberg
[1991], Borndörfer [1998]) and it remains to check whether it pays to incorporate
these suggestions into our presolve algorithm.

5.2 Branch-and-Bound Strategies

In the general outline of a branch-and-cut algorithm, see Algorithm B.1 in Appendix
B, there are two steps in the branch-and-bound part that leave some choices. In
Step (3) of Algorithm B.1 we have to select the next problem (node) from the list
of unsolved problems to work on next, and in Step (9) we must decide on how to
split the problem into subproblems. Popular strategies are to branch on a variable
that is closest to 0.5 and to choose a node with the worst dual bound. In this
section we briefly discuss some more alternatives that are implemented in SIP. We
will see that they sometimes outperform the mentioned standard strategy. For a
comprehensive study of branch-and-bound strategies we refer to Land and Powell
[1979] and Linderoth and Savelsbergh [1997] and the references therein. We assume
in this section that a general mixed integer program of the form (5.1) is given.

5.2.1 Node Selection

In SIP there are three different strategies implemented to select the node to be
processed next, see Step (3) of Algorithm B.1.

1. Best First Search (bfs).
Here, a node is chosen with the worst dual bound, i. e., a node with lowest

lower bound, since we are minimizing in (5.1). The goal is to improve the dual
bound. However, if this fails early in the solution process, the branch-and-
bound tree tends to grow considerably resulting in large memory requirements.

2. Depth First Search (dfs).
This rule chooses the node that is “deepest” in the branch-and-bound tree,
i. e., whose path to the root is longest. The advantages are that the tree
tends to stay small, since always one of the two sons are processed next, if the
node could not be fathomed. This fact also implies that the linear programs
from one node to the next are very similar, usually the difference is just the
change of one variable bound and thus the reoptimization goes fast. The
main disadvantage is that the dual bound basically stays untouched during
the solution process resulting in bad solution guarantees.

3. Best Projection.
When selecting a node the quintessential question is, where are the good

(optimal) solutions hidden in the branch-and-bound tree? In other words,
is it possible to guess at some node whether it contains a better solution?
Of course, this is not possible in general. But, there are some rules that
evaluate the nodes according to the potential of having a better solution. One
such rule is best projection. The earliest reference we found to this rule is
Mitra [1973] who gives the credit to J. Hirst. Let z(p) be the dual bound
of some node p, z(root) the dual bound of the root node, z∗IP the current
best primal solution, and s(p) the sum of the infeasibilities at node p, i. e.,
s(p) =

∑
i∈N min{x̄i − �x̄i�,
x̄i�− x̄i}, where x̄ is the optimal LP solution of

node p and N the set of all integer variables. Let

�(p) = z(p) +
z∗IP − z(root)

s(root)
· s(p).(5.12)

84 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

The term
z∗
IP−z(root)
s(root) can be viewed as a measure for the change in the objective

function per unit decrease in infeasibility. The best projection rule selects the
node that minimizes �(·).

Tables 5.4, 5.5, and 5.6 show the results on the Miplib-problems when using best-
first-search, depth-first-search, and best projection as node selection rules. We should
note at this point that SIP sometimes continues at one of the sons of some node, even
if the node selection rules suggests another node. The reason is that SIP currently
contains no primal heuristic. The only way SIP tries to find feasible solutions is to
“plunch” from time to time at some node, i. e., to dive deeper into the tree and look
for feasible solutions. This strategy is very common as primal heuristics for general
integer programs. Often such a heuristic is detached from the regular branch-
and-bound enumeration phase, by starting at some node, alternatingly rounding
some variables and solving linear programs, until all variables are fixed, the LP is
infeasible, or a feasible solution has been found (see Section 4.4.2 for an example).
We do not apply this rounding heuristic separately, but consider it from time to
time within the global enumeration phase. The decision of whether to continue at a
particular node or to choose the node suggested by the node selection rule, depends
on the values s(p), �(p) as defined in (5.12) and on the number of fractional variables.
We have not turned off this option, when we performed the comparison of the three
node selection rules.

Looking at the three tables we find some interesting numbers. First of all dfs
finds by far the most feasible solutions, see Column Sol, where the number of times
the best feasible solution could be improved is counted. This indicates that feasible
solution tend to lie deep in the branch-and-bound tree. We also see that the number
of simplex iterations (Column Simplex) per LP is on average much smaller for dfs
(= 3.4) than using bfs (= 5.7) or best projection (= 5.5). This confirms our statement
that reoptimizing a linear program is fast when just one variable bound is changed.
However, dfs forgets to work on the dual bound. For many more difficult problems
the dual bound is not improved resulting in very bad solution guarantees, compare
the Column Gap % with the other two strategies. Best projection is doing a better
job in this respect. It sometimes outperforms bfs, as for arki001 or harp2 where it
finds more and better feasible solutions. However, in total bfs is the best strategy
when comparing the total CPU time on the total gap. (Note that best projection
even does not find a feasible solution for cap6000, and without counting this problem
bfs is around 60% better than best projection.) Thus, our default strategy in SIP is
to use best first search.

5.2.2 Variable Selection

In this section we discuss rules on how to split a problem into subproblems, if it
could not be fathomed in the branch-and-bound tree, see Step (9) of Algorithm B.1.
The only way to split a problem within an LP based branch-and-bound algorithm,
as SIP is, is to branch on linear inequalities in order to keep the property of having
an LP relaxation at hand. The easiest and most common inequalities are trivial
inequalities, i. e., inequalities that split the feasible interval of a singleton variable.
To be more precise, if j is some variable with a fractional value x̄j in the current
optimal LP solution, we obtain two subproblems, one by adding the trivial inequal-
ity xj ≤ �x̄j� (called the left subproblem or left son) and one by adding the trivial
inequality xj ≥
x̄j� (called the right subproblem or right son). This rule of branch-
ing on trivial inequalities is also called branching on variables, because it actually
does not require to add an inequality, but only to change the bounds of variable
j. Of course, one might think of branching on more complicated inequalities or
even splitting the problem into more than two subproblems (see Section 6.4.4 for

5.2. BRANCH-AND-BOUND STRATEGIES 85

Example B & B LPs Simplex Sol Cuts Total Gap %

10teams 10370 10370 1819658 1 0 3600.0 0.217

air03 8 8 568 2 0 6.7 0.000

air04 1220 1220 180747 8 0 1532.5 0.000

air05 3588 3588 308477 6 0 1696.8 0.000

arki001 100776 100789 1161447 1 4 3600.1 0.874

bell3a 25146 25147 32169 4 0 45.3 0.000

bell5 337394 337396 316958 10 1 536.7 0.000

blend2 15055 15060 195660 3 5 122.4 0.000

cap6000 4323 6474 89609 1 2578 3604.0 49.543

dano3mip 1 2 157321 0 0 3710.3 -

danoint 12655 12656 2098276 5 0 3600.3 11.216

dcmulti 2637 2638 11058 22 0 14.6 0.000

dsbmip 867 868 19095 6 0 42.7 0.000

egout 222 222 216 3 0 0.2 0.000

enigma 8002 8528 103838 2 524 24.2 0.000

fast0507 234 234 52563 2 0 3604.8 2.756

fiber 783 1056 12393 9 372 16.9 0.000

fixnet6 1669 1670 12407 8 0 14.6 0.000

flugpl 7976 8051 6493 2 25 4.4 0.000

gen 11 13 337 1 20 0.3 0.000

gesa2 209525 211872 931513 15 33 3600.0 0.048

gesa2 o 264243 264244 1211802 9 0 3600.0 0.432

gesa3 5297 5298 38572 9 0 97.1 0.000

gesa3 o 74472 74473 496106 12 0 1144.7 0.000

gt2 2215 2236 8705 7 5 3.2 0.000

harp2 23990 41090 1541832 1 15966 3600.1 4.250

khb05250 2637 2637 13939 11 0 16.3 0.000

l152lav 3209 3526 54833 10 269 93.8 0.000

lseu 303 411 2445 6 164 1.1 0.000

misc03 699 746 8131 1 14 4.1 0.000

misc06 308 309 1886 5 0 4.2 0.000

misc07 35585 35585 378256 5 0 378.8 0.000

mitre 1286 2538 34802 7 3865 1125.8 0.000

mod008 884 1075 7601 7 371 9.8 0.000

mod010 237 239 2130 2 3 5.6 0.000

mod011 6108 6109 707785 16 0 2791.4 0.000

modglob 1000000 1000001 3425378 4 0 3495.8 0.539

noswot 1000000 1034126 4005738 6 179 2270.7 4.651

nw04 1827 1827 26479 3 0 732.9 0.000

p0033 77 103 355 3 53 0.1 0.000

p0201 507 609 6177 4 136 5.0 0.000

p0282 1345 2076 33468 13 2308 38.3 0.000

p0548 1610 2396 14955 11 902 25.3 0.000

p2756 23151 32416 265249 16 6923 3600.2 0.891

pk1 501934 501935 4508516 15 0 1581.8 0.000

pp08a 1000000 1000001 3950367 15 0 2092.7 58.276

pp08aCUTS 624198 624199 4560034 19 0 3600.0 9.756

qiu 17378 17379 770313 5 0 2326.5 0.000

qnet1 17694 17721 843795 16 12 1229.9 0.000

qnet1 o 3806 3811 142272 12 3 158.6 0.000

rentacar 105 106 11656 5 0 53.2 0.000

rgn 2505 2832 24239 1 315 9.6 0.000

rout 200371 200669 4161826 3 316 3600.0 2.879

set1ch 841033 841034 2261296 15 0 3600.0 69.886

seymour 1947 1947 339753 3 0 3601.8 7.770

stein27 4666 4666 13289 2 0 8.0 0.000

stein45 54077 54077 339977 3 0 277.7 0.000

vpm1 1000000 1000001 2716396 2 0 1892.6 2.564

vpm2 555712 555713 1768386 8 0 1368.7 0.000

Total (59) 8017878 8088023 46209542 403 35366 77823.6 226.547

Table 5.4: SIP using best first search

86 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

Example B & B LPs Simplex Sol Cuts Total Gap %

10teams 10629 10629 2196600 8 0 3600.7 0.763

air03 31 31 852 5 0 8.9 0.000

air04 2027 2027 234285 19 0 1537.5 0.000

air05 3597 3597 223170 16 0 811.7 0.000

arki001 80122 80123 1348738 201 0 3600.7 0.942

bell3a 1000000 1000001 542291 138 0 990.1 60.799

bell5 1000000 1000002 818467 756 1 1016.1 9.446

blend2 197988 197990 2631784 122 1 1472.0 0.000

cap6000 3770 4381 458341 0 675 3600.8 -

dano3mip 1 2 157321 0 0 3830.3 -

danoint 14721 14722 2286072 2 0 3600.3 11.355

dcmulti 19571 19572 49169 85 0 78.3 0.000

dsbmip 949 950 22892 24 0 50.9 0.000

egout 197 197 228 5 0 0.1 0.000

enigma 1112 1166 15235 1 54 3.4 0.000

fast0507 560 560 69082 3 0 3601.3 2.239

fiber 1225 1515 13788 14 361 17.7 0.000

fixnet6 1725 1726 12517 28 0 13.4 0.000

flugpl 3275 3309 2326 1 25 1.4 0.000

gen 11 13 337 1 20 0.3 0.000

gesa2 291890 292370 681046 369 26 3600.0 1.073

gesa2 o 308786 308787 690344 353 0 3600.0 2.123

gesa3 277340 277902 754816 574 5 3600.0 2.927

gesa3 o 325224 325225 797242 592 0 3600.0 3.109

gt2 1000000 1001911 2057822 26 174 933.2 37.958

harp2 163246 190518 1256062 15 12250 3600.0 1.645

khb05250 2913 2913 9507 21 0 14.4 0.000

l152lav 1492 1621 22557 23 100 35.5 0.000

lseu 632 775 3832 11 222 1.7 0.000

misc03 621 650 8352 1 10 3.7 0.000

misc06 363 364 2180 12 0 4.5 0.000

misc07 37151 37151 391634 7 0 369.1 0.000

mitre 10437 12937 119663 11 3685 3607.6 0.322

mod008 8547 8738 12384 8 315 17.1 0.000

mod010 525 527 3072 3 3 8.0 0.000

mod011 7910 7911 854160 50 0 3600.6 11.957

modglob 1000000 1000001 1710911 7 0 2853.5 1.735

noswot 1000000 1004568 1769998 5 13 1606.6 13.953

nw04 1499 1499 21113 4 0 583.2 0.000

p0033 87 110 297 4 49 0.1 0.000

p0201 687 804 7302 8 203 5.7 0.000

p0282 3149 4077 36120 69 1538 40.9 0.000

p0548 2945 3555 12201 99 678 25.3 0.000

p2756 164902 169210 468995 620 985 3600.1 78.588

pk1 498407 498408 2589722 41 0 962.0 0.000

pp08a 1000000 1000001 1591203 43 0 1619.1 191.812

pp08aCUTS 1000000 1000001 2902013 52 0 3384.2 35.022

qiu 23259 23260 715386 17 0 2213.2 0.000

qnet1 27672 27875 324685 424 169 408.9 0.000

qnet1 o 17294 17383 276280 554 65 305.1 0.000

rentacar 65 66 5118 4 0 25.9 0.000

rgn 2209 2490 21125 1 219 6.8 0.000

rout 342887 343193 5216806 26 316 3600.0 14.670

set1ch 1000000 1000001 1142124 9 0 3529.4 123.840

seymour 4991 4991 419325 5 0 3600.4 7.962

stein27 4057 4057 11977 2 0 6.2 0.000

stein45 54634 54634 319027 3 0 242.9 0.000

vpm1 1000000 1000001 2084117 1 0 1557.5 27.789

vpm2 466185 466186 1615406 24 0 1017.4 0.000

Total (59) 12393517 12439184 42009419 5527 22162 85625.9 642.029

Table 5.5: SIP using depth first search

5.2. BRANCH-AND-BOUND STRATEGIES 87

Example B & B LPs Simplex Sol Cuts Total Gap %

10teams 7117 7117 1760623 6 0 3601.3 0.763

air03 8 8 568 2 0 6.7 0.000

air04 1837 1837 217726 9 0 1858.9 0.000

air05 3315 3315 297185 18 0 1834.3 0.000

arki001 89514 89525 1197250 5 7 3600.0 0.041

bell3a 18389 18390 29739 4 0 30.4 0.000

bell5 321919 321921 375767 18 1 447.7 0.000

blend2 36895 36898 347121 13 3 228.2 0.000

cap6000 4381 5895 361822 0 1772 3600.1 -

dano3mip 1 2 157321 0 0 3839.1 -

danoint 11014 11015 2100972 4 0 3600.2 6.647

dcmulti 5647 5648 15773 23 0 25.1 0.000

dsbmip 523 524 13320 7 0 29.5 0.000

egout 271 271 251 4 0 0.2 0.000

enigma 4111 4278 49195 1 167 12.4 0.000

fast0507 231 231 51341 2 0 3609.1 2.789

fiber 670 848 9342 6 299 12.7 0.000

fixnet6 1866 1867 15261 11 0 17.3 0.000

flugpl 5445 5473 4446 1 25 3.0 0.000

gen 11 13 333 1 20 0.4 0.000

gesa2 227609 229787 943408 11 35 3600.0 0.564

gesa2 o 264247 264248 1175112 9 0 3600.0 0.996

gesa3 7707 7708 59476 7 0 141.5 0.000

gesa3 o 18840 18841 78452 8 0 258.0 0.000

gt2 2014 2018 8402 6 3 3.3 0.000

harp2 43473 63975 1586741 7 13783 3600.1 0.890

khb05250 3326 3326 15286 10 0 18.9 0.000

l152lav 3278 3441 39478 7 136 69.8 0.000

lseu 330 439 2581 6 166 1.2 0.000

misc03 587 639 7093 2 16 3.5 0.000

misc06 260 261 1908 8 0 3.7 0.000

misc07 25718 25718 303230 7 0 301.4 0.000

mitre 1135 2475 34558 9 4088 1185.7 0.000

mod008 527 647 3842 3 204 4.1 0.000

mod010 155 157 1415 3 3 4.0 0.000

mod011 5313 5314 786492 13 0 3600.4 3.655

modglob 1000000 1000001 2884392 4 0 3098.5 1.161

noswot 1000000 1018128 3228959 4 160 1991.7 6.977

nw04 851 851 14642 2 0 386.4 0.000

p0033 38 51 191 1 39 0.1 0.000

p0201 461 562 5427 7 188 4.8 0.000

p0282 1334 1912 24698 13 2144 30.0 0.000

p0548 4389 6333 32130 18 1253 69.4 0.000

p2756 19061 28584 242885 23 6952 3602.2 2.384

pk1 838787 838788 7225573 20 0 2640.2 0.000

pp08a 1000000 1000001 3721267 18 0 2168.8 67.402

pp08aCUTS 692664 692665 4614783 15 0 3600.0 21.400

qiu 22753 22754 879043 8 0 2921.2 0.000

qnet1 3056 3057 87517 13 0 125.9 0.000

qnet1 o 6693 6709 201198 10 11 238.2 0.000

rentacar 143 144 14505 8 0 70.2 0.000

rgn 2347 2625 22691 1 221 8.8 0.000

rout 260447 260808 4095027 7 316 3600.0 8.716

set1ch 810890 810891 2150167 12 0 3600.0 85.411

seymour 1850 1850 333854 2 0 3604.7 7.888

stein27 4639 4639 13537 2 0 7.8 0.000

stein45 54286 54286 355329 3 0 290.3 0.000

vpm1 1000000 1000001 2834047 2 0 1929.5 19.522

vpm2 412761 412762 1360236 7 0 970.9 0.000

Total (59) 8255134 8312472 46394928 451 32012 77711.9 237.205

Table 5.6: SIP using best projection

88 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

an example), but these extensions have not yet been incorporated into SIP. In the
following we present three variable selection rules that are implemented in SIP.

1. Most Infeasibility.
This rule chooses the variable that is closest to 0.5. The heuristic reason

behind this choice is that this is a variable where the least tendency can be
recognized to which “side” (up or down) the variable should be rounded. The
hope is that a decision on this variable has the greatest impact on the LP
relaxation.

2. Pseudo-costs.
This is a more sophisticated rule in the sense that it keeps a history of the

success of the variables on which it has already been branched. To introduce
this rule, which is due to Benichou, Gauthier, Girodet, Hentges, Ribiere, and
Vincent [1971], we need some notation. Let P denote the set of all problems
(nodes) except the root node that have already been solved in the solution
process. Initially, this set is empty. P+ denotes the set of all right sons, and
P− the set of all left sons, where P = P+ ∪ P−. For some problem p ∈ P let

f(p) be the father of problem p.

v(p) be the variable that has been branched on to obtain problem p
from the father f(p).

x(p) be the optimal solution of the final linear program at node p.

z(p) be the optimal objective function value of the final linear pro-
gram at node p.

The up pseudo-cost of variable j ∈ N is

Φ+(j) =
1

|P+
j |

∑
p∈P+

j

z(p)− z(f(p))

xv(p)(f(p))� − xv(p)(f(p))
,(5.13)

where P+
j ⊆ P+. The down pseudo-cost of variable j ∈ N is

Φ−(j) =
1

|P−
j |

∑
p∈P−

j

z(p)− z(f(p))

xv(p)(f(p))− �xv(p)(f(p))� ,(5.14)

where P−
j ⊆ P−. The terms z(p)−z(f(p))

xv(p)(f(p))�−xv(p)(f(p))
and z(p)−z(f(p))

xv(p)(f(p))−�xv(p)(f(p))� ,
respectively, measure the change in the objective function per unit decrease of
infeasibility of variable j. There are many suggestions made on how to choose
the sets P+

j and P−
j , see Linderoth and Savelsbergh [1997] for a survey. We

basically follow the suggestion of Eckstein [1994] and set P+
j := {p ∈ P+ :

v(p) = j} and P−
j := {p ∈ P− : v(p) = j}, if j has already been considered as

a branching variable, otherwise we use P+
j := P+ and P−

j := P−. It remains
to discuss how to weight the up and down pseudo-costs against each other
to obtain the final pseudo-costs according to which the branching variable is
selected. Here we set

Φ(j) = α+
j Φ

+(j) + α−
j Φ

−(j),(5.15)

where α+
j , α

−
j are typical positive scalars that depend on the sign of the ob-

jective function coefficient of variable j. A variable that maximizes (5.15) is
chosen to be the next branching variable; ties are broken by choosing a variable
that is closest to .5 . As formula (5.15) shows it takes the previously obtained

5.3. CUTTING PLANES FROM THE LITERATURE 89

success of the variables into account when deciding on the next branching
variable. The weakness of this approach is that at the very beginning there is
no information available, and Φ(·) is almost identical for all variables. Thus,
at the beginning where the branching decisions are usually the most critical
the pseudo-costs take no effect. This drawback is tried to overcome in the
following rule.

3. Strong Branching.
The idea of strong branching, invented by CPLEX [1997] (see also Apple-

gate, Bixby, Chvátal, and Cook [1995]), is before actually branching on some
variable to test whether it indeed gives some progress. This testing is done
by fixing the variable temporarily to its up and down value, i. e., to
x̄j� and
�x̄j� if x̄j is the fractional LP value of variable j, performing a certain fixed
number of dual simplex iterations for each of the two settings, and measuring
the progress in the objective function value. The testing is done, of course, not
only for one variable but for a certain set of variables. Thus, the parameters of
strong branching to be specified are the size of the candidate set, the maximum
number of dual simplex iterations to be performed on each candidate variable,
and a criterion according to which the candidate set is selected. In SIP these
parameters are set as follows. We take 20% of the fractional variables, but at
most 10 of them in the candidate set. The criterion according to which they
are selected depends, for each variable j, on the pseudo-cost Φ(j), see (5.15),
and on its infeasibility (= min{
x̄j� − x̄j , x̄j − �x̄j�}). We perform for each
candidate at most Δ dual simplex iterations, where Δ is initialized with 10
and is decreased the more the deeper the node lies in the branch-and-bound
tree. There is no need to say that these parameter settings are all of heuristic
nature and their justification are based only on experimental results.

Tables 5.7, 5.8, and 5.9 summarize our results when using these three variable
selection rules. We see that branching on a most infeasible variable is by far the
worst, measured in CPU time, in solution quality as well as in the number of
branch-and-bound nodes. Using pseudo-costs gives much better results. The power
of pseudo-costs becomes in particular apparent if the number of solved branch-and-
bound nodes is large. In this case the function Φ(·) gives a very good representation
of the variables that are qualified for branching. We also observe that the time
spent to compute the pseudo-costs is basically for free, we only spent 100 CPU
seconds more time in the variable selection routine than when using most infeasible
branching (see Column Var. Sel. which shows the spent CPU time). The statistics
change when looking at strong branching. Strong branching is much more expensive
than the other two strategies, about half of the total time is spent for selecting the
variable. This comes not as a surprise, since as we have observed on page 84 the
average number of dual simplex iteration per linear program is only around 6. Thus,
the testing of a certain number of variables (even if it is small) in strong branching is
relatively expensive. But, we also see that the number of branch-and-bound nodes
is drastically decreased to about 40% compared to the pseudo-costs strategy. This
decrease, however, does not completely compensate the higher running times for
selecting the variables. Thus, in total strong branching does not outperform pseudo-
costs, though there are examples like air04, air05 or qnet1 where strong branching is
significantly better.

5.3 Cutting Planes from the Literature

In this section we discuss cutting planes known from the literature that are incor-
porated in our code SIP. Cutting planes for integer programs may be classified with

90 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

Example B & B LPs Cuts Var. Sel. Total Gap %

10teams 9726 9726 0 1.9 3600.1 0.348

air03 8 8 0 0.0 7.0 0.000

air04 3075 3075 0 3.9 3600.2 0.481

air05 5127 5127 0 6.0 3600.5 1.393

arki001 84511 84518 6 7.7 3600.0 -

bell3a 123945 123978 4 1.4 201.1 0.000

bell5 1000000 1057038 17 15.0 1572.3 4.858

blend2 75105 75111 6 3.5 608.8 0.000

cap6000 4567 4885 362 2.5 3600.6 -

dano3mip 1 2 0 0.0 3806.9 -

danoint 14401 14402 0 0.3 3600.2 9.622

dcmulti 114080 114081 0 1.3 598.0 0.000

dsbmip 7991 7992 0 0.2 391.8 0.000

egout 249 249 0 0.0 0.2 0.000

enigma 19750 21037 1282 0.3 60.7 0.000

fast0507 242 242 0 2.8 3625.6 2.759

fiber 538 859 474 0.1 17.6 0.000

fixnet6 1270 1271 0 0.0 12.3 0.000

flugpl 11445 11511 25 0.0 6.6 0.000

gen 15 17 20 0.0 0.4 0.000

gesa2 227006 234389 25 16.7 3600.0 0.968

gesa2 o 265295 265296 0 34.4 3600.0 1.402

gesa3 181901 181902 0 12.3 3600.0 0.256

gesa3 o 152302 152303 0 19.0 3600.0 8.875

gt2 1000000 1002297 174 34.0 1344.4 4.996

harp2 29480 52706 16435 8.2 3600.0 3.009

khb05250 9202 9202 0 0.1 69.8 0.000

l152lav 34519 36097 765 6.5 806.5 0.000

lseu 218 298 146 0.0 1.0 0.000

misc03 497 546 13 0.0 3.0 0.000

misc06 447 448 0 0.0 5.8 0.000

misc07 18194 18194 0 0.5 239.7 0.000

mitre 1004 2225 3589 1.0 1092.1 0.000

mod008 487 658 327 0.0 5.8 0.000

mod010 151 153 3 0.1 4.4 0.000

mod011 5276 5277 0 0.2 3600.5 5.102

modglob 1000000 1000001 0 19.2 3418.1 0.179

noswot 1000000 1043317 198 17.6 1967.3 6.977

nw04 1420 1420 0 12.6 601.2 0.000

p0033 40 56 45 0.0 0.1 0.000

p0201 1114 1279 271 0.0 10.5 0.000

p0282 8375 10424 3863 0.2 170.2 0.000

p0548 150216 199845 4140 12.1 3600.0 15.505

p2756 17205 30018 1502 8.1 3600.4 9.121

pk1 913582 913583 0 11.4 3600.0 331.527

pp08a 1000000 1000001 0 18.4 1946.1 67.640

pp08aCUTS 567341 567342 0 10.6 3600.0 15.887

qiu 19598 19599 0 0.3 3600.1 61.362

qnet1 70667 70744 21 16.7 3600.0 33.798

qnet1 o 47177 47440 120 8.2 1386.1 0.000

rentacar 137 138 0 0.0 61.9 0.000

rgn 3377 3720 348 0.1 13.3 0.000

rout 167178 167542 316 8.0 3600.0 15.592

set1ch 669968 669969 0 40.8 3600.0 114.524

seymour 2163 2163 0 0.8 3601.4 6.707

stein27 4652 4652 0 0.0 7.9 0.000

stein45 70471 70471 0 0.5 339.4 0.000

vpm1 1000000 1000001 0 15.7 2026.4 4.956

vpm2 1000000 1000001 0 18.0 3050.2 16.866

Total (59) 11116706 11320846 34497 398.9 105084.3 744.709

Table 5.7: SIP when branching on most infeasible variable

5.3. CUTTING PLANES FROM THE LITERATURE 91

Example B & B LPs Cuts Var. Sel. Total Gap %

10teams 10370 10370 0 2.6 3600.0 0.217

air03 8 8 0 0.0 6.7 0.000

air04 1220 1220 0 1.3 1532.5 0.000

air05 3588 3588 0 3.8 1696.8 0.000

arki001 100776 100789 4 16.0 3600.1 0.874

bell3a 25146 25147 0 0.2 45.3 0.000

bell5 337394 337396 1 4.0 536.7 0.000

blend2 15055 15060 5 0.8 122.4 0.000

cap6000 4323 6474 2578 4.5 3604.0 49.543

dano3mip 1 2 0 0.0 3710.3 -

danoint 12655 12656 0 0.5 3600.3 11.216

dcmulti 2637 2638 0 0.1 14.6 0.000

dsbmip 867 868 0 0.0 42.7 0.000

egout 222 222 0 0.0 0.2 0.000

enigma 8002 8528 524 0.1 24.2 0.000

fast0507 234 234 0 3.0 3604.8 2.756

fiber 783 1056 372 0.1 16.9 0.000

fixnet6 1669 1670 0 0.1 14.6 0.000

flugpl 7976 8051 25 0.1 4.4 0.000

gen 11 13 20 0.0 0.3 0.000

gesa2 209525 211872 33 18.5 3600.0 0.048

gesa2 o 264243 264244 0 48.1 3600.0 0.432

gesa3 5297 5298 0 0.4 97.1 0.000

gesa3 o 74472 74473 0 13.0 1144.7 0.000

gt2 2215 2236 5 0.1 3.2 0.000

harp2 23990 41090 15966 7.6 3600.1 4.250

khb05250 2637 2637 0 0.1 16.3 0.000

l152lav 3209 3526 269 0.7 93.8 0.000

lseu 303 411 164 0.0 1.1 0.000

misc03 699 746 14 0.0 4.1 0.000

misc06 308 309 0 0.0 4.2 0.000

misc07 35585 35585 0 1.6 378.8 0.000

mitre 1286 2538 3865 1.5 1125.8 0.000

mod008 884 1075 371 0.0 9.8 0.000

mod010 237 239 3 0.1 5.6 0.000

mod011 6108 6109 0 0.2 2791.4 0.000

modglob 1000000 1000001 0 47.1 3495.8 0.539

noswot 1000000 1034126 179 31.7 2270.7 4.651

nw04 1827 1827 0 16.1 732.9 0.000

p0033 77 103 53 0.0 0.1 0.000

p0201 507 609 136 0.0 5.0 0.000

p0282 1345 2076 2308 0.0 38.3 0.000

p0548 1610 2396 902 0.1 25.3 0.000

p2756 23151 32416 6923 9.4 3600.2 0.891

pk1 501934 501935 0 12.3 1581.8 0.000

pp08a 1000000 1000001 0 49.4 2092.7 58.276

pp08aCUTS 624198 624199 0 27.8 3600.0 9.756

qiu 17378 17379 0 0.3 2326.5 0.000

qnet1 17694 17721 12 4.6 1229.9 0.000

qnet1 o 3806 3811 3 0.8 158.6 0.000

rentacar 105 106 0 0.0 53.2 0.000

rgn 2505 2832 315 0.0 9.6 0.000

rout 200371 200669 316 12.4 3600.0 2.879

set1ch 841033 841034 0 125.0 3600.0 69.886

seymour 1947 1947 0 1.6 3601.8 7.770

stein27 4666 4666 0 0.1 8.0 0.000

stein45 54077 54077 0 1.4 277.7 0.000

vpm1 1000000 1000001 0 20.6 1892.6 2.564

vpm2 555712 555713 0 11.0 1368.7 0.000

Total (59) 8017878 8088023 35366 501.2 77823.6 226.547

Table 5.8: SIP when branching on variables by exploiting pseudo costs

92 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

Example B & B LPs Cuts Var. Sel. Total Gap %

10teams 4861 9728 0 435.4 3600.3 0.326

air03 19 19 0 8.9 18.8 0.000

air04 1003 1046 0 206.3 986.8 0.000

air05 1224 1265 0 237.2 923.7 0.000

arki001 26168 26185 2 2255.6 3600.1 0.951

bell3a 33545 33547 0 7.9 77.8 0.000

bell5 698501 864662 0 2294.0 3600.0 0.019

blend2 12055 13525 0 181.3 304.7 0.000

cap6000 3779 5594 2330 661.6 3600.1 50.726

dano3mip 1 2 0 4.8 4049.9 -

danoint 8989 9238 0 636.9 3600.3 7.887

dcmulti 2199 2627 0 34.5 47.5 0.000

dsbmip 323 431 0 25.8 57.5 0.000

egout 132 192 0 0.4 0.5 0.000

enigma 3517 3742 224 8.3 20.1 0.000

fast0507 173 174 0 582.0 3616.5 1.526

fiber 240 444 296 6.4 15.1 0.000

fixnet6 724 927 0 17.6 28.1 0.000

flugpl 3260 3437 25 5.5 7.4 0.000

gen 4 6 20 0.1 0.3 0.000

gesa2 49920 53164 27 2764.8 3600.1 0.438

gesa2 o 54896 56553 0 2891.8 3600.0 0.684

gesa3 6012 6832 0 343.2 464.0 0.000

gesa3 o 20390 23197 0 983.8 1293.4 0.000

gt2 3424 3997 27 10.8 15.8 0.000

harp2 19709 33438 14270 945.0 3601.1 11.582

khb05250 2097 2516 0 31.5 46.5 0.000

l152lav 1280 1643 89 36.4 78.5 0.000

lseu 114 200 144 0.5 1.3 0.000

misc03 566 719 15 4.4 8.9 0.000

misc06 112 145 0 4.8 7.0 0.000

misc07 12091 15364 0 262.6 466.2 0.000

mitre 1096 3168 3735 450.9 1663.0 0.000

mod008 450 667 217 3.2 7.7 0.000

mod010 32 50 3 1.6 4.1 0.000

mod011 4131 4267 0 846.8 3600.2 1.596

modglob 246898 274663 0 2776.4 3600.0 0.406

noswot 355926 562953 164 2661.2 3600.0 6.977

nw04 323 427 0 342.0 554.4 0.000

p0033 12 22 26 0.0 0.1 0.000

p0201 305 437 177 3.2 7.1 0.000

p0282 801 1633 3323 18.7 50.4 0.000

p0548 589 971 707 13.0 23.4 0.000

p2756 15407 23289 5120 1607.6 3600.2 2.050

pk1 216943 259257 0 1420.3 2185.3 0.000

pp08a 364593 371902 0 2921.2 3600.0 59.176

pp08aCUTS 187974 192549 0 2653.2 3600.0 14.630

qiu 10166 11379 0 1062.6 3600.2 19.173

qnet1 3140 3442 3 149.1 315.2 0.000

qnet1 o 2314 2460 3 90.2 184.8 0.000

rentacar 51 55 0 4.6 37.7 0.000

rgn 1441 2148 256 7.2 14.6 0.000

rout 73550 85811 316 1820.2 3600.0 10.193

set1ch 127756 137835 0 3057.5 3600.1 74.954

seymour 1567 1575 0 857.1 3600.6 6.671

stein27 2326 2990 0 9.5 14.4 0.000

stein45 34525 41750 0 343.4 576.5 0.000

vpm1 418939 577515 0 2539.5 3600.0 1.839

vpm2 306912 419625 0 2565.9 3600.0 2.307

Total (59) 3349495 4157399 31519 44115.9 90178.5 274.112

Table 5.9: SIP using strong branching

5.3. CUTTING PLANES FROM THE LITERATURE 93

regard to the question whether their derivation requires knowledge about the struc-
ture of the underlying constraint matrix. Examples of families of cutting planes that
do not exploit the structure of the constraint matrix are (mixed) integer Chvátal-
Gomory cuts (see Gomory [1960], Gomory [1969], Chvátal [1973], Schrijver [1980]),
mixed integer rounding cuts (see Nemhauser and Wolsey [1990]), or lift-and-project
cuts (see Balas, Ceria, and Cornuéjols [1993]). An alternative approach to obtain
cutting planes for an integer program follows essentially the scheme to derive re-
laxations associated with certain substructures of the underlying constraint matrix,
and tries to find valid inequalities for these relaxations. Crowder, Johnson, and
Padberg [1983] pioneered this methodology by interpreting each single row of the
constraint matrix as a knapsack relaxation and strengthened the integer program by
adding violated knapsack inequalities. An analysis of other important relaxations
of an integer program allows to incorporate odd hole and clique inequalities for the
stable set polyhedron (Padberg [1973]) or flow cover inequalities for certain mixed
integer models (Padberg, Roy, and Wolsey [1985], Roy and Wolsey [1987]). Further
recent examples of this second approach are given in Ceria, Cordier, Marchand, and
Wolsey [1998], Marchand and Wolsey [1997].

Cordier, Marchand, Laundy, and Wolsey [1997] give a nice survey on which
of the mentioned cutting planes help to solve which problems from the Miplib.
Marchand [1998] describes the merits of applying mixed integer rounding cuts. In
Balas, Ceria, Cornuéjols, and Natraj [1996] it is in particular shown how useful
Chvátal-Gomory cuts are if they are incorporated in the right way. Lift-and-project
cuts are investigated in Balas, Ceria, and Cornuéjols [1993] and Balas, Ceria, and
Cornuéjols [1996].

Currently, SIP separates only two of the mentioned classes of inequalities, namely
weight inequalities with and without general upper bounds for the knapsack poly-
tope. In the following we briefly recall these inequalities and discuss their separation.

Consider an instance K (N, f, F) of the knapsack problem, i. e., a set N =
{1, . . . , n} of items with weights fi, i ∈ N, and a capacity F , and the polytope
PK (N, f, F) as defined in (2.4). In what follows we allow arbitrary rational weights
fi ∈ Q as well as an arbitrary capacity F ∈ Q. The definitions of K (N, f, F) and
PK (N, f, F) are extended accordingly.

Recall from Section 2.3 the definition of an (uniform) extended weight inequality.
Let T ⊆ N , f(T) ≤ F , define r := F − f(T) and denote by S the subset of N \ T
such that fi ≥ r for all i ∈ S. The (uniform) extended weight inequality associated
with T and some permutation π1, . . . π|S| of the set S is∑

i∈T

xi +
∑
i∈S

wixi ≤ |T |,(5.16)

where wπ1 = φ(fπ1 − r), see (2.6) for a definition of the covering number φ, and, for
i = 2, . . . , |S|, wπi is the exact lifting coefficient obtained by applying Algorithm
C.2 from Appendix C, i. e., wπi = |T | −max{∑j∈T∪{π1,... ,πi−1} wjzj : z ∈ PK (T ∪
{π1, . . . , πi−1}, fT∪{π1,... ,πi−1}, F − fπi)}.

As noticed in Section 2.3 extended weight inequalities subsume minimal cover
and (1, k)-configuration inequalities. The separation of minimal cover inequalities
is widely discussed in the literature, because basically every general integer pro-
gramming solver separates cover inequalities. The complexity of cover separation
is investigated in Ferreira [1994], Klabjan, Nemhauser, and Tovey [1996], and Gu,
Nemhauser, and Savelsbergh [1997], algorithmic and implementation issues are dis-
cussed among others in Crowder, Johnson, and Padberg [1983], Roy and Wolsey
[1987], Zemel [1989], Hoffman and Padberg [1991], and Gu, Nemhauser, and Savels-
bergh [1994]. The ideas and concepts suggested to separate cover inequalities basi-
cally carry over to extended weight inequalities. The following algorithm outlines

94 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

the separation routine used in SIP to find violated extended weight inequalities. We
call this algorithm for every row of A that contains at least one coefficient not equal
to 0,±1 and whose support contains only binary variables.

Algorithm 5.3.1 Separation algorithm of extended weight inequalities.

Input: A finite set N ⊆ N, a vector a ∈ QN , a capacity b ∈ Q and a vector
x̄ ∈ [0, 1]N .

Output: A (with respect to x̄) violated extended weight inequality that is valid for
PK (N, a, b), or the message that none was found.

(1) Complement variables if a �≥ 0, i. e., replace
x̄i by 1− x̄i if ai < 0 for i ∈ N , set b = b−∑i:ai<0 ai and

ai =

{ −ai, if ai < 0;
ai if ai > 0.

(2) Fix all variables that are binary

fi =

{
x̄i, if x̄i ∈ {0, 1};
FREE, if i ∈ Fr(x̄) := {j ∈ N : 0 < x̄j < 1}.

(3) Determine a starting set T ⊆ Fr(x̄) such that∑
i∈T

aixi ≤ b−
∑

{i: fi=1}
ai

and set fi = 0 for all i ∈ Fr(x̄) \ T .
(4) Lift all variables in Fr(x̄) \ T exactly.
(5) If the resulting inequality is not violated – Stop (no violated

inequality was found)
(6) Lift all variables that are fixed to one exactly.
(7) Lift all variables that are fixed to zero approximately.
(8) If the final inequality is violated, undo the complementing

of Step (1), and return the inequality.
Else return with the message that no violated inequality was found.

(9) Stop.

The outline of Algorithm 5.3.1 is typical for the separation of cover inequalities:
fix all variables that are integer, find a cover (in our case a starting set T), and lift
the remaining variables sequentially. The decisions to be made are

(a) to select the starting set T :
Here, we sort the fractional variables with respect to x̄ in non-increasing order.
We construct the set T following this order in a greedy fashion as long as∑

i∈T ai ≤ b−∑{i: fi=1} ai.

(b) to determine a lifting sequence for the variables in N \ T :
In our lifting sequence the remaining fractional variables Fr(x̄) \T come first,
then all variables that are fixed to one F1 = {i ∈ N : fi = 1}, and last all
variables fixed to zero F0 = {i ∈ N : fi = 0}. The variables in Fr(x̄) \ T are
sorted in non-increasing order with respect to x̄, the variables in F1 and F0 in
non-increasing order with respect to a. Denote by π1, . . . , π|N |−|T | the final
lifting order.

(c) to determine the exact/approximate lifting coefficient:
The exact lifting coefficient is computed as described in Algorithm 8.5.2, where
this issue is discussed in a more general setting. Algorithm 8.5.2 applied to
the special situation here reads with S = T ∪ {π1, . . . , πk−1} and the starting
inequality

∑
i∈S wixi ≤ ω valid for PK (S, aS , b−

∑
i∈N\S aifi):

5.3. CUTTING PLANES FROM THE LITERATURE 95

(1) For l = 0, 1 compute

ωl = max
∑

i∈S wizi∑
i∈S aizi + aπk

· l ≤ b−∑i∈N\S aifi

z ∈ {0, 1}S.
(5.17)

(2) If fπk
= 0 set

wπk
= ω − ω1

ω = ω
(5.18)

(3) If fπk
= 1 set

wπk
= ω0 − ω

ω = ω0
(5.19)

(5.17) can be solved by dynamic programming techniques in time O(|S| · (b−∑
i∈N\S aifi)), see Martello and Toth [1990]. Alternatively, wl can also be

determined by computing, for μ = 0, . . . , ω̃, the integer programs

z(μ) = min
∑

i∈S aizi∑
i∈S wizi ≥ μ

z ∈ {0, 1}S,
(5.20)

and setting wl = max{μ : z(μ) ≤ b −∑i∈N\S aifi − aπk
· l}, where ω̃ = ω,

if l = 1, and ω̃ =
∑

i∈S wi, if l = 0. (5.20) can again be solved by dynamic
programming techniques in time O(|S| · ω̃). If fπk

= 0 for all k, Zemel [1989]
suggested this “dual” procedure for the lifting of minimal cover inequalities
in which case the procedure is polynomial, since ω̃ ≤ |N |. We also use the
“dual” procedure for the lifting in Step (4) and Step (6), since in general ω ≤ b
and wi ≤ ai, respectively. The variables in F0 are not exactly lifted in our
implementation. Here we determine an optimal solution of the LP relaxation
of (5.17) by using Dantzig’s procedure (see Martello and Toth [1990] for an
explanation of this procedure) and round the objective function value down
to the next integer.

We finally want to point out that it is sometimes possible to determine the
exact lifting coefficient without solving the integer programs in (5.17). Recall
from (2.8) in Section 2.3 that the exact lifting coefficient wπk

satisfies

φ(aπk
− r)− 1 ≤ wπk

≤ φ(aπk
− r),

where r = b −∑i∈T ai. One can derive sufficient conditions under which
the coefficient can be set to the upper bound φ(aπk

− r). One such obvious
condition that can be applied in Step (4) is the following. Suppose the items
in T are sorted such that a1 ≥ . . . ≥ a|T | and let h ∈ {0, . . . , |T |} be such

that
∑h

i=1 ai < aπk
− r ≤ ∑h+1

i=1 ai, i. e., φ(aπk
− r) = h + 1. Now, if in

addition
∑h+1

i=1 ai ≤ aπk
the exact lifting coefficient is wπk

= h+ 1. This fact
was already observed in Balas [1975] for minimal cover inequalities and was
extended by Weismantel [1997] to extended weight inequalities.

We have tested SIP with and without the separation of extended weight inequal-
ities. When using these inequalities we apply Algorithm 5.3.1 only at every third

level in the branch-and-bound tree, and add an inequality wTx ≤ ω only if wT x̄−ω
maxwi

is at least 0.05. There are 16 instances in the Miplib containing rows that give
rise to 0/1 knapsack relaxations. Table 5.10 and 5.11 show our results when using
and not using extended weight inequalities. We see that the number of branch-and-
bound nodes is reduced to less than 10% when weight inequalities are used. The

96 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

time spent in the separation algorithm is only 653 seconds in total, which is around
5% of the total running time. Without weight inequalities we even do not find a
feasible solution for cap6000 and mitre. The numbers clearly show that knapsack
cuts are indispensable for the solution of integer programs that contain knapsack
problems as a substructure.

Example B & B Cuts Time Gap %

Others Kn Kn Total

cap6000 4323 0 2578 405.7 3604.0 49.543

enigma 8002 0 524 0.4 24.2 0.000

fiber 783 36 336 0.2 16.9 0.000

gen 11 10 10 0.0 0.3 0.000

harp2 23990 16 15950 68.3 3600.1 4.250

l152lav 3209 0 269 3.3 93.8 0.000

lseu 303 51 113 0.1 1.1 0.000

misc03 699 3 11 0.0 4.1 0.000

mitre 1286 1058 2807 10.4 1125.8 0.000

mod008 884 114 257 1.3 9.8 0.000

mod010 237 1 2 0.0 5.6 0.000

p0033 77 29 24 0.0 0.1 0.000

p0201 507 56 80 0.1 5.0 0.000

p0282 1345 839 1469 0.6 38.3 0.000

p0548 1610 247 655 0.8 25.3 0.000

p2756 23151 477 6446 162.3 3600.2 0.891

Total (16) 70417 2937 31531 653.5 12154.8 54.684

Table 5.10: SIP with extended weight inequalities

Example B & B Cuts Time Gap %

Others Kn Kn Total

cap6000 4615 0 0 0.0 3600.8 -

enigma 5970 0 0 0.0 18.3 0.000

fiber 412369 1058 0 0.0 3600.0 0.188

gen 165 37 0 0.0 2.8 0.000

harp2 268925 119 0 0.0 3600.0 15.343

l152lav 2482 0 0 0.0 52.8 0.000

lseu 7914 199 0 0.0 15.8 0.000

misc03 735 6 0 0.0 4.0 0.000

mitre 11890 2489 0 0.0 3600.1 -

mod008 2362 666 0 0.0 13.4 0.000

mod010 377 22 0 0.0 8.0 0.000

p0033 61 36 0 0.0 0.1 0.000

p0201 769 170 0 0.0 6.6 0.000

p0282 1793 1970 0 0.0 33.7 0.000

p0548 50685 1203 0 0.0 638.1 0.000

p2756 85358 542 0 0.0 3600.0 26.724

Total (16) 856470 8517 0 0.0 18794.6 42.255

Table 5.11: SIP without extended weight inequalities

Cutting planes derived from knapsack relaxations can sometimes be strength-
ened if special ordered set inequalities

∑
i∈Q xi ≤ 1 for some Q ⊆ N are available.

In connection with a knapsack inequality this constraints are also called generalized
upper bound constraints (GUBs). The 0/1 knapsack polytope with GUBs in standard
form is given by

PKGUB = conv{x ∈ {0, 1}N :
∑

i∈N aixi ≤ b∑
i∈Qj

xi ≤ 1, i = 1, . . . , q},(5.21)

5.3. CUTTING PLANES FROM THE LITERATURE 97

where Q1, . . . , Qq, q ≥ 1 is a partition of N and a ∈ QN
+ , b ∈ Q+ (the “standard

form” requires the non-negativity of the vector a). Note that the 0/1 knapsack
polytope PK (N, a, b) is the special case where q = |N | (i. e., |Qj| = 1 for all j). It
is clear that by taking the additional SOS constraints into account stronger cutting
planes may be derived. This possibility has been studied by Crowder, Johnson,
and Padberg [1983], Johnson and Padberg [1981], Wolsey [1990], Nemhauser and
Vance [1994], and Gu, Nemhauser, and Savelsbergh [1994]. In SIP we have also
incorporated a prototype for separating extended weight inequalities for knapsack
problems with GUBs. This algorithm works along the following lines.

Algorithm 5.3.2 Separation algorithm of extended weight inequalities for PKGUB
.

Input: A finite set N ⊆ N, a vector a ∈ QN , a capacity b ∈ Q, a vector x̄ ∈ [0, 1]N ,
and an additional set of SOS inequalities.

Output: A (with respect to x̄) violated extended weight inequality valid for PKGUB
,

or the message that none was found.

(1) Select a set of non-overlapping SOS constraints; let Q1, . . . , Qq, q ≥ 1, be
the support of these constraints such that Q1, . . . , Qq is a partition of N .

(2) Transform the problem into a knapsack problem with GUBs
in standard form.

(3) Determine a starting set T ⊆ N with
∑

i∈T ai ≤ b
and |T ∩Qj| ≤ 1 for all j = 1, . . . , q.

(4) Lift all variables in N \ T .
(5) If the final inequality is violated, undo the transformation

in Step (2), and return the inequality.
Else return with the message that no violated inequality was found.

(6) Stop.

Step (1) of Algorithm 5.3.2 is performed in a greedy like fashion by sorting all
possible SOS constraints with respect to the ratios of the inequalities’ slack to the
cardinality of their intersection with the knapsack inequality. The transformation
in (2) is necessary for SOS constraints Qj with min{ai : i ∈ Qj} < 0. For such a
constraint Qj , let imin = argmin{ai : i ∈ Qj} and set

ai =

{
ai − aimin , for i ∈ Qj \ {imin};
−aimin , if i = imin,

x̄i =

{
x̄i, if i �= {imin};
1−∑i∈Q x̄i, if i = imin,

and b := b− aimin . The application of this transformation guarantees that a ≥ 0.
Step (3) is performed in the same way as Step (3) of Algorithm 5.3.1 with

the additional requirement that, for each SOS constraint, at most one variable is
in the starting set T . The lifting sequence is determined such that all variables in
Qj (j = 1, . . . , q) are lifted consecutively. The SOS constraints themselves are sorted
with respect to the values max{x̄i : i ∈ Qj}, j = 1, . . . , q, in non-increasing order.
Each SOS set Qj is ordered according to the weights ai, i ∈ Qj , in non-increasing
succession. Each of the lifting coefficients is determined approximately by solving
the associated LP relaxation of (C.2) applied to the constraint system Ax ≤ b in
(5.21). The lifting coefficient is the optimal objective function value rounded down
to the next integer. The LP relaxation is solved by using an algorithm suggested by
Johnson and Padberg [1981] which is an extension of Dantzig’s procedure for the
solution of the LP relaxation of the 0/1 knapsack problem.

98 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

Tables 5.12 and 5.13 show our computational results when applying or not ap-
plying Algorithm 5.3.2. We observe some, but no significant improvement when
SOS constraints are taken into account. For p2756 we obtain a slightly better qual-
ity, for some other instances we obtain slightly better running times. It is worth
to note that the number of branch-and-bound notes is considerably reduced. We
also see that a substantial amount of time (about 25%) is spent in the separation
algorithm. As noted, Algorithm 5.3.2 is currently a prototype and leaves space
for improvements along the lines of Algorithm 5.3.1, for instance, by fixing cer-
tain variables, investigating different lifting sequences, and performing the lifting
exactly for some of the variables. Nevertheless, our current implementation already
shows the usefulness of separating knapsack inequalities with GUBs. We do obtain
improvements, although they are small.

Example B & B Cuts Time Gap %

Others GUB Kn GUB Kn Total

cap6000 4323 2578 0 1915.5 3604.0 49.543

enigma 8002 524 0 0.4 24.2 0.000

fiber 783 372 0 0.1 16.9 0.000

l152lav 3209 269 0 9.0 93.8 0.000

lseu 552 277 20 0.1 2.4 0.000

mitre 1286 3674 191 541.4 1125.8 0.000

mod010 237 3 0 0.0 5.6 0.000

p0033 57 24 8 0.0 0.1 0.000

p0201 507 93 43 0.2 5.0 0.000

p0282 1345 1477 831 1.6 38.3 0.000

p0548 1610 720 182 1.2 25.3 0.000

p2756 23151 6728 195 176.6 3600.2 0.891

Total (12) 45062 16739 1470 2646.1 8541.6 50.434

Table 5.12: SIP with GUB knapsack inequalities

Example B & B Cuts Time Gap %

Others GUB Kn GUB Kn Total

cap6000 8632 4867 0 0.0 3602.8 49.542

enigma 8002 524 0 0.0 23.7 0.000

fiber 783 372 0 0.0 16.8 0.000

l152lav 3209 269 0 0.0 85.2 0.000

lseu 378 178 0 0.0 1.3 0.000

mitre 3131 5310 0 0.0 1200.3 0.000

mod010 237 3 0 0.0 5.7 0.000

p0033 53 39 0 0.0 0.1 0.000

p0201 521 119 0 0.0 5.0 0.000

p0282 1861 2330 0 0.0 49.2 0.000

p0548 3039 1071 0 0.0 49.1 0.000

p2756 42788 4662 0 0.0 3600.2 2.426

Total (12) 72634 19744 0 0.0 8639.3 51.968

Table 5.13: SIP without GUB knapsack inequalities

5.4 Mixed Integer Weight Inequalities

In this section we present a new family of inequalities for a general mixed integer
knapsack polyhedra. We discuss the value of this family both from a theoretical
and computational point of view. We deal with the polyhedron associated with the

5.4. MIXED INTEGER WEIGHT INEQUALITIES 99

feasible solutions of a general mixed integer knapsack problem in which all variables
may have arbitrary, but finite bounds. In Section 5.4.1 we introduce our model and
the family of mixed integer weight inequalities that turn out to be valid for this
model. Section 5.4.2 deals with an analysis of mixed integer weight inequalities
in special cases. We present a family of knapsack polyhedra for which essentially
mixed integer weight inequalities are sufficient to describe the associated polyhe-
dron. Computational experiments with this family of inequalities are reported in
Section 5.4.3.

5.4.1 The Family of Mixed Integer Weight Inequalities

Let N,Q be mutually disjoint finite subsets of N. For a given vectors a ∈ NN∪Q ,
u ∈ NN∪Q , and a number α ∈ N \ {0}, we investigate

PMIK (N,Q, a, α, u) := conv{ x ∈ ZN × RQ :∑
i∈N∪Q aixi ≤ α

0 ≤ x ≤ u },
(5.22)

where we abbreviate PMIK (N,Q, a, α, u) by PMIK if there is no way of confusion.
Let us denote by FMIK (N,Q, a, α, u), or FMIK for short, the set of all vectors
x ∈ PMIK (N,Q, a, α, u) with xi integer for all i ∈ N .

In this section we study the polyhedron PMIK. There is one elementary family
of inequalities that is valid for PMIK that under certain assumptions suffices to
describe PMIK. We call this family mixed integer weight inequalities.

Definition 5.4.1 For T ⊆ N ∪Q such that
∑

i∈T aiui < α, we denote by

r(T) := α−
∑
i∈T

aiui

the residual knapsack capacity of the feasible solution x ∈ FMIK with xi := ui for
all i ∈ T and xi := 0, otherwise. The mixed integer weight inequality with respect
to T is the inequality∑

i∈T

aixi +
∑

i∈N\T
(ai − r(T))+xi ≤ α− r(T),

where v+ := max{0, v} for v ∈ R.
The name mixed integer weight inequality reflects that the coefficients of the

variables in T equal their original weights. The coefficients of the (rational) variables
in Q\T are zero. Likewise, the coefficient of an (integer) variable i in N \T is zero,
if the weight ai is smaller than r(T). Otherwise, it is the weight ai reduced by the
value r(T) > 0. Note that the mixed integer weight inequalities coincide with the
weight inequalities for the 0/1 knapsack polytope by Weismantel [1997], see (2.5)
on page 12.

Example 5.4.2 Consider N = {1, . . . , 6}, Q = {7, 8}, and the convex hull of tuples
of vectors x ∈ {0, 1}N × [0, 1]Q that satisfy

x1 + x2 + x3 + x4 + 3x5 + 4x6 + 2x7 + 3x8 ≤ 4

Setting T := {2, 3, 4}, we obtain that r(T) = 1. Then a1 − r(T) = 0, a5 − r(T) = 2
and a6 − r(T) = 3. The mixed integer weight inequality associated with T reads

x2 + x3 + x4 + 2x5 + 3x6 ≤ 3.

For T := {1, 7}, the mixed integer weight inequality associated with T reads

x1 + 2x7 + 2x5 + 3x6 ≤ 3.

100 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

Mixed integer weight inequalities are valid for the mixed integer knapsack poly-
hedron PMIK.

Proposition 5.4.3 For T ⊆ N such that
∑

i∈T aiui < α, the mixed integer weight
inequality with respect to T is valid for PMIK.

Proof. Let x ∈ FMIK. If
∑

i∈N\T : ai>r(T) xi = 0, then by definition,∑
i∈T

aixi +
∑

i∈N\T
(ai − r(T))+xi ≤ α− r(T).

Otherwise,
∑

i∈N\T : ai>r(T) xi ≥ 1 holds. We obtain∑
i∈T aixi +

∑
i∈N\T (ai − r(T))+xi ≤∑

i∈N∪Q aixi − r(T)
∑

i∈N\T : ai>r(T) xi ≤
α− r(T).

This proves the statement.

The family of mixed integer weight inequalities subsume various preprocessing
operations that software packages have sometimes incorporated for tightening inte-
ger programming formulations.

One such example is the following coefficient-reduction operation. For u, α ∈
N, u < α consider the feasible set

I := {x ∈ Z2 : 0 ≤ x1 ≤ u, 0 ≤ x2 ≤ 1, x1 + αx2 ≤ α}.
It is easy to see that this feasible set has an equivalent formulation as

I = {x ∈ R2 : 0 ≤ x1 ≤ u, 0 ≤ x2 ≤ 1, x1 + ux2 ≤ u}.
The inequality x1+ux2 ≤ u is a mixed integer weight inequality (with respect to

T = {1}) that is valid for conv(I). In fact, this operation of tightening coefficients
generalizes to the following situation.

Consider the constraint ∑
i∈R

xi +
∑
j∈F

αxj ≤ α,(5.23)

where F is a subset of 0/1 variables, R is a subset of integer variables, each variable
i ∈ R having an upper bound ui and

∑
i∈R ui < α. The constraint (5.23) may be

replaced by ∑
i∈R

xi +
∑
j∈F

(
∑
i∈R

ui)xj ≤
∑
i∈R

ui.(5.24)

The inequality (5.24) is a mixed integer weight inequality for

P := conv{x ∈ ZR× {0, 1}F : x satisfies (5.23)}.
In fact, P may be described as

P = conv{x ∈ ZR× {0, 1}F : x satisfies (5.24)}.
Investigating the latter formulation, one recognizes that all the facets of P are
induced by the family of mixed integer weight inequalities,

xi +
∑
j∈F

uixj ≤ ui for all i ∈ R.(5.25)

This system of inequalities together with lower and upper bound constraints on
the variables describes P .

A special case of this latter preprocessing operation may also be found under
the name probing, see page 81.

5.4. MIXED INTEGER WEIGHT INEQUALITIES 101

5.4.2 A Family of Mixed Integer Knapsack Polyhedra

Having introduced mixed integer weight inequalities for a general mixed integer
knapsack problem, we indicate in this and the subsequent section that these inequal-
ities are useful, at least in special cases. This section is devoted to this question from
a more theoretical point of view. We demonstrate that there is a family of general
mixed integer knapsack problems for which mixed integer weight inequalities are
needed in order to describe the associated polyhedron. This family of problems is
defined as follows.

Let N1, N2, Q be mutually disjoint finite subsets of N. We study the mixed
integer knapsack polyhedron PMIK (N1∪N2, Q, a, α, u) defined in (5.22), where ai =
1 for all i ∈ N1 and ai ≥ �α

2 �+ 1 for all i ∈ N2.

Theorem 5.4.4 The system of all mixed integer weight inequalities with respect to
subset T of N1 ∪Q, the set of all lower and upper bounds, and the two inequalities∑

i∈N2
xi ≤ 1∑

i∈N1
xi +

∑
i∈N2∪Q aixi ≤ α

describe PMIK if ai = 1 for all i ∈ N1 and ai ≥ �α
2 �+ 1 for all i ∈ N2.

Proof. Obviously, the system of inequalities is valid for PMIK, see Proposition
5.4.3. It remains to show that it suffices to describe PMIK. To see this, first notice
that PMIK is full dimensional. Let the inequality cTx ≤ γ induce a facet F of PMIK.
We assume that cTx ≤ γ is not a positive multiple of one of the non-negativity
constraints, the upper bound constraints and the knapsack inequality.

Since a > 0, we have that ci ≥ 0 for all i ∈ N1 ∪ N2 ∪ Q. We define T :=
{i ∈ N1 ∪ Q : ci > 0}. There are three claims that we need in order to show the
statement,

1.
∑

i∈T ui < α;

2. The vector x0 with x0
i := ui for all i ∈ T , x0

i := 0, otherwise is contained in
F ;

3. ci = 0 for all i ∈ N1 \T , ci = 0 for all i ∈ {j ∈ N2 : aj ≤ r(T)} and ci = 0 for
all i ∈ Q \ T .

Claim 1 follows by noting that if
∑

i∈T ui ≥ α would hold, then every point in
FMIK ∩ F would satisfy the equation

∑
i∈N1

xi +
∑

i∈N2∪Q aixi = α. (Recall that
ai = 1 for all i ∈ T ∩N1.) This contradicts our assumption that F is not induced
by the original knapsack inequality.

Note that Claim 1 implies x0 ∈ FMIK and r(T) > 0.
We may assume that Claim 2 holds, for if not, then every integral point in F

would satisfy the equation
∑

i∈N2
xi = 1. Therefore, F must be the facet induced

by this inequality.
Denoting by ei the i-th unit vector we derive from Claims 1 and 2 that (x0, y0)+

ei ∈ FMIK for all i ∈ N1 \ T and for all i ∈ {j ∈ N2 : aj ≤ r(T)}. Moreover,
x0 + ei ∈ F . Accordingly, x0 + 1

ai
ei ∈ FMIK and x0 + 1

ai
ei ∈ F for all i ∈ Q \ T .

This shows Claim 3.
We define a function f : N2 �→ R+ by setting

f(i) := min
∑

j∈T cjzj
s.t.

∑
j∈T zj = ai − r(T),

0 ≤ zj ≤ uj, zj ∈ Z for all j ∈ T ∩N1

0 ≤ zj ≤ uj, zj ∈ R for all j ∈ T ∩Q.

(5.26)

102 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

Note that a solution of problem (5.26) attains the minimal value (with respect to
c) by which the solution x0 must be decreased in order to obtain a feasible solution
with xi = 1. We show

4. ci = f(i) for all i ∈ N2.

To see that ci ≤ f(i), let z be a solution of the program (5.26). The vector xi

defined as xi
j = x0

j − zj for j �= i, and xi
i = 1 is contained in FMIK. This implies

that ci ≤ f(i).
To see that ci ≥ f(i) note that F is a facet. Therefore, there exists, for every

i ∈ N2, a feasible point x ∈ F such that xi = 1. We may assume that xj = 0
for all j ∈ N1 ∪ N2 ∪ Q with cj = 0. Since x0 ∈ F , cT (x − x0) = 0. Setting
zj := x0

j − xj for all j ∈ T , we obtain that z is a feasible solution of (5.26). Taking

into account that both x and x0 are feasible solutions contained in F , we obtain
ci =

∑
j∈T cjzj ≥ f(i).

It follows that every x in F ∩ FMIK also satisfies the mixed integer weight in-
equality associated with T as an equation. Since F is a facet, the inequality cTx ≤ γ
(after appropriate scaling) must coincide with the mixed integer weight inequality
with respect to T .

In the more general case when we neglect the condition that ai ≥ �α
2 � + 1 for

all i ∈ N2, the associated polyhedron PMIK is not necessarily described only by
mixed integer weight inequalities. However, mixed integer weight inequalities are
still needed in a minimal description of PMIK, because they induce facets. This
follows from

Proposition 5.4.5 Let PMIK be the mixed integer knapsack polyhedron defined in
(5.22). A mixed integer weight inequality with respect to subsets T of N ∪Q defines
a facet of PMIK if r(T) > 0, max i∈N\T ai > r(T), and ai = 1 for all i ∈ T .

5.4.3 Experiments with Mixed Integer Weight Inequalities

In this section we investigate whether mixed integer weight inequalities occur in
real-world models and examine to which extend they help in solving practical prob-
lems faster. We use again the library of mixed integer programs Miplib as our
test set. To answer both questions we have incorporated mixed integer weight in-
equalities into SIP. We interpret each single inequality of the constraint system as a
mixed integer knapsack problem. To meet the requirements in (5.22) all coefficients
have to be positive, which can easily be obtained by complementing variables. In
addition, all variables with a non-zero coefficient in the particular inequality must
have finite lower and upper bounds. Moreover, we require that the support of the
inequality is at least three, otherwise a complete description of the mixed integer
knapsack polytope associated with this inequality is already obtained after presolve,
see the discussions in Section 5.4.1. Finally, we do not consider inequalities whose
coefficients are solely 0,±1, since no mixed integer weight inequalities can be found
in this case. For convenience we call inequalities satisfying all these requirements
approved. It turns out that 36 out of 59 Miplib-problems contain approved inequali-
ties. For each of these 36 instances and for each approved inequality we try to derive
mixed integer weight inequalities that cut off the current optimal LP solution. To
do so, we must solve the following separation problem.

Problem 5.4.6 Given a ∈ NN∪Q , α ∈ N and x̄ ∈ QN∪Q . Decide whether x̄ satis-
fies all mixed integer weight inequalities of PMIK. If not, find one that is violated
by x̄.

Problem 5.4.6 turns out to be NP-hard. Therefore, we developed a heuristic
which proceeds along the following lines.

5.4. MIXED INTEGER WEIGHT INEQUALITIES 103

Algorithm 5.4.7 Separation algorithm of mixed integer weight inequalities.

1. Sort the components of the vector (x̄ − u) ◦ a in increasing order, where x̄ is
the current optimal LP solution, and for vectors v, w the symbol v ◦w denotes
the vector with components viwi.

2. Construct a set T ⊆ N following the order of Step 1 in a greedy fashion as
long as

∑
i∈T uiai < α.

3. Check whether the mixed integer weight inequality with respect to T is violated.

We have experimented with different strategies to determine the set T . The
ordering of the variables according to their contribution to the slack of the inequality
(= left-hand side minus right-hand side) as outlined in Step 1 turned out to perform
best. We made the following comparison. We used SIP with default settings of the
parameters that includes the separation of mixed integer weight inequalities and
compared it to the one where we explicitly turned off the separation of mixed
integer weight inequalities. We tested both alternatives for all 36 Miplib problems
that contain approved inequalities.

Example B & B Cuts Time Gap %

Others MIW MIW Total

arki001 100776 0 4 418.0 3600.1 0.874

bell5 337394 0 1 9.3 536.7 0.000

blend2 15055 0 5 5.0 122.4 0.000

cap6000 4323 2578 0 344.4 3604.0 49.543

fiber 783 336 36 0.2 16.9 0.000

flugpl 7976 0 25 0.0 4.4 0.000

gen 11 10 10 0.0 0.3 0.000

gesa2 209525 0 33 159.4 3600.0 0.048

gesa2 o 264243 0 0 195.7 3600.0 0.432

gesa3 5297 0 0 3.9 97.1 0.000

gesa3 o 74472 0 0 56.6 1144.7 0.000

gt2 2215 0 5 0.1 3.2 0.000

harp2 23990 15950 16 97.5 3600.1 4.250

l152lav 3209 269 0 2.6 93.8 0.000

lseu 552 216 81 0.1 2.4 0.000

misc03 699 11 3 0.0 4.1 0.000

mitre 1286 2998 867 78.3 1125.8 0.000

mod008 884 257 114 0.4 9.8 0.000

mod010 237 2 1 0.0 5.6 0.000

noswot 1000000 0 179 21.9 2270.7 4.651

p0033 57 22 10 0.0 0.1 0.000

p0201 507 123 13 0.1 5.0 0.000

p0282 1345 2300 8 0.4 38.3 0.000

p0548 1610 837 65 0.9 25.3 0.000

p2756 23151 6641 282 41.1 3600.2 0.891

qnet1 17694 0 12 18.8 1229.9 0.000

qnet1 o 3806 0 3 3.3 158.6 0.000

rgn 2505 0 315 0.8 9.6 0.000

rout 200371 0 316 1.3 3600.0 2.879

vpm2 555712 0 0 14.6 1368.7 0.000

Total (30) 2859685 32550 2404 1474.8 33478.0 63.568

Table 5.14: SIP with mixed integer weight inequalities

Tables 5.14 and 5.15 show the results for 30 out of the 36 instances; for the
remaining six examples we do not find mixed integer weight inequalities and the
separation time was below 1% of the total CPU time. Note the numbers in Table
5.14 are just replications of the numbers in Table 5.1. Columns 1 of the tables

104 CHAPTER 5. SOLVING GENERAL MIXED INTEGER PROGRAMS

gives the problem name, Column 2 the number of branch-and-bound nodes, and
Column 3 counts the number of knapsack inequalities with and without GUBs, see
Section 5.3. In Column 4 the number of violated mixed integer weight inequalities is
presented. The next two columns depict the time spent for separating mixed integer
weight inequalities and the total time. Again, we used a time limit of 3600 CPU
seconds and limit the branch-and-bound nodes to one million. The last column Gap

% shows the gap in percentage (100 ∗ |upper bound - lower bound|
|lower bound|); 0.0 means we solve

the problem within the time and branch-and-bound limit to optimality. We see
that the quality of the solutions reduces from about 70% to 63% when using mixed
integer weight inequalities (if we do not count cap6000, where there is no difference
in time and solution quality, the quality even improves by a factor of 1.5 from 20%
to 13%). Also, the solution time is slightly better. However, it turns out that not
all examples improve. Significantly better are mitre, p0548, qnet1 o (the time is
reduced by a factor of 2) as well as p2756 and rout, where the quality is improved
by the same factor. A slightly worse result we obtain for qnet1. Interesting to note
is noswot. Here, the quality of the solution can be improved significantly at the
expense of an increase in time. The conclusion we draw from our computational
experiences is that it pays to incorporate mixed integer weight inequalities, the
reason for having this separation algorithm turned on in the default setting of SIP.

Example B & B Cuts Time Gap %

Others MIW MIW Total

arki001 119866 0 0 0.0 3600.0 0.874

bell5 339908 0 0 0.0 506.0 0.000

blend2 15003 0 0 0.0 112.4 0.000

cap6000 4770 2850 0 0.0 3601.6 49.542

fiber 373 345 0 0.0 11.5 0.000

flugpl 7910 0 0 0.0 3.7 0.000

gen 15 10 0 0.0 0.4 0.000

gesa2 230517 0 0 0.0 3600.0 0.254

gesa2 o 292177 0 0 0.0 3600.0 0.416

gesa3 5297 0 0 0.0 94.1 0.000

gesa3 o 74472 0 0 0.0 1106.4 0.000

gt2 2432 0 0 0.0 3.4 0.000

harp2 24059 16110 0 0.0 3600.2 4.264

l152lav 3209 269 0 0.0 91.8 0.000

lseu 242 127 0 0.0 0.8 0.000

misc03 699 11 0 0.0 4.1 0.000

mitre 3916 3547 0 0.0 2084.7 0.000

mod008 768 240 0 0.0 6.6 0.000

mod010 237 2 0 0.0 5.7 0.000

noswot 1000000 0 0 0.0 1817.9 9.302

p0033 29 23 0 0.0 0.1 0.000

p0201 573 172 0 0.0 6.5 0.000

p0282 1708 2601 0 0.0 47.0 0.000

p0548 4072 1417 0 0.0 68.1 0.000

p2756 15891 7817 0 0.0 3603.8 1.589

qnet1 17456 0 0 0.0 1136.9 0.000

qnet1 o 6272 0 0 0.0 302.5 0.000

rgn 2809 0 0 0.0 3.8 0.000

rout 186181 0 0 0.0 3600.0 4.112

vpm2 555712 0 0 0.0 1353.6 0.000

Total (30) 2916573 35541 0 0.0 33973.5 70.355

Table 5.15: SIP without mixed integer weight inequalities

Chapter 6

Recognizing Block Structure

6.1 Introduction

In this chapter we investigate whether matrices arising from general integer pro-
grams have block structure (i. e., the removal of some rows decomposes the matrix
into independent blocks) and whether it is possible to recognize such a structure.
This immediately raises the question when do we consider a matrix to have block
structure. In Part I we have seen three different integer programs where probably
everybody agrees that they have block structure. But can this fact be recognized
in the matrix? Look at an instance MKw (N,M, f, F, c) of the multiple knapsack
problem. There are |M | individual blocks each consisting of a single (knapsack)
constraints, and there are |N | linking constraints. Assuming that |N | dominates
|M | – as is the case in all real-world applications – the linking constraints clearly
dominate the number of rows that belong to some block. Thus, if we just have the
matrix at hand and do not know that it results from a multiple knapsack problem,
would we consider the matrix to have block structure? The situation is different
if we look at the Steiner tree packing problem. Consider the integer programming
formulation (3.1) for some instance STPw (G,N , c, w). The number of linking con-
straints is |E|, whereas the number of rows in each block (constraints (3.1) (i)) is
exponential in general. Even if we assume that the number of Steiner cut inequali-
ties is (sub)linear in the number of edges at a particular LP solution, the number of
constraints that belong to some block clearly dominate the number of linking con-
straints. In addition, whereas in the multiple knapsack case the number of blocks
(knapsacks) is usually very small, the number of blocks (nets) might be large in the
Steiner tree packing case.

Having these examples in mind one might conclude that the problem of decom-
posing a general integer programming matrix into blocks is hopeless, because it
is a-priori not clear what to look for, i. e., in how many blocks should the matrix
decompose, how big should each of the blocks be? However, when dealing with
this problem we should not be governed solely by some few real-world applications.
Rather we should ask the question how we want to exploit the block structure.

For example, suppose we would like to extend the idea of identifying single rows
of the constraint matrix with a knapsack problem to more than one row. There
are several possibilities to do that. We could consider some disjoint (knapsack)
constraints that are linked by some other constraints. This results in an instance of
the multiple knapsack problem and the easiest case to think of are two knapsacks.
That is, we would like to decompose our matrix into two blocks. Another possibility
is to try to identify (knapsack) constraints that strongly intersect with each other
and to derive stronger cutting planes than in the single knapsack case by taking all

105

106 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

intersecting knapsacks simultaneously into account. In this case we are looking for
blocks that are highly “connected” and leave the number of blocks open. We will
discuss this possibility in Chapter 8 in detail. To give a third example, we could also
think of speeding up the solution of the underlying linear programs by exploiting
parallelism. In Chapter 3 we have seen such a case where the solution of the linear
programs turns out to be a serious problem. In this application, the number of
blocks is determined by the number of processors that are available; the blocks are
supposed to have about equal size in order to achieve a good load balancing.

The three examples show that depending on the method that exploits the block
structure different block sizes and a different number of blocks are desirable. In
this chapter we discuss a model that allows to specify these two parameters. More
precisely, we consider the following problem that we call the matrix decomposition
problem. Given some matrix A, some number β of blocks (sets of rows), and some
capacity κ (maximum block-size); try to assign as many rows as possible to the
blocks such that (i) each row is assigned to at most one block, (ii) each block
contains at most κ rows, and (iii) no two rows in different blocks have a common
non-zero entry in a column. The set of rows that are not assigned to any block is
called the border.

An equivalent statement of the problem in matrix terminology is as follows: Try
to decompose the matrix into bordered block diagonal form with β blocks of capacity
at most κ. The decomposition is considered the better, the smaller the number of
rows in the border is; in the best case the border will be empty and the matrix
decomposes into block diagonal form. Figure 6.1 (a) shows the structure of the
85 × 101 constraint matrix of the Miplib-example bell5, presolved by SIP. Figure
6.1 (b) shows an optimal decomposition of this matrix into four blocks of capacity

85 · 1.05/4� = 23. To make the block structure of the decomposition visible, we
have not only permuted the rows such that rows assigned to the same block appear
consecutively, but also the columns. In this case, the matrix decomposes well, the
blocks turn out to be close to square with sizes of 23 × 31, 18 × 27, 23 × 29, and
11 × 14, but in general this does not need to be the case. The border consists of
only ten rows that could not be assigned to any block.

The matrix decomposition problem fits into the general context of reordering
matrices to special forms. Special forms are well studied in the literature because
they can be exploited by solution methods for linear equation systems, for example
by LU- or Cholesky factorization, or by conjugate gradient methods. The two main
points of interest are that special forms allow (i) to control fill-in (bordered block
diagonal form, in particular, restricts fill-in to the blocks and the border) and (ii)
independent processing of individual blocks by parallel algorithms.

Methods to obtain special forms, including (bordered) block diagonal form, are
widely discussed in the literature of computational linear algebra, see, for instance,
Duff, Erisman, and Reid [1986], Kumar, Grama, Gupta, and Karypis [1994], or
Gallivan, Heath, Ng, Ortega, Peyton, Plemmons, Romine, Sameh, and Voigt [1990].
The matrices studied in this context mainly arise from the discretization of partial
differential equations. Some newer publications deal with matrices that appear in
interior point algorithms for linear programs, see Gupta [1996] and Rothberg and
Hendrickson [1996], or subgradient methods for linear programs, see Ferris and Horn
[1998]. Truemper [1997] developed an algorithm based on the methods in Truemper
[1992] that can also be used to obtain (bordered) block diagonal form heuristically.

We develop a branch-and-cut algorithm for solving the matrix decomposition
problem. Of course the expected running time of such an algorithm will neither
permit its usage within a parallel LU-factorization nor within a branch-and-cut
algorithm for general mixed integer programs. Our aim is rather to have a tool at

6.1. INTRODUCTION 107

(a) bell5: Original Matrix (85× 101)

(b) bell5: Permuted Matrix

Figure 6.1: Decomposing a matrix into bordered block diagonal form.

108 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

hand that in principle obtains an optimal bordered block diagonal form. We can
then evaluate whether this special matrix structure indeed helps in solving general
integer programs, and we can evaluate the success of decomposition heuristics that
try to obtain (bordered) block diagonal form.

The chapter is organized as follows. In Section 6.2 we formulate the matrix
decomposition problem as a 0/1 linear program and discuss connections to related
combinatorial optimization problems, namely, node separation problems in graphs,
the set packing, and the set covering problem. Section 6.3 is devoted to a poly-
hedral investigation of the matrix decomposition problem and presents (new) valid
and facet-defining inequalities. In the branch-and-cut Section 6.4 we present our
matrix decomposition algorithm including separation routines, primal heuristics,
preprocessing, and other aspects of the implementation. We use this code in Sec-
tion 6.5 to decompose matrices arising from general mixed integer programs from
the Miplib.

6.2 An Integer Programming Formulation and Re-
lated Problems

Consider an instance MAD (A, β, κ) of the matrix decomposition problem where
A ∈ Rm×n is some real matrix, β ∈ N is the number of blocks and κ ∈ N is the
block capacity. We introduce for each row i = 1, . . . ,m and block b = 1, . . . , β a
binary variable xb

i that has value 1 if row i is assigned to block b and 0 otherwise.
Then the matrix decomposition problem MAD (A, β, κ) can be formulated as the
following 0/1 linear program.

max
m∑
i=1

β∑
b=1

xb
i

(i)

β∑
b=1

xb
i ≤ 1, for i = 1, . . . ,m;

(ii)

m∑
i=1

xb
i ≤ κ, for b = 1, . . . , β;

(iii) xb
i + xb′

j ≤ 1, for b, b′ = 1, . . . , β, b �= b′ and
for i, j = 1, . . . ,m, i �= j such that
aik �= 0 �= ajk for some k ∈ {1, . . . , n};

(iv) 0 ≤ xb
i ≤ 1, for i = 1, . . . ,m, b = 1, . . . , β;

(v) xb
i integer, for i = 1, . . . ,m, b = 1, . . . , β.

(6.1)

Inequalities (i) guarantee that each row is assigned to at most one block. Con-
straints (ii) ensure that the number of rows assigned to a particular block b does
not exceed its capacity. Finally, (iii) expresses that two rows i and j must not be
assigned to different blocks if both have a non-zero entry in some common column.
These three sets of inequalities plus the the trivial inequalities (iv) and the integral-
ity constraints (v) establish a one-to-one correspondence between feasible solutions
of (6.1) and block decompositions of the matrix A into β blocks of capacity κ. In the
sequel we will also call a vector x ∈ Rm×β a block decomposition if it is feasible for
(6.1). Note that formulation (6.1) as it stands is not polynomial, since the number
of variables mβ is not polynomial in the encoding length of β. However, we may
assume without loss of generality β ≤ m, because no more than m rows will be

6.2. INTEGER PROGRAMMING FORMULATION 109

assigned. We also assume that the block capacity is at least one (κ ≥ 1) and that
we have at least two blocks (β ≥ 2).

A first observation about (6.1) is that different matrices A can give rise to the
same integer program or, in other words, different matrices can be decomposed in
exactly the same way. In fact, such matrices form equivalence classes as can be
seen by considering the (column) intersection graph G(A) of an m× n-matrix A as
introduced by Padberg [1973]. G(A) has the set {1, . . . , n} of column indices of A
as its node set and there is an edge ij between two columns i and j if they have
a common non-zero entry in some row. Applying this concept to the transposed
matrix AT , we obtain the row intersection graph G(AT) of A where two rows i and
j are joined by an edge ij if and only if they have non-zero entries in a common
column. But then the edges of G(AT) give rise to the inequalities (6.1) (iii) and we
have that for fixed β and κ two matrices A and A′ have the same row intersection
graph if and only if the corresponding integer programs (6.1) are equal.

The matrix decomposition problem is related to several other combinatorial
optimization problems. First, the problem can be interpreted in terms of the row
intersection graph as a node separator problem. To see this, let G(AT) = (V,E)

and consider some block decomposition x. The set S := {i ∈ V :
∑β

b=1 x
b
i = 0} of

rows in the border is a node separator in G(AT) such that the graph obtained by
deleting all nodes in S and all its adjacent edges decomposes into at most β parts,
each of cardinality at most κ. Conversely, each node separator in G(AT) with these
properties gives rise to a block decomposition for MAD (A, β, κ). Various node
separator problems have been studied in the literature. Lengauer [1990] gives a
survey and discusses applications in VLSI design, Duff, Erisman, and Reid [1986]
and Gallivan, Heath, Ng, Ortega, Peyton, Plemmons, Romine, Sameh, and Voigt
[1990] emphasize heuristic methods for use in computational linear algebra. Lower
bounds on the size of a node separator in a general graph are rather rare. The only
results we are aware of are due to Pothen, Simon, and Liou [1990] and Helmberg,
Mohar, Poljak, and Rendl [1995], who use Eigenvalue methods to derive non-trivial
lower bounds on the size of a node separator for β = 2, if lower bounds on the size
of the blocks are imposed.

A second connection exists to set packing, and this relationship is two-fold. On
the one hand, matrix decomposition is a generalization of set packing, because fea-
sible solutions (stable sets) of some set packing problem max{1lTx : Ax ≤ 1l, x ∈
{0, 1}n}, A ∈ {0, 1}m×n, correspond to solutions of the matrix decomposition prob-
lem MAD (AT ,m, 1) of the same objective value and vice versa. This shows that
the matrix decomposition problem is NP-hard. On the other hand, we obtain a
set packing relaxation of the matrix decomposition problem by deleting the block
capacity constraints (ii) from the formulation (6.1). All inequalities that are valid
for this relaxation are also valid for the matrix decomposition problem and we will
use some of them (namely clique- and cycle-inequalities) as cutting planes in our
branch-and-cut algorithm. Note, however, that the set packing relaxation allows
assignment of all rows to any single block and our computational experiments seem
to indicate that these cuts are rather weak.

A close connection exists also to set covering via complementing variables. To see
this we rewrite (6.1), substituting each capacity constraint (ii) by

(
m

κ+1

)
inequalities

that sum over all subsets of cardinality κ + 1 of variables {xb
1, . . . , x

b
m} for some

block b and each constraint in (i) by
(
κ
2

)
inequalities that sum over all pairs of

variables in {x1
i , . . . , x

β
i }. Replacing all variables xb

i by 1 − ybi , one obtains the set
covering problem (6.2) that is stated on the following page.

This shows that the matrix decomposition problem is a (special) set covering
problem. For the case of two blocks, this formulation has been used by Nicoloso

110 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

and Nobili [1992] for the solution of the matrix equipartition problem. The matrix
equipartition problem is the matrix decomposition problem for β = 2 and κ =
�m/2�, plus the additional equipartition constraint

m∑
i=1

x1
i =

m∑
i=1

x2
i , or, in complemented variables,

m∑
i=1

y1i =

m∑
i=1

y2i ,

that states that the two blocks of the decomposition must have equal size.

min

m∑
i=1

β∑
b=1

ybi

(i) ybi + yb
′

i ≥ 1, for b, b′ = 1, . . . , β, b �= b′ and
for i = 1, . . . ,m;

(ii)
∑
i∈I

ybi ≥ 1, for b = 1, . . . , β and

for I ⊆ {1, . . . ,m} with |I| = κ+ 1;

(iii) ybi + yb
′

j ≥ 1, for b, b′ = 1, . . . , β, b �= b′ and
for i, j = 1, . . . ,m, i �= j such that
aik �= 0 �= ajk for some k ∈ {1, . . . , n};

(iv) 0 ≤ ybi ≤ 1, for i = 1, . . . ,m, b = 1, . . . , β;

(v) ybi integer, for i = 1, . . . ,m, b = 1, . . . , β.

(6.2)

6.3 Polyhedral Investigations

Associated to the IP-formulation (6.1) of the matrix decomposition problem is the
polytope

PMAD (A, β, κ) := conv{x ∈ Rm×β : x satisfies (6.1) (i) to (v)},(6.3)

given by the convex hull of all block decompositions. We study in this section the
structure of PMAD (A, β, κ) to derive classes of valid and facet-defining inequalities
for later use as cutting planes. We start by determining its dimension.

Proposition 6.3.1 (Dimension) PMAD (A, β, κ) is full dimensional.

Proof. The vector 0 and all unit vectors ebi ∈ Rm×β are feasible, i. e., are in
PMAD (A, β, κ), and affinely independent.

This means that the facets of PMAD (A, β, κ) are uniquely determined up to a
scalar factor. Two further easy observations are gathered in the following remark.

Remark 6.3.2

(i) The non-negativity inequalities xb
i ≥ 0 are facet-defining for all i = 1, . . . ,m

and all b = 1, . . . , β.

(ii) All facet-defining inequalities aTx ≤ α that are not non-negativity constraints
satisfy a ≥ 0 and α > 0.

Remark 6.3.2 (i) is proven in the same way as Theorem 6.3.1; Remark 6.3.2 (ii)
is a consequence of the down monotonicity of PMAD (A, β, κ).

Facet-defining inequalities have another interesting property. Consider some
vector x ∈ Rm×β , some permutation σ of the blocks {1, . . . , β}, and define the
vector x̄ ∈ Rm×β by

x̄b
i := x

σ(b)
i ,

6.3. POLYHEDRAL INVESTIGATIONS 111

for i = 1, . . . ,m, b = 1, . . . , β. We will use in the sequel the symbol σ(x) to denote
the vector x̄ that arises from x by applying the block permutation σ. Then σ(x) = x̄
is a feasible block decomposition if and only if x is. This simple observation has two
consequences. First, it implies that aTx ≤ b is a facet of PMAD (A, β, κ) if and only
if its block-wise permutation σ(a)Tx ≤ b is. Facets arising from each other via block
permutations can thus be viewed as forming a single class that can be represented
by a single member. Or, to put it in a more negative way, each facet can and will
be “blown up” by block permutations to a whole set of combinatorially essentially
identical conditions. Second, the objective function of the matrix decomposition
problem is invariant under block permutation and thus the matrix decomposition
problem is dual degenerate (has multiple optima). Both dual degeneracy and the
large number of permutable facets cause difficulties in our branch-and-cut algorithm
and we will have to control the number of cuts generated and to handle stalling of
the objective value.

The next two subsections list the results of our polyhedral investigations in the
form of valid and facet-defining inequalities. We distinguish between inequalities
aTx ≤ b that are invariant under block permutations or, equivalently, have the same
coefficients abi = ab

′
i for all blocks b �= b′ and row indices i, and block-discernible

inequalities that do not have this property and distinguish different blocks. It
will turn out that most of the block-discernible inequalities will be inherited from
the stable set relaxation of the matrix decomposition problem, while the block-
invariant constraints are related to an “aggregated” version of the problem. In both
subsections we want to assume κ ≥ 2, because otherwise the matrix decomposition
problem is a (special) set packing problem.

6.3.1 Block-Discernible Inequalities

We saw in Section 6.2 that we obtain a set packing relaxation of the matrix decom-
position problem by dropping the block capacity constraints (ii) from the integer
program (6.1). The column intersection graph associated to the matrix IP(i),(iii)

formed by the left-hand sides of the constraints (6.1) (i) and (iii) has the set of pos-
sible row assignments {1, . . . ,m}×{1, . . . , β} as its node set. A (conflict) edge exists
between two assignments (i, b) and (j, b′), if rows i and j cannot be simultaneously
assigned to the blocks b and b′, i. e., either if i = j and b �= b′ or if i �= j, b �= b′,
and rows i and j have a common non-zero entry in some column of A. We want to
call this graph the conflict graph associated to the matrix decomposition problem
MAD (A, β, κ) and denote it by Gc(A, β). In formulas: Gc(A, β) = G(IP(i),(iii)).
This graph allows us to interpret the inequality classes (i) and (iii) of (6.1) as clique
inequalities of the set packing relaxation corresponding to the matrix decomposition
problem as also introduced by Padberg [1973].

Theorem 6.3.3 (Clique) Let Gc(A, β) = (V,E) and Q ⊆ V . The inequality∑
(i,b)∈Q

xb
i ≤ 1

is valid for PMAD (A, β, κ) if and only if Q is a clique in Gc(A, β). It is facet-defining
if and only if Q is a maximal clique in Gc(A, β).

Proof. The validity part is obvious. It remains to show that it is facet-defining if
and only if Q is a maximal clique.

Suppose first that Q is not maximal but contained in a larger clique Q′. But then∑
(i,b)∈Q xb

i ≤ 1 is the sum of the inequality
∑

(i,b)∈Q′ xb
i ≤ 1 and the non-negativity

constraints xb
i ≥ 0 for (i, b) ∈ Q′ \Q and cannot be facet-defining.

112 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

Assume now that Q is maximal. We will construct a set of mβ affinely inde-
pendent block decompositions for which the inequality is tight. |Q| such affinely
independent vectors are the unit vectors ebi with (i, b) ∈ Q. For each other assign-
ment (j, b′) �∈ Q there exists some assignment (i, b) in Q that is not in conflict with
(j, b′), since Q is a maximal clique. Thus, the vector eb

′
j + ebi is the incidence vector

of a feasible block decomposition for which the inequality is tight. (Note that we
assumed κ ≥ 2 at the beginning of this section for the case b = b′.) The resulting
mβ−|Q| characteristic vectors obtained in this way plus the |Q| vectors constructed
in the beginning are affinely independent.

In the spirit of Theorem 6.3.3, (6.1) (i) and (iii) are both clique inequalities
and do not represent two different types of inequalities. The separation problem
for clique inequalities is a maximum-weight clique problem and thus NP-hard, see
Garey and Johnson [1979]. But some subclasses can be separated efficiently. One
such class that we use in our implementation are the two-partition inequalities∑

b∈B

xb
i +

∑
b′ 	∈B

xb′
j ≤ 1,

that are defined for all sets of blocksB ⊆ {1, . . . , β} and all pairs of non-disjoint rows
i, j. Polynomial separation of this class is by inspection: Given i and j, we examine
for each block b the variables xb

i and xb
j . If x

b
i > xb

j , we add b to the set B, otherwise
to its complement. Note that for the case of two blocks (β = 2), the two-partition
inequalities are exactly the inequalities (6.1) (i) and (iii) and, moreover, these are
already all clique inequalities. In particular, separation of clique inequalities is
polynomial for β = 2. In general, maximal cliques in Gc(A, β) are of the form
{(i1, b1), . . . , (iβ , bβ)}, where the blocks bk, k = 1, . . . , β are mutually different and
the set of rows {i1, . . . , iβ} forms a clique in G(AT). Thus all maximal cliques in
Gc(A, β) are of size β.

Another class inherited from the set packing relaxation are the cycle inequalities.

Theorem 6.3.4 (Odd Cycle) If C is an odd cycle in Gc(A, β), then the cycle
inequality ∑

(i,b)∈C

xb
i ≤ �|C|/2�

is valid for PMAD (A, β, κ).

Analogously to the set packing case, see again Padberg [1973], the odd cycle
inequality is facet-defining for its support if C is an odd hole (has no chords) and
|C|/2 ≤ κ. These conditions are, however, not necessary. Cycle inequalities can be
separated in polynomial time using the algorithm of Lemma 9.1.11 in Grötschel,
Lovász, and Schrijver [1988].

Along the same lines as for the clique and cycle inequalities, the matrix decom-
position polytope clearly also inherits all other packing inequalities. But not only
set packing, also set covering inequalities for (6.2) can be applied (note that comple-
menting variables preserves validity and dimension of the induced face), see Nobili
and Sassano [1989]. We do, however, not use any of them for our computations.

We close this section investigating the block capacity constraints (6.1) (ii) which
are not inherited from the set packing polytope or the set covering polytope.

Theorem 6.3.5 (Block Capacity) The block capacity constraint

m∑
i=1

xb
i ≤ κ

is facet-defining for PMAD (A, β, κ) if and only if |η(i)| ≤ m − κ holds for every
row i (where η(i) denotes all nodes adjacent to i in G(AT)).

6.3. POLYHEDRAL INVESTIGATIONS 113

Proof. We first show that the inequality is facet-defining if the above mentioned
condition holds. To this purpose, let aTx ≤ α be a valid inequality that induces a
facet such that {x ∈ PMAD (A, β, κ) :

∑m
i=1 x

b
i = κ} ⊆ {x ∈ PMAD (A, β, κ) : aTx =

α}. We will show that the two inequalities are the same up to a positive scalar
multiplicative factor.

Define x by

xb′
i =

{
1, if 1 ≤ i ≤ κ, b′ = b;
0, else.

x is a feasible block decomposition that assigns the first κ rows to block b. x satisfies
the block capacity constraint with equality and thus aTx = α. Now observe that,
for all 1 ≤ i ≤ κ < j ≤ m, the vector x− ebi + ebj is also a feasible assignment that is

tight for the block capacity inequality. It follows that abi = abj for all 1 ≤ i, j ≤ m.
Now consider assigning some row j to a block b′ �= b. By the assumption

|η(j)| ≤ m− κ, there is a set R(j) of κ rows not adjacent to j. But then
∑

i∈R(j) e
b
i

and
∑

i∈R(j) e
b
i+eb

′
j are both feasible decompositions that satisfy the block capacity

constraint with equality and thus ab
′
j = 0, completing the first part of the proof.

It remains to prove the converse direction. If there is some row j with |η(j)| >
m−κ, the inequality

∑m
i=1 x

b
i +
∑

b′ 	=b x
b′
j ≤ κ is valid. But then the block capacity

constraint can be obtained by summing up this inequality with
∑

b′ 	=b x
b′
j ≥ 0, and

therefore it cannot be facet-defining.

6.3.2 Block-Invariant Inequalities

We investigate in this section inequalities for the matrix decomposition polytope
that are invariant under block permutation. Consider for each block decomposi-
tion x the “aggregated” vector

z(x) :=

(
β∑

b=1

xb
1, . . . ,

β∑
b=1

xb
m

)
∈ Rm .

z(x) only records whether the matrix rows are assigned to some block or not, but
no longer to which block. From a polyhedral point of view, the aggregated block
decompositions give rise to an “aggregated” version of the block decomposition
polytope

P z
MAD (A, β, κ) := conv{z ∈ Rm : there is x ∈ PMAD (A, β, κ) with z = z(x)}.

The aggregated polytope is interesting because any valid inequality
∑m

i=1 aizi ≤ α

for P z
MAD (A, β, κ) can be “expanded” into an inequality

∑m
i=1 ai

∑β
b=1 x

b
i ≤ α that

is valid for PMAD (A, β, κ). All inequalities in this subsection are of this type.
Obviously, the expansion process yields inequalities that are invariant under block
permutations, hence the name. Aggregation techniques such as this are discussed in
a more general context and applied to many combinatorial optimization problems
in Borndörfer and Weismantel [1997a], [1997b].

From a computational point of view, block-invariant inequalities are promising
cutting planes, because the objective of the matrix decomposition problem can be
written in terms of aggregated z-variables as 1lTx = 1lT z(x). Thus, a complete
description of P z

MAD (A, β, κ) would already allow us to determine the correct ob-
jective function value of the matrix decomposition problem and z-cuts will help to
raise the lower bound of an LP-relaxation.

The aggregated polytope P z
MAD (A, β, κ) provides a model of the matrix decom-

position problem that rules out degeneracy due to block permutations. While this is

114 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

a very desirable property of the aggregated z-formulation, its drawback is that it is
already NP-complete to decide whether a given vector z ∈ {0, 1}m is an aggregated
block decomposition or not. (It can be shown that this is a bin-packing problem.)
Our choice to use z-cuts within the x-model tries to circumvent this difficulty and
combines the strengths of both formulations. We remark that degeneracy problems
of this type arise also in block-indexed formulations of grouping problems in cel-
lular manufacturing, where the difficulty can be resolved by means of alternative
formulations, see Crama and Oosten [1996].

We already know one example of an expanded aggregated constraint: Expand-
ing the inequality zi ≤ 1 for the aggregated block decomposition polytope yields
the block assignment constraint (6.1) (i)

∑β
b=1 x

b
i ≤ 1 that we have analyzed in

the previous subsection. More inequalities are derived from the observation that
adjacent rows (with respect to G(AT)) can only be assigned to the same block. A
first example of this sort of inequalities are the z-cover inequalities.

Theorem 6.3.6 (z-Cover) Let G(AT) = (V,E) and let W ⊆ V be a set of rows
of cardinality κ+ 1. Then, the z-cover inequality

∑
i∈W

β∑
b=1

xb
i ≤ κ

is valid for PMAD (A, β, κ) if and only if (W,E(W)) is connected. It is facet-defining
for PMAD (A, β, κ) if and only if for each row i �∈ W the graph (W ∪{i}, E(W ∪{i}))
has an articulation point different from i.

Proof. The validity part is easy. Since |W | = κ+ 1, not all rows can be assigned
to the same block. If some rows of W are assigned to different blocks, there must
be at least one row in W that is not assigned because (W,E(W)) is connected.
Conversely, if W is not connected one easily finds a partition of W into two subsets
that can be assigned to different blocks.

The proof that this inequality is facet-defining if and only if for each row i �∈ W
the graph (W∪{i}, E(W∪{i})) has an articulation point different from i is analogous
to the proof of Theorem 6.3.5. The condition guarantees that if row i is assigned
to some block, the assignment can be extended in such a way that κ rows from W
can be assigned to at least two blocks. On the other hand, if the condition is not
satisfied for some j /∈ W , the inequality

∑
i∈W∪{j}

∑β
b=1 x

b
i ≤ κ is valid, and thus

the z-cover inequality cannot be facet-defining.
In the set covering model, z-cover inequalities correspond to constraints of the

form
∑

i∈W

∑β
b=1 y

b
i ≥ 1 that have been used by Nicoloso and Nobili [1992] for their

computations. The separation problem is to find a tree of size κ + 1 of maximum
node weight. This problem has been studied by Ehrgott [1992] and was shown to
be NP-hard using a reduction to the node-weighted Steiner-tree problem.

The z-cover inequalities are induced by trees, but it is possible to generalize
them for subgraphs of higher connectivity.

Theorem 6.3.7 (Generalized z-Cover) Let G(AT) = (V,E) and let W ⊆ V
be a set of rows of cardinality κ + k with k ≥ 1. Then, the (generalized) z-cover
inequality ∑

i∈W

β∑
b=1

xb
i ≤ κ

is valid for PMAD (A, β, κ) if and only if (W,E(W)) is k-node connected. It is facet-
defining for PMAD (A, β, κ) if and only if for each row i �∈ W there exists some node
cut N in (W ∪ {i}, E(W ∪ {i})) of cardinality k with i /∈ N .

6.3. POLYHEDRAL INVESTIGATIONS 115

The proof of this generalization follows exactly the lines of the proof of Theo-
rem 6.3.6. In our branch-and-cut algorithm we restrict attention to the cases k = 1
and k = 2.

Closely related to the z-cover inequality is the z-clique inequality. Here, we
consider some node set W that is not only k-node connected for some fixed k, but
induces a complete subgraph. In this case the condition for being facet-defining
slightly changes.

Theorem 6.3.8 (z-Clique) If Q is a clique in G(AT), then the z-clique inequality

∑
i∈Q

β∑
b=1

xb
i ≤ κ

is valid for PMAD (A, β, κ). It is facet-defining if and only if |Q| ≥ κ + 1 and for
each row i �∈ Q there exists a set of rows R(i) ⊆ Q, |R(i)| = κ, such that i is not
adjacent in G(AT) to any node in R(i).

Proof. The inequality is clearly valid. To show that it is facet-defining given the
mentioned conditions, let aTx ≤ α define a facet such that

{x ∈ PMAD (A, β, κ) :
∑
i∈Q

β∑
b=1

xb
i = κ} ⊆ {x ∈ PMAD (A, β, κ) : aTx = α}.

We will show that the two inequalities are the same up to a positive scalar multi-
plicative factor. To this purpose, consider any κ rows ofQ. The block decomposition
obtained by assigning these rows to some block b is feasible and tight for the z-clique
inequality. Since |Q| ≥ κ + 1, we can use these solutions to show that abi = ab

′
j for

all i, j ∈ Q and for all blocks b, b′ ∈ {1, . . . , β}. Assuming that for each row i /∈ Q
there exists a set of nodes R(i) ⊆ Q, |R(i)| = κ, that are not adjacent to i, we
observe that for all b′ �= b, the vectors

∑
j∈R(i) e

b
j and

∑
j∈R(i) e

b
j + eb

′
i are valid

block decompositions that satisfy the z-clique inequality with equality. It follows
that ab

′
i = 0 for all i �∈ Q, for all b′ �= b, and even for all blocks b′, since b was

arbitrary. This completes the first part of the proof.
If, on the other hand, Q has size less than or equal to κ, we obtain from (6.1) (i)

that the left-hand side of the inequality is at most |Q|. Thus, the inequality is
redundant and cannot define a facet. Suppose now the second condition is not
satisfied, i. e., there is some j /∈ Q such that j is incident to at least |Q| − κ + 1
nodes in Q. This implies that Q ∪ {j} is at least (|Q| − κ + 1)-node connected.

Theorem 6.3.7 states that
∑

i∈Q∪{j}
∑β

b=1 x
b
i ≤ κ is valid and this implies that the

z-clique inequality is redundant.
The z-clique separation problem is again a max-clique problem and thus NP-

hard. In our implementation we check easily detectable special cases like the fol-
lowing so-called big-edge inequalities

∑
i∈supp(A·j)

β∑
b=1

xb
i ≤ κ,

for all blocks b. These inequalities can be separated by inspection.

Another way to generalize the z-cover inequalities is by looking at node induced
subgraphs that consist of several components. This idea, that gives rise to the class
of bin-packing inequalities , came up in our computational experiments. Starting
point is again a set of rows W that induces a subgraph of G(AT) = (V,E). Suppose
(W,E(W)) consists of l connected components of sizes (in terms of nodes) a1, . . . , al.

116 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

We can then associate a bin-packing problem with (W,E(W)), β, and κ in the
following way: There are l items of sizes a1, . . . , al, and β bins of capacity κ each.
The problem is to put all the items into the bins such that no bin holds items of a
total size that exceeds the capacity κ. If this is not possible, we can derive a valid
inequality for PMAD (A, β, κ).

Theorem 6.3.9 Let G(AT) = (V,E) and W ⊆ V be some subset of rows. If the bin
packing problem associated to (W,E(W)), β, and κ has no solution, the bin-packing
inequality ∑

i∈W

β∑
b=1

xb
i ≤ |W | − 1

is valid for PMAD (A, β, κ).

Proof. Consider some block decomposition x. If at least one row in W is not
assigned to some block, the inequality is obviously satisfied. Otherwise all rows
that belong to the same (connected) component of (W,E(W)) must be assigned to
the same block. This yields a solution to the bin packing problem associated to
(W,E(W)), β, and κ, a contradiction.

We do not know any reasonable conditions that characterize when the bin pack-
ing inequalities are facet-defining. Bin-packing separation is NP-hard, see Garey
and Johnson [1979].

Next we give another class of z-cycle inequalities that generalize the cycle in-
equalities of the set packing polytope.

Theorem 6.3.10 (z-Cycle) Let G(AT) = (V,E) and C ⊆ V be a cycle in G(AT)
of cardinality at least κ+ 1. Then the z-cycle inequality

∑
i∈C

β∑
b=1

xb
i ≤ |C| −

⌈ |C|
κ+ 1

⌉

is valid for PMAD (A, β, κ).

The z-cycle inequality is valid because at least every (κ+ 1)-st node cannot be
assigned to a block. One can also show that the inequality is facet-defining for its
support under certain rather restrictive conditions, for example, if C is an odd hole,
|C| �= 0 modulo (κ+1), and the right-hand side is less than βκ. z-Cycle separation
can be reduced to the traveling salesman problem and is thus NP-hard.

Our next class of inequalities comes up in several instances in our test set.

Theorem 6.3.11 (Composition of Cliques (COQ)) Let G(AT) = (V,E) and
consider p mutually disjoint cliques Q1, . . . , Qp ⊆ V of size q and q mutually disjoint
cliques P1, . . . , Pq ⊆ V of size p such that |Pi∩Qj | = 1 for all i, j. Let W = ∪p

i=1Qi.
Then, the following inequality is valid for PMAD (A, β, κ):

∑
i∈W

β∑
b=1

xb
i ≤ max

{r∈Nβ,s∈Nβ:P
rb=p,

P
sb=q}

β∑
b=1

min{κ, rbsb} =: α(p, q, β, κ).(6.4)

Proof. Consider a block decomposition x and let

rb := |{j : ∑i∈Qj
xb
i ≥ 1, j ∈ {1, . . . , p}}|,

sb := |{j : ∑i∈Pj
xb
i ≥ 1, j ∈ {1, . . . , q}}|,

6.3. POLYHEDRAL INVESTIGATIONS 117

for b = 1, . . . , κ. Because Qj and Pj are all cliques, we have that
∑β

b=1 rb ≤ p and∑β
b=1 sb ≤ q. Since |Pi ∩Qj| = 1 for all i, j it follows that

∑
i∈W xb

i ≤ rbsb. Thus,

∑
i∈W

β∑
b=1

xb
i =

β∑
b=1

∑
i∈W

xb
i

≤
β∑

b=1

min{κ, rbsb}

≤ max
{r∈Nβ,s∈Nβ:P
rb≤p,

P
sb≤q}

β∑
b=1

min{κ, rbsb}

= max
{r∈Nβ,s∈Nβ:P
rb=p,

P
sb=q}

β∑
b=1

min{κ, rbsb},

showing the statement.
The right-hand side of (6.4) is quite complicated, and we do not even know

whether it can be computed in polynomial time. For β = 2 the right-hand side
looks more tractable:

∑
i∈W

β∑
b=1

xb
i ≤ max

r=0,...,p
s=0,...,q

(min{κ, rs}+min{κ, (p− r)(q − s)}) .(6.5)

But we do not know a closed formula in this case either. An interesting special
case is p = 2. Here the graph (W,E(W)) consists of two disjoint cliques that are
joint by a perfect matching. Suppose further q < κ < 2q. Then the right-hand side
of (6.5) reads

max{0, max
s=0,...,q

(min{κ, s}+min{κ, q − s}),min{κ, 2q}}
=max{0, q, κ} = κ.

In this case (6.4) turns out to be even facet-defining if we require in addition
that each node i /∈ W has at most 2q− κ neighbors in W , i. e., |η(i)∩W | ≤ 2q− κ.

The development of our heuristic separation routine for COQ inequalities re-
sulted in a slight generalization of this class. The support graphs of the left-hand
sides of these extended composition of clique inequalities are COQs where some
nodes have been deleted, the right-hand sides are left unchanged.

Theorem 6.3.12 (Extended Composition of Cliques (xCOQ))Consider the
graph G(AT) = (V,E) and p mutually disjoint non-empty cliques Q1, . . . , Qp ⊆ V
of size at most q and q mutually disjoint non-empty cliques P1, . . . , Pq ⊆ V of size
at most p such that

(i) |Pi ∩Qj| ≤ 1 for all i, j and

(ii)

q∑
i=1

p∑
j=1

|Pi ∩Qj | =
q∑

i=1

|Pi| =
p∑

j=1

|Qj |,

i. e., every element in one of the sets Pi appears in exactly one of the sets Qj and vice
versa. Let W = ∪p

i=1Qi. Then, the following inequality is valid for PMAD (A, β, κ):

∑
i∈W

β∑
b=1

xb
i ≤ α(p, q, β, κ).(6.6)

118 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

Proof. The proof works by turning P1, . . . , Pq and Q1, . . . , Qp into a proper COQ
by adding some nodes that correspond to “artificial rows” and projecting the re-
sulting inequality down to the original space of variables.

Let

δ :=

q∑
i=1

p∑
j=1

(1− |Pi ∩Qj|)

be the number of nodes that “miss” to turn P1, . . . , Pq and Q1, . . . , Qp into a COQ

and add a row 1lT of all ones to A for each of them to obtain a matrix Ā such that

Āi· = Ai·, i = 1, . . . ,m and Āi· = 1lT , i = m+ 1, . . . ,m+ δ.

Consider the matrix decomposition problem (Ā, β, κ). Its row intersection graph
G(ĀT) contains G(AT) as a subgraph and the additional artificial nodes in G(ĀT)
are incident to every node of G(ĀT) that corresponds to a row that is not all zero
(except itself).

The sets P1, . . . , Pq and Q1, . . . , Qp are again cliques in G(ĀT). Associating each
of the artificial nodes i = m + 1, . . . ,m + δ to a different index pair ij such that
|Pi∩Qj | = 0 and adding this node to both Pi and Qj , we can extend P1, . . . , Pq and
Q1, . . . , Qp to a COQ P 1, . . . , P q and Q1, . . . , Qp in G(ĀT) with W := ∪p

j=1Qj =
W ∪ {m+ 1, . . . ,m+ δ}. Then, the COQ inequality

∑
i∈W

β∑
b=1

xb
i ≤ α(p, q, β, κ)(6.7)

is valid for P (Ā, β, κ) and, of course, also for

P (Ā, β, κ) ∩ {xb
i = 0 : i = m+ 1, . . . ,m+ δ, b = 1, . . . , β}.

Since the artificial variables in this polytope attain only values of zero, this remains
true if one sets their coefficients in (6.7) also to zero. But as this results in the
desired extended COQ inequality (6.6) and

P (Ā, β, κ)∩{xb
i = 0 : i = m+1, . . . ,m+δ, b = 1, . . . , β} = PMAD (A, β, κ)×{0}δ×β,

the theorem follows by a projection on the space of the original variables.
The last star inequality that we present in this section is special in the sense

that it is the only one with non-0/1 coefficients. It was designed to deal with rows
with many neighbors.

Theorem 6.3.13 (Star) Let G(AT) = (V,E) and consider some row i ∈ V with
|η(i)| > κ. Then the star inequality

(|η(i)| − κ+ 1)

β∑
b=1

xb
i +

∑
j∈η(i)

β∑
b=1

xb
j ≤ |η(i)|

is valid for PMAD (A, β, κ).

Proof. If i is assigned to some block b, then all rows in η(i) can only be assigned
to b, but at most κ− 1 of them. The case where i is not assigned is trivial.

The star inequality can be viewed as a lifting (for lifting see Appendix C) of the
(redundant) inequality ∑

j∈η(i)

β∑
b=1

xβ
j ≤ |η(i)|

and we want to close this section with another simple lifting theorem for block-
invariant inequalities with 0/1 coefficients.

6.4. ALGORITHMIC ASPECTS 119

Theorem 6.3.14 (Strengthening) Let G(AT) = (V,E), W be a subset of V , and∑
i∈W

∑β
b=1 x

b
i ≤ α be a valid inequality for PMAD (A, β, κ). If for some row j �∈ W

the condition
|W \ η(j)|+ κ ≤ α

holds, then
∑

i∈W∪{j}
∑β

b=1 x
b
i ≤ α is also valid for PMAD (A, β, κ).

Proof. If j is assigned to some block b, the rows in {j}∪ η(j) can only be assigned
to b, but at most κ of them.

6.4 Algorithmic Aspects

The polyhedral investigations of the last section form the basis for the implemen-
tation of a branch-and-cut algorithm for the solution of the matrix decomposition
problem. This section describes the four main ingredients of this code: Separa-
tion and LP-management, heuristics, problem reduction, and some issues on the
search-tree management.

6.4.1 Separation and LP-Management

We use all of the inequalities described in Section 6.3 as cutting planes in our algo-
rithm. It will turn out that some of them appear in large numbers. We thus opted
for the following separation strategy: We try to identify many inequalities using
fast heuristics, but add only selected ones to the LP. More expensive separation
methods are used depending on their success.

We classify our separation routines according to their basic algorithmic princi-
ples: Inspection (enumeration), greedy heuristics, other heuristics, exact polynomial
methods, and “hybrid” methods (combinations of exact and heuristic methods).

The most simple methods are used for big-edge, two-partition, and star inequal-
ities: These classes can be separated by simple inspection, the details for two-
partition inequalities were already described in Section 6.3.

Clique, z-clique, and z-cover inequalities are separated using greedy heuristics.
In the last two cases, these methods start by sorting the rows of A with respect
to increasing z-value, i. e., such that z(x)i1 ≥ z(x)i2 ≥ · · · ≥ z(x)im . Then the
greedy heuristic is called m times, once for each row ij . In each call, ij is used to
initialize a tree/clique with respect to G(AT), that is iteratively extended greedily
in the order of the z-sorting of the rows until zij becomes zero and the growing
procedure stops. There is also a second variant for z-cliques that is an adaption of
a similar routine by Hoffman and Padberg [1993]. Here we call the greedy heuristic
once for each column of A and initialize the clique with the support of this column.
Having detected a violated clique inequality in one of these ways, we lift randomly
determined additional rows with zero z-value sequentially into the inequality. This
is done by applying the strengthening procedure of Theorem 6.3.14 which in this
case amounts to a further growth of the clique by randomly determined rows of zero
z-value. We tried to strengthen cover inequalities, but the computational effort was
not justified by the one or two coefficients that were usually lifted. But, as was
already mentioned in Section 6.3, we (heuristically) keep track of the connectivity
of the growing graph. If the connectivity is 2 after the graph reached size κ + 1,
we add another two-connected node if possible. Separation of clique inequalities is
done using exactly the same routine as for z-cliques, but applied to Gc(A, β) with
node weights given by the x-variables.

z-Cycle inequalities are separated in the following heuristic way. We look at
some path P with endnodes u and v, where initially u and v coincide. In each
iteration we extend the path at one of its endnodes by a neighbor w with maximal

120 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

z(x)w-value. Let jw be a column of A that connects w to the path P . Since jw
forms a clique in G(AT) there are additional nodes that can be potentially added to
the path if the support of jw is greater than two, i. e., | supp(A·jw)| > 2. We store
these additional nodes in a buffer which will be exploited later in the heuristic. Now
we test whether the new path P extended by w can be closed to a cycle C that
satisfies |C| > κ and |C| �= 0 modulo (κ+1). This is done by looking for a column j
of A that contains both endnodes of P (one of them w). supp(A·j) again forms a
clique, and the additional nodes in this clique together with the nodes in the buffer
give the flexibility to add further nodes to the cycle. This freedom is exploited in
our routine. We try the procedure for several starting nodes u = v, whose number
depends on the success of the heuristic.

Separation of the composition of clique inequalities is not easy: We do not even
know a way to compute the right-hand side α(p, q, β, κ) in polynomial time! But
there are problems in our test set, where compositions of cliques occur and there
seems to be no way to solve this (small!) problem without them. Our heuristic was
developed to capture these cases. It lead to the development of the more general
class of extended COQ inequalities, which are easier to find. The idea is as follows.

Let us start with a composition of cliques Q1, . . . , Qp and P1, . . . , Pq as stated in
Theorem 6.3.11. Assume that these cliques are contained in the columns 1, . . . , p, p+
1, . . . , p+ q of the matrix A, i. e., supp(A·i) ⊇ Qi, i = 1, . . . , p, and supp(A·i) ⊇ Pi,
i = p+1, . . . , p+ q. Consider a column/column-incidence matrix S of A defined by

sij =

{
k, for k ∈ {l : ali �= 0 �= alj} arbitrary, but fixed;
0, if AT

·iA·j = 0,

i. e., sij = k �= 0 if and only if columns i and j intersect in some row k and in
case there is no unique k we pick an arbitrary, but fixed one. Suppose for the
moment that all entries in the submatrix S{1,...,p}×{p+1,...,p+q} of S are mutually
different, that is, there is no row index k that appears more than once. Then the
composition of cliques corresponds to the rectangle submatrix S{1,...,p}×{p+1,...,p+q}
of S that is completely filled with non-zeros: The rows that appear on the left-
hand side of the COQ inequality (6.4) are exactly those appearing in the matrix
S{1,...,p}×{p+1,...,p+q}. In other words, the node set W in (6.4) is W = {sij : i =

1, . . . , p, j = p + 1, . . . , p + q}. Thus, given some vector x ∈ Rm×β , the left-hand

side of (6.4) is
∑p

i=1

∑p+q
j=p+1

∑β
b=1 x

b
sij and a final calculation of the right-hand side

allows to check for a possible violation of the inequality.
Our heuristic tries to go the reverse direction: It identifies large filled rectangles

in S and derives COQ and xCOQ inequalities from them. There are three diffi-
culties. First, a clique in a composition cannot only be a subset of a column of
A, but any clique in G(AT). However, we have not incorporated this generality in
our heuristic, because we do not know how to select a promising set of cliques in
G(AT). Second, columns in A that form a composition of cliques may not appear
in the right order: The rectangle identifies itself only after a suitable permutation
of S. In this case, we have to reorder the columns and rows of S. We obtain a filled
rectangle submatrix SI×J of S by starting with each of column j of S once, extend
this 1 × | supp(A·j)| rectangle submatrix by columns that fit best in a greedy way,
sort its rows lexicographically, and consider all maximal filled submatrices in the
upper left corner as potential COQ-rectangles. A third serious problem arises when
two columns of A intersect in more than one row. In this case the entries of the ma-
trix S are no longer uniquely determined and it can happen that the entries of the
rectangular submatrix SI×J under consideration are no longer mutually different.
Then SI×J corresponds no longer to a composition of cliques and the inequality∑

ij∈I×J

∑β
b=1 x

b
sij ≤ α

(|I|, |J |, β, κ) is in general not valid. But one can set du-
plicate entries in S to zero until, for every row k, there is only one representative

6.4. ALGORITHMIC ASPECTS 121

sij = k left; denote the resulting matrix by S′. Then the sets

Qi := {s′ij : s′ij �= 0, j ∈ J}, i ∈ I and

P j := {s′ij : s′ij �= 0, i ∈ I}, j ∈ J

of non-zero entries in the rows and columns of S′ form an extended composition of
cliques and the corresponding xCOQ inequality

∑
k∈im(SI×J)

β∑
b=1

xb
k ≤ α(|I|, |J |, β, κ)

is valid for PMAD (A, β, κ), where im(SI×J) = {sij : ij ∈ I × J} denotes the set of
row indices that appear in the submatrix SI×J . The interesting feature of separating
extended COQ inequalities instead of COQs is that the generalization gives us the
algorithmic freedom to handle multiple occurrences of rows in filled rectangles of
S and this is the key to a successful heuristic separation of an otherwise rigid
structure. The price for this, of course, is a reduced support in the left-hand side.
To pay this price only when necessary, we heuristically determine a column/column-
intersection matrix S with a large variety of rows in im(S). The right-hand side
itself is computed in amortized (pseudo-polynomial) time of O(βκn2) steps by a
dynamic program (for our tests β ≤ 4 and κ = O(n), and thus this effectively
amounts to O(n3)).

The reader might have noticed that several degrees of freedom in this separation
routine can be used to search for rectangles with large z-value and this is what we
would like to find. However, the running time of the method is too large to apply
it after each LP and when we did, we did not find additional cuts. We thus call the
routine only once, determine some promising COQs by combinatorial criteria, store
them in memory, and separate them by inspection.

To separate clique inequalities (for β > 2), we use an exact branch-and-bound
algorithm for the maximum weight clique problem. Although in principle exponen-
tial, this algorithm works fast for the separation problems coming up in our matrix
decomposition instances because the maximum clique size is bounded by β. We
have also tried to separate z-cliques exactly, but we never observed that additional
cuts were found: In the small examples, the greedy heuristic is good enough, while
in the larger ones with high capacities cliques of size κ do not seem to exist. Another
exact, but this time polynomial, algorithm is used to separate cycle inequalities: We
apply the odd-cycle algorithm described in Lemma 9.1.11 in Grötschel, Lovász, and
Schrijver [1988].

Finally, a mixture of exact and heuristic ideas is used in a hybrid algorithm to
separate the bin-packing inequalities. We start by determining a node set W that
can result in a violated inequality. A necessary condition for this is∑

i∈W

z(x)i > |W | − 1 ⇐⇒ 1 >
∑
i∈W

(1− z(x)i)

and it is reasonable to construct W by iteratively adding rows that have a z-value
close to one. We thus sort the nodes with respect to increasing z-value and add
them to W in this order as long as the condition stated above is satisfied. This node
set W induces a subgraph (W,E(W)) of G(AT) and we determine the components
of this subgraph. The resulting bin-packing problem (see page 116) is solved using
an exact dynamic programming algorithm (with a time bound).

In addition to these classical types of cutting planes we also use a number
of “tie-breaking” inequalities to cut off decompositions that are identical up to
block permutations or give rise to multiple optima for other reasons as a means to

122 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

counter dual degeneracy and stalling. These inequalities are in general not valid
for PMAD (A, β, κ), but for at least one optimal solution. The most simple kind of
these cuts are the permutation inequalities

m∑
i=1

xb
i ≤

m∑
i=1

xb+1
i , b = 1, . . . , β − 1,

stating that blocks with higher indices are of larger size. To break further ties, we
supplement them with inequalities stipulating that in case of equal sized blocks the
row with the smallest index will be assigned to the block with smaller index. These
strengthened permutation inequalities read

xb+1
k +

m∑
i=1

xb
i −

m∑
i=1

xb+1
i ≤

k−1∑
i=1

xb
i , b = 1, . . . , β − 1, k = 2, . . . ,m− 1.

If
∑m

i=1 x
b
i −

∑m
i=1 x

b+1
i < 0, the inequality is redundant, but in case of equality,

the row with the smallest index in blocks b and b+ 1 must be in block b. The case
k = m is left out because it yields a redundant inequality. Both permutation and
strengthened permutation inequalities can be separated by inspection.

Another idea that we use to eliminate multiple optima is based on the concept
of row preference. We say that row i is preferred to row j or, in symbols, i ≺ j if

η(i) ⊆ η(j)

with respect to the row intersection graph G(AT). We may in this situation not
know whether or not row i or j can be assigned to a block in some optimal so-
lution, but we can say that for any decomposition x with z(x)j = 1, say xb

j = 1,

either z(x)i = 1 or we can get a feasible decomposition x′ = x − ebj + ebi with
the same number of rows assigned. In this sense, row i is more attractive than
row j. If we break ties on row preference by indices (i. e., i ≺ j ⇐⇒ η(i) �
η(j) ∨ (η(i) = η(j) ∧ i < j)), row preferences induce a partial order that we repre-
sent in a transitive and acyclic digraph

D(A) := (V, {(i, j) : i ≺ j}) .

Since the number of row preferences tends to be quadratic in the number of rows,
we thin out this digraph by removing all transitive (or implied) preferences. The
remaining row preferences are forced in our code by adding the row preference
inequalities

β∑
b=1

xb
i ≥

β∑
b=1

xb
j for (i, j) with i ≺ j.

These can sometimes be strengthened to

xb
i ≥ xb

j for all b = 1, . . . , β,

if we can be sure that rows i and j cannot be assigned to different blocks in any
decomposition. This will be the case, for example, if i and j are adjacent in G(AT) =
(V,E) or if both i and j are adjacent to some third row k preferable to both of them
(i. e., i ≺ j, k ≺ i, k ≺ j, ik ∈ E and jk ∈ E). Once D(A) is set up, row preference
inequalities can be separated by inspection.

Our last separation routine uses a cut pool that stores all inequalities found
by the hitherto explained algorithms: The pool separation routine just checks all
inequalities in the pool for possible violation.

6.4. ALGORITHMIC ASPECTS 123

The separation algorithms described in the previous paragraphs turned out to
be very successful: Not only block-discernible (permutable) inequalities like two-
partitions are found in large numbers, also block-invariant cuts like z-covers occur
in abundance. Controlling the growth of the LP-relaxation is thus the main goal
of our separation and LP-maintenance strategy. We start with a minimal LP-
relaxation containing (besides the bounds) only the block assignment and block
capacity constraints plus the β − 1 permutation inequalities. The cuts that are
separated by inspection, i. e., big-edge inequalities, star inequalities, tie-breaking
inequalities, and composition of clique inequalities are placed in the cut pool; they
will be found by pool separation. The separation algorithms are called dynamically
throughout the course of the branch-and-cut algorithm. After an LP is solved, we
call the pool separation routine, followed by two-partition inequality separation and
a couple of heuristics: The z-cover heuristic is called as it is, but application of the
more expensive z-clique and z-cycle algorithms is controlled by a simple time- and
success-evaluation. This control mechanism is motivated by the observation that
our test set fell into two groups of examples, where one of these routines was either
indispensable or essentially did not find a single cut. We empirically try to adapt
to these situations by calling the separation routines only if their past success is
proportional to the running time, or more precisely, if after the first call

of successful calls + 1

of calls
>

time spent in routine

total time spent in separation
.

A call is counted as successful if a violated cut is found. If β > 2, there can be
clique inequalities that are not two-partition constraints and in this case we next
call the exact clique separation routine, that returns at most one cut. The branch-
and-bound algorithm used there turned out to be fast enough to be called without
any further considerations. Finally, we separate bin-packing inequalities. To avoid
excessive running times due to the dynamic program, the routine is called with a
time limit: The dynamic program will be stopped if the time spent in bin-packing
separation exceeds the cumulated separation time of all other separation routines.

All violated cuts determined in this separation process are not added directly to
the LP-relaxation, but stored in a cut buffer first. This buffer is saved to the pool,
and then a couple of promising cuts are selected to strengthen the LP-relaxation.
Our criteria here have an eye on the amount of violation and on the variety of the
cuts. Since inequalities of one particular type tend to have similar support, we
restrict the number of cuts per type and prefer to add inequalities of other types,
even if they are not among the most violated. To accomplish this we add the

of cuts in cut buffer

number of types of cuts

most violated cuts of each type to the LP-relaxation. We also delete cuts from the
LP-relaxation if they become non-binding by a slack of at least 10−3, but keep them
in the cut pool for a possible later pool separation.

Another feature of our code that aims for small LPs is to locally setup the LP-
relaxation prior to computation at any node of the search-tree. This means that
when branching on some node v we store at each of its sons a description of the
last LP solved at v and of the optimal basis obtained. When we start to process v’s
sons, we set up this LP from scratch and load the associated (dual feasible) basis.
In this way, we continue the computation exactly at the point where it stopped and
the LP will be the result of a contiguous process independent of the node selection
strategy. We have compared this approach to one where the start-LP at each newly
selected node is just the last LP in memory and this leads to larger LPs and larger
running times.

124 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

While these strategies were sufficient to keep the size of the LP-relaxation under
control, explosive growth of the cut pool was a serious problem in our computations
until we implemented the following cut pool management. We distinguish between
disposable and indisposable cuts in the pool. Indisposable cuts are inequalities that
are needed to set up the LP-relaxation at some node in the search-tree yet to be
processed and all big-edge, star, and tie-breaking inequalities. All other cuts are
disposable and can potentially be deleted from the cut pool, possibly having to
be recomputed later. In order to control the pool size we restrict the number of
disposable cuts in the pool by eliminating cuts that have not been in any LP for a
certain number of iterations. This number depends on the size of the pool and the
ratio of disposable to indisposable cuts.

6.4.2 Primal Heuristics

We have implemented several primal heuristics for our matrix decomposition code.
Since different nodes in a branch-and-bound tree correspond to different fixings
of variables to zero or one, the heuristics should respect these fixings to increase
the probability of finding different solutions. Applied at the root node where (at
least initially) no variables are fixed, our methods can be seen as LP-based or pure
combinatorial heuristics for the matrix decomposition problem.

Our heuristics fall into three groups: “Primal” methods that iteratively fix block
assignments, “dual” methods that iteratively exclude assignments until decisions
become mandatory due to lack of alternatives, and an improvement method that
is applied as an “after-burner” to enhance the quality of the two groups of opening
heuristics.

The primal methods consist of a greedy algorithm and a bin-packing heuris-
tic, both are LP-based. The greedy algorithm starts by ordering the xb

i variables;
with probability 1

2 a random ordering is chosen, otherwise a sorting according to
increasing x-value is used. The rows are assigned greedily to the blocks in this
order. This heuristic is similar in spirit to the popular “LP-plunging” method,
i. e., the iterative rounding of some fractional LP-value to an integer followed by
an LP-reoptimization, but much faster. We have also tried LP-plunging, but for
the matrix decomposition problem the results were not better than with the simple
greedy method, while the running time was much larger. The bin-packing heuristic
starts by determining a set of nodes W that will be assigned to the blocks and used
to set up a corresponding bin-packing problem. In order to find a better decompo-
sition than the currently best known with, say, z
 rows assigned, W should be of
cardinality at least z
 + 1 and therefore we take the z
 + 1 rows with the largest
z(x)-values to be the members of W . The corresponding bin-packing problem is set
up and solved with the same dynamic program that we used for the separation of
the bin-packing inequalities; it is also called with a time limit, namely 10 times as
much as all other primal heuristics (that are very fast) together. Clearly, we also
watch out for better solutions that might be detected in bin-packing separation.

The dual methods also respect variable fixings, but are not LP-based. The idea
behind them is not to assign rows to blocks, but to iteratively eliminate assignments
of “bad” rows. Suppose that a decision was made to assign certain rows (assigned
rows) to certain blocks, to exclude other rows from assignment (unassigned rows),
while for the remaining rows a decision has yet to be made (free rows). Removing the
unassigned nodes from the row intersection graph G(AT) leaves us with a number
of connected components, some of them larger than the maximum block capacity κ,
some smaller. Both variants of the dual method will break up the components that
are larger than the block capacity κ by unassigning free rows until no more such
components exist. At this point, a simple first-fit decreasing heuristic is called to

6.4. ALGORITHMIC ASPECTS 125

solve the corresponding bin-packing problem. The two variants differ in the choice
of the next bad row to remove. Variant I chooses the free row in some component of
size larger than κ with the largest degree with respect to the row intersection graph
G(AT), variant II excludes assignment of a free row of some component with size
larger than κ with the largest indegree with respect to D(A), or, in other words,
the least preferable row. We have also tried to use a dynamic program to solve the
bin-packing problems, but it did not provide better results in our tests.

Our improvement heuristic is a variation of a local search technique presented
by Fiduccia and Mattheyses [1982]. Given some block decomposition, it performs
a sequence of local exchange steps each of the following type. Some assigned row
is chosen to be made unassigned opening up possibilities to assign its unassigned
neighbors. These assignments are checked and feasible assignments are executed.
The details are as follows. The heuristic performs a number of passes (10 in our im-
plementation). At the beginning of each pass, all rows are eligible for unassignment
in the basic exchange step. Each row may be selected only once for unassignment
in each pass and will then be “locked”. Candidates for becoming unassigned are all
currently assigned and unlocked rows. These candidates are rated according to the
number of possible new assignments (computed heuristically) and we choose the
one that is best with respect to this rating. As a special annealing-like feature, the
algorithm will also perform the exchange step if it leads to a change of the current
solution to the worse. If no exchange step is possible because all assigned rows are
already locked, the pass ends and the next pass is started.

The strategy to call the heuristics is as follows. The primal methods are called
after each individual LP, whereas the dual heuristics are called only once at each
node in the branch-and-bound tree, because they behave in a different way only
due to changes in the variable fixings.

6.4.3 Problem Reduction

We use a couple of problem reduction techniques to eliminate redundant data.
First we apply an initial preprocessing to the matrix A before the branch-and-
cut algorithm is initiated. The purpose of this preprocessing step is to eliminate
columns from the matrix A without changing the row intersection graph. We first
perform a couple of straightforward tests to identify columns that are contained
in other columns and can thus be deleted: We remove empty columns, then unit
columns, duplicate columns, and finally by enumeration columns that are contained
in others.

These simple initial preprocessing steps are amazingly effective as we will see
in the section on computational results. In principle, the number of rows can be
reduced also. For example, empty rows could be eliminated and later used to fill
excess capacity in any block, duplicate rows or rows with just one non-zero entry
could be eliminated by increasing the capacity requirements of one of its adjacent
rows. These reductions, however, lead to changes in the IP model and affect all
separation routines discussed so far so that we refrained from implementing them.

In addition to this initial preprocessing we do local fixings at the individual
nodes of the branch-and-bound search-tree after each call to the LP-solver. Apart
from reduced cost fixing (see Appendix B) and fixing by logical implication (i. e., if
xb
i is fixed to one, xb′

i will be fixed to zero for all blocks b′ �= b), we try to identify
rows that cannot be assigned to any block given the current state of fixings. To this
purpose we look at all rowsW that are currently fixed for assignment to some block.
We then check for each unassigned row i whether the subgraph (W∪{i}, E(W∪{i}))
of G(AT) = (V,E) contains a component with more than κ rows. If so, row i can
be fixed to be unassigned.

126 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

6.4.4 Further Issues

Despite our efforts to understand the polyhedral combinatorics of the matrix de-
composition problem, we do not have a strong grip on the corresponding polytope
and after an initial phase of rapid growth of the lower bound, stalling occurs in
the presence of significant duality gaps. We believe that – up to a certain point
– it is favorable in this situation to resort to branching early, even if there is still
slow progress in the cutting plane loop. In fact, we apply a rather “aggressive”
branching strategy, splitting the currently processed node if the duality gap could
not be reduced by at least 10% in any four consecutive LPs. On the other hand, we
“pause” a node (put it back into the list of nodes yet to be processed) if the local
lower bound exceeds the global lower bound by at least 10%.

Branching itself is guided by the fractional LP-values. We first look for a most
fractional z(x)-value. If, e.g., z(x)i is closest to 0.5 (breaking ties arbitrarily), we
create β + 1 new nodes corresponding to the variable fixings

x1
i = 1, x2

i = 1, . . . , xβ
i = 1, and

β∑
b=1

xb
i = 0.

In other words, we branch on the block assignment constraint corresponding to
row i. The advantage of this scheme is that it leads to only β+1 new nodes instead
of 2β-nodes in an equivalent binary search-tree. If all z(x)-values are integral, we
identify a row with a most fractional x-variable and perform the same branching
step. We have also tried other branching rules by taking, for instance, the degree
of a row in G(AT) into account, but the performance was inferior to the current
scheme.

6.5 Computational Results

In this section we report on computational experiences with our branch-and-cut
algorithm for the solution of matrix decomposition problems arising form mixed
integer programming matrices. Our aim is to find answers to two complexes of
questions. First, we would like to evaluate our branch-and-cut approach: What are
the limits in terms of the size of the matrices that we can solve with our algorithm?
What is the quality of the cuts, do they provide a reasonable solution guarantee?
Second, we want to discuss our concept of decomposition into bordered block diago-
nal form: Do the test instances have this structure or are most integer programming
matrices not decomposable in this way? And do our heuristics provide reasonable
decompositions that could be used within an integer programming code?

As test set we use the integer programming matrices from the Miplib presolved
by SIP. In addition, we report on some small matrices arising from Steiner tree
packing problems, see Chapter 3. As we know the Steiner tree packing problems
are known to be in bordered block diagonal form and we wanted to see whether our
code is able to discover this structure.

The test runs were performed on a Sun Enterprise 3000 on one 168 MHz Ul-
traSPARC processor and we used a time limit of 3600 CPU seconds. The format
of the upcoming tables is as follows: For each test example, the data is split into
two tables. Part I gives information about the problem sizes and the cutting plane
phase, Part II reports on the success of the primal heuristics and gives timings. In
detail, Column 1 provides the name of the problem, Columns 2 to 4 contain the
number of rows, columns and non-zeros of the matrix after presolve (for the original
sizes, see Table D.4 in Appendix D and Table 5.3). The succeeding five columns
give statistics about the number of cuts generated by our code. There are, from left

6.5. COMPUTATIONAL RESULTS 127

to right, the number of initial cuts (Init) including block assignment, block capacity,
big-edge, star, and tie-breaking inequalities (but not composition of clique inequal-
ities, although they are also separated from the pool), the number of z-cover (Cov),
the number of two-partition (2part), the sum of the number of bin-packing, cycle, z-
cycle, clique, z-clique, and composition of clique inequalities (BCC), and finally the
number of violated inequalities separated from the pool (pool). The following two
columns (Columns 10 and 11) show the number of branch-and-bound nodes (Nod)
and the number of LPs (Iter) solved by the algorithm. Part II of the tables starts
again with the name of the problem. The next eight columns give solution values.
We do not report the number of assigned rows, but the number of rows in the bor-
der, because it is easier to see whether the matrix could be decomposed into block
diagonal form (in this case the value is zero) or close to this form (then the value is a
small positive integer). Lb gives the global lower bound provided by the algorithm.
It coincides with the value of the upper bound Ub (next column) when the problem
is solved to proven optimality. Skipping two columns for a moment, the next four
columns refer to the heuristics. G, D1, D2 and B stand for the greedy, the dual
(variant I and II), and the bin-packing heuristic. The corresponding columns show
the best solutions obtained by these heuristics throughout the computations at the
root node. If this value coincides with the number of rows of the matrix, all rows
are in the border and the heuristic failed. The two (skipped) columns right after Ub
show which heuristic He found the best solution after No many branch-and-bound
nodes (1 means it was found in the root node). The additional letter I indicates
that the value was obtained by a succeeding call to the improvement heuristic. An
asterisk ∗ means that the LP solution provided an optimal block decomposition.
The remaining four columns show timings. The last of these columns Tot gives the
total running time measured in CPU seconds. The first three columns show the
percentage of the total time spent to solve the linear programs (LP), the time of
the separation algorithms (Sep), and the time for the heuristics (Heu).

6.5.1 The Miplib Problems

In this test series we examine whether matrices arising from mixed integer programs
can be decomposed into (bordered) block diagonal form.

As mentioned in the introduction of this chapter, decomposing the original con-
straint matrix A of some general integer program can be useful to tighten its LP-
relaxations within a branch-and-cut algorithm. The structure of the decomposed
matrix is that of a multiple knapsack or general assignment problem, and inequal-
ities known for the associated polytopes, see Chapter 2, are valid for the mixed
integer program under consideration. The first interesting case in this context are

two blocks and we set β := 2. We used κ := (#rows)·1.05
2 rounded up as block capac-

ity, which allows a deviation of 10% of the actual block sizes in the decomposition.
Table 6.1 and 6.2 show our results that we obtained for matrices of mixed integer

programs taken from the Miplib and preprocessed with SIP as described in Section
5.1.

The problems up to 100 rows are with a few exceptions easy. The range of 100
to 300 rows is where the limits of our code become visible and this is the most
interesting “hot area” of our tables: The problems here are already difficult, but
because of the combinatorial structure and not because of sheer size. The results
for the problems with more than 300 rows are of limited significance, because these
matrix decomposition problems are large-scale and the algorithm solves only a few
LPs within the given time limit. Though we can only solve a couple of readily
decomposable large instances to optimality, it is worth noticing that a considerable
number of instances indeed decomposes. The difficulty of matrix decomposition
problems depends as much on the structure of the matrix as on the number of rows,

128 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

Example Presolved Cutting Planes B&B

Rows Col NZs Init Cov 2part BCC Pool Nod Iter

mod008 6 1 6 23 0 0 0 0 1 1

p0033 14 11 35 37 23 5 0 1 1 3

flugpl 15 5 19 43 15 0 1 0 1 2

enigma 21 99 287 40 916 223 0 280 28 85

rgn 24 33 102 64 722 222 1 445 13 47

gt2 28 173 346 39 1417 364 0 262 28 89

lseu 27 50 163 64 73 37 0 9 1 4

nw04 36 102 915 164 0 0 61 0 1 2

egout 40 24 76 139 39 2 0 0 1 2

pk1 45 32 105 106 35312 22358 16 43046 18787 21746

bell5 85 73 209 165 2367 447 1 643 10 38

misc03 95 133 1801 216 27044 17029 0 39495 4129 5154

bell3a 97 81 235 187 2409 520 1 875 10 31

l152lav 97 695 3712 308 30951 22625 0 70669 1423 2223

harp2 100 1225 2450 116 250 158 0 3 1 4

khb05250 100 1275 2574 196 12590 2028 1 4801 73 224

p0201 113 177 1527 200 8936 2280 1 4866 46 128

stein27 118 27 378 353 423737 163187 3 744679 4198 7753

air03 122 666 5973 830 20599 9360 0 24631 142 390

vpm1 129 98 280 465 1288 43 1 285 4 13

vpm2 129 98 280 465 1288 43 1 285 4 13

pp08a 136 120 304 392 17114 1860 1 5905 46 179

mod010 146 1973 8404 453 71932 59140 1 205880 2029 2947

blend2 169 88 1039 515 0 0 0 0 4 4

noswot 171 50 440 702 106611 43732 1 932484 1603 2736

10teams 210 1600 9600 210 120998 46760 1 245717 421 979

misc07 223 229 8245 506 24061 17172 0 41054 199 235

pp08aCUTS 246 230 828 612 14372 1714 1 3185 19 78

p0548 257 250 1009 523 197234 28114 1 324677 544 1055

dcmulti 272 514 1242 536 249229 18524 1 165055 424 1111

modglob 287 354 892 991 25794 847 1 7372 40 122

fiber 290 416 1250 579 104084 17088 1 75280 142 419

rout 290 540 2085 1580 86879 231 1 17877 823 1027

p0282 305 168 841 609 122304 33242 1 140550 244 595

stein45 331 45 1034 992 46894 22680 0 77903 52 164

qnet1 o 332 800 2400 620 72865 19027 1 77501 88 258

qnet1 370 924 2806 408 54982 20045 1 50629 52 172

air05 408 3104 23458 600 8465 1799 0 219 22 29

set1ch 446 420 1055 1346 47304 3872 1 13440 34 141

fixnet6 477 497 1372 1987 22676 96 1 760 34 88

fast0507 484 4922 31409 659 19988 7929 0 7162 19 49

gen 622 360 1303 2076 28874 538 1 8261 22 56

danoint 664 521 3232 1016 20487 7643 1 9207 10 35

misc06 664 755 1957 1480 25175 3417 1 7452 13 43

arki001 769 490 7806 5801 9189 165 1 238 25 39

air04 777 4135 34874 1047 12388 6349 1 3705 7 19

dsbmip 1126 1589 6379 1126 10132 3964 1 2445 7 12

qiu 1192 840 3432 1192 10724 3923 1 2192 7 12

gesa3 o 1200 600 2424 1200 8399 2174 1 1157 7 10

gesa2 o 1248 600 2424 1248 8735 2070 1 1074 4 9

gesa3 1344 600 3744 1344 8063 2948 1 1328 4 8

gesa2 1392 600 3816 1392 9743 2908 1 1009 4 9

rentacar 1426 3014 22293 1426 4190 3127 1 216 4 4

p2756 1653 1614 6940 1653 4958 3235 1 55 1 4

mitre 1657 9590 35014 1657 8281 4927 1 1038 4 7

cap6000 2095 2089 6506 2097 0 0 0 0 1 1

mod011 2332 6776 15699 2332 4663 3794 1 11 1 3

dano3mip 3187 13873 79625 3187 3187 3107 1 0 1 2

seymour 4827 943 30697 4827 4806 4722 1 0 1 2

Total 35466 71311 389351 55141 2165756 643814 120 3367313 35864 50615

Table 6.1: Decomposing Miplib-problems into 2 blocks (Part I)

6.5. COMPUTATIONAL RESULTS 129

Example Best Solutions Heutistics at Root Time

Lb Ub He No G D1 D2 B LP Sep Heu Tot

mod008 3 3 IG 1 3 3 3 6 25% 25% 0% 0.0

p0033 3 3 D1 1 3 3 3 14 50% 0% 0% 0.0

flugpl 1 1 ID2 1 3 2 1 15 33% 33% 0% 0.0

enigma 10 10 IG 1 10 10 10 21 39% 33% 16% 1.9

rgn 5 5 IG 1 5 5 5 24 52% 25% 6% 1.0

gt2 11 11 IG 1 11 11 11 28 46% 31% 9% 2.6

lseu 6 6 D1 1 6 6 6 27 33% 40% 6% 0.1

nw04 18 18 D1 1 25 18 18 36 0% 6% 0% 50.7

egout 2 2 D1 1 7 2 2 40 50% 37% 0% 0.1

pk1 19 19 IG 5 20 22 22 45 20% 31% 17% 286.5

bell5 4 4 ID1 2 6 6 6 85 62% 18% 9% 7.5

misc03 43 43 IG 37 45 46 46 95 20% 42% 24% 532.2

bell3a 4 4 B 6 5 5 5 97 62% 17% 11% 9.8

l152lav 36 36 * 485 43 43 43 97 19% 23% 51% 737.3

harp2 17 17 D1 1 17 17 17 100 2% 94% 0% 15.7

khb05250 25 25 IG 1 25 25 25 100 25% 41% 27% 81.7

p0201 21 21 IG 20 30 30 30 113 68% 10% 17% 126.8

stein27 35 56 IG 1 56 56 56 118 33% 43% 7% 3600.2

air03 48 48 IG 133 53 58 58 122 55% 23% 19% 1311.6

vpm1 3 3 IB 2 6 6 6 129 59% 21% 10% 6.8

vpm2 3 3 IB 2 6 6 6 129 60% 20% 11% 6.7

pp08a 8 8 D1 1 8 8 8 136 57% 18% 14% 76.9

mod010 51 57 IG 304 61 66 66 146 14% 27% 54% 3600.1

blend2 10 10 IG 1 10 10 10 169 62% 24% 2% 1.4

noswot 9 14 IG 9 39 39 39 171 49% 29% 10% 3600.5

10teams 52 90 D1 1 90 90 90 210 47% 33% 15% 3600.6

misc07 69 92 IG 10 106 106 106 223 19% 20% 59% 3627.8

pp08aCUTS 8 8 D1 1 8 8 8 246 67% 11% 16% 222.5

p0548 26 47 IG 22 68 68 68 257 62% 15% 15% 3600.6

dcmulti 12 18 ID2 5 25 25 25 272 62% 15% 15% 3601.6

modglob 6 6 B 26 10 10 10 287 65% 13% 15% 363.5

fiber 16 22 ID1 22 38 38 38 290 78% 6% 12% 3604.6

rout 17 20 B 12 35 35 35 290 80% 10% 4% 3600.4

p0282 27 36 D1 1 36 36 36 305 68% 10% 17% 3604.6

stein45 19 153 IG 8 157 157 157 331 90% 4% 2% 3616.7

qnet1 o 13 28 D1 1 28 28 28 332 77% 5% 13% 3621.4

qnet1 17 35 D1 1 35 35 35 370 79% 5% 13% 3612.8

air05 19 186 IG 5 189 194 194 408 84% 5% 9% 3604.5

set1ch 11 11 D1 1 11 11 11 446 66% 8% 21% 1662.8

fixnet6 13 13 D1 1 13 13 13 477 86% 4% 6% 1607.3

fast0507 7 165 IG 6 217 217 217 484 56% 13% 28% 3600.8

gen 8 17 ID1 8 19 19 19 622 73% 3% 20% 3672.4

danoint 5 174 IG 2 189 189 189 664 82% 4% 11% 3611.4

misc06 5 48 ID1 1 48 48 48 664 80% 3% 15% 3711.7

arki001 10 31 D1 1 31 31 31 769 78% 5% 14% 3629.8

air04 4 341 IG 3 367 370 370 777 63% 10% 24% 3725.5

dsbmip 2 57 ID1 1 57 57 57 1126 78% 4% 15% 4253.7

qiu 2 125 ID1 1 125 125 125 1192 73% 4% 20% 3698.1

gesa3 o 2 24 D1 1 24 24 24 1200 85% 2% 10% 4141.2

gesa2 o 2 24 D1 1 24 24 24 1248 88% 2% 6% 4057.6

gesa3 2 120 D1 1 120 120 120 1344 83% 3% 10% 3654.4

gesa2 2 120 ID1 1 120 120 120 1392 82% 2% 12% 5174.6

rentacar 2 227 ID1 1 227 227 227 1426 36% 3% 58% 3662.1

p2756 2 264 ID2 1 264 425 264 1653 91% 3% 3% 6439.9

mitre 1 28 D1 1 28 28 28 1657 35% 4% 57% 4482.4

cap6000 2 2 IG 1 2 2 2 2095 10% 18% 1% 170.8

mod011 1 60 ID1 1 60 60 60 2332 9% 3% 82% 3729.6

dano3mip 2 1466 ID1 1 1730 1466 1466 3187 52% 3% 34% 6078.0

seymour 1 1159 ID2 1 1968 1968 1159 4827 7% 5% 66% 9585.0

Total 782 5644 1170 6972 6877 5906 35466 60% 9% 24% 138689.0

Table 6.2: Decomposing Miplib-problems into 2 blocks (Part II)

130 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

columns, or non-zeros.
Let us first investigate the “dual side” of the results. We observe that we solve

very few problems at the root node (only 8 out of 59). The quality of the cuts is in
our opinion reasonable, as can be seen from the size of the branch-and-bound tree
and the number of LPs solved. It is true, however, that the lower bound improves
fast at first while stalling occurs in later stages of the computation although still
large numbers of cuts are found and the problem is finished by branch-and-bound.
The same behaviour has been reported for similar problems like the node capacitated
graph partitioning problem discussed in Ferreira, Martin, de Souza, Weismantel,
and Wolsey [1998].

Investigating the “primal side”, we see that the greedy heuristic and the two
dual heuristics perform very similar, though variant II of the dual heuristics seems
to outperform the other two slightly. Bin-packing is either very good (a rather rare
event) or a catastrophe, but complements the other heuristics. If we look at the
quality of the solutions found at the root node as a measure of the method as a
stand-alone decomposition heuristic, the table shows pretty good results. For some
instances, as for noswot or fat0507, we detect larger gaps. In fact, we have sometimes
observed in longer runs on larger examples that the best solution could steadily be
improved and the optimal solution was found late. A reason might be that the
heuristics are closely linked to the LP-fixings and essentially always find the same
solutions until the branching process forces them strongly into another direction.
Nevertheless, in summary the primal heuristics give with very few exceptions a very
good performance guarantee, for most of the problems we are within 20% already
at the root node.

How decomposable are the mixed integer programming matrices? We see that
not all, but many of the larger problems can be brought into bordered block di-
agonal form. Some like the “bell”- and “vpm”-examples decompose very well. Of
course, there are also exceptions like nw04: 18 out of 36 are in the border. The
latter is a airline crew scheduling problem, which we did not expect to be decom-
posable. Anyway, there seems to be potential for the multiple knapsack approach
and further research in the direction of finding stronger cutting planes for mixed
integer programs, see also Chapter 8.

We also tried to decompose the mixed integer programming matrices into four
blocks, having in mind that the decompositions might be used to speed up the
solution of the underlying linear programs by exploiting parallelism. The picture
of the our results is a bit different here, see Tables 6.3 and 6.4. Since the number
of blocks is β = 4 instead of β = 2, the integer programming formulation is bigger:
The number of variables is doubled, the number of conflicting assignments for two
adjacent rows is now 12 instead of 4. Consequently, the LPs tend to be bigger and
harder to solve, the percentage of the time spent for solving the LPs goes from 60%
up to 72%. Note that β = 4, on the other hand, halfs the block capacities. This
means that it becomes much easier to separate inequalities that have this number
as their right-hand side and have a large or combinatorially restrictive support like
z-clique, bin-packing, or composition of clique inequalities, compare column BCC
in both tables.

On the primal side the results are similar to β = 2. As expected the number of
rows goes up, sometimes significantly like for the “vpm”-examples.

Finally, we want to mention that there is a second application of matrix de-
composition to integer programming as a new branching rule. Decomposing the
transposed constraint matrix will identify the variables in the border as linking
variables. After branching on these variables, the integer program decomposes into
smaller integer programs that can be solved independently. Thus, it seems to be
a good idea to branch on border variables first. We tried this approach and de-

6.5. COMPUTATIONAL RESULTS 131

Example Presolved Cutting Planes B&B

Rows Col NZs Init Cov 2part BCC Pool Nod Iter

mod008 6 1 6 45 0 0 0 0 1 1

flugpl 15 5 19 105 15 0 0 3 1 2

p0033 14 11 35 95 66 25 10 46 6 17

enigma 21 99 287 120 495 279 125 265 26 67

rgn 24 33 102 152 20565 8437 2237 81333 6506 9278

gt2 28 173 346 109 142 103 10 44 11 21

lseu 27 50 163 152 47 26 2 7 1 3

nw04 36 102 915 344 12 1 139 3 1 3

egout 40 24 76 317 68 4 2 5 1 3

pk1 45 32 105 242 5594 4179 9365 9801 121 419

bell5 85 73 209 415 40418 11209 917 96178 956 1947

misc03 95 133 1801 507 39232 17881 92307 152118 761 1747

bell3a 97 81 235 471 6982 2346 82 9074 31 92

l152lav 97 695 3712 764 56413 31085 57831 293698 576 1173

harp2 100 1225 2450 317 37 19 1 24 1 2

khb05250 100 1275 2574 518 0 0 0 0 1 1

p0201 113 177 1527 529 12003 6915 478 29068 121 243

stein27 118 27 378 940 25574 24840 270 197280 101 291

air03 122 666 5973 1721 10396 8966 22954 34992 206 315

vpm1 129 98 280 1059 104723 14769 2315 189557 3876 6512

vpm2 129 98 280 1059 109973 14448 2322 191469 4081 6748

pp08a 136 120 304 920 7144 1988 54 10216 21 74

mod010 146 1973 8404 1147 16238 12452 1220 51152 106 160

blend2 169 88 1039 1189 0 0 0 0 1 1

noswot 171 50 440 1574 50087 32022 463 1827058 421 574

10teams 210 1600 9600 840 10252 8399 57 18569 41 66

misc07 223 229 8245 1085 473 4407 2852 1740 41 47

pp08aCUTS 246 230 828 1470 11498 3522 48 9534 21 68

p0548 257 250 1009 1306 10203 5793 42 10807 26 48

dcmulti 272 514 1242 1344 23483 8022 89 51090 26 94

modglob 287 354 892 2141 39399 4554 138 58028 51 153

fiber 290 416 1250 1159 15272 6512 54 24934 16 57

rout 290 540 2085 3450 14984 673 35 11806 36 67

p0282 305 168 841 1559 609 583 37 7 1 3

stein45 331 45 1034 2314 6907 6803 21 8712 11 24

qnet1 o 332 800 2400 1572 11241 6228 35 17372 16 38

qnet1 370 924 2806 1186 11815 9543 33 18360 11 35

air05 408 3104 23458 1779 4455 4294 11 608 16 15

set1ch 446 420 1055 3138 21341 5293 49 25448 21 58

fixnet6 477 497 1372 4451 13250 491 27 5637 16 41

fast0507 484 4922 31409 1945 3859 3715 8 758 11 11

gen 622 360 1303 4774 15938 608 21 6374 16 30

danoint 664 521 3232 2696 9956 8984 16 11885 6 17

misc06 664 755 1957 3624 11283 4274 18 8438 11 20

arki001 769 490 7806 12391 7514 406 6 2162 21 15

air04 777 4135 34874 2978 4659 4596 6 524 11 9

dsbmip 1126 1589 6379 3378 12385 7040 12 7832 6 13

qiu 1192 840 3432 3580 9503 7013 8 849 11 11

gesa3 o 1200 600 2424 3600 15598 7637 14 10815 6 15

gesa2 o 1248 600 2424 3744 13727 7038 12 8041 6 13

gesa3 1344 600 3744 4032 12095 6732 10 5585 6 11

gesa2 1392 600 3816 4176 11135 6087 9 4538 6 10

rentacar 1426 3014 22293 4286 6960 5658 5 615 6 7

p2756 1653 1614 6940 4959 4957 4190 4 32 6 5

mitre 1657 9590 35014 4971 8280 5843 6 2481 6 7

cap6000 2095 2089 6506 6287 0 0 0 0 1 1

mod011 2332 6776 15699 6997 6991 6025 3 91 1 4

dano3mip 3187 13873 79625 9561 3187 3153 2 7 1 2

seymour 4827 943 30697 14481 0 0 0 0 1 1

Total 35466 71311 389351 146065 859433 356110 196792 3507070 18424 30710

Table 6.3: Decomposing Miplib-problems into 4 blocks (Part I)

132 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

Example Best Solutions Heutistics at Root Time

Lb Ub He No G D1 D2 B LP Sep Heu Tot

mod008 4 4 IG 1 4 4 4 6 40% 0% 0% 0.1

flugpl 4 4 IG 1 4 4 4 15 60% 20% 0% 0.1

p0033 5 5 IG 1 5 5 5 14 60% 5% 10% 0.2

enigma 11 11 IG 1 11 11 11 21 56% 25% 5% 2.0

rgn 10 10 IG 1 10 10 10 24 32% 19% 7% 134.8

gt2 11 11 D1 1 11 11 11 28 48% 35% 3% 0.9

lseu 7 7 D1 1 7 7 7 27 41% 29% 0% 0.2

nw04 25 25 IG 1 25 25 25 36 1% 6% 0% 49.3

egout 4 4 IG 1 4 4 4 40 61% 19% 4% 0.2

pk1 24 24 IG 1 24 24 24 45 53% 28% 5% 52.4

bell5 10 10 IG 22 13 13 13 85 78% 9% 5% 623.6

misc03 54 54 IG 3 59 59 59 95 34% 41% 8% 1329.0

bell3a 7 7 B 11 17 17 17 97 83% 8% 4% 82.9

l152lav 43 49 IG 19 56 63 63 97 76% 15% 4% 3600.9

harp2 18 18 D1 1 20 18 18 100 2% 95% 0% 15.4

khb05250 25 25 D1 1 26 25 25 100 3% 95% 0% 12.3

p0201 30 30 IB 36 39 39 39 113 90% 4% 3% 650.5

stein27 28 79 IG 6 83 85 85 118 94% 3% 0% 3600.6

air03 51 72 IG 42 82 82 82 122 83% 13% 2% 3608.4

vpm1 10 10 B 42 13 13 13 129 73% 11% 7% 2529.1

vpm2 10 10 B 45 13 13 13 129 73% 11% 6% 2556.3

pp08a 8 8 D1 1 8 8 8 136 89% 5% 3% 184.5

mod010 39 82 IG 17 84 86 86 146 93% 3% 2% 3604.3

blend2 10 10 IG 1 10 10 10 169 77% 17% 0% 3.3

noswot 7 19 IG 36 39 39 39 171 66% 19% 3% 3613.6

10teams 46 90 D1 1 90 90 90 210 85% 5% 9% 3666.7

misc07 81 146 IG 6 150 160 160 223 78% 11% 9% 3688.3

pp08aCUTS 8 8 D1 1 8 8 8 246 88% 4% 5% 680.9

p0548 8 75 IG 5 80 83 80 257 97% 1% 0% 3620.8

dcmulti 8 31 D2 1 31 47 31 272 96% 2% 0% 3622.5

modglob 8 16 D1 7 18 18 18 287 93% 3% 2% 3606.1

fiber 6 38 D1 1 38 38 38 290 96% 1% 1% 3628.4

rout 11 22 IG 2 35 35 35 290 97% 2% 0% 3709.5

p0282 36 36 D1 1 36 36 36 305 29% 25% 42% 46.7

stein45 6 232 IG 2 244 244 244 331 96% 2% 0% 3724.4

qnet1 o 6 28 D1 1 28 28 28 332 95% 1% 2% 3768.7

qnet1 6 35 D1 1 35 35 35 370 94% 1% 3% 3985.3

air05 72 285 IG 2 293 297 293 408 90% 5% 3% 3803.8

set1ch 7 11 D1 1 11 11 11 446 90% 2% 5% 3610.2

fixnet6 6 16 D1 1 16 16 16 477 95% 1% 1% 3602.7

fast0507 36 301 IG 2 337 337 337 484 93% 3% 1% 4247.4

gen 6 33 ID1 2 41 41 41 622 86% 3% 9% 3689.6

danoint 4 214 IG 1 214 223 223 664 92% 2% 4% 4281.3

misc06 5 90 D1 1 90 90 90 664 93% 2% 4% 4136.7

arki001 24 31 D1 1 31 31 31 769 91% 4% 3% 4011.7

air04 38 526 IG 2 536 558 558 777 85% 4% 8% 3963.1

dsbmip 3 228 D1 1 228 228 228 1126 69% 5% 23% 4157.4

qiu 6 132 ID2 1 132 207 132 1192 82% 3% 12% 5094.8

gesa3 o 4 45 D1 1 45 45 45 1200 79% 5% 12% 3812.2

gesa2 o 4 48 D1 1 48 48 48 1248 81% 4% 12% 4138.1

gesa3 3 160 D1 1 160 160 160 1344 80% 4% 12% 4226.6

gesa2 3 168 D1 1 168 168 168 1392 80% 5% 11% 3667.0

rentacar 10 302 ID1 1 302 302 302 1426 59% 4% 33% 4335.3

p2756 2 462 ID2 1 462 688 462 1653 77% 8% 11% 3867.1

mitre 1 106 ID1 2 131 135 131 1657 43% 5% 47% 4082.2

cap6000 2 2 IG 1 2 2 2 2095 8% 74% 0% 730.4

mod011 3 105 D1 1 105 105 105 2332 33% 5% 54% 4038.7

dano3mip 2 1514 ID2 1 1868 1681 1514 3187 14% 2% 76% 9967.3

seymour 0 2351 ID2 1 2965 2965 2351 4827 3% 2% 78% 11846.3

Total 926 8475 349 9645 9835 8726 35466 72% 5% 18% 163313.3

Table 6.4: Decomposing Miplib-problems into 4 blocks (Part II)

6.5. COMPUTATIONAL RESULTS 133

composed the transposed integer programming matrices. As a surprise it turned
out that for the examples that decompose reasonably well almost always all border
variables are continuous variables. The only exceptions are the two “bell”-examples
and noswot. We run SIP for these three examples and branched on one of the border
variables first whenever they have been fractional. The improvement we obtained
were only marginal, possible reasons are that the “bell”-examples contain only one
or two integer variables in the border, and for noswot the value of the LP relaxation
already coincides with the value of the integer optimal solution and the difficulty of
this problem lies in finding this solution.

6.5.2 Steiner Tree Packing Problems

We also tried to test our branch-and-cut algorithm on Steiner tree packing problems
as described in Chapter 3. To get reasonable test problems we are faced with the
difficulty that the integer programming formulation (3.1) contains an exponential
number of Steiner cut inequalities. Although there are much less necessary at the
end to prove optimality of a solution, it is not clear from the beginning which ones
they are. To get around this problem we looked for examples where after adding
only Steiner cut inequalities and no joint inequalities the root LP yields an integer
solution. We found four reasonably small instances that have this property. Table
6.5 summarizes the data.

Example h w N Steiner Cuts per Net Border

1 2 3 4 5 6 7 8

g353 3 5 3 23 12 24 22

g444 4 4 4 27 14 17 30 23

d677 6 7 7 52 36 39 52 31 26 32 71

d688 6 8 8 29 48 42 40 38 27 34 23 82

Table 6.5: Steiner tree packing problems: Data

Column 1 gives the name of the problem, Columns 2 and 3 the height and width
of the underlying grid graph. The number of nets is shown in Column 4. Columns
5 through 12 present the number of Steiner cut inequalities in the root LP for each
single net. The last column gives the number of capacity constraints. Note that due
to the fixing of certain variables in the initialization phase of our branch-and-cut
algorithm for the Steiner tree packing problem, see Chapter 3, this number might
be less than the number of edges (= (h− 1) · w + (w − 1) · h). If we use for β the
number of nets and for the block capacity κ the maximal number of Steiner cut
inequalities per net, an obvious solution to the matrix decomposition problem is to
put all capacity constraints in the border.

Example Presolved Cutting Planes B&B

Rows Col NZs Init Cov 2part BCC Pool Nod Iter

g353 81 48 276 336 60476 16959 830 149368 645 1586

g444 111 36 226 718 9753 3049 142 14625 86 203

d677 339 174 1129 3721 12229 6759 50 35288 25 53

d688 363 222 1241 4205 13822 8105 52 59919 19 54

Total 894 480 2872 8980 96280 34872 1074 259200 775 1896

Table 6.6: Decomposition of Steiner tree packing matrices (Part I)

134 CHAPTER 6. RECOGNIZING BLOCK STRUCTURE

Example Best Solutions Heuristics at Root Time

Lb Ub He No G D1 D2 B LP Sep Heu Tot

g353 20 20 IG 89 26 26 26 81 71% 13% 6% 518.0

g444 10 10 D1 53 17 18 18 111 77% 12% 4% 125.0

d677 7 75 IG 3 105 105 105 339 97% 1% 0% 10986.6

d688 8 80 IG 3 123 123 123 363 97% 1% 0% 11194.2

Total 45 185 148 271 272 272 894 97% 1% 0% 22823.8

Table 6.7: Decomposition of Steiner tree packing matrices (Part II)

Tables 6.6 and 6.7 show the results we obtain with our branch-and-cut algorithm
for the associated matrix decomposition problems. We see that for the two smaller
examples the solution is even better than the “natural” decomposition. The reason
is that some of the capacity constraints turn out to be trivial inequalities due to
variable fixings right at the beginning of our branch-and-cut algorithm for the Stei-
ner tree packing problem. Unfortunately, we are far from solving the two larger
examples. The difficulty of the matrices from Steiner tree packing problems lies
in the fact that the capacity constraints that are supposed to be in the border are
very sparse compared to the Steiner cut inequalities. For instance, the capacity
constraints of example d677 have on average 2.6 non-zero entries (the maximal
number of non-zeros is 5), whereas the average density of the Steiner cut inequalities
for this example is 3.6 with a maximum of 13. The heuristics and the LP solutions,
however, tend to put the rows into the border that have the most non-zero entries.

Chapter 7

Parallelizing the Dual
Simplex Method

7.1 Introduction

In Chapters 2, 3, and 4 we have seen that a significant amount of time is spent for
the solution of the underlying linear programs. For example, in case of the Steiner
tree packing problem up to 90% and more of the total time is due to the solution
of the linear programs. Thus, in order to solve real-world problems of large scale
(as they appear in Chapters 2, 3, and 4) it is necessary to speed-up the solution
process of the linear programs. That is to speed-up the dual simplex algorithm, the
method that is used within a branch-and-cut algorithm (see Appendix B). Linear
programs resulting from integer programs with block structure give two opportuni-
ties to speed-up the dual simplex method (see the description of the dual simplex
method in the next section): First, the LU-factorization, since each block can be
factorized independent of the other blocks and only the linking constraints must be
factorized sequentially thereafter. Second, all column based operation like pricing
can be parallelized. The latter, of course, only pays if a significant amount if time
is spent in these operations. Good candidates here are linear programs that result
from integer programming applications, particularly those that employ “column-
generation”, or linear programs that arise from integer programs with block struc-
ture. For example, in case of the multiple knapsack problem, the number of rows
in the initial integer programming formulation, see (2.1), is |N |+ |M |, whereas the
number of variables is |N | · |M |. Thus, the ratio of number of variables to number of
rows grows quadratic, improving the potential for parallelism with increasing prob-
lem sizes. The same might also hold for the Steiner tree packing problem and the
PIPE problem studied in Chapters 3 and 4, respectively. Of course, it is difficult to
estimate the number of cuts (i) that are necessary in the integer programming for-
mulations (3.1) and (4.1), but with an increasing number of nets (demands) N the
percentage of “local” nets (demands) increases. For these “local” nets (demands)
the number of necessary cuts is usually sublinear. Thus, also in case of the Steiner
tree packing problem and the PIPE problem the number of variables N · |E| might
grow quadratic with the number of rows O(N + |E|). Hence, for all real-world
problems discussed in Part I a significant amount of time is spent in the column
operations of the dual simplex method.

In this chapter we investigate parallelizing the CPLEX1 implementation of the
dual simplex algorithm. As suggested by the above discussion, we will concentrate
our efforts on the pricing and other column-based steps in the dual simplex method.

1CPLEX is a registered trademark of ILOG

135

136 CHAPTER 7. PARALLELIZING THE DUAL SIMPLEX METHOD

We examine three different parallel implementations and test them on different
platforms. Our results will show that the best parallel implementation is superior
to the sequential by a factor of at least 1.5 already if the ratio of number of variables
to number of rows is at least 10. Thus, the parallel dual simplex algorithm might
indeed help to speed-up the solution process of integer programs with block structure
that result from real-world applications of large scale.

In the next section we begin with an outline of the steps of the dual simplex
method followed by profiling results and a more detailed discussion of our paral-
lelization. For the profiles we have selected four test problems with a range of aspect
ratios. The ensuing sections describe our various implementations. We start with
an implementation using PVM (Beguelin, Dongarra, Geist, Jiang, Manchek, and
Sunderam [1994]), followed by one using System V shared-memory constructs, and
conclude with by far the most successful implementation based upon the PowerC
extension of the C programming language. Finally, we give computational results.
These results use an extensive set of test problems, statistic for which appear in
Appendix D.

Other work on the parallelization of the simplex algorithm includes the follow-
ing. Helgason, Kennington, and Zaki [1988] present a parallelization of the simplex
method based on a quadrant interlocking factorization, but no computational re-
sults are given. Eckstein, Boduroglu, Polymenakos, and Goldfarb [1995] investigate
an implementation of a more practical revised simplex method, but the assumption
is made that the constraint matrices are dense, a rare occurrence in practice, see the
tables about problem statistics in Appendix D. In Wunderling [1996] a parallel im-
plementation of the simplex algorithm for sparse linear systems is described where
good speed-ups could be obtained for problems with a high ratio of variables to
constraints. Parallelizing the LU factorization is a topic of its own and has highly
been investigated in computational linear algebra, see the books Duff, Erisman,
and Reid [1986], Kumar, Grama, Gupta, and Karypis [1994], and Gallivan, Heath,
Ng, Ortega, Peyton, Plemmons, Romine, Sameh, and Voigt [1990] for surveys and
further references. Finally, Barr and Hickman [1994], Chang, Engquist, Finkel, and
Meyer [1988], and Peters [1990] discuss the parallelization of the network simplex
method. In contrast to the dual simplex algorithm, the network simplex method
exploits specific problem structure. An indirect result of this fact is that the major
part of computational effort is spent in pricing (for large scale problems typically
more than 90%). All three papers focus on the merits of parallelizing this pricing
step.

7.2 Dual Simplex Algorithms

We suppose the reader to be familiar with the basic terms of linear programming.
For a good introduction to linear programming see Chvátal [1983] or Padberg [1995].

Consider a linear program (LP) in the following standard form:

min cTx
s.t. Ax = b

x ≥ 0
(7.1)

where c ∈ Rn , b ∈ Rm , and A ∈ Rm×n . Note that most practical LPs have non-
trivial bounds on some variables; however, for purposes of this discussion it will
suffice to consider problems in the form (7.1).

The dual of (7.1) is

max bTπ
s.t. ATπ ≤ c

(7.2)

7.2. DUAL SIMPLEX ALGORITHMS 137

Adding slacks yields

max bTπ
s.t. ATπ + d = c

d ≥ 0
(7.3)

A basis for (7.1) is an ordered subset B = (B1, . . . , Bm) of {1, . . . , n} such that
|B| = m and B := AB is non-singular. B is dual feasible if cN − AT

NB−T cB ≥ 0,
where N = {1, . . . , n}\B and B−T abbreviates (B−1)T .

Algorithm 7.2.1 A generic iteration of the standard dual simplex algorithm for
the linear program (7.1).

Input: A dual feasible basis B, d̄N = cN −AT
NB−T cB and x̄B = B−1b.

(1) If x̄B ≥ 0, B is optimal – Stop;
otherwise, let

i = argmin{x̄Bk
: k = 1, . . . ,m}.

dBi is the entering variable.

(2) Solve BT z = ei. Compute αN = −AT
Nz.

(3) Ratio Test.
If αN ≤ 0, (7.1) is infeasible – Stop;
otherwise, let

j = argmin{d̄k/αk : αk > 0, k ∈ N}.
dj is the leaving variable.

(4) Solve By = Aj .

(5) Set Bi = j. Update x̄B (using y) and d̄N (using z).

Remarks:

1. Note that in Step (1) we refer to the choice of the entering dual variable dBi ,
while most textbooks refer to the corresponding leaving primal variable xBi .
A similar remark applies to Step (3).

2. For all dual simplex algorithms, the efficient computation of zTAN is cru-
cial. This computation is implemented by storing AN row-wise so that zero
elements in z need be examined only once.

3. To improve stability, the Ratio Test (Step (3)) is applied in several passes,
using an idea of Harris [1973]. First, the ratios

rk =

{
d̄k/αk if αk > 0 and
+∞ otherwise,

(7.4)

are computed for each k ∈ N . Using these ratios, we compute

t = min{rk + ε/αk : k ∈ N},(7.5)

where ε > 0 is the optimality tolerance, by default 10−6. Finally, we compute
the actual leaving variable using the formula

j = argmax{αk : rk ≤ t}.(7.6)

138 CHAPTER 7. PARALLELIZING THE DUAL SIMPLEX METHOD

Note, since ε > 0, it is possible for some of the dk to be negative, and hence
that rj is negative. In that case, depending upon the magnitude of rj , we may
shift cj to some value at least cj + |dj |, and then repeat the calculation of t
and j employing the new rj . (See Gill, Murray, Saunders, and Wright [1989]
for a discussion of the approach that suggested this shifting. The details of
how these shifts are removed have no effect on our implementation and are
omitted.)

4. In order to solve the two linear systems in the above algorithm (see Steps
(2) and (4)), we keep an updated LU-factorization of B, using the so-called
Forrest-Tomlin update, see Forrest and Tomlin [1972]. For most models, a
new factorization is computed once every 100 iterations. These computations
may be considered part of Step (5).

Steepest Edge

There are three different dual algorithms implemented in CPLEX: The standard
algorithm, described above, and two steepest-edge variants. The default algorithm
is steepest-edge.

Several steepest-edge alternatives are proposed in Forrest and Goldfarb [1992].
These algorithms replace the rule for selecting the index of the entering variable
dBi by

i = argmin{x̄Bk
/ηk : k = 1, . . . ,m},

where the ηk are the steepest-edge norms. The alternative used in our tests corre-
sponds to the choice

(SE) ηk =
√
(eTkB

−1)(eTk B
−1)T .

While it is too expensive to explicitly compute all ηk at each iteration, there
are efficient update formulas. Letting {η1, ..., ηm} be the values of the norms at the
start of an iteration, the values at the start of the next iteration for (SE), η̄k, are
given by the formula

(SE norm update) η̄2k = η2k − 2(
yk
yi

)eTkB
−1z + (

yk
yi

)2zT z (k �= i),

where y and z are as in the statement of the standard dual simplex algorithm.
Note that the implementation of this formula requires the solution of one extra
linear system per iteration, the one used to compute B−1z. As suggested in Forrest
and Goldfarb [1992], this second “FTRAN” can be solved simultaneously with the
linear system in Step (4), thus requiring only a single traversal of the updated
LU -factorization of B.

The default dual in CPLEX uses the (SE) norms with the approximate starting
values ηk = 1 for all k. This choice corresponds to the assumption that most
variables in the initial basis will be slacks or artificials. See Forrest and Goldfarb
[1992] for a detailed discussion.

Summary

In the sections that follow we discuss three different parallel implementations of
the (SE) variant of the standard dual simplex method: One using PVM, one using
general-purpose System V shared-memory constructs, and one using the PowerC
extension of C on an Silicon Graphics multi-processor. In Section 7.3, we begin by
outlining the basic plan for the PVM and “System V” approaches. Each of these

7.2. DUAL SIMPLEX ALGORITHMS 139

requires some explicit form of data distribution. The PowerC version requires no
such data distribution.

To set the stage for the ensuing sections, we close this section with a discussion
of which steps in the dual simplex can be parallelized and give four profiles for runs
on an SGI Power Challenge using the sequential version of CPLEX. The problem
characteristics for the problems selected are given in Table D.3 in Appendix D.

Since the steps that we have chosen to parallelize (as discussed below) are with
one exception in Section 7.6 all column based, it is apparent that the percentage
of parallel work will increase as the aspect ratio of the selected LP increases. The
examples we have chosen demonstrate this fact quite clearly.

In the discussions that follow, we make use of the following designations, classi-
fying the various parts of the algorithm:

Designation Description

Enter Step (1).
BTRAN Solution of BT z = ei (Step (2)).
Pricing Computation of αN = −AT

Nz (Step (2)).
Ratio Computation of t (Step (3) and (7.5)).
Pivot Computation of j and shifting, if necessary (Step (3) and (7.6)).
FTRAN Solutions of By = Aj and Bw = z.
Factor Factorization and factorization update (Step (5)).
Update-d Update of d̄N .
Update-x Update of x̄B and η̄.
Misc All other work.

The Pricing, Ratio, Pivot, Update-d, and Update-x steps offer clear opportuni-
ties for parallelism. We have chosen to concentrate on the first four of these. For
most practical LPs, Step Update-x, seems unlikely to consume a significant part of
the total computation time: In typical LPs, the number of rows is smaller than the
number of columns, usually by a multiple of at least 2 to 3, often by much more.
Indeed, we did test this hypothesis while testing our PowerC implementation, and
found that a parallel version of Update-x was at best of marginal value, and in some
cases actually degraded performance.

Of the remaining steps, BTRAN and FTRAN are highly recursive and well
known to be very difficult to parallelize, especially given the fact that the LU-
factorization of the basis matrix B changes by a rank-1 update at each iteration.
Even the “obvious parallelism”, afforded by solving each of the two systems in
FTRAN on separate processors, is difficult to exploit, see the discussion in Section
7.6. Finally, the LU-factorization has a clear potential to be parallelized, in particu-
lar if the underlying LP has block structure. However, the problem of parallelization
of the LU-factorization is largely independent of the simplex method itself, and we
have chosen not to investigate it here. See Helgason, Kennington, and Zaki [1988],
Davis and Yewr [1990], Duff, Erisman, and Reid [1986], Kumar, Grama, Gupta,
and Karypis [1994], and Gallivan, Heath, Ng, Ortega, Peyton, Plemmons, Romine,
Sameh, and Voigt [1990] for a further discussion of this problem.

Table 7.1 shows CPLEX profile statistics. The entries show, for four examples,
the time in percentage spent in the various parts of the sequential algorithm. The
rows in bold face give the steps that will be parallelized in this chapter. The last
row % Parallel (expressed in percentage of the total running time) summarizes
these parts. Thus, for cre b we expect a reduction to at most 44.3% + 55.7%

p of
the sequential time, when using p processors, whereas for aa300000 almost linear
speed-ups may be obtained.

140 CHAPTER 7. PARALLELIZING THE DUAL SIMPLEX METHOD

Algorithmic % of Total Computation Time
Step pilots cre b roadnet aa300000

Enter 2.1 5.5 0.2 0.1
BTRAN 15.0 11.5 1.5 0.5
Pricing 15.3 33.1 57.2 65.4
Ratio 5.3 15.6 22.7 20.4
Pivot 2.3 3.9 6.9 4.4
FTRAN 31.2 20.5 3.3 1.1
Factor 20.3 3.7 1.2 0.4
Update-d 1.1 3.1 5.2 7.4
Update-x 2.5 0.6 0.6 0.2
Misc 4.9 2.5 1.2 0.1

Total 100.0 100.0 100.0 100.0
% Parallel 24.0 55.7 92.0 97.6

Table 7.1: CPLEX profiles for some LP problems

7.3 Outline of the Data Distributed Implementa-
tion

In this section we discuss our data distributed implementations of the (SE) version
of the standard dual simplex method. The parallel model we use is master/slave
with one master and (potentially) several slaves. We call the master the boss and
the slaves workers. The boss keeps the basis, and each processor, including the boss,
gets a subset of columns. Each column must belong to exactly one processor. All
computations directly related to the basis are done sequentially, by the boss. The
other steps can be executed in parallel: Pricing, Ratio, Pivot, and Update-d.

Algorithm 7.3.1 A parallel iteration of the dual simplex algorithm.

Input: A dual feasible basis B, d̄N = cN −AT
NB−T cB and x̄B = B−1b.

(1) Enter.
If x̄B ≥ 0, B is optimal – Stop; otherwise, let

i = argmin{x̄Bk
: k = 1, . . . ,m}.

dBi is the entering variable.

(2) BTRAN.
Solve BT z = ei.

(3) Com(z).
The boss sends the vector z to the workers.

(4) Pricing.
Each processor computes its part of αN = −AT

Nz.

(5) Com(α).
The workers inform the boss whether their parts of αN are non-positive.

(6) Unboundedness Test.
If αN ≤ 0, (7.1) is infeasible – Stop.

(7) Ratio.
The processors compute their t-values, see (7.5).

(8) Com(t).
The workers send their t to the boss.
The boss determines the global t and sends it to the workers.

7.3. OUTLINE OF THE DATA DISTRIBUTED IMPLEMENTATION 141

(9) Pivot.
Each processor determines j as outlined in (7.6).

(10)Com(p).
The workers send their pivot element |αj | to the boss.

(11)Pivot Selection.
The boss determines the best pivot and corresponding j and
determines if it is “acceptable”. If it is rejected, the objective-function
coefficient for j is shifted and all processors go back to Ratio2.

(12)Com(j).
If the pivot element is accepted, the boss informs the “winning” worker
to send its column. dj is the leaving variable.

(13)FTRAN.
Solve By = Aj and Bw = z.

(14)Factor.
Factorization and its update.

(15)Com(update).
The boss sends information to the workers for the update,
including the leaving and entering variable.

(16)Update-x.
Set Bi = j. Update x̄B (using y).

(17)Update-d.
Update d̄N (using z).

Algorithm 7.3.1 outlines a typical iteration of the parallel dual simplex. The
steps that do not appear in bold face were described in the previous section in
Algorithm 7.2.1 and are sequentially performed by the boss. The first new step is
the communication of the z vector, Com(z), from the boss to the workers. For the
infeasibility test (see Step (3) of the dual simplex algorithm) the workers inform
the boss in Com(α) whether their part of αN satisfies αN ≤ 0.

The steps Ratio, Com(t), Pivot, Com(p), and Pivot Selection must then be
performed iteratively until the pivot has been accepted. In Com(t) the global
t, see (7.5), is determined and distributed among the processors. This involves
two communications steps. After the workers send their pivot element in Com(p)
to the boss (another communication step) the boss decides on the acceptance of
the pivot. It is rejected, the boss informs the workers to return to Ratio. Thus,
the total number of communication steps until the pivot element is accepted is
4 · (number of rejected pivots) + 3.

After the pivot element has been accepted, the boss informs the “winning”
worker to send the entering column (two communication steps). The data in
Com(update) includes the leaving variable and data for updating the reduced
costs. This information is collected at different points within the sequential code,
resulting in at most two communication steps. Table 7.2 gives a diagram of Al-
gorithm 7.3.1 and shows where communication steps occur and which steps are
performed in parallel.

In view of the profile statistics given in Table 7.1 in the previous section, and
of the fact that Enter, BTRAN, FTRAN and Factor will all be executed on a sin-
gle processor (the boss), it is plain that we cannot expect significant performance
improvements unless the ratio of variables to constraints in a given LP is large. In-
deed, our first thought was not only to enforce this requirement, but to concentrate

2The complete test for pivot acceptability is much more complicated than indicated here, but
the basic structure of the algorithmic response is essentially as indicated.

142 CHAPTER 7. PARALLELIZING THE DUAL SIMPLEX METHOD

Step boss worker

Enter ∗
BTRAN ∗
Com(z) z �

Pricing ∗ ∗
Ratio ∗ ∗
Com(α) � α

Com(t) � t �

Pivot ∗ ∗
Com(p) �

|αj |

Pivot Selection ∗
Com(j) � j �

FTRAN ∗
Factor ∗
Com(update) update �

Update-d ∗ ∗
Update-x ∗

Table 7.2: The arrows in this table indicate where communication between the boss
and the workers must occur, with directions indicating the direction of data flow.
An asterisk marks where a task is performed.

on problems for which the total memory requirements were so large that they ex-
ceeded the memory available on a single processor. Thus, we began by considering
possibly heterogeneous networks of workstations connected by a local area network.
As communication software we used PVM.

7.4 An Implementation Using PVM

PVM (Parallel Virtual Machine) is a general purpose software package that per-
mits a network of heterogeneous Unix computers to be used as a single distributed-
memory parallel computer, called a virtual machine. PVM provides tools to auto-
matically initiate tasks on a virtual machine and allows tasks to communicate and
synchronize3.

Our first implementation was in one-to-one correspondence with the sequential
code. Thus, the boss immediately sent a request to the workers whenever some
particular information was needed. Where possible, the boss then performed the
same operations on its set of columns, thereafter gathering the answers from the
workers. Assuming that the first selected pivot was accepted, this approach led to
from 6 to 9 communication steps per iteration, depending on whether the entering
and/or leaving column belonged to the workers. The data was partitioned in our
initial implementation by distributing the columns equally among the processors.

We tested this first parallel implementation, carried out on the Netlib problems,
on a cluster of two workstations. The boss was run on a SUN S20-TX61 and the
one worker on a SUN 4/10-41. The two workstations were connected by a 10 Mb/s
(megabits per second) Ethernet. The sequential code was run on the SUN S20-
TX61. Columns 2 and 3 of Table 7.3 show the solution times and the number

3PVM is public domain and accessible over anonymous ftp via netlib2.cs.utk.edu. For details
on PVM, see Beguelin, Dongarra, Geist, Jiang, Manchek, and Sunderam [1994]. In our implemen-
tation we used PVM Version 3.3.7.

7.4. AN IMPLEMENTATION USING PVM 143

of iterations needed by the sequential code, Columns 4 and 5 the corresponding
numbers for the initial parallel implementation. All solution times given are real
(wall-clock) times in seconds, unless otherwise noted, and are for the reduced models
obtained by applying the default CPLEX presolve procedures. The times do not
include reading and presolving. Results for larger problems are presented later.
Note that the parallel version was approximately 3.3 times slower than the sequential
version! Due to the nature of the Ethernet, this was not unexpected. But not all
of this excess time was due to communication costs, which suggested the following
improvements.

1. In Com(p) each worker sends not only the pivot element, but simultaneously
the corresponding column. This modification saves Com(j), since the boss no
longer needs to inform the “winning” worker to send a column.

2. The pivot selection strategy was changed to reduce the number of communica-
tion steps. Each processor determines its own t and performs the steps Ratio,
Pivot and Pivot Selection (including shifting) independently of the other pro-
cessors. The workers then send their selected pivots and t values to the boss,
which makes the final selection. This procedure reduces the number of com-
munication steps of steps Ratio through Pivot Selection, Steps (7) - (11), from
4 · (number of rejected pivots) + 3 to 3.

3. The information for the infeasibility test Com(α) can be sent in Com(p). In
case infeasibility is detected, the pivot computation is wasted work, but such
occurrences are rare.

4. All relevant information for the workers’ update is already available before
FTRAN. Note that the workers need only know the entering and leaving
column and the result from the Ratio Test in order to update the reduced
costs. Thus, only one communication step after Pivot Selection is needed for
the update.

5. PVM offers different settings to accelerate message passing for homogeneous
networks. We make use of these options where applicable.

6. Load balancing was (potentially) improved as follows: Instead of distributing
columns based simply upon the number of columns, we distributed the matrix
non-zeros in as nearly equal numbers as possible over all processors.

Columns 6 and 7 of Table 7.3 show the results on the Netlib problems after
implementing the above improvements. For a typical simplex iteration, the number
of communication steps was reduced to three: the boss sends z, the workers send
their pivots and corresponding columns, and the boss sends information for the
update.

Example Sequential 2 processors 2 processors
(initial) (improved)

Time Iterations Time Iterations Time Iterations

Netlib 3877.8 130962 12784.8 137435 7736.5 142447

Table 7.3: Netlib results on a local area network

Based upon Table 7.3, the implementation of 1.-6. improves computational times
by a factor of 1.6, even though increasing the number of iterations slightly. However,
the performance of the parallel code is still significantly worse than that of the
sequential code. One reason is certainly the nature of the Netlib problems. Most

144 CHAPTER 7. PARALLELIZING THE DUAL SIMPLEX METHOD

are either very small or have a small number of columns relative to the number of
rows. Table 7.4 gives corresponding results for a test set where the ratio of columns
to rows was more favorable, see the problem statistics in Table D.3 of Appendix D.

Example Sequential 2 processors
Time Iterations Time Iterations

0321.4 9170.1 21481 7192.0 20178
cre b 614.5 11121 836.1 13219
nw16 120.7 313 83.1 313
osa030 645.8 2927 515.4 3231
roadnet 864.7 4578 609.6 4644

Table 7.4: Larger models on a local area network

The results are significantly better. With the exception of cre b, the parallel times
are between 20% (for osa030) and 37% (for nw16) faster, though, again largely due
to communication costs, still not close to equaling linear speed-up. Our measure-
ments indicated that communication costs amounted to between 30% (for osa030)
and 40% (for cre b) of the total time. Since communication was taking place over
Ethernet, we decided to test our code on two additional parallel machines where
communication did not use Ethernet, a SUN S20-502 with 160 MB of RAM memory
and an IBM SP2 with eight processors (each a 66 MHz thin-node with 128 MB of
RAM). The nodes of the SP2 were interconnected by a high speed network running
in TCP/IP mode.

Example Sequential 2 processors
Time Iterations Time Iterations

Netlib 4621.2 130962 6931.1 142447
0321.4 9518.3 21481 8261.1 20178
cre b 650.5 11121 769.4 13219
nw16 99.6 313 78.4 313
osa030 556.3 2927 502.1 3231
roadnet 801.0 4578 652.5 4644

Table 7.5: Larger models on a SUN S20-502

The results on the SUN S20-502 were unexpectedly bad, worse than those using
Ethernet. We will come to possible reasons for this behavior later. The results on
the SP2 were much better (with the exception of cre b) and seem to confirm our
conclusions concerning the limitations of Ethernet.

Example Sequential 2 processors 4 processors
Time Iterations Time Iterations Time Iterations

Netlib 2140.9 130054 5026.9 143348 not run not run
0321.4 5153.7 24474 3624.6 26094 2379.7 21954
cre b 390.2 11669 399.8 11669 458.9 10915
nw16 94.0 412 50.4 412 30.4 412
osa030 321.3 2804 191.8 2804 152.7 2836
roadnet 407.3 4354 235.5 4335 182.4 4349

Table 7.6: Larger models on an SP2

7.5. A SHARED MEMORY IMPLEMENTATION 145

To summarize, there seems little hope of achieving good parallel performance on
a general set of test problems using PVM and a distributed-memory model. Indeed,
it is our feeling that this conclusion is valid independent of PVM. Such a result is
not unexpected. However, the distributed memory code is not without applications
as illustrated by the final table of this section.

Example Time Iterations

aa6000000 10315.8 10588
us01 59.4 249

Table 7.7: Large airline models on an SP2 using all 8 nodes.

The two examples in Table 7.7 did not fit onto a single node of the machine being
used, so we could not compare the numbers to sequential times. However, the CPU-
time spent on the boss was 9332.9 sec. (90.5% of the real time) for aa6000000 and
52.5 sec. (= 88.5% of the real time) for us01. Time measurements for the smaller
examples in Table 7.6 confirm that about 10% went for communication.

In closing this section, we note that one of the biggest limitations of PVM is
directly related to its portability. The generality of PVM means that transmitted
data usually must be passed through different interfaces and thereby often packed,
unpacked, encoded, decoded, etc. For multiprocessors like the SUN S20-502 or the
Power Challenge (see Section 7.6), this work is unnecessary.

7.5 A Shared Memory Implementation

Based upon our results using PVM we decided to investigate the use of general-
purpose, UNIX System V shared-memory constructs. We restricted our choice to
System V mainly because it provides high portability. Possible candidates for in-
terprocess communication (IPC) on a single computer system are pipes, FIFOs,
message queues, and shared memory in conjunction with semaphores (for an excel-
lent description of these methods see Stevens [1990]). We looked at the performance
of these four types of IPC by sending data of different sizes between two processors.
It turned out that the shared memory/semaphore version was the fastest (see also
Stevens [1990], page 683). Shared Memory allows two or more processes to share a
certain memory segment. The access to such a shared memory segment is controlled
by semaphores. Semaphores are a synchronization primitive. They are intended to
let multiple processors synchronize their operations, in our case the access to shared
memory segments. There are different system calls available that create, open, give
access, modify or remove shared memory segments and semaphores. For a descrip-
tion of these functions, see the man pages of Unix System V or Stevens [1990].

We implemented our shared memory version in the following way: We have
one shared memory segment for sending data from the boss to the workers. This
segment can be viewed as a buffer of appropriate size. All the data to be sent to
the workers is copied into this buffer by the boss and read by the workers. The
workers use the first four bytes to determine the type of the message. The access
to the buffer is controlled by semaphores. In addition, we have one shared memory
segment for each worker to send messages to the boss. These segments are used in
the same manner as the “sending buffer” of the boss.

The shared memory version differs from the PVM version in the following re-
spects:

146 CHAPTER 7. PARALLELIZING THE DUAL SIMPLEX METHOD

1. The workers do not send the pivot column immediately together with the pivot
element, i. e., improvement 1. on page 143 is removed: There might be several
pivot elements and corresponding columns sent per iteration, depending upon
numerical considerations. This behavior could result in an overflow of the
shared memory buffer. On the other hand, informing a worker to send a
column is relatively inexpensive using semaphores.

2. We changed the pivot selection strategy (see 2. on page 143) back to that
of the sequential code, mainly because we wanted to have the same pivot
selection strategy for an easier comparison of the results and because the
additional communication steps are not time-consuming using shared memory
and semaphores.

3. We saved some data copies by creating another shared memory segment for
the vector z. Thus, in Com(z) the workers are notified of the availability of
the new vector by a change of the appropriate semaphore value.

Table 7.8 shows the results of the shared memory version on the SUN S20-502.

Example Sequential 2 processors
Time Iterations Time Iterations

Netlib 4621.2 130962 5593.3 141486
0321.4 9518.3 21481 7958.2 20465
cre b 650.5 11121 604.9 13219
nw16 99.6 313 82.2 313
osa030 556.3 2927 545.1 3231
roadnet 801.0 4578 711.2 4644

Table 7.8: Shared memory version on a SUN S20-502

The results on the SUN S20-502 are again not satisfactory. For the Netlib

problems the times are better than those using PVM, but are still far inferior to
the CPLEX sequential times. For the larger models the numbers are even worse.
Two contributors to these negative results are the following:

1. The semaphore approach is probably not the right way to exploit shared mem-
ory for the fine-grained parallelization necessary in the dual simplex algorithm.
It is true that there are other communication primitives available that might
be faster. However, as this work was being done, there did not seem to be
any better approach available that was portable. We will come to this point
again in the next section.

2. There is a serious memory bottleneck in the SUN S20-502 architecture. Be-
cause the data bus is rather small, processes running in parallel interfere with
each other when accessing memory. Looking at the SPEC results for the single
processor (S20-50) and 2-processor (S20-502) models we have

SUN S20-50 SUN S20-502
SPECrate int92 1708 3029
SPECrate fp92 1879 3159

This means that up to about 19% is lost even under ideal circumstances. For
memory intensive codes like CPLEX, the numbers are even worse. For the
Netlib problems, we ran CPLEX alone and twice in parallel on the SUN
S20-502:

7.5. A SHARED MEMORY IMPLEMENTATION 147

CPLEX (alone) CPLEX (twice in parallel)
4621.2 sec. 6584.4 sec.

6624.7 sec.

This degradation was about 40%! Clearly, the SUN S20-502 has serious limi-
tations in parallel applications4.

The Silicon Graphics Power Challenge multi-processors are examples of machines
that do not suffer from this limitation. Table 7.9 summarizes our tests running the
System V semaphore implementation on a two-processor, 75 Mhz Silicon Graphics
R8000 multi-processor.

0.5

1

1.5

2

2.5

3

1 4 16 64 256 1024 4096 16384

sp
ee

d
up

columns per row

2 Processors

Figure 7.1: Speed up of Shared memory version: All problems

We note that the five larger models (0321.4, cre b, nw16, osa030, and roadnet)
achieve reasonable, though with one exception sublinear speed-ups, ranging from
22% for cre b to 105% for nw16. One reason that better speed-ups are not obtained
is that a significant fraction of the communication costs is independent of problem
size – indeed, all steps to the point that the worker sends an entering column. As a
consequence, examples with low-cost iterations cannot be expected to achieve sig-
nificant speed-ups. This phenomenon is illustrated by aa25000, sfsu4, nopert, cre b,
mctaq, usfs2, food, aa6, ra1, pilots, and especially the Netlib problems (including
fit2d), where on the average at most 0.03 seconds are needed per iteration, running
sequentially. All other examples, for which the number of iterations of the sequential
and parallel codes are roughly equal, give approximately the desired speed-up. The
“aa”-examples behave particularly well: The numbers of iterations are constant,
individual iterations are expensive, the fraction of work that can be parallelized is
near 100%, see Table 7.9.

4Sun Microsystems gave us the opportunity to test some of these examples under an optimal
environment on their machines. On the SUN S20-502 we got the same results as on our machine,
whereas on a SUN S20-712 the degradation was at most 20%. These better results are mainly due
to the 1 MB external cache each of the two processors of a SUN S20-712 has. The extra cache
helps in avoiding bottlenecks on the data bus.

148 CHAPTER 7. PARALLELIZING THE DUAL SIMPLEX METHOD

0.5

1

1.5

2

2.5

3

16 32 64 128 256 512 1024

sp
ee

d
up

columns per row

2 Processors

Figure 7.2: Speed up of Shared memory version: “aa”-problems

Finally, note that mctaq, sfsu2, sfsu3, finland, and imp1 fail to follow any particu-
lar trend, primarily because the number of iterations for the parallel and sequential
codes differ drastically. That such differences arise was unexpected, since the pivot
selection strategy in both codes is the same, as is the starting point. However, since
the basis is managed by the boss, we distribute only the initial non-basic columns
among the processors, resulting in a possible column reordering. With this reorder-
ing, different columns can be chosen in the Pricing step, leading to different solution
paths. Note that in terms of time per iteration, the five listed models do achieve
close to linear speed-ups.

Figure 7.1 and 7.2 give a graphical illustration of the numbers in Table 7.9.
The abscissa shows the ratio of the number of columns to the number of rows.
The ordinate presents the speed-up of all non-Netlib examples in Figure 7.1 and
all “aa”-examples in Figure 7.2. With the exception of fit2d we obtain at least
linear speed-up, when the ratio exceeds 160. For the “aa”-problems we obtain ideal
speed-up beginning at a ratio of 80.

7.6 An Implementation Using PowerC

We describe a thread-based parallel implementation of the dual steepest-edge al-
gorithm on an SGI Power Challenge using the SGI PowerC extension of the C
programming language.

The work described in this section was carried out at a somewhat later date
than that in previous sections. As a result, the base sequential version of CPLEX
was somewhat different. As the tables will show, this version not only exhibited
improved performance when parallelized, but was significantly faster running se-
quentially.

In our work we use only a small subset of the compiler directives provided
by the PowerC extension: #pragma parallel, #pragma byvalue, #pragma local,
#pragma shared, #pragma pfor, and #pragma synchronize. The parallel prag-
ma is used to define a parallel region. The remaining pragmas are employed inside

7.6. AN IMPLEMENTATION USING POWERC 149

Example Sequential 2 processors Speed-up
Time Iterations Time Iterations

Netlib 2004.4 133299 2361.7 138837 0.8

0321.4 4406.2 20677 2681.2 20662 1.6

0341.4 564.8 8225 394.8 8225 1.4

aa100000 257.2 2133 128.8 2133 2.0

aa1000000 15266.6 7902 7030.5 7902 2.2

aa200000 1262.4 4090 632.2 4090 2.0

aa25000 7.9 546 7.1 546 1.1

aa300000 2724.0 5513 1339.5 5513 2.0

aa400000 4068.9 5931 1964.7 5931 2.1

aa50000 34.1 916 23.2 916 1.5

aa500000 6081.8 6747 2878.1 6747 2.1

aa6 22.7 2679 26.2 2679 0.9

aa600000 7619.0 6890 3599.5 6890 2.1

aa700000 9746.5 7440 4536.4 7440 2.1

aa75000 105.1 1419 60.8 1419 1.7

aa800000 11216.1 7456 5172.8 7456 2.2

aa900000 13130.8 7590 6028.9 7590 2.2

amax 3122.5 8276 1923.9 9780 1.6

continent 771.6 16586 558.8 16570 1.4

cre b 337.8 10654 275.3 10654 1.2

finland 1654.1 24356 1560.7 31416 1.0

fit2d 131.7 6366 97.0 6959 1.4

food 653.5 21433 598.4 21328 1.1

imp1 8252.9 38421 3231.4 30036 2.6

mctaq 531.4 28714 683.1 41460 0.8

nopert 424.1 26648 249.9 24185 1.7

nw16 109.2 403 53.3 403 2.0

osa030 354.8 2943 192.2 2833 1.8

osa060 2182.7 5787 1074.5 5801 2.0

pilots 71.2 4211 82.2 4437 0.9

ra1 51.1 3091 46.2 3091 1.1

roadnet 378.9 4405 213.9 4608 1.8

sfsu2 1818.2 12025 1828.0 23200 1.0

sfsu3 779.2 4055 804.0 9436 1.0

sfsu4 71.5 2256 66.4 2414 1.1

tm 8154.3 74857 5478.7 71657 1.5

us01 782.5 278 350.8 278 2.2

usfs2 241.0 8356 268.5 7614 0.9

w1.dual 27.2 67 13.5 67 2.0

Table 7.9: Shared memory version on a 75 Mhz Silicon Graphics R8000

150 CHAPTER 7. PARALLELIZING THE DUAL SIMPLEX METHOD

parallel regions. Their applications and meanings are sketched below.
Defining a parallel region is analogous to defining a C function. The byvalue,

local, and shared directives specify the argument list for that function, with each
directive specifying the obvious types – for example, shared specifies pointers that
will be shared by all threads. The #pragma synchronize directive forces all threads
to complete all computations up to the point of the synchronize statement before
any thread is allowed to continue. Exactly one synchronization pragma is used
in our implementation (it could be easily avoided by introducing another parallel
region). All of the actual parallelism is invoked by the loop-level directive pfor.

The key parallel computation is the Pricing step. If this step were carried
out in the straightforward way, it’s parallelization would also be straightforward,
employing the following sort of loop (inside a parallel region):

#pragma pfor iterate (j = 0; ncols; 1)

for (j = 0; j < ncols; j++) {
compute a sparse inner product for column j;

}
where ncols denotes the number of columns. We note here that the #pragma

pfor construction means that a parallel region is created for the loop following the
pragma, and that within this region the iterates of the loop, the computations of
the sparse inner products, will be scheduled at run time on the available processors.
For a discussion of the specific scheduling algorithms employed by the compiler see
Bauer [1992]. We remark here that on the R8000 the startup cost for the very
first parallel region encountered in the code (at run time) is approximately one
millisecond; subsequent parallel regions have a startup cost of approximately one
microsecond.

Returning to our discussion of Pricing, as noted earlier, CPLEX does not carry
out the Pricing step column-wise. In order to exploit sparsity in z (see Step (2)),
the part of the constraint matrix corresponding to the non-basic variables at any
iteration is stored in a sparse data structure by row, and this data structure is
updated at each iteration by deleting the entering variable (which is “leaving” the
non-basic set) and inserting the leaving variable.

Given that AN is stored by row, the computation of zTAN could be parallelized
as follows:

#pragma pfor iterate (i = 0; nrows; 1)

for (i = 0; i < nrows; i++) {
αN + = z[i] ∗ (i-th row of AN);

}

where the inner computation itself is a loop computation, and αN has been pre-
viously initialized to 0. The difficulty with this approach is that it creates false
sharing: the individual entries in αN will be written to by all threads, causing this
data to be constantly moved among the processor caches. One obvious approach to
avoiding this difficulty is to create separate target arrays αNp , one for each thread,
with the actual update of αN carried out as a sequential computation following
the computation of the αNp . However, a much better approach is to directly par-
tition N into subsets, one for each thread. To do so required restructuring a basic
CPLEX data structure and the routines that accessed it. Once that was done, the
implementation of the parallel pricing was straightforward.

Where K is a multiple of the number of processors, let

0 = n0 ≤ n1 ≤ n2 ≤ . . . ≤ nK = ncols,

7.6. AN IMPLEMENTATION USING POWERC 151

and let Pk = {nk, . . . , nk+1 − 1} for k = 0, . . . ,K − 1. The nk are chosen such that
the numbers of non-zeros in APk

are as nearly equal as possible. For a given set of
non-basic indices N , the corresponding partition is then defined by Nk = N ∩ Pk.
Using this partition, the parallel pricing loop takes the form

#pragma pfor iterate (k = 0; K; 1)

for (k = 0; k < K; k++) {
for (i = 0; i < nrows; i++) {

αNk
+ = z[i] ∗ (i-th row of ANk

);
}

}

In initial testing of the partitioning, an interesting phenomenon was discovered,
related at least in part to the cache behavior of the R8000. Consider the model
aa400000. Running the sequential code with no partitioning yielded a timing of
2864.1 seconds while the initial PowerC version on two processors using K = 2
ran in 1300.4 seconds, a speed-up considerably greater than 2.0. Setting K = 2 in
the sequential code yielded a run time of 2549.4, much closer to what one would
expect. After considerable testing, we thus chose to set K – in both the sequential
and parallel instances – to be the smallest multiple of the number of processors that
satisfies K ≥ ncols/(50 nrows). Thus, for aa400000 and two processors, K was 8,
the smallest multiple of 2 greater than 259924/(50 · 837). We note that this change
also seems to have benefited other platforms. The dual solution time for fit2d on a
133 Mhz Pentium PC was 204.5 seconds with K = 1 and 183.7 with the new setting
of K = 9.5 It is very interesting to note that an idea – here the idea of partitioning
the column set – that was introduced in the parallel algorithm also improves the
sequential code.

We now comment on the remaining steps that were parallelized in the dual algo-
rithm: Enter, Ratio, Pivot, Update-d, and the update of the row-wise representation
of AN .

Ratio and Pivot: For these computations we use the same partition of N used in
the Pricing step. Note that the dual algorithm allows the Pricing and Ratio
steps to be performed without any intervening computations. As it turned
out, in the CPLEX sequential implementation prior to the current work, there
were several relatively inexpensive, minor computations that were interspersed
between these two major steps. Since entering and leaving parallel regions
does incur some fixed costs (see the discussion above), it seemed important
to be able to do the Pricing and Ratio steps inside a single region; moreover,
with some reorganization within each of these computations, it was possible to
carry out the “major part” of each step without introducing synchronization
points. Thus, the essential form of the computation as implemented was the
following:

#pragma pfor iterate (k = 0; K; 1)

for (k = 0; k < K; k++) {
for (i = 0; i < nrows; i++) {

αNk
+ = z[i] ∗ (i-th row of ANk

);
}
Ratio Test for Nk;

}

5Dual is not the way to solve fit2d, especially not on a PC. The solution time using simplex
primal was 18.6 seconds and using the barrier algorithm 15.4 seconds.

152 CHAPTER 7. PARALLELIZING THE DUAL SIMPLEX METHOD

The reorganization of computations for these two steps, as well as other re-
organizations to facilitate the parallel computation were carried out so that
they also applied when the dual was executed sequentially, thus preserving
code unity.

Enter: Since this computation is easy to describe in essentially complete detail, we
use it as an illustration of the precise syntax for the PowerC directives:

#pragma parallel

#pragma byvalue (nrows)

#pragma local (i_min, min, i)

#pragma shared (x_B, norm, i_min_ar)

{

i_min = -1;

min = 0.0;

#pragma pfor iterate (i = 0; nrows; 1)

for (i = 0; i < nrows; i++) {

if (x_B[i] < min * norm[i]) {

min = x_B[i] / norm[i];

i_min = i;

}

}

i_min_ar[mpc_my_threadnum ()] = i_min;

}

i_min = -1;

min = 0.0;

for (i = 0; i < mpc_numthreads (); i++) {

if (i_min_ar[i] != -1) {

if (x_B[i_min_ar[i]] < min * norm[i_min_ar[i]]) {

min = x_B[i_min_ar[i]] / norm[i_min_ar[i]];

i_min = i_min_ar[i];

}

}

}

The PowerC function mpc my threadnum() returns the index of the thread
being executed, an integer from 0 to T − 1, where T is the total number of
threads. The function mpc numthreads() returns T.

AN update: The insertion of new columns is a constant-time operation. However,
due to properties of the chosen data structures the deletion operation can be
quite expensive. It was parallelized in a straightforward manner.

Finally, we remark on one important computation that was not parallelized. As
discussed earlier, the dual steepest-edge algorithms all require the solution of one
additional FTRAN per iteration. The result is that two ostensibly “independent”
solves are performed using the same basis factorization. These solves are typically
quite expensive, and it would seem clear that they should be carried out in parallel
(on two processors). However, in the sequential code these two solves have been
combined into a single traversal of the factorization structures. That combination,
when carefully implemented, results in some reduction in the actual number of
computations as well as a very effective use of cache. As a result, all our attempts
to separate the computations and perform them in parallel resulted in a degradation
in performance.

7.6. AN IMPLEMENTATION USING POWERC 153

Computational Results

The computational results for the PowerC parallel dual are given in Table 7.10.
Tests were carried out on a 4-processor 75 Mhz R8000. (There was insufficient
memory to run aa6000000.)

Comparing the results in Table 7.10 to the profiles in Table 7.1, we see that
pilots – as expected, because of the large fraction of intervening non-parallel work –
did not achieve ideal performance. On the other hand, cre b came very close to the
ideal speed-up and aa300000 exceeded ideal speed-up by a considerable margin.

0

1

2

3

4

5

6

1 4 16 64 256 1024 4096 16384

sp
ee

d
up

columns per row

2 Processors
3 Processors
4 Processors

Figure 7.3: Speed-up of PowerC version: All problems

0

1

2

3

4

5

6

0 1 2 3 4 5

sp
ee

d
up

number of processors

average
min-max

linear

Figure 7.4: Avg. speed-up of PowerC version: All problems

There are unfortunately several, as yet unexplained anomalies in our results.
These mainly show up on larger models. In several instances superlinear speed-
ups are achieved. Examples are aa200000 and imp1, with 4-processor speed-ups
exceeding factors of 5. On the other hand, other models that would seem even
more amenable to parallelism, principally the four largest “aa”-models, achieve
speed-ups considerably smaller than 4 on 4 processors. At this writing, the authors

154 CHAPTER 7. PARALLELIZING THE DUAL SIMPLEX METHOD

can offer no better explanation than that these anomalies are due to R8000 cache
and memory bus properties.

Figures 7.3 through 7.6 depict the results in Table 7.10 graphically. For 2 pro-
cessors, linear speed-ups are obtained for all non-Netlib problems with ratios 60
or higher. The same is true for 3 processors. An almost ideal speed-up is achieved
on 4 processors when the ratio is greater than 70, with the exceptions of fit2d and
w1.dual. On 2 processor we see speed-ups of 1.5 for problems with as few as 10
columns per row. Figures 7.4 and 7.6 show almost linear scalability up to 4 proces-
sors. In particular, note that the speed-ups for the “aa”-problems are on average
close to linear. It remains to determine whether this behavior carries over to more
processors.

0

1

2

3

4

5

6

16 32 64 128 256 512 1024

sp
ee

d
up

columns per row

2 Processors
3 Processors
4 Processors

Figure 7.5: Speed-up of PowerC version: “aa”-problems

0

1

2

3

4

5

6

0 1 2 3 4 5

sp
ee

d
up

number of processors

average
min-max

linear

Figure 7.6: Avg. speed-up of PowerC version: “aa”-problems

7.6. AN IMPLEMENTATION USING POWERC 155

Example Iterations Run time (no. of processors) Speed-ups
1 2 3 4 2 3 4

Netlib 136369 1310.2 1216.2 1151.3 1123.6 1.1 1.1 1.2

0321.4 19602 2703.6 1599.4 1218.5 1034.7 1.7 2.2 2.6

0341.4 9190 341.5 205.7 168.3 146.9 1.7 2.0 2.3

aa100000 2280 153.1 64.3 43.3 32.9 2.4 3.5 4.7

aa1000000 7703 7413.5 3851.2 2687.5 2089.4 1.9 2.8 3.6

aa200000 3732 675.4 318.4 189.8 128.1 2.1 3.6 5.3

aa25000 552 3.7 2.9 2.4 2.1 1.3 1.5 1.8

aa300000 5865 1743.1 876.4 557.7 381.7 2.0 3.1 4.6

aa400000 6271 2473.0 1286.5 855.4 629.0 1.9 2.9 3.9

aa50000 1038 20.0 11.5 8.5 7.1 1.7 2.4 2.8

aa500000 6765 3349.5 1713.6 1165.4 879.9 2.0 2.9 3.8

aa6 2509 12.1 10.4 9.5 9.1 1.2 1.3 1.3

aa600000 6668 3904.9 2019.1 1393.0 1054.9 1.9 2.8 3.7

aa700000 7162 4951.4 2542.8 1760.0 1361.5 1.9 2.8 3.6

aa75000 1360 45.8 21.2 15.3 12.6 2.2 3.0 3.6

aa800000 7473 5763.1 3000.6 2084.1 1616.1 1.9 2.8 3.6

aa900000 8166 7242.4 3738.3 2606.4 2020.2 1.9 2.8 3.6

amax 9784 2093.8 1151.7 795.2 625.3 1.8 2.6 3.4

continent 12499 236.7 163.9 141.5 128.9 1.4 1.6 1.8

cre b 11136 168.5 124.9 107.9 100.5 1.3 1.6 1.7

finland 29497 1086.8 691.4 580.3 526.4 1.6 1.9 2.1

fit2d 5724 49.2 29.3 21.5 17.3 1.7 2.3 2.9

food 21257 311.3 259.5 238.5 223.9 1.2 1.3 1.4

imp1 29297 3424.5 1423.0 868.0 651.5 2.4 3.9 5.3

mctaq 30525 317.0 219.2 177.9 153.0 1.4 1.8 2.1

nopert 27315 197.4 135.9 113.9 99.6 1.5 1.7 2.0

nw16 256 21.9 10.6 6.7 5.2 2.1 3.3 4.2

osa030 2831 154.4 67.8 46.3 37.3 2.3 3.3 4.1

osa060 5753 1197.8 548.1 328.0 241.0 2.2 3.7 5.0

pilots 4196 44.2 42.2 40.9 40.5 1.0 1.1 1.1

ra1 3018 26.4 20.4 17.9 16.6 1.3 1.5 1.6

roadnet 3921 164.5 75.5 51.5 42.3 2.2 3.2 3.9

sfsu2 16286 1724.5 1060.3 761.9 609.3 1.6 2.3 2.8

sfsu3 3692 413.4 201.5 130.8 99.3 2.1 3.2 4.2

sfsu4 3071 56.7 35.8 27.6 23.6 1.6 2.1 2.4

tm 70260 4230.5 2633.7 2232.8 1997.5 1.6 1.9 2.1

us01 245 108.9 57.2 39.2 30.0 1.9 2.8 3.6

usfs2 7962 114.4 83.9 72.2 65.5 1.4 1.6 1.8

w1.dual 67 16.5 9.7 7.2 5.9 1.7 2.3 2.8

Table 7.10: PowerC run times on 1 to 4 processors

Chapter 8

The Intersection of Knapsack
Polyhedra

In this chapter we go one step into the direction of exploiting block structure polyhe-
drally. We try to identify (small) blocks and derive inequalities that simultaneously
take all involved constraints of this block into account. The family of inequalities we
derive from such a block can be viewed as valid inequalities for the intersection of
knapsack polyhedra, where we associate a knapsack polytope with each row of the
block. In the context of Part I of this thesis these inequalities are individual inequal-
ities, since they are derived from a single block. We relate this family of inequalities
to Chvátal-Gomory cutting planes and important special cases such as odd hole and
clique inequalities for the stable set polyhedron or families of inequalities for the
knapsack polyhedron. We analyze how relations between covering and incompara-
bility numbers associated with the matrix can be used to bound coefficients in these
inequalities. For the intersection of several knapsack polyhedra, incomparabilities
between the column vectors of the associated matrix will be shown to transfer into
inequalities of the associated polyhedron. The inequalities have been incorporated
into SIP and we report on experimental results.

In detail, this chapter is organized as follows. In Section 8.1 we describe a general
family of valid inequalities, called feasible set inequalities, for an integer program
that are associated with its feasible solutions. Usually such inequalities must be
lifted in order to induce high dimensional faces. We derive lower and upper bounds
on the exact lifting coefficients of such an inequality in Section 8.2 and discuss
special cases when these bounds can be computed in polynomial time. In Section
8.3 we relate our family of inequalities to Chvátal-Gomory cuts and investigate in
Section 8.4 the special case where only two knapsacks are involved in detail. Section
8.5 discusses the separation problem of feasible set inequalities. The use of feasible
set inequalities within an implementation for the solution of general mixed integer
programming problems is investigated in Section 8.6.

8.1 Feasible Set Inequalities

Consider some finite sets N,M ⊂ N, some matrix A ∈ RM×N , vectors b ∈ RM , u ∈
RN , and the polytope

PIsK (N,M,A, b, u) := conv{x ∈ ZN : Ax ≤ b, 0 ≤ x ≤ u},

that is the convex hull of all integral vectors x satisfying Ax ≤ b and 0 ≤ x ≤ u.
We will assume N = {1, . . . , n} and M = {1, . . . ,m} for n,m ∈ N and abbreviate

157

158 CHAPTER 8. THE INTERSECTION OF KNAPSACK POLYHEDRA

PIsK (N,M,A, b, u) by PIsK if it is clear from the context. For convenience, we also
use the symbol PIsK (S) to abbreviate the polytope PIsK (S,M,A·S , b, uS).

Definition 8.1.1 Let T ⊆ N with
∑

i∈T A·iui ≤ b and w : T �→ Z be some weight-
ing of the elements in T . T is called a feasible set with respect to the weighting w
if wT v ≤ wTuT for all v ∈ ZT

+ with v ≤ uT and
∑

i∈T A·ivi ≤ b. For j ∈ N \ T
with

∑
i∈T A·iui +A·juj �≤ b , the inequality∑

i∈T

wixi + wjxj ≤
∑
i∈T

wiui(8.1)

is called a feasible set inequality associated with T (and {j}) and w if

wj ≤ min
l=1,... ,uj

1

l
min
x

∑
i∈T

wixi∑
i∈T

A·ixi ≥ A·j l − r(T)

0 ≤ xi ≤ ui, xi ∈ Z, i ∈ T,

(8.2)

where r(T) := b−∑i∈T A·iui.

Theorem 8.1.2 Feasible set inequalities are valid for PIsK (T ∪ {j}).
Proof. Let γ =

∑
i∈T wiui and γl := max {∑i∈T wixi :

∑
i∈T A·ixi + A·j l ≤

b, 0 ≤ xi ≤ ui, xi ∈ Z, i ∈ T }. After complementing variables xi to ui − xi for
i ∈ T we obtain that the right-hand side of (8.2) is minl=1,... ,uj

1
l (γ − γl). For

some integer solution x̄ ∈ PIsK (T ∪ {j}) with x̄j ≥ 1 we have
∑

i∈T wix̄i + wj x̄j ≤
γx̄j + x̄j minl=1,... ,uj

1
l (γ − γl) ≤ γx̄j + (γ − γx̄j) = γ. In case x̄j = 0 the statement

follows from the definition of a feasible set.

Theorem 8.1.2 states the validity of the feasible set inequality for PIsK (T ∪{j}).
To obtain a (strong) valid inequality for PIsK we resort to lifting, see Appendix
C. Consider some permutation π1, . . . , πn−|T |−1 of the set N \ (T ∪ {j}). For
k = 1, . . . , n− |T | − 1 and l = 1, . . . , uπk

let

γ(k, l) = max
∑

i∈T∪{j}
wixi +

∑
i∈{π1,... ,πk−1}

wixi∑
i∈T∪{j}

A·ixi +
∑

i∈{π1,... ,πk−1}
A·ixi +A·πk

l ≤ b

0 ≤ xi ≤ ui, xi ∈ Z for i ∈ T ∪ {j, π1, . . . , πk−1}.

(8.3)

Let γ =
∑

i∈T wiui, the lifting coefficients are

wπk
:= min

l=1,... ,uπk

γ − γ(k, l)

l
.(8.4)

The following statement is immediate.

Theorem 8.1.3 The (lifted) feasible set inequality wTx ≤ ∑
i∈T wiui is valid for

PIsK.

Note that the right-hand side of (8.2) coincides with (8.4) applied to variable
j if we substitute in (8.3) the set T ∪ {j} by T . In other words, a lifted feasible
set inequality associated with T and {j}, where the variables in N \ (T ∪ {j})
are lifted according to the sequence π1, . . . , πn−|T |−1, coincides with the inequality
associated with T , where j is lifted first, and the remaining variables N \ (T ∪ {j})

8.2. BOUNDS ON THE LIFTING COEFFICIENTS 159

are lifted in the same order π1, . . . , πn−|T |−1. Thus, instead of speaking of a feasible
set inequality associated with T and {j}, we speak in the sequel of a feasible set
inequality associated with T and view j as the variable that is lifted first.

Examples of feasible set inequalities include (1, k)-configuration, minimal co-
ver, and extended weight inequalities that are known for the knapsack polytope
PK (N, a, α) = conv{x ∈ {0, 1}N : aTx ≤ α} with a ∈ RN

+ , α > 0, see Section
2.3. Let S ⊆ N be a minimal cover, i. e., a(S) > α and a(S \ {i}) ≤ α for
all i ∈ S, and partition S into T and {j} for some j ∈ S. Set wi := 1 for all
i ∈ T . The feasible set inequality reads

∑
i∈T xi + wjxj ≤ |T | = |S| − 1 with

wj ≤ min{|V | : V ⊆ T,
∑

i∈V ai ≥ aj − r(T)}. Since
∑

i∈T ai + r(T) = α and∑
i∈S ai > α, this minimum is greater than or equal to one. Therefore, the feasible

set inequality is always a (1, k)-configuration inequality, see Padberg [1980]. In case
the coefficient happens to be one we get a minimal cover inequality. Moreover,
feasible set inequalities are just the extended weight inequalities for the knapsack
polytope if we choose weights wi = 1 for i ∈ T .

Odd hole- and clique inequalities for the set packing polytope are further exam-
ples of lifted feasible set inequalities. For some 0/1 matrix A ∈ {0, 1}M×N , consider
the set packing polytope PIsK (N,M,A, 1l, 1l) = conv{x ∈ {0, 1}N : Ax ≤ 1l}. Let
GA = (V,E) denote the associated column intersection graph whose nodes corre-
spond to the columns of A and nodes i and j are adjacent if and only if the columns
associated with i and j intersect in some row. Let Q ⊆ V be a clique in GA, then
the clique inequality

∑
i∈Q xi ≤ 1 is valid for PIsK. To see that this inequality is a

lifted feasible set inequality, let T = {i} for some i ∈ Q. The feasible set inequality
xi ≤ 1 is valid for PIsK ({i}). Lifting the remaining variables k ∈ Q\{i} by applying
formula (8.4) yields wk = 1, and the clique inequality follows.

8.2 Bounds on the Lifting Coefficients

For a feasible set inequality associated with T and wT , the calculation of the lifting
coefficients for the variables in N \ T requires the solution of an integer program.
In this section we study lower and upper bounds for these coefficients. It will turn
out that these bounds are sometimes easier to compute. We assume throughout the
section that A ≥ 0 and wi ≥ 0 for i ∈ T .

Definition 8.2.1 Let T ⊆ N be a feasible set with respect to the weighting w : T �→
ZT

+. For v ∈ Rm we define the

Covering Number

φ≥(v) := min {
∑
i∈T

wixi :
∑
i∈T

A·ixi ≥ v, 0 ≤ xi ≤ ui, xi ∈ Z, i ∈ T },

≥-Incomparability Number

φ�≥(v) := min {
∑
i∈T

wixi :
∑
i∈T

A·ixi �≥ v, 0 ≤ xi ≤ ui, xi ∈ Z, i ∈ T,

∧∃ j ∈ T, xj < uj :
∑
i∈T

A·ixi +A·j ≥ v},

≤-Incomparability Number

φ�≤(v) := min {
∑
i∈T

wixi :
∑
i∈T

A·ixi �≤ v, 0 ≤ xi ≤ ui, xi ∈ Z, i ∈ T },

where we set φ�≥(v) := 0 and φ�≤(v) := 0 for v ≤ 0.

160 CHAPTER 8. THE INTERSECTION OF KNAPSACK POLYHEDRA

Note that the covering number φ≥(·) is a generalization of the covering number
φ(·) defined in (2.6) for the 0/1 knapsack problem. Consider a (lifted) feasible set
inequality wTx ≤ ∑

i∈T wiui associated with T and wT , where the variables in
N \ T are lifted in the sequence π1, . . . , πn−|T |. The following proposition gives
upper bounds for the lifting coefficients derived from the covering number.

Proposition 8.2.2

(a) wπ1 = minl=1,... ,uπ1

1
l φ

≥(A·π1 l − r(T)).

(b) wπk
≤ minl=1,... ,uπk

1
l φ

≥(A·πk
l − r(T)), for k = 2, . . . , n− |T |.

Proof. (a) directly follows from Theorem 8.1.2. To see (b), it suffices to show
that γ − γ(k, l) ≤ φ≥(A·πk

l − r(T)) for l = 1, . . . , uπk
, see (8.4). This relation is

obtained by

γ − γ(k, l) = γ −max
∑

i∈T wixi +
∑

i∈{π1,... ,πk−1} wixi∑
i∈T A·ixi +

∑
i∈{π1,... ,πk−1} A·ixi +A·πk

l ≤ γ,

0 ≤ x ≤ uT∪{π1,... ,πk−1}, x ∈ ZT∪{π1,... ,πk−1}

= min
∑

i∈T wixi −
∑

i∈{π1,... ,πk−1} wixi∑
i∈T A·ixi −

∑
i∈{π1,... ,πk−1} A·ixi ≥ A·πk

l − r(T),

0 ≤ x ≤ uT∪{π1,... ,πk−1}, x ∈ ZT∪{π1,... ,πk−1}

≤ min
∑

i∈T wixi∑
i∈T A·ixi ≥ A·πk

l − r(T),
0 ≤ x ≤ uT , x ∈ ZT

= φ≥(A·πk
l− r(T)),

where the second equation follows by complementing variables xi, i ∈ T .

To derive lower bounds on the lifting coefficients we need the following relations.

Lemma 8.2.3 For v1, v2 ∈ Rm with v1, v2 ≥ 0 holds:

(a) φ≥(v1) ≥ φ�≥(v1) and φ≥(v1) ≥ φ�≤(v1).

(b) φ≥, φ�≥, and φ�≤ are monotonically increasing, that is for v1 ≥ v2, φ
≥(v1) ≥

φ≥(v2), φ
�≥(v1) ≥ φ�≥(v2), and φ�≤(v1) ≥ φ�≤(v2).

(c) φ≥(v1 + v2) ≥ φ�≥(v1) + φ�≤(v2).

(d) φ≥(v1 + v2) + max {wi : i ∈ T } ≥ φ�≤(v1) + φ≥(v2).

(e) φ�≤(v1 + v2) + max {wi : i ∈ T } ≥ φ�≤(v1) + φ�≤(v2).

Proof. (a) and (b) are obvious, the proofs of (c) and (e) follow the same line. We
show exemplarily (c). Let x̄ ∈ RT with 0 ≤ x̄ ≤ uT and

∑
i∈T A·ix̄i ≥ v1 + v2 such

that
∑

i∈T wix̄i = φ≥(v1 + v2). If v1 = v2 = 0 the statement is trivial. Otherwise,
suppose w. l. o. g. v1 > 0. Let z ∈ RT with z ≤ x̄ such that

∑
i∈T A·izi ≥ v1 and∑

i∈T wizi is minimal. Since v1 > 0 there exists some i0 ∈ T with zi0 > 0, and since
z was chosen to be minimal, we have that

∑
i∈T A·izi−A·i0 �≥ v1. This implies that∑

i∈T A·i(x̄i − zi) + A·i0 �≤ v2. Summing up, we get φ≥(v1 + v2) =
∑

i∈T wix̄i =
(
∑

i∈T A·izi − A·i0) + (
∑

i∈T A·i(x̄i − zi) + A·i0) ≥ φ�≥(v1) + φ�≤(v2). Finally, (d)

directly follows from (c) and the fact that φ�≥(v1)+max {wi : i ∈ T } ≥ φ≥(v1).

With the help of Lemma 8.2.3 we are able to bound the lifting coefficients from
below.

8.2. BOUNDS ON THE LIFTING COEFFICIENTS 161

Theorem 8.2.4 For k = 1, . . . , n− |T | we have

wπk
≥ min

l=1,... ,uπk

φ�≤(A·πk
l − r(T))

l
−max {wi : i ∈ T }.(8.5)

Proof. Let cπk
:= minl=1,... ,uπk

φ �≤(A·πk
l−r(T))

l − max {wi : i ∈ T } denote the
right-hand side of (8.5), for k = 1, . . . , n−|T |. We show by induction on k that the

inequality
∑

i∈T wixi +
∑k

i=1 cπixi ≤
∑

i∈T wiui is valid. For k = 1, the statement
follows from Proposition 8.2.2 (a) and Lemma 8.2.3 (a). Now let k ≥ 2 and suppose
the statement is true for all l < k. Let x̄ be an optimal solution of

max
∑
i∈T

wixi +
k∑

i=1

cπixπi

∑
i∈T

A·ixi +

k∑
i=1

A·πixπi ≤ b

0 ≤ xi ≤ ui, xi ∈ Z for i ∈ T ∪ {π1, . . . , πk}.

We must show that
∑

i∈T wix̄i +
∑k

i=1 cπi x̄πi ≤ ∑
i∈T wiui. First note that the

inequality is valid if x̄πk
= 0. This is equivalent to saying

φ≥(k−1∑
i=1

A·πixπi − r(T)
) ≥ k−1∑

i=1

cπixπi ,

for all x ∈ Z{π1,... ,πk−1} with
∑k−1

i=1 A·πixπi ≤ b, 0 ≤ xπi ≤ uπi , i = 1, . . . , k − 1.
Applying Lemma 8.2.3 (d) and (b) we obtain with wmax := max {wi : i ∈ T }

φ≥
(k∑
i=1

A·πi x̄πi − r(T)
)

≥ φ≥
(k−1∑
i=1

(
A·πi x̄πi − r(T)

))
+ φ�≤(A·πk

x̄πk
)− wmax

≥
k−1∑
i=1

cπi x̄πi + φ�≤(A·πk
x̄πk

− r(T))− wmax

≥
k−1∑
i=1

cπi x̄πi + x̄πk
min

l=1,... ,uk

φ�≤(A·πk
l − r(T))

l
− wmax

=

k∑
i=1

cπi x̄πi .

On account of
∑

i∈T wi(ui − x̄i) ≥ φ≥(
∑k

i=1 A·πi x̄πi − r(T)) the statement fol-

lows.

As a corollary of Proposition 8.2.2 and Theorem 8.2.4 we obtain the relation
(2.8) of extended weight inequalities. Theorem 8.2.4 applies, in particular, if we
set the coefficient of the first lifted variable wπ1 to the upper bound of Proposition
8.2.2 (a). The subsequent example shows that in this case the lower bounds given
in Theorem 8.2.4 may be tight.

Example 8.2.5 Let A =

[
1 1 6 6 8 6 1 3

4 6 1 1 3 9 2 1

]
and b =

[
14
12

]
. The

set T = {1, 2, 3, 4} with weights wi = 1, i ∈ T is feasible for the 0/1 program
max {cTx : x ∈ P} with P := conv{x ∈ {0, 1}8 : Ax ≤ b}. We obtain φ≥

(
8
3

)
= 3

and φ�≤
(
6
9

)
= 2, because

(
6
9

) ≥ A·i for i ∈ T . Accordingly we get φ�≤
(
1
2

)
= 1 =

φ�≤
(
3
1

)
. The inequality x1+x2+x3+x4+φ≥

(
8
3

)
x5+

∑8
i=6(φ

�≤(A·i)− 1)xi ≤ 4 reads
x1 + x2 + x3 + x4 + 3x5 + x6 ≤ 4. It defines a facet of P .

162 CHAPTER 8. THE INTERSECTION OF KNAPSACK POLYHEDRA

The question remains, whether the values φ≥, φ�≥ and φ�≤ are easier to compute
than the exact lifting coefficient. Indeed, they sometimes are. Suppose wi = 1 for
all i ∈ T and consider the comparability digraph G = (V,E) that is obtained by
introducing a node for each column and arcs (i, j) if A·i ≥ A·j and A·i �= A·j or if
A·i = A·j and i > j, for i, j ∈ {1, . . . , n} (where transitive arcs may be deleted).
Let r denote the number of nodes with indegree zero, i. e., |δ−(i)| = 0. Then,
φ≥, φ�≥ and φ�≤ can be computed in time O(nr+α), where α is the time to construct
the comparability digraph. For example, in case of one knapsack inequality the
comparability digraph turns out to be a path, and thus φ≥, φ�≥ and φ�≤ can be
computed in time O(n + n logn) = O(n logn). Compare hereto the discussions in
Section 5.3.

8.3 Connection to Chvátal-Gomory Cuts

So far we have been discussing feasible set inequalities for general integer programs.
Since we have not subsumed any assumptions on the underlying constraint matrixA,
a comparison to Chvátal-Gomory cutting planes that do not rely on any particular
structure of A is natural. Recall that Chvátal-Gomory inequalities for the system
Ax ≤ b, 0 ≤ x ≤ u, x ∈ Zn are cutting planes dTx ≤ δ such that di = �λT Â·i�,
i = 1, . . . , n, and δ = �λT b̂� for some λ ∈ Rm+n

+ , where Â =

[
A
I

]
and b̂ =

[
b
u

]
.

Consider a (lifted) feasible set inequality wTx ≤ ∑
i∈T wiui associated with T

and wT , whose remaining variables N \ T are lifted in the sequence π1, . . . , πn−|T |.
This lifted feasible set inequality is compared to Chvátal-Gomory inequalities re-
sulting from multipliers λ ∈ Rm+n

+ that satisfy �λT Â·i� = wi for i ∈ T .

Proposition 8.3.1

(a) �λT b̂� ≥∑i∈T uiwi.

(b) If �λT b̂� =∑i∈T uiwi, let j be the smallest index with �λT Â·πj� �= wπj . Then,

�λT Â·πj� < wπj .

Proof. Since T is a feasible set, (a) is obviously true. To see (b) suppose the
contrary and let j be the first index with �λT Â·πj� �= wπj and �λT Â·πj� > wπj . Set

γ =
∑

i∈T uiwi and consider an optimal solution x̄ ∈ ZT∪{π1,... ,πj} of (8.3) such that

wπj =
γ−γ(j,x̄j)

x̄j
. Obviously, x̄ can be extended to a feasible solution x̃ of PIsK by

setting x̃i = x̄i, if i ∈ T ∪{π1, . . . , πj}, x̃i = 0, otherwise. This solution satisfies the
feasible set inequality with equality, since wT x̃ =

∑
i∈T∪{π1,... ,πj−1} wix̃i+wπj x̃j =

γ(j, x̃j)+
γ−γ(j,x̃j)

x̃j
x̃j = γ. On the other hand, j is the first index where the Chvátal-

Gomory and the feasible set coefficient differ and we conclude
∑

i∈N�λT Â·i�x̃i =∑
i∈T∪{π1,... ,πj−1}�λT Â·i�x̃i + �λT Â·πj�x̃j >

∑
i∈T∪{π1,... ,πj−1} wix̃i +wπj x̃j = γ =

�λT b̂�, contradicting the validity of the Chvátal-Gomory inequality.

As soon as the first two coefficients differ, for k ∈ {πj+1, . . . , πn−|T |}, no further
statements on the relations of the coefficients are possible, in general.

Example 8.3.2 For some number b ∈ N, consider the knapsack polytope P (b) =
PK ({1, . . . , 7}, (2, 6, 8, 9, 9, 21, 4)T , b), i. e., the convex hull of all 0/1 solutions that
satisfy the knapsack inequality

2x1 + 6x2 + 8x3 + 9x4 + 9x5 + 21x6 + 4x7 ≤ b.

8.3. CONNECTION TO CHVÁTAL-GOMORY CUTS 163

One Chvátal-Gomory cutting plane for P (b) reads

x1 + 3x2 + 4x3 + 4x4 + 4x5 + 10x6 + 2x7 ≤ �b/2�.

Let b = 25. The set T := {1, 2, 3, 4} is a feasible set with respect to the weights
w1 = 1, w2 = 3, w3 = w4 = 4. Lifting the items 5, 6, 7 in this order we obtain the
lifted feasible set inequality that is valid for P (25):

x1 + 3x2 + 4x3 + 4x4 + 4x5 + 11x6 + x7 ≤ 12.

The right-hand side of the Chvátal-Gomory cutting plane and the lifted feasible set
inequality coincide. With respect to the lifting order 5, 6, 7 the coefficient of item
6 is the first one in which the two inequalities differ. This coefficient is 11 in the
feasible set inequality and 10 in the Chvátal-Gomory cutting plane. For item 7 the
coefficient in the feasible set inequality is then smaller than the corresponding one
in the Chvátal-Gomory cutting plane. For b = 27 we obtain the lifted feasible set
inequality that is valid for P (27):

x1 + 3x2 + 4x3 + 4x4 + 4x5 + 9x6 + x7 ≤ 12.

The right-hand side of this inequality is by one smaller than the right-hand side of the
corresponding Chvátal-Gomory cutting plane for λ = 1

2 . However, the coefficients
of the items 6 and 7 are smaller than the corresponding coefficients of the Chvátal-
Gomory cutting plane.

Under certain conditions a feasible set- and a Chvátal-Gomory cutting plane
coincide.

Theorem 8.3.3 Consider the integer program max {cTx : Ax ≤ b, 0 ≤ x ≤ 1l, x ∈
Zn} with A ∈ Nm×n . Let T be a feasible set with respect to the weights �λT Â·i� =
wi, i ∈ T , for some λ ∈ Rm

+ . Further assume �λT b� =
∑

i∈T �λTA·i�. If, for all
j ∈ N \ T , column vector A·j is a 0/1-combination of elements from {A·i : i ∈ T },
then

�λTA·j� = φ≥(A·j − r(T)).

Proof. We first show that �λTA·j� ≥ φ≥(A·j − r(T)). Since A·j is a 0/1-
combination of elements from {A·i : i ∈ T }, there exist σ ∈ {0, 1}T such that∑

i∈T σiA·i = A·j . Thus, �λTA·j� = �λT (
∑

i∈T σiA·i)� ≥ ∑
i∈T σi�λTA·i� =∑

i∈T σiwi ≥ φ≥(A·j − r(T)).

To show the opposite relation, we know by Proposition 8.2.2 that the coefficient
of the feasible set inequality wj satisfies wj ≤ φ≥(A·j − r(T)). By Proposition
8.3.1 (b), however, we know that, if wj does not coincide with �λTA·j� for all
j ∈ N \ T , there is at least one index j with wj > �λTA·j�. This together with the
first part of the proof implies φ≥(A·j − r(T)) ≤ �λTA·j� < wj ≤ φ≥(A·j − r(T)), a
contradiction. Thus, wj = �λTA·j� for all j, and the claim follows by Proposition
8.2.2.

By Proposition 8.2.2 the expression φ≥(A·j − r(T)) is an upper bound on the
exact coefficient of an item j ∈ N \ T in any lifted feasible set inequality associ-
ated with T and the weighting �λTA·i�, i ∈ T . On the other hand, the Chvátal-
Gomory cutting plane

∑
j∈N�λTA·j� ≤ �λT b� is valid for PIsK. Therefore, this

Chvátal-Gomory cutting plane must coincide with any lifted feasible set inequality∑
i∈T �λTA·i�xi+

∑
j∈N\T wjxj ≤ �λT b� independent on the sequence in which the

lifting coefficients wj for the items in N \ T are computed.

164 CHAPTER 8. THE INTERSECTION OF KNAPSACK POLYHEDRA

8.4 Consecutively Intersecting Knapsacks

So far we have been discussing a framework with which one can define and explain
families of cutting planes for a general integer program. On the other hand, from
a practical point of view the cutting plane phase of usual codes for integer pro-
gramming relies in particular on valid inequalities for knapsack polyhedra. From
both a theoretical and a practical point of view it would be desirable to understand
under what conditions facets of single knapsack polyhedra define or do not define
strong cutting planes of an integer program when several knapsack constraints in-
tersect. This question is addressed in this section. In fact, here we study a special
family of 0/1 programs that arises when A ∈ Nm×n and Ax ≤ b defines a sys-
tem of consecutively intersecting knapsack constraints. Throughout this section we
assume u = 1l, A ≥ 0 and integral. For i = 1, . . . ,m, let Ni := supp(Ai·) and
P i := PK (Ni, Ai·, bi) = conv{x ∈ {0, 1}Ni :

∑
j∈Ni

aijxj ≤ bi}.
Definition 8.4.1 A system of linear inequalities Ax ≤ b is called a system of
consecutively intersecting knapsack constraints if A ∈ Nm×n and Ni ∩ Nl = ∅ for
all i, l ∈ {1, . . . ,m}, |i− l| ≥ 2.

A natural question when one starts investigating the intersection of several knap-
sack polyhedra is when this polyhedron inherits all the facets of the single knapsack
polyhedra.

Proposition 8.4.2 Let A ∈ Nm×n and Ax ≤ b be a system of consecutively inter-
secting knapsack constraints. Let i ∈ {1, . . . ,m}. If Ni∩Nl∪{k} is not a cover for
all l ∈ {i− 1, i+1} and k /∈ Ni, then every facet-defining inequality of the knapsack
polyhedron P i defines a facet of PIsK.

Proof. Suppose that
∑

j∈Ni
cjxj ≤ γ defines a facet of P i. Let

∑
j∈N djxj ≤ γ

define a facet F of PIsK such that

Fc := {x ∈ PIsK :
∑
j∈Ni

cjxj = γ} ⊆ F.

Let x◦ ∈ Zn ∩ Fc be a vector such that x◦
j = 0 for all j �∈ Ni.

Consider some j �∈ Ni, and let j ∈ Nl for some l �= i. If |l − i| ≥ 2, obviously
x◦ + ej ∈ Fc. In the other case, we know Ni∩Nl ∪{j} is not a cover (on account of
the conditions in the proposition), and thus x◦ + ej ∈ Fc as well. This implies that
dj = 0. Because

∑
j∈Ni

cjxj ≤ γ defines a facet of P i we obtain

dim (Fc) ≥ dim (P i)− 1 + |N | − |Ni| = |N | − 1 ≥ dim (PIsK)− 1.

Therefore, Fc defines a facet of PIsK that coincides with F .

The condition that, for every k �∈ Ni, l = i − 1, i + 1, the set (Ni ∩ Nl) ∪ {k}
is not a cover, is essential for the correctness of the proposition as the following
example shows.

Example 8.4.3 For b ∈ N \ {0} let A be the matrix

[
b
3 + 1 b

3 + 1 b
3 + 1 0

0 b
3 + 1 b

3 + 1 b

]
and consider PIsK = conv{x ∈ {0, 1}4 : Ax ≤ b}. Then N1 ∩N2 = {2, 3}, and the
set {2, 3, 4} defines a cover.

The inequality x1 + x2 + x3 ≤ 2 defines a facet of the knapsack polyhedron

conv{x ∈ {0, 1}3 : (b
3
+ 1)x1 + (

b

3
+ 1)x2 + (

b

3
+ 1)x3 ≤ b}.

On the other hand, the inequality x1 + x2 + x3 ≤ 2 is not facet-defining for PIsK,
since the face F = {x ∈ PIsK : x1 + x2 + x3 ≤ 2} is strictly contained in the face
induced by the inequality x1 + x2 + x3 + x4 ≤ 2.

8.4. CONSECUTIVELY INTERSECTING KNAPSACKS 165

In certain cases, a complete description of PIsK may even be derived from the
description of the single knapsack polyhedra.

Theorem 8.4.4 Let m = 2 and A ∈ N 2×n . Let Ax ≤ b be a system of consecutively
intersecting knapsack constraints such that every pair of items from N1 ∩ N2 is a
cover. For i = 1, 2 let Cix ≤ γi be a system of inequalities that describes the single
knapsack polyhedron P i.

Then, PIsK is described by the system of inequalities∑
j∈N1∩N2

xj ≤ 1

Cix ≤ γi for i = 1, 2.

Proof. Note that the system of linear inequalities given in the theorem is valid
for PIsK. To see that it suffices to describe PIsK, let cTx ≤ γ be a non-trivial
facet-defining inequality of PIsK that is not a positive multiple of the inequal-
ity

∑
j∈N1∩N2

xj ≤ 1.W. l. o. g. we assume that supp(c) ∩ N1 �= ∅. Let Z =
{z1, . . . , zt} = N1 ∩ N2. We claim that (supp(c) \ Z) ∩ N2 = ∅. Suppose the
contrary. We define natural numbers γ0, γ1, . . . , γt by

γ0 := max{ ∑
j∈N1\Z

cjxj :
∑

j∈N1\Z
a1jxj ≤ b1, x ∈ {0, 1}N1\Z},

γi := max{ ∑
j∈N1\Z

cjxj :
∑

j∈N1\Z
a1jxj ≤ b1 − a1zi , x ∈ {0, 1}N1\Z},

and claim that the face induced by the inequality cTx ≤ γ is contained in the face
induced by the inequality

∑
j∈N1\Z

cjxj +
t∑

i=1

(γ0 − γi)xzi ≤ γ0.(8.6)

This inequality is valid for PIsK by definition of the values γi, i = 0, . . . , t and
because

∑
i∈Z xi ≤ 1.

Let x ∈ PIsK ∩ ZN such that cTx = γ. If
∑

i∈Z xi = 0, then cTx = γ0, since
otherwise we obtain a contradiction to the validity of cTx ≤ γ. If

∑
i∈Z xi > 0,

then
∑

i∈Z xi = 1. Let zi ∈ Z with xzi = 1. Then cTx = γ implies that x − ezi is
an optimal solution of the program

max{
∑

j∈N1\Z
cjwj : w ∈ {0, 1}N1\Z : A1·w ≤ b1 − a1zi}.

This shows that in this case x satisfies inequality (8.6) as an equation, too. We
obtain that cTx ≤ γ must be a facet of the knapsack polyhedron P 1. This completes
the proof.

The correctness of the theorem strongly relies on the fact that every pair of
items from the intersection N1∩N2 is a cover. If this condition is not satisfied, then
Example 8.4.3 demonstrates that the facet-defining inequalities of the two single
knapsack polyhedra do not suffice in general to describe the polyhedron associated
with the intersection of the two knapsack constraints. Geometrically, the fact that
we intersect two knapsack constraints generates incomparabilities between the col-
umn vectors of the associated matrix. These incomparabilities give rise to cutting
planes that do not define facets of one of the two single knapsack polyhedra that
we intersect. In fact, incomparabilities between column vectors in a matrix make it
possible to “melt” inequalities from different knapsack polyhedra. A basic situation
to which the operation of melting applies is

166 CHAPTER 8. THE INTERSECTION OF KNAPSACK POLYHEDRA

Proposition 8.4.5 Let m = 2, A ∈ N 2×n and Ax ≤ b be a system of two consec-
utively intersecting knapsack constraints. Let

∑
i∈N1\N2

cixi +
∑

i∈N1∩N2
cixi ≤ γ

be a valid inequality for P 1, and let
∑

i∈N2\N1
cixi +

∑
i∈N1∩N2

cixi ≤ γ be a valid

inequality for P 2. Setting Θ :=
∑

i∈N1\N2
ci, the melted inequality∑

i∈N1\N2

cixi +
∑

i∈N1∩N2

cixi +
∑

i∈N2\N1

(ci −Θ)+xi ≤ γ

is valid for PIsK.

Proof. Let x ∈ PIsK ∩ ZN. If xi = 0 for all i ∈ N2 \ N1 with ci − Θ > 0, the
inequality is satisfied because

∑
i∈N1\N2

cixi +
∑

i∈N1∩N2
cixi ≤ γ is valid for P 1.

Otherwise,
∑

i∈N2\N1
(ci −Θ)+xi ≤

∑
i∈N2\N1

cixi −Θ, and we obtain∑
i∈N1\N2

cixi +
∑

i∈N1∩N2

cixi +
∑

i∈N2\N1

(ci −Θ)+xi

≤
∑

i∈N1\N2

cixi − Θ +
∑

i∈N1∩N2

cixi +
∑

i∈N2\N1

cixi

≤
∑

i∈N1∩N2

cixi +
∑

i∈N2\N1

cixi

≤ γ.

Proposition 8.4.5 can be extended to general upper bounds u ∈ Nn . Often the
inequality that results from melting valid inequalities from knapsack polyhedra as
described in Proposition 8.4.5 does not define a facet of PIsK. In such situations
there is a good chance of strengthening the melted inequality by determining lifting
coefficients for the items in (N1 \N2) ∪ (N2 \N1) with respect to a given order.

Example 8.4.6 Let A be the matrix

[
1 4 5 6 0 0
0 0 5 6 1 4

]
and b =

[
15
15

]
. The

inequality x1 + 4x2 + 5x3 + 6x4 ≤ 15 defines a facet of P 1 := conv{x ∈ Z4 : x1 +
4x2+5x3+6x4 ≤ 15, 0 ≤ xi ≤ 3, i ∈ {1, 2, 3, 4}}. For α ∈ {0, 1, 2, 3} the inequality
5x3+6x4+αx6 ≤ 15 is valid for P 2 := conv{x ∈ Z{3,4,5,6} : 5x3+6x4+x5+4x6 ≤
15, 0 ≤ xi ≤ 3, i ∈ {3, 4, 5}, 0 ≤ x6 ≤ 1}. Setting α = 1 and applying Proposition
8.4.5 and the succeeding remark we obtain that 0x1 + 3x2 + 5x3 + 6x4 + x6 ≤ 15
is valid for PIsK := conv{x ∈ Z6 : Ax ≤ b, 0 ≤ xi ≤ 3, i ∈ {1, 2, 3, 4, 5}, 0 ≤
x6 ≤ 1}. This inequality can be strengthened by lifting to yield the facet-defining
inequality x1 + 3x2 + 5x3 + 6x4 + x6 ≤ 15. For α = 2, we end up with the melted
inequality 0x1 + 2x2 + 5x3 + 6x4 + 2x6 ≤ 15. For α = 3 we obtain the inequality
0x1+x2+5x3+6x4+3x6 ≤ 15 that can again be strengthened to yield a facet-defining
inequality of PIsK, x2 + 5x3 + 6x4 + x5 + 3x6 ≤ 15.

It turns out that sometimes the feasible set inequalities for two consecutively
intersecting knapsacks can be interpreted in terms of melting feasible set inequalities
for the associated single knapsack polytopes.

Example 8.4.7 Consider A =

[
15 3 5 13 0 0
0 17 18 17 19 20

]
and b =

[
20
35

]
.

The set T = {2, 3} is feasible with respect to weights w2 = w3 = 1, and the in-
equality x2 + x3+ x4 +2x5+2x6 ≤ 2 is a feasible set inequality for P 2 := conv{x ∈
{0, 1}{2,3,4,5,6} : 17x2+18x3+17x4+19x5+20x6 ≤ 35}, where the variables not in
T are lifted in the sequence 4, 5, 6. In addition, x1 + x2 + x3 + x4 ≤ 2 is a feasible

8.5. SEPARATING FEASIBLE SET INEQUALITIES 167

set inequality for P 1 := conv{x ∈ {0, 1}{1,2,3,4} : 15x1 + 3x2 + 5x3 + 13x4 ≤ 20},
with respect to the same feasible set T and the lifting sequence 4, 1. Now Θ =∑

i∈N1\N2
ci = 1 and the melted inequality reads x1 + x2 + x3 + x4 + x5 + x6 ≤ 2,

which is facet-defining for PIsK := {x ∈ {0, 1}6 : Ax ≤ b}. Note that the melted
inequality is also a feasible set inequality with respect to T and wT and the lifting
sequence 4, 1, 5, 6.

Observe that Example 8.4.7 also shows that under certain conditions the op-
eration of melting feasible set inequalities produces a facet-defining inequality for
PIsK.

8.5 Separating Feasible Set Inequalities

When it comes to incorporate feasible set inequalities into a general mixed integer
programming solver like SIP many difficulties and questions arise. First, how to
find a feasible set T ? Consider some general mixed integer program

min cTx
s.t. Ax ≤ b

l ≤ x ≤ u
x ∈ ZN × RC ,

(8.7)

where N,C and M are finite sets, N and C disjoint, A ∈ RM×(N∪C) , and l, u, c
and b are vectors of appropriate dimension. In general, the given constraint matrix
A contains positive and negative entries, and it is a-priori not clear, how to find
some subset T ⊆ N such that uT is feasible for (8.7). Second, once one determined
a set T , what is a suitable weighting w for T as proposed in Definition 8.1.1? In
principle, every vector w ∈ ZT is possible. Third, how to perform the lifting? The
calculation of the exact lifting coefficient for some variable xj requires the solution
of uj many integer programs, which might be very expensive to compute. Fourth,
what are good substructures of A to start with and look for feasible set inequalities.
It is pointless to begin with the whole constraint matrix A, since in the same time
we find one cutting plane we probably would solve the entire problem. Desirable
would be to have the matrix A in bordered block diagonal form as discussed in
Chapter 6, since blocks in this form are independent of each other and, assuming
they are small, we might even perform the lifting exactly. Questions over questions.

It goes without saying that most of these questions can only be answered by
computational experiences. We discuss some of the options below. Some properties
of feasible set inequalities, however, leave us no choice and restrict our search for
good substructures of A. Let us call a substructure of A in analogy to Chapter 6 a
block. One such property of a feasible set inequality is that it is defined for integer
variables with finite lower and upper bounds only. Thus, we remove from our
considerations all rows that contain continuous variables or variables with infinite
lower or upper bound. Furthermore, we can restrict ourselves to fractional variables.
If we are faced with some block containing only variables whose current LP values
are integer, there cannot exist a violated feasible set inequality. Thus, in our choice
of the block we only take fractional variables into account. The remaining, currently
integer variables, will be lifted afterwards. This fact has an important advantage,
since the number of fractional variables is usually only some fraction of the total
number of variables (often below 10%), and restricts our search for possible blocks
to a small part of A.

In detail, we proceed as follows in order to find a reasonable substructure Bx ≤ d
of Ax ≤ b, i. e., subsets I ⊆ M, J ⊆ N with B = AI,J and d = bJ . As outlined

168 CHAPTER 8. THE INTERSECTION OF KNAPSACK POLYHEDRA

possible candidates for I are only rows that solely contain integer variables with
finite lower and upper bounds and that contain at least one variable whose current
LP value is fractional. Second, we restrict ourselves to rows whose number of
non-zeros lies between three and some upper bound σ. ‘Three’ is not really a
restriction, since if some row has only two non-zero entries a complete description
of the associated integer knapsack polytope is readily available, see Section 5.4.
The number σ is a parameter, which basically is used to control the size of the final
block. We have experimented with this parameter a lot, and a reasonable setting
on our test set is σ = 20. We also exclude rows from further consideration that
are not tight for the current LP solution. Let us denote by Ic ⊆ M the set of
candidate rows. We now construct the row intersection graph, see also page 109,
i. e., the graph that is obtained by introducing a node for each row in Ic and an edge
whenever two rows intersect in some fractional column. It turns out that due to
the fact that usually the number of fractionals is small the row intersection graph
for most problems decomposes into components of small size. ‘Small’ here means
no more than three/four rows and up to thirty/forty variables per component. For
only very few instances, in particular the “stein”-problems and problem seymour, the
row intersection graph contains big components. In this case, we decompose the big
components heuristically. Motivated by the success of the greedy-type algorithms in
Chapter 6 we start with a row of a component that has largest degree and iteratively
add further rows in order of decreasing intersection with the already selected rows.
Our current setting allows at most ten rows or around fifty variables in a block. If
one of the limits is reached we stop.

After applying this procedure we obtain index sets I1 and J1 that define a
substructure Bx ≤ d of Ax ≤ b that contains at most ten rows and up to fifty
variables. We delete the rows from Ic whose support intersects with J1. With the
remaining rows we apply the same procedure as described, and we end with mutually
disjoint sets I1, . . . , Iβ ⊆ M and mutually disjoint sets J1, . . . , Jβ ⊆ N . For each
block AIb,Jb

xJb
≤ bIb we call our separation algorithm to derive violated feasible

set inequalities. The following algorithm outlines our procedure and provides our
answers to the questions raised at the beginning of the section. An explanation of
the steps will be given afterwards.

Algorithm 8.5.1 Separation algorithm for feasible set inequalities.

Input: A block AI,JxJ ≤ bI , lJ ≤ xJ ≤ uJ of Ax ≤ b, l ≤ x ≤ u with I ⊆ M and
J ⊆ N ; an optimal solution x̄ of the current LP.

(1) Fix all variables that are integer.

fi =

{
x̄i, if x̄i ∈ Z;
FREE, if i ∈ Fr(x̄) := {j ∈ J : x̄j /∈ Z}.

(2) Solve

max
∑

i∈Fr(x̄)
x̄i

ui
zi∑

i∈Fr(x̄) A·izi ≤ b−∑i/∈Fr(x̄) A·ifi
lFr(x̄) ≤ z ≤ uFr(x̄), z ∈ ZFr(x̄)

(8.8)

(3) If (8.8) is infeasible, try to derive a violated bound inequality.
Else let y be an optimal solution of (8.8).
Set T := supp(y).

(4) Assign weights wj for j ∈ T according to

wj =

{
+1, if |{i ∈ I : aij > 0}| ≥ |{i ∈ I : aij < 0}|;
−1, else,

and set fi := li for i ∈ Fr(x̄) \ T .

8.5. SEPARATING FEASIBLE SET INEQUALITIES 169

(5) Solve

ω = max
∑

i∈T wizi∑
i∈T A·izi ≤ b−∑i∈J\T A·ifi

lT ≤ z ≤ uT , z ∈ ZT.

(8.9)

(6)
∑
i∈T

wixi ≤ ω is the basic feasible set inequality.

(7) Determine a lifting sequence π1, . . . , π|J|−|T | of J \ T such that all fractional
variables come first, i. e., {π1, . . . , π|Fr(x̄)\T |} = Fr(x̄) \ T .

(8) For k = 1, . . . , |J | − |T | perform the following steps.
Determine lifting coefficient wπk

for variable xπk
.

If k > |Fr(x̄) \ T | and the current feasible set inequality is
not violated – Stop (no violated inequality found).

(9) Check whether the lifted feasible set inequality wTx ≤ ω is violated.
(10) Stop.

Steps (2) through (5) of Algorithm 8.5.1 show our choice of determining a “feasi-
ble” set T . The integer program (8.8) is solved to optimality using SIP. Note that as
outlined above the number of fractional variables is usually very small resulting in
integer programs of small size. Thus, the expected time to solve this integer program
is small, and our computational results in the next section confirm this. For the
integer program (8.9) we supply a limit on the number of branch-and-bound nodes
of 1000. If we are not able to solve the problem within this limit we use ω = �ω̂�,
where ω̂ is the best upper bound after 1000 branch-and-bound nodes. We played
with several different objective functions in (8.8), the one here performed best on
average. It also has the advantage that it coincides with the starting set chosen
in Algorithm 5.3.1, where the constraint system defines a 0/1 knapsack problem.
Note that the set T as defined in Step (3) need not be “feasible” with respect to
the weighting in Step (4) as required in Definition 8.1.1, since it is not guaranteed
that uT is a feasible solution and that ω ≤ ∑

i∈T wiui. However, given the set T
and weights wi, i ∈ T, (8.9) determines the best possible right-hand side such that∑

i∈T wixi ≤ ω is valid for PIsK (T). Although the set T and wT might not satisfy
the requirements of Definition 8.1.1, we call it still feasible in the following. Our
weighting w is restricted to take ±1 values only. We also tried different weightings
with limited success. The setting given in Step (4) is again motivated by the fact
that it coincides with the 0/1 knapsack case. Note also that if (8.8) does not have
a feasible solution, see Step (3), and if all currently integer variables are fixed at
their lower or upper bounds, i. e., fi ∈ {li, ui} for all i /∈ Fr(x̄), the inequality∑

{i:fi=li}
(xi − li) +

∑
{i:fi=ui}

(ui − xi) ≥ 1,(8.10)

called bound inequality, is valid for P = conv{x ∈ RN∪C : x feasible for (8.7)}.
This inequality is also violated by the current LP solution x̄ and we return with
this violated inequality from Algorithm 8.5.1.

It remains to discuss the lifting, Steps (7) and (8). The lifting sequence starts
with all remaining fractional variables, sorted in non-increasing order of their LP
value, followed by all integer variables that are not at one of their bounds, i. e.,
li < fi < ui, and last, we lift all integer variables that are currently at one of their
bounds. Within these two latter sets we specify no particular order. The lifting
of one variable basically follows the scheme described in Algorithm C.2 with some
adjustments. First, we have to take into account in (C.2) that certain variables are
fixed to some non-zero value. This can easily be achieved as outlined below. A

170 CHAPTER 8. THE INTERSECTION OF KNAPSACK POLYHEDRA

more serious problem is the lifting of variables that are currently neither fixed on
their lower nor on their upper bound. In this case, it might be possible that the
lifted inequality is no longer valid. Before discussing this difficulty in detail, let us
describe the overall algorithm.

Algorithm 8.5.2 Lifting variable xπk
.

Input: An inequality
∑

i∈S wixi ≤ ω valid for PIsK (I, S,AI,S , b−
∑

i∈N\S A·ifi, uS),

where S := T ∪ {π1, . . . , πk−1}.
Output: Lifting coefficient wπk

for xπk
and (new) right-hand side ω such that∑

i∈S∪{πk}
wixi ≤ ω(8.11)

is valid for PIsK (I, S ∪ {πk}, AI,S∪{πk}, b−
∑

i∈N\(S∪{πk}) A·ifi, uS∪{πk}).

(1) For l = li, . . . , ui compute

ωl = max
∑

i∈S wizi∑
i∈S A·izi +A·πk

· l ≤ b−∑i∈N\S A·ifi
0 ≤ z ≤ uS , z ∈ ZS.

(8.12)

(2) Let

w− = max
l=lπk

,... ,fπk
−1

ω − ωl

l− fπk

w+ = min
l=fπk

+1,... ,uπk

ω − ωl

l − fπk

(8.13)

(3) If fπk
= lπk

set

wπk
= w+

ω = ω + w+fπk

(8.14)

(4) If fπk
= uπk

set

wπk
= w−

ω = ω + w−fπk

(8.15)

(5) If lπk
< fπk

< uπk
perform the following steps:

If w− ≤ w+ return with (8.14) or (8.15).
If w− > w+ return with

wπk
= w−

ω = ω + w−fπk
+ (uπk

− fπk
)(w− − w+)

(8.16)

or with

wπk
= w+

ω = ω + w−fπk
− lπk

(w− − w+)
(8.17)

or with

wπk
=

uπk
− lπk

− fπk

uπk
− lπk

(w+ − w−) + w−

ω = ω + w−fπk
− uπk

− lπk
− fπk

uπk
− lπk

(w+ − w−)lπk
,

(8.18)

the latter is only valid if lπk
+ fπk

≤ uπk
.

(6) Stop.

8.5. SEPARATING FEASIBLE SET INEQUALITIES 171

The integer program (8.7) coincides with the integer program in (C.2) with the
only difference that the right-hand side in (8.12) is adjusted by the fixings of the
variables coming later in the sequence. Accordingly, the computation of w+ in
(8.13) coincides with (C.3). The following proposition shows that the settings in
Steps (3) and (4) of Algorithm 8.5.2 are correct.

Proposition 8.5.3

(a) If fπk
∈ {lπk

, uπk
}, the settings in (8.14) and (8.15) yield a valid inequality.

(b) If lπk
< fπk

< uπk
and w− ≤ w+, both (8.14) and (8.15) yield a valid

inequality.

Proof. Let x̄ ∈ PIsK (I, S ∪ {πk}, AI,S∪{πk}, b−
∑

i∈N\(S∪{πk}) A·ifi, uS∪{πk}) be
integer.

Consider part (a) and the case fπk
= lπk

and denote by ω̄ = ω+w+fπk
the new

right-hand side. Note that the lifted inequality (8.11) can be rewritten as∑
i∈S

wixi + wπk
(xπk

− lπk
) ≤ ω

Thus, if x̄πk
= lπk

, the inequality is trivially valid. If x̄πk
= l for some lπk

< l < uπk
,

we obtain
∑

i∈S wix̄i+wπk
(x̄πk

− lπk
) ≤∑i∈S wix̄i+

ω−ωl

l−lπk

(l− lπk
) ≤ ωl+(ω−ωl) =

ω. The same proof applies if fπk
= uπk

.

We show (b) for the settings in (8.14), i. e., we prove validity of
∑

i∈S wixi +
w+(xπk

− fπk
) ≤ ω. (8.15) can be shown analogously. If x̄πk

∈ {fπk
, . . . , uπk

}
the validity follows by part (a). If x̄πk

∈ {lπk
, . . . , fπk

− 1}, we get
∑

i∈S wix̄i +
w+(x̄πk

− fπk
) ≤∑i∈S wixi+w−(xπk

− fπk
) ≤ ω. The first inequality follows from

x̄πk
− fπk

< 0 and w− > w+, the second from part (a).
It remains to discuss the case lπk

< fπk
< uπk

and w− > w+. In this case none
of the two settings (8.14) and (8.15) needs to be valid as the following example
shows.

Example 8.5.4 Consider the integer program

min 4200 x1+1500 x2+2700 x3

0.9 x1 + x2 − x3 = 5.7
0 ≤ x1 ≤ 15
0 ≤ x2 ≤ 18
0 ≤ x3 ≤ 18, x ∈ Z3.

This is a substructure of example flugpl from the Miplib. Running SIP for
this problem yields an optimal solution for an LP encountered during the solution
process, where the three variables have values x1 = 5.5, x2 = 3.75, and x3 = 3. Thus
we fix variable x3 to three, i. e., f3 = 3. The inequality x1 + x2 ≤ 9 is valid for
conv{x ∈ Z2 : 0.9x1 + x2 = 8.7, 0 ≤ x1 ≤ 15, 0 ≤ x2 ≤ 18}. Now in order to lift x3

we compute w+ and w− in (8.13). We get w+ = − 4
3 and the associated inequality

(8.14) reads x1 + x2 − 4
3x3 ≤ 5. It is violated by the feasible solution x = (3, 3, 0)T .

Similarly, w− = −1 and the inequality x1 + x2 − x3 ≤ 6 from (8.15) is violated by
the feasible solution x = (13, 0, 6)T .

The problem discussed in Example 8.5.4 is not new. In fact, Balas, Ceria,
Cornuéjols, and Natraj [1996] give another example in conjunction with Chvátal-
Gomory cuts. Here the same difficulty arises, when Chvátal-Gomory cuts are gener-
ated at some node, which is not the root note. When integer variables are involved

172 CHAPTER 8. THE INTERSECTION OF KNAPSACK POLYHEDRA

these inequalities are usually only locally valid for this node and its descendants,
but not for the entire branch-and-bound tree. Balas, Ceria, Cornuéjols, and Natraj
[1996] show that cuts are indeed globally valid if all integer variables are binary.

Algorithm 8.5.2 gives one possible answer to the general integer case. The idea is
to consider two polytopes P+ and P−. P+ is the original polytope intersected with
the inequality using formula (8.14) and the bound constraints fπk

≤ xπk
≤ uπk

.
P− is defined accordingly, i. e.,

P− = {x ∈ PIsK :
∑

i∈S wixi + w−xπk
≤ ω + w−fπk

, lπk
≤ xπk

≤ fπk
}.

P+ = {x ∈ PIsK :
∑

i∈S wixi + w+xπk
≤ ω + w+fπk

, fπk
≤ xπk

≤ uπk
}.(8.19)

Now we can apply the idea of disjunctive programming and determine conv(P−∪
P+) to derive a valid inequality for PIsK (S ∪ {πk}).

Let us briefly summarize the concept of disjunctive programming applied to our
case, for more details see Balas, Ceria, and Cornuéjols [1993] and the references
therein. Suppose for the ease of exposition that P+ = {x ∈ RN : A1x ≤ b1} and
P− = {x ∈ RN : A2x ≤ b2}. Now

conv(P− ∪ P+) = {x ∈ RN : there exist ȳ1, ȳ2, λ1, λ2 such that:
(a) x = λ1ȳ1 + λ2ȳ2

(b) A1ȳ1 ≤ b1

(c) A2ȳ2 ≤ b2

(d) λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0}.

(8.20)

(8.20) (a) contains quadratic terms. Multiplying (8.20) with λi and setting yi :=
λiȳ

i for i = 1, 2 yields the polyhedron

Q = {x ∈ RN : there exist y1, y2, λ1, λ2 such that:
(a) x = y1 + y2

(b) A1y1 ≤ λ1b1

(c) A2y2 ≤ λ2b2

(d) λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0}.

(8.21)

Q still coincides with conv(P− ∪P+) if we guarantee that yi = 0 whenever λi = 0.
This is true, since P+ and P− are bounded implying that {yi ∈ Rn : Ayi ≤ 0} =
{0} for i = 1, 2.

Let us abbreviate the set of vectors x, y1, y2, λ1, λ2 satisfying (8.21) (a) – (d)
by L = {(x, z)T : Dx + Bz ≤ d}, where z = (y1, y2, λ1, λ2)T and B,D, d are
appropriate matrices and vectors. Q, and conv(P− ∪ P+), is the projection of L
onto the x-space, i. e.,

conv(P− ∪ P+) = {x ∈ RN : there exists z such that (x, z)T ∈ L}.
In order to obtain from L a description of conv(P− ∪ P+) by means of linear
inequalities, we need to eliminate the z-variables. With

C = {v : vTB = 0, v ≥ 0}(8.22)

we get
conv(P− ∪ P+) = {x ∈ RN : (vTD)x ≤ vTd for all v ∈ C}.

In order to find a valid inequality that cuts off the LP solution x̄ we solve the
linear program

max (Dx̄− d)T v
v ∈ C.

(8.23)

8.6. COMPUTATIONAL RESULTS 173

Note that if there is a violated inequality in C, then (8.23) is unbounded, since C is
a polyhedral cone. For algorithmic conveniences C is often truncated by bounding
the vector v with respect to some norm. Solving the linear program in (8.23) yields
an inequality that is valid for PIsK. If the optimum in (8.23) is zero, there exists no
violated inequality, otherwise (v̄TD)x ≤ v̄Td yields the desired inequality, where v̄
is an optimal solution (extreme ray) of (8.23).

We apply this scheme in our implementation for the following two polytopes

P̃− = {x ∈ RN :
∑

i∈S wixi + w−xπk
≤ ω + w−fπk

, lπk
≤ xπk

≤ fπk
},

P̃+ = {x ∈ RN :
∑

i∈S wixi + w+xπk
≤ ω + w+fπk

, fπk
≤ xπk

≤ uπk
}.(8.24)

That is, we consider a relaxation of the polytopes defined in (8.19) by neglecting
the constraints defining PIsK. The advantage of using this relaxation is that – as we
will see in a moment – we can solve the resulting linear program (8.23) explicitly.
The drawback, of course, is that we might get a weaker inequality. The linear
program (8.23) that results when using P̃− and P̃+ in (8.24) has (after some obvious
variable substitutions) seven variables and two constraints. We fix the variable vi to
one that corresponds to the constraint

∑
i∈S wixi+w−xπk

≤ ω+w−fπk
. This way

we guarantee that the coefficients wi for i ∈ S stay unchanged in the resulting lifted
inequality. After doing some calculations it turns out that this linear program, with
now six variables and two constraints, has only three possible optimal solutions. The
three LP solutions yield three different inequalities as stated in (8.16), (8.17), and
(8.18). We use the one that maximizes the slack.

8.6 Computational Results

In this section we report on our computational experience with Algorithm 8.5.2
for the feasible set inequalities. We have incorporated this algorithm in SIP, and
tested it on the instances from the Miplib. We compared SIP with the default
parameter setting and SIP where in addition the separation algorithm for feasible
set inequalities has been turned on. As in all other test runs, we use a time limit of
3600 CPU seconds and limit the number of branch-and-bound nodes to one million.

It turns out that for 48 of the problems we do not find feasible set inequalities
and the overhead for applying our separation algorithm is below 1% of the total
running time. For the remaining 11 problems we find feasible set inequalities or our
separation routine uses more than 1% of the computation time. Tables 8.1 and 8.2
show the results for these examples. Column 1 gives the problem name followed
by the number of branch-and-bound nodes in Column 2. The next two columns
give the number of cuts found, Others include the 0/1 knapsack inequalities with or
without generalized upper bounds (see Section 5.3), and the mixed integer weight
inequalities (see Section 5.4). Column FS give the number of feasible set inequalities
found. Columns 5 and 6 show timings, the time used in Algorithm 8.5.2 and the total
running time. If we cannot solve the problem within the time limit of 3600 seconds,

the last Column Gap % shows a non-zero gap (= 100.0 |upper bound - lower bound|
|lower bound|).

From Table 8.2 we see that we can significantly reduce the gap for test problem
seymour and slightly for gesa2 and p2756, resulting in total reduction of about 25%.
We also recognize that basically no time is spent for separating feasible set inequal-
ities. This is very astonishing, since almost all integer programs that come up in
Algorithm 8.5.2 (and these are thousands) are solved to optimality, where we use an
upper bound on the branch-and-bound nodes of 1000. The success of the feasible
set inequalities relies on the fact that we can solve small integer programs to opti-
mality in general very fast. There are other interesting facts that can be read from
Table 8.2. The “stein”-problems, where we find a considerable amount of cuts, and

174 CHAPTER 8. THE INTERSECTION OF KNAPSACK POLYHEDRA

Example B & B Cuts Time Gap %

Others FS FS Total

fiber 783 372 0 0.0 16.9 0.000

gesa2 209525 33 0 0.0 3600.0 0.048

gesa3 o 74472 0 0 0.0 1144.7 0.000

misc03 699 14 0 0.0 4.1 0.000

misc07 35585 0 0 0.0 378.8 0.000

p0033 57 32 0 0.0 0.1 0.000

p0201 507 136 0 0.0 5.0 0.000

p2756 23151 6923 0 0.0 3600.2 0.891

seymour 1947 0 0 0.0 3601.8 7.770

stein27 4666 0 0 0.0 8.0 0.000

stein45 54077 0 0 0.0 277.7 0.000

Total (11) 405469 7510 0 0.0 12637.3 8.709

Table 8.1: SIP without feasible set inequalities

Example B & B Cuts Time Gap %

Others FS FS Total

fiber 771 358 1 3.3 19.4 0.000

gesa2 211168 33 4 9.0 3600.0 0.047

gesa3 o 74472 0 0 70.7 1218.4 0.000

misc03 703 14 11 1.1 5.4 0.000

misc07 20962 0 365 54.1 333.0 0.000

p0033 75 40 5 0.6 0.7 0.000

p0201 507 136 1 2.0 7.1 0.000

p2756 23041 6842 6 4.9 3600.9 0.803

seymour 2146 0 10 5.4 3600.0 5.726

stein27 3660 0 142 1.6 10.0 0.000

stein45 47612 0 783 23.6 308.5 0.000

Total (11) 385117 7423 1328 176.4 12703.4 6.576

Table 8.2: SIP with feasible set inequalities

example seymour, where we improve the quality substantially, are set covering prob-
lems. There seem to be virtually no efficient separation algorithms for set covering
problems. To the best of our knowledge the only exceptions are the cutting planes
from conditional bounds by Balas and Ho [1980], a class of k-projection inequali-
ties by Nobili and Sassano [1992], and aggregated cycle inequalities by Borndörfer
[1998]. It is therefore even more astonishing that our general separation algorithm
for feasible set inequalities finds violated inequalities for this type of problems.

The only example where we spent a significant amount of time in Algorithm 8.5.2
and fail to find any violated cut is example gesa3 o. We looked at this example in
detail and it turned out that the inequalities of the identified blocks already give
a complete description of the polytope induced by this block. These means, that
the fractional solution must be a convex combination of feasible integer solutions
and we fail to find violated cuts. The question is, of course, how to avoid this case.
One way to overcome this difficulty is to first check, whether the current fractional
solution is a convex combination of feasible integer solutions, and then to start the
search for violated cuts. This approach has been successfully used by Applegate,
Bixby, Chvátal, and Cook [1998] for the solution of traveling salesman problems
and there is good hope that their ideas might be carried over to our case, i. e., to
general integer programs.

Chapter 9

Conclusions

In this thesis we studied integer programs with block structure. In Part I we looked
at three different types of problems, the multiple knapsack problem, the Steiner tree
packing problem and a special multicommodity flow problem, which led to integer
programs with block structure. We focused our polyhedral studies on the impact
that the linking constraints have on the associated polytopes. We observed that in
general all individual inequalities are inherited by the packing polytope. In addi-
tion, we discovered many new classes of joint inequalities. The description of these
inequalities and the conditions under which they are facet-defining are sometimes
very complicated and technical, see, for instance, Theorem 2.4.2, Theorem 3.3.2,
or Theorem 4.3.6. Also, from an algorithmic point of view, these inequalities are
not tractable in general. For all discussed joint inequalities we only have separation
heuristics at hand or our separation algorithms are restricted to special cases. Nev-
ertheless, we have seen that these individual and especially the joint inequalities are
indispensable for solving problems of realistic size.

Part II of this thesis dealt with general mixed integer programs. We discussed
the main ingredients of a solver for such problems. As the application that led to
the particular integer program under consideration is unknown to a general mixed
integer programming algorithm, it is mandatory to analyze the underlying con-
straint matrix, extract known structures (like, for instance, the knapsack problem),
and exploit knowledge about the detected structures in the solution process. We
applied this methodology to block structures. In particular, we developed an algo-
rithm that allows to identify block structure in a general mixed integer program.
And indeed we saw that many real-world mixed integer programming problems do
decompose into block structure. We then suggested two ways of exploiting block
structure. One by parallelizing all column-based operations in the dual simplex al-
gorithm. We saw that it is possible to get remarkable speed-ups for linear programs
if the ratio of columns to rows is no more than ten (a ratio that is often satisfied
by integer programs with block structure). In this context, it remains to parallelize
the LU-factorization, a task whose solution integer programs with block structure
would definitely benefit. The second, suggested way of exploiting block structure
was a polyhedral one. We described a new, very general class of inequalities that
is associated with the intersection of several inequalities. Such a set of inequalities
may be viewed as one block and in the sense of Part I these inequalities correspond
to the individual inequalities. As in Part I we saw that these individual inequalities
do considerably improve the solution quality of general mixed integer programs. It
remains the problem to identify joint inequalities in a general mixed integer pro-
gram with block structure. The results of Part I show that this is a very difficult,
but also a very worthwhile and highly promising challenge.

175

Appendix A

Notation

In this chapter we briefly summarize the notation we use throughout this thesis. In
terms of polyhedral combinatorics we basically follow the book of Schrijver [1986]
and Grötschel, Lovász, and Schrijver [1988], introductions to graph theory can be
found, for instance, in Bondy and Murty [1976] and Chartrand and Lesniak [1986].

Graphs and Digraphs

We denote graphs by G = (V,E), where V is the node set and E the edge set. All
graphs we consider are finite. We denote an edge e ∈ E with endnodes u and v by
[u, v] or uv for short. For a given edge set F ⊆ E, we denote by V (F) all nodes that
are incident to an edge in F . Given two node sets U,W ⊆ V , we denote by [U : W]
the set of edges in G with one endnode in U and the other in W . For a node set
W , we also use E(W) instead of [W : W]. By G[W] = (W,E(W)) we denote the
graph induced by node set W . A set of node sets V1, . . . , Vp ⊂ V, p ≥ 2, is called a
partition of V if all sets Vi are non-empty, the node sets are mutually disjoint and
the union of these sets is V . (Note that we use “⊂” to denote strict set theoretic
containment.) If V1, . . . , Vp is a partition of V then δG(V1, . . . , Vp) denotes the set
of edges in G whose endnodes are in different sets. For W ⊂ V, W �= ∅, we write
δG(W) instead of δG(W,V \ W) and call this set the cut induced by W . For two
nodes s, t ∈ V, s �= t, a cut δG(W), W ⊂ V , with s ∈ W and t /∈ W is called an
[s, t]-cut. If it is clear from the context we write δ(·) instead of δG(·). If W = {v},
we abbreviate δ({v}) by δ(v). For an edge set F , we define dF (v) = |δ(v)∩F | to be
the degree of v in the subgraph (V, F) of G. For v ∈ V , η(v) denotes all neighbours
of v, i. e., η(v) := V (δ(v)) \ {v}.

We call a sequence of nodes and edges K = (v0, e1, v1, e2, . . . , vl−1, el, vl), where
each edge ei is incident with the nodes vi−1 and vi for i = 1, . . . , l, and where
the edges and nodes are pairwise disjoint (except possibly v0 and vl), a path (or a
[v0, vl]−path), if v0 �= vl, and a cycle, if v0 = vl and l ≥ 2. Each edge that connects
two nodes of a cycle (path) K and that is not in K is called a diagonal of K. We say
that two edges uv and u′v′ cross with respect to K if they appear in the sequence
u, u′, v, v′ or u, v′, v, u′ by walking along the cycle (path). Similarly, we call two sets
of diagonals F1 and F2 cross free if, for all e1 ∈ F1 and e2 ∈ F2, e1 and e2 do not
cross. Otherwise, F1 and F2 are crossing. If not specified otherwise we consider a
path P or a cycle C, respectively, as a subset of the edge set. We call an edge set
B a tree if (V (B), B) is connected and contains no cycle. The leaves of B are the
nodes that are incident to exactly one edge of B. A graph G = (V,E) is said to be
k-edge (or k-node) connected, k ≥ 1, if between any two nodes u, v ∈ V there exist
at least k edge- (or node-) disjoint [u, v]-paths.

177

178 APPENDIX A. NOTATION

A flow in an undirected graph G = (V,E) with respect to some demand (s, t),
s, t ∈ V of size d ∈ R+ is a function f : E �→ R+ such that there exist [s, t]-paths
P1, . . . , Pp, cycles C1, . . . , Cq, and positive numbers λ1, . . . , λp, μ1, . . . , μq > 0 such
that

fuv =
∑

{i: uv∈Pi}
λiPi +

∑
{i: uv∈Ci}

μiCi for all uv ∈ E,

d=

p∑
i=1

λi.
(A.1)

A matching M in a graph G = (V,E) is a set of edges such that no two edges have
a common endnode. The matching is called perfect if every node is adjacent to an
edge in M .

We call a graph G a complete rectangular h×b grid graph, if it can be embedded
in the plane by h horizontal lines and b vertical lines such that the nodes of V are
represented by the intersections of the lines and the edges are represented by the
connections of the intersections. A column J (row J) of a complete rectangular
h × b grid graph is a subset of the edge set that has cardinality h − 1 (b − 1) and
whose edges correspond to the same vertical (horizontal) line.

A digraph D = (V,A) consists of a finite set V of nodes and a finite set A of arcs.
With each arc a an ordered tuple (u, v) ∈ V ×V is associated, u is called the tail of a
and v the head of a. All terminology of digraphs we need in this thesis is restricted
to the following: For v ∈ V , δ+(v) := {(u,w) ∈ A : u = v} denotes the set of all
outgoing arcs of v and δ−(v) := {(u,w) ∈ A : w = v} the set of all ingoing arcs;
|δ+(v)| is the outdegree, and |δ−(v)| the indegree of v. Analogously to the undirected
case, we define a path (cycle), where in the definition of K edges are replaced by
arcs. If in addition each arc ai (i = 1, . . . , l) is of the form ai = (vi−1, vi), the path
(cycle) is called directed. If D does not contain a directed cycle, it is called acyclic.

Vectors

Vectors are considered as column vectors unless otherwise specified. The superscript
“T” denotes transposition. Consider some finite set N . We denote by RN the |N |-
dimensional vector space where the components of each vector are indexed by the
elements of N , i. e., x = (xi)i∈N for x ∈ RN . For x ∈ RN and I ⊆ N , we will often
abbreviate

∑
i∈I xi by x(I). For I ⊆ N , we denote by χI the incidence vector of I

in RN , i. e., χI
i = 1, if i ∈ I, and χI

i = 0, otherwise.
For v ∈ RN , we denote by v+ the vector with v+i = vi if vi ≥ 0 and v+i = 0,

otherwise. Accordingly, v− is the vector with v−i = −vi if vi ≤ 0 and v−i = 0,
otherwise. Clearly v = v+ − v−. If v ∈ RN , then supp(v) denotes the support of v;
in formulas, supp(v) := {i ∈ N : vi �= 0}.

The vector ei ∈ RN , i ∈ N denotes the i-th unit vector, i. e., the vector with a
value of one in the i-th component and zero otherwise. The vector of all ones is
denoted by 1l.

Consider some matrix A ∈ RM×N , where N,M are finite sets. For I ⊆ M and
J ⊆ N , we denote by AI,J ∈ RI×J the submatrix with entries (aij)i∈I,j∈J . We
abbreviate AI,N by AI· and AM,J by A·J . For j ∈ N , we write A·j instead of
A·{j} to denote the j-th column of A. Accordingly, Ai· denotes the i-th row of A,
for i ∈ M . Correspondingly, for some vector x ∈ RN and S ⊆ N , we denote by
xS := (xi)i∈S the vector restricted to the components in S.

If aTx ≤ α is a valid inequality for some polyhedron P , we set EQ (P, aTx ≤
α) := {x′ ∈ P : aTx′ = α}. If it is clear from the context we abbreviate

179

EQ (P, aTx ≤ α) by EQ (aTx ≤ α). Each vector x ∈ EQ(aTx ≤ α) is called a
root of the inequality aTx ≤ α.

A 0/1 linear program of the form min{1lTx : Ax ≥ 1l, x ∈ {0, 1}N} with A ∈
{0, 1}M×N is called a set covering problem. Following this definition, we call an
inequality

∑
i∈Q xi ≥ 1, for some Q ⊆ N , a set covering inequality. Accordingly, if

we replace in the above integer program the greater than or equal signs with less
than or equal signs, i. e., we consider the problem max{1lTx : Ax ≤ 1l, x ∈ {0, 1}N},
we obtain a so-called set packing problem. Accordingly, we denote by

∑
i∈Q xi ≤ 1 a

set packing inequality. Depending on the application, set packing constraints have
special names, for instance, in the multiple knapsack problem (Chapter 2) these
inequalities are called SOS constraints, in the Steiner tree packing case (Chapter 3)
they are called capacity constraints, and in connection with the knapsack problem
(Section 5.3) they are called generalized upper bound constraints.

Finally, for a subset S of a vector space, we denote by dim (S) the dimension of
S and by diff (S) := {x− y : x, y ∈ S} the difference set of S.

180 APPENDIX A. NOTATION

Appendix B

Branch-and-Cut Algorithms

Branch-and-cut algorithms are currently among the most successful methods to
solve integer programs and combinatorial optimization problems to optimality. In
this chapter we sketch the main ideas of such an algorithm. More details and ref-
erences to state-of-the-art algorithms can be found in the survey article of Caprara
and Fischetti [1997]. Suppose we want to solve an integer program

min cTx
s.t. Ax ≤ b,

(B.1)

where A ∈ Rm×n , c ∈ Rn , b ∈ Rm ; the variables xi (i = 1, . . . , n) might be binary
(xi ∈ {0, 1}), integer (xi ∈ Z), or continuous (xi ∈ R). Let PI = conv{x ∈ Rn :
x is feasible for (B.1)}. The first step of the algorithm is to consider a relaxation of
(B.1) by choosing a set P ′ ⊆ Rn with PI ⊆ P ′ and to optimize the linear objective
function over P ′. For example, this relaxation might be the linear programming
relaxation min{cTx : Ax ≤ b} or a semidefinite relaxation. In this thesis, we only
consider linear relaxations, hence, the set P ′ is always a polyhedron.

Let x̄ be an optimal solution for the linear relaxation. If x̄ is integral and all
inequalities of Ax ≤ b are satisfied by x̄, we have found an optimal solution for
(B.1). Otherwise, there exists a hyperplane {x ∈ Rn : aTx = α} such that aT x̄ > α
and PI ⊆ {x ∈ Rn : aTx ≤ α}. Such a hyperplane is called a cutting plane.
The problem of finding such an hyperplane is called the separation problem. More
precisely,

Given x̄ ∈ Rn . Decide, whether x̄ ∈ PI . If not, find some valid inequality
aTx ≤ α for PI such that aT x̄ > α.

Sometimes, the separation problem is restricted to a certain class of inequalities
(for example, to weight inequalities in the knapsack case or to alternative cycle
inequalities in the Steiner tree packing case), in which case we are looking for a
violated inequality of a certain class of inequalities. If we are able to find such
a cutting plane, we can strengthen the relaxation and continue. This process is
iterated until x̄ is a feasible solution or no more violated inequalities are found. In
the latter case this so-called cutting plane phase is embedded into an enumeration
scheme. This is commonly done by picking some fractional variable x∗

i that must be
binary or integer and creating two subproblems, one where one requires xi ≥
x∗

i �,
and one where xi ≥ �x∗

i �, see also the discussions in Section 5.2. The following
algorithm summarizes the whole procedure.

Algorithm B.1 Branch-and-Cut Algorithm.

(1) Let L be a list of unsolved problems; Initialize L with (B.1).

181

182 APPENDIX B. BRANCH-AND-CUT ALGORITHMS

(2) Repeat
(3) Choose a problem Π from L.
(4) Repeat (iterate)
(5) Solve the (linear) relaxation of Π. Let x̄ be an optimal solution.
(6) If x̄ is feasible for Π, Π is solved; goto (10).
(7) Look for violated inequalities and add them to the LP.
(8) Until there are no violated inequalities
(9) Split Π into subproblems and add them to L.
(10)Until L = ∅.
(11) Print the optimal solution.
(12)STOP.

The list L is usually organized as a binary tree, the so-called branch-and-bound
tree. Each (sub)problem Π corresponds to a node in the tree, where the unsolved
problems are the leaves of the tree and the node that corresponds to the entire prob-
lem (B.1) is the root. Branch-and-cut algorithms as outlined here are used all over
the places in this thesis (see Chapters 2, 3, 4, 5, and 6). In the remainder of this
chapter we discuss some implementation issues that are common to all described
algorithms and that are used in basically every state-of-the-art branch-and-cut im-
plementation.

LP-Management. The method that is commonly used to solve the LPs is the
dual simplex algorithm (see also Chapter 7), because an LP basis stays dual feasible
when adding cutting planes. As LP solver we use CPLEX1, a very fast and robust
linear programming solver.

Nevertheless, one major aspect in the design of a branch-and-cut algorithm is to
keep the linear program of moderate size. To this end, each inequality is assigned
an “age” (at the beginning the age is set to 0). Each time the inequality is not tight
at the current LP solution, the age is increased by one. If the inequality gets too
old, i. e., the age exceeds a certain limit, the inequality is eliminated from the LP.
The value for this “age limit” varies from application to application, for example in
the algorithm described in Chapter 4 this limit is set to 8, in Chapter 6 it is set to
1.

Another issue of LP-management concerns the questions: When should an in-
equality be added to the LP? When is an inequality considered to be “violated”?
And, how many and which inequalities should be added? The answers to these
questions again depend on the application. In the Steiner tree packing case, for
instance, an inequality aTx ≤ α is considered “violated” if the slack (= aT x̄−α) is
at least 0.01. In the branch-and-cut algorithm for PIPE, see Chapter 4, we use 0.1.
In SIP we only add inequalities if slack

max ai
is at least 0.05. In case too many violated

inequalities are found we add in the Steiner tree packing case the 300 (300 is a pa-
rameter) most “violated” inequalities, i. e., the inequalities with the greatest slack.
Another strategy is used for the solution of the matrix decomposition problem, see
page 123. It is clear that we always make sure that no redundant inequalities are
added to the linear program.

A commonly used structure in this context is the pool. Violated inequalities that
are added to the LP are stored in this structure. Also inequalities that are eliminated
from the LP are restored in the pool. Reasons for the pool are to reconstruct the
LPs when switching from one node in the branch-and-bound tree to another and
to keep inequalities that were “expensive” to separate for an easier excess in the
ongoing solution process.

Heuristics. Raising the lower bound using cutting planes is one important aspect
in a branch-and-cut algorithm, finding good feasible solutions early to enable fath-

1CPLEX is a registered trademark of ILOG

183

oming of branches of the search-tree is another. Primal heuristics strongly depend
on the application and we have discussed these algorithm in each chapter separately.
The complexity and the sensitivity to the change of the LP solutions influences the
frequency in which the heuristics are called. For instance, in the PIPE case the
heuristic is called only once per node in the branch-and-bound tree, whereas in the
multiple knapsack case or in the Steiner tree packing case the heuristics are called
after the solution of every LP.

Reduced Cost Fixing. The idea is to fix variables by exploiting the reduced costs
of the current optimal LP solution. Let z̄ = cT x̄ be the objective function value of
the current LP solution, zIP be an upper bound on the value of the optimal solution,
and d = (di)i=1,... ,n the corresponding reduced cost vector. Consider a non-basic
variable xi of the current LP solution with finite lower and upper bounds li and

ui, and non-zero reduced costs di > 0. Set δ = zIP−z̄
di

, rounded down in case xj

is a binary or a integer variable. Now, if xi is currently at its lower bound li and
li+ δ < ui, the upper bound of xi can be reduced to li+ δ. In case xi is at its upper
bound ui and ui − δ > li, the lower bound of variable xi can be increased to ui − δ.
In case the new bounds li and ui coincide, the variable can be fixed to its bounds
and removed from the problem. This strengthening of the bounds is called reduced
cost fixing. It was originally applied for binary variables (see Crowder, Johnson,
and Padberg [1983]), in which case the variable can always be fixed if the criterion
applies. There are problems where by the reduced cost criterion many variables can
be fixed, see, for instance, the multiple knapsack problems on page 18. Sometimes,
further variables can be fixed by logical implications, for example, if some binary
variable xi is fixed to one by the reduced cost criterion and it is contained in an
SOS constraint, all other variables in this SOS constraint can be fixed to zero.

Enumeration Aspects. In our description of a branch-and-cut algorithm in B.1
we left the questions open which problem to choose in Step (3) and how to split the
problem in Step (9). We discuss these issues in detail in Section 5.2 and refer the
reader to this section for a thorough discussion.

184 APPENDIX B. BRANCH-AND-CUT ALGORITHMS

Appendix C

Lifting

One question in polyhedral combinatorics is to extend low dimensional faces of
polyhedra to higher dimensional ones. We motivate this question in the following
and present the method of sequential lifting for solving it, see Padberg [1975], Wolsey
[1975]. During the run of a branch-and-cut algorithm, see Appendix B, for solving
an integer program

min cTx
s.t. Ax≤ b

0 ≤ x≤ u
x∈ Zn,

(C.1)

where A ∈ Rm×n , c ∈ Rn , , u ∈ Zn, b ∈ Rm , we must solve the separation problem:
given a fractional point x̄ ∈ Rn that is the optimum of a linear relaxation of the
integer program, find an inequality that is valid for PIP := conv{x ∈ Rn : Ax ≤
b, 0 ≤ x ≤ u} and that cuts off this point x̄. It is often the case that the number
of fractional components of x̄ is significantly smaller than the dimension n. To
speed up the process of finding violated inequalities, one would like to restrict the
search for violated inequalities to an instance of the original integer program whose
dimension is equal to the number of fractional variables of x̄. If one succeeds in
finding a violated inequality in this lower dimensional space, then it remains to
“lift back” the inequality of the low dimensional polyhedron to PIP. One way of
performing this task is to apply the method of sequential lifting that we discuss
now.

Let I ⊆ N := {1, . . . , n} and
∑

i∈I αixi ≤ α0 be an inequality that is valid for
PIP ∩ {x ∈ Rn : xj = 0 for all j ∈ N \ I}. We assume that α0 ∈ Z and αi ∈ Z
for all i ∈ I. The following algorithm extends the inequality

∑
i∈I αixi ≤ α0 to

an inequality
∑

i∈N αixi ≤ α0 that is valid for P . The algorithm proceeds in an
iterative fashion. It takes into account step by step a variable i ∈ N \I, computes an
appropriate coefficient αi for this variable and iterates. We assume in the following
that π1, . . . , πn−|I| is a permutation of the items in N \ I.
Algorithm C.2 Sequential lifting.

(1) For k = 1 to n− |I| perform the following steps:
(2) For l = 1 to uπk

perform the following steps:

γ(k, l) = max
∑
i∈I

αixi +
∑

i∈{π1,... ,πk−1}
αixi∑

i∈I

A·ixi +
∑

i∈{π1,... ,πk−1}
A·ixi +A·πk

l ≤ b

0 ≤ xi ≤ ui, xi ∈ Z for i ∈ I ∪ {π1, . . . , πk−1}.

(C.2)

185

186 APPENDIX C. LIFTING

(3) End(For)
(4) Set

απk
:= min

l=1,... ,uπk

α0 − γ(k, l)

l
.(C.3)

(5) End(For)
(6) Stop.

It can be seen by induction on k that the output of this algorithm
∑

i∈N αixi ≤
α0 is a valid inequality for PIP, see also Proposition 8.5.3. Note that the values αi

for i ∈ N \ I are integral by our assumption on the integrality of
∑

i∈N αixi ≤ α0.
In case, for some k ∈ {π1, . . . , πn−|I|}, the integer program in (C.2) is infeasible,
i. e., the γ(k, l) = −∞, for all l = 1, . . . , uk, we may assign any value to αk and the
inequality stays valid. In fact, the following theorem is true, too.

Proposition C.3 Let I ⊆ N and
∑

i∈I αixi ≤ α0 an inequality that defines a facet
of PIP ∩ {x ∈ Rn : xj = 0 for all j ∈ N \ I}. After applying Algorithm C.2, the
inequality

∑
i∈N αixi ≤ α0 defines a facet of PIP.

The inequality that results from applying the lifting procedure is dependent on
the permutation of the items in the set N \ I.

Example C.4 Consider the knapsack polyhedron

PIP = conv{x ∈ {0, 1}6 : 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x6 ≤ 17}.

The inequality x1 + x2 + x3 + x4 ≤ 3 is valid for PIP ∩ {x5 = x6 = 0}. Choosing
the permutation (5, 6) yields the inequality x1 + x2 + x3 + x4 + x5 + x6 ≤ 3. If one
chooses the permutation (6, 5) of the items 5 and 6, the resulting inequality reads
x1 + x2 + x3 + x4 + 2x6 ≤ 3.

Note that in order to perform the lifting procedure one needs to solve a couple
of integer programs that - on the first view - appear as difficult as the original
problem. Sometimes they are not. For instance, if the integer program (C.1) is
a 0/1 knapsack problem and the starting inequality

∑
i∈I αixi ≤ α0 is a minimal

cover or (1, k)-configuration inequality (see page 11), the lifting coefficients can be
computed in polynomial time, see Zemel [1989] or Section 5.3 for more details. It
is however true that for many integer programs the lifting procedure can hardly be
implemented in the way we presented it, because computing the coefficients step
by step is just too expensive. In such cases, one resorts to lower bounds on the
coefficients that one obtains from heuristics.

We finally note that lifting can, of course, also be applied if a variable xi is
currently at its upper bound ui. In this case, we first “complement” variable xi be
replacing it by ui − xi, apply the same Algorithm C.2 and resubstitute the variable
afterwards. Details of this procedure are discussed in Section 8.

Appendix D

Problem Data

The following tables contain statistics for the test problems considered in Part II of
this thesis.

Tables D.1 and D.2 provide the data for linear programs taken from the Netlib.
Columns 3 to 5 give the number of rows, columns and non-zeros of the problems, and
Columns 6 to 8 the corresponding numbers after CPLEX presolve has been applied.
These instances are available by anonymous ftp from ftp://netlib2.cs.utk.edu.

Size statistics for non-Netlib linear programming problems employed in our
testing in Chapter 7 are given in Table D.3 in alphabetic order. The format of the
table is as for the Netlib problems, Columns 3 to 5 give the original number of rows,
columns, and non-zeros, whereas Columns 6 to 8 give these numbers after CPLEX
presolve. For the most part these models were collected from proprietary models
available to Bob Bixby through CPLEX Optimization, Inc. (now ILOG). With the
exception of aa6, all models with names of the form ’aaK’, whereK is an integer, are
K-variable initial segments of the 12,753,312 variable “American Airlines Challenge
Model” described in Bixby, Gregory, Lustig, Marsten, and Shanno [1992].

Table D.4 contains statistics for mixed integer programming problems from the
Miplib. Columns 2, 3, and 7 give the number of rows, columns, and non-zeros of
the problems. Columns 3 to 5 provide the number of binary, integer, and contin-
uous variables. A description of the problems and the data are available from URL

http://www.caam.rice.edu:80/∼bixby/miplib/miplib.html, see Bixby, Ceria,
McZeal, and Savelsbergh [1998].

187

188 APPENDIX D. PROBLEM DATA

Example Original Presolved

Rows Cols NZs Rows Cols NZs

25fv47 821 1571 10400 684 1449 9903

80bau3b 2262 9799 21002 1965 8680 18981

adlittle 56 97 383 53 94 372

afiro 27 32 83 20 28 71

agg 488 163 2410 164 107 867

agg2 516 302 4284 280 250 2267

agg3 516 302 4300 282 249 2298

bandm 305 472 2494 179 228 1531

beaconfd 173 262 3375 49 105 1033

blend 74 83 491 51 57 394

bnl1 643 1175 5121 451 995 4632

bnl2 2324 3489 13999 943 2095 10252

boeing1 351 384 3485 287 419 2765

boeing2 166 143 1196 122 160 811

bore3d 233 315 1429 52 74 411

brandy 220 249 2148 108 177 1667

capri 271 353 1767 159 224 1304

cycle 1903 2857 20720 929 1791 12993

czprob 929 3523 10669 464 2491 4982

d2q06c 2171 5167 32417 1875 4617 30600

degen2 444 534 3978 382 473 3851

degen3 1503 1818 24646 1407 1722 24427

dfl001 6071 12230 35632 3965 9212 32153

e226 223 282 2578 148 251 2267

etamacro 400 688 2409 294 478 1910

fffff800 524 854 6227 295 638 4804

finnis 497 614 2310 340 404 1426

fit1d 24 1026 13404 24 1024 13386

fit1p 627 1677 9868 627 1427 9618

fit2d 25 10500 129018 25 10450 128564

fit2p 3000 13525 50284 3000 13525 50284

forplan 161 421 4563 101 364 3801

ganges 1309 1681 6912 576 803 4187

gfrdpnc 616 1092 2377 322 794 1781

greenbea 2392 5405 30877 1020 3058 23028

greenbeb 2392 5405 30877 1019 3049 22927

grow15 300 645 5620 300 645 5620

grow22 440 946 8252 440 946 8252

grow7 140 301 2612 140 301 2612

israel 174 142 2269 163 141 2256

kb2 43 41 286 39 32 266

lotfi 153 308 1078 117 282 596

maros 846 1443 9614 539 843 5788

nesm 662 2923 13288 622 2707 12933

perold 625 1376 6018 507 1096 5359

Table D.1: Problem statistics for Netlib LP problems.

189

Example Original Presolved

Rows Cols NZs Rows Cols NZs

pilot4 410 1000 5141 353 773 4705

pilot87 2030 4883 73152 1890 4511 70370

pilotja 940 1988 14698 745 1420 10985

pilotnov 975 2172 13057 785 1737 11528

pilots 1441 3652 43167 1275 3243 40467

pilotwe 722 2789 9126 624 2378 8311

recipe 91 180 663 55 89 395

sc105 105 103 280 59 58 266

sc205 205 203 551 116 115 611

sc50a 50 48 130 29 28 96

sc50b 50 48 118 28 28 84

scagr25 471 500 1554 240 391 1223

scagr7 129 140 420 60 103 305

scfxm1 330 457 2589 237 383 2148

scfxm2 660 914 5183 476 768 4321

scfxm3 990 1371 7777 715 1153 6494

scorpion 388 358 1426 102 140 532

scrs8 490 1169 3182 158 809 2514

scsd1 77 760 2388 77 760 2388

scsd6 147 1350 4316 147 1350 4316

scsd8 397 2750 8584 397 2750 8584

sctap1 300 480 1692 269 339 1444

sctap2 1090 1880 6714 977 1326 5717

sctap3 1480 2480 8874 1344 1767 7630

seba 515 1028 4352 2 8 11

share1b 117 225 1151 103 204 1048

share2b 96 79 694 93 79 691

shell 536 1775 3556 248 1204 2414

ship04l 402 2118 6332 288 1886 4267

ship04s 402 1458 4352 188 1238 2804

ship08l 778 4283 12802 470 3099 7100

ship08s 778 2387 7114 234 1538 3534

ship12l 1151 5427 16170 609 4147 9222

ship12s 1151 2763 8178 267 1847 4121

sierra 1227 2036 7302 1094 1916 6966

stair 356 467 3856 242 270 3520

standata 359 1183 3031 250 717 1600

standmps 467 1075 3679 352 969 2344

stocfor1 117 111 447 61 63 349

stocfor2 2157 2031 8343 1362 1248 7022

stocfor3 16675 15695 64875 10740 9786 52492

truss 1000 8806 27836 1000 8806 27836

tuff 333 587 4520 142 388 4041

vtpbase 198 203 908 49 78 227

wood1p 244 2594 70215 170 1728 44884

woodw 1098 8405 37474 555 4010 14536

Table D.2: Problem statistics for Netlib LP problems.

190 APPENDIX D. PROBLEM DATA

Example Original Presolved

Rows Cols NZs Rows Cols NZs

0321.4 1202 71201 818258 1202 50559 656073

0341.4 658 46508 384286 658 27267 264239

aa100000 837 100000 770645 837 68428 544654

aa1000000 837 1000000 7887318 837 604371 5051196

aa200000 837 200000 1535412 837 134556 1075761

aa25000 837 25000 192313 837 17937 140044

aa300000 837 300000 2314117 837 197764 1595300

aa400000 837 400000 3115729 837 259924 2126937

aa50000 837 50000 380535 837 35331 276038

aa500000 837 500000 3889641 837 320228 2624731

aa6 541 4486 25445 532 4316 24553

aa600000 837 600000 4707661 837 378983 3138105

aa6000000 837 6000000 46972327 837 2806468 23966705

aa700000 837 700000 5525946 837 434352 3620867

aa75000 837 75000 576229 837 52544 415820

aa800000 837 800000 6309846 837 493476 4112683

aa900000 837 900000 7089709 837 548681 4575788

amax 5160 150000 6735560 5084 150000 3237088

continent 10377 57253 198214 6841 45771 158025

cre b 9648 72447 256095 5229 31723 107169

finland 56794 139121 658616 5372 61505 249100

fit2d 25 10500 129018 25 10450 128564

food 27349 97710 288421 10544 69004 216325

imp1 4089 121871 602491 1587 112201 577607

mctaq 1129 16336 52692 1129 16336 52692

nopert 1119 16336 50749 1119 16336 50749

nw16 139 148633 1501820 139 138951 1397070

osa030 4350 100024 600144 4279 96119 262872

osa060 10280 232966 1397796 10209 224125 584253

pilots 1441 3652 43167 1275 3243 40467

ra1 823 8904 72965 780 8902 70181

roadnet 463 42183 394187 462 41178 383857

sfsu2 4246 55293 984777 3196 53428 783198

sfsu3 1973 60859 2111658 1873 60716 2056445

sfsu4 2217 33148 437095 1368 24457 180067

tm 28420 164024 505253 17379 139529 354697

us01 145 1053137 13636541 87 370626 3333071

usfs2 1484 13822 158612 1166 12260 132531

w1.dual 42 415953 3526288 22 140433 1223824

Table D.3: Problem statistics for non-Netlib LP problems.

191

Example Rows Cols Bin Int Cont NZs

10teams 230 2025 1800 0 225 12150

air03 124 10757 10757 0 0 91028

air04 823 8904 8904 0 0 72965

air05 426 7195 7195 0 0 52121

arki001 1048 1388 415 123 850 20439

bell3a 123 133 39 32 62 347

bell5 91 104 30 28 46 266

blend2 274 353 231 33 89 1409

cap6000 2176 6000 6000 0 0 48249

dano3mip 3202 13873 552 0 13321 79655

danoint 664 521 56 0 465 3232

dcmulti 290 548 75 0 473 1315

dsbmip 1182 1886 160 32 1694 7366

egout 98 141 55 0 86 282

enigma 21 100 100 0 0 289

fast0507 507 63009 63009 0 0 409349

fiber 363 1298 1254 0 44 2944

fixnet6 478 878 378 0 500 1756

flugpl 18 18 0 11 7 46

gen 780 870 144 6 720 2592

gesa2 1392 1224 240 168 816 5064

gesa2 o 1248 1224 384 336 504 3672

gesa3 1368 1152 216 168 768 4944

gesa3 o 1224 1152 336 336 480 3624

gt2 29 188 24 164 0 376

harp2 112 2993 2993 0 0 5840

khb05250 101 1350 24 0 1326 2700

l152lav 97 1989 1989 0 0 9922

lseu 28 89 89 0 0 309

misc03 96 160 159 0 1 2053

misc06 820 1808 112 0 1696 5859

misc07 212 260 259 0 1 8619

mitre 2054 10724 10724 0 0 39704

mod008 6 319 319 0 0 1243

mod010 146 2655 2655 0 0 11203

mod011 4480 10958 96 0 10862 22254

modglob 291 422 98 0 324 968

noswot 182 128 75 25 28 735

nw04 36 87482 87482 0 0 636666

p0033 16 33 33 0 0 98

p0201 133 201 201 0 0 1923

p0282 241 282 282 0 0 1966

p0548 176 548 548 0 0 1711

p2756 755 2756 2756 0 0 8937

pk1 45 86 55 0 31 915

pp08a 136 240 64 0 176 480

pp08aCUTS 246 240 64 0 176 839

qiu 1192 840 48 0 792 3432

qnet1 503 1541 1288 129 124 4622

qnet1 o 456 1541 1288 129 124 4214

rentacar 6803 9557 55 0 9502 41868

rgn 24 180 100 0 80 460

rout 291 556 300 15 241 2431

set1ch 492 712 240 0 472 1412

seymour 4944 1372 1372 0 0 33549

stein27 118 27 27 0 0 378

stein45 331 45 45 0 0 1034

vpm1 234 378 168 0 210 749

vpm2 234 378 168 0 210 917

Table D.4: Problem statistics for Miplib-problems

Bibliography

Aardal, K. and Weismantel, R. (1997). Polyhedral Combinatorics. In Dell’Amico,
Maffioli, and Martello [1997], chapter 3, pages 31–44.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, New Jersey.

Alevras, D., Grötschel, M., and Wessäly, R. (1998). Cost–efficient network synthesis
from leased lines. Annals of Operations Research, 76:1–20.

Andersen, E. D. and Andersen, K. D. (1995). Presolving in linear programming.
Mathematical Programming, 71:221 – 245.

Applegate, D., Bixby, R. E., Chvátal, V., and Cook, W. (1995). Finding cuts in
the TSP. Technical Report 95-05, DIMACS.

Applegate, D., Bixby, R. E., Chvátal, V., and Cook, W. (1998). Project-and-lift (a
paradigm for finding cuts). Draft.

Balas, E. (1975). Facets of the knapsack polytope. Mathematical Programming,
8:146 – 164.

Balas, E., Ceria, S., and Cornuéjols, G. (1993). A lift-and-project cutting plane
algorithm for mixed 0− 1 programs. Mathematical Programming, 58:295–324.

Balas, E., Ceria, S., and Cornuéjols, G. (1996). Mixed 0-1 programming by lift-
and-project in a branch-and-cut framework. Management Science, 42:1229 –
1246.

Balas, E., Ceria, S., Cornuéjols, G., and Natraj, N. (1996). Gomory cuts revisited.
Operations Research Letters, 19:1 – 9.

Balas, E. and Ho, A. (1980). Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: A computational study. Mathematical Program-
ming, 12:37–60.

Barr, R. S. and Hickman, B. L. (1994). Parallel simplex for large pure network
problems: Computational testing and sources of speedup. Operations Research,
42:65 – 80.

Bauer, B. E. (1992). Practical Parallel Programming. Academic Press.

Beguelin, A., Dongarra, J., Geist, A., Jiang, W., Manchek, R., and Sunderam,
V. (1994). PVM: Parallel Virtual Machine, A Users’ Guide and Tuto-
rial for Networked Parallel Computing. The MIT Press, Cambride, Mas-
sachusetts, London, England. Information available via WWW at URL
http://www.epm.ornl.gov/pvm/pvm home.html.

Benders, J. F. (1962). Partitioning procedures for solving mixed variables program-
ming. Numerische Mathematik, 4:238–252.

Benichou, M., Gauthier, J. M., Girodet, P., Hentges, G., Ribiere, G., and Vin-
cent, O. (1971). Experiments in mixed-integer programming. Mathematical
Programming, 1:76 – 94.

193

194 BIBLIOGRAPHY

Bienstock, D., Chopra, S., Günlük, O., and Tsai, C.-Y. (1998). Minimum cost
capacity installation for multicommodity network flows. Mathematical Pro-
gramming, 81:177 – 199.

Bienstock, D. and Günlük, O. (1996). Capacitated network design – Polyhedral
structure and computation. INFORMS Journal on Computing, 8:243–259.

Bixby, R. E. (1994). Lectures on Linear Programming. Rice University, Houston,
Texas.

Bixby, R. E., Ceria, S., McZeal, C., and Savelsbergh, M. W. P. (1998). An updated
mixed integer programming library: MIPLIB 3.0. Paper and Problems available
at WWW Page: http://www.caam.rice.edu/∼bixby/miplib/miplib.html.

Bixby, R. E., Gregory, J. W., Lustig, I. J., Marsten, R. E., and Shanno, D. F. (1992).
Very large-scale linear programming: A case study in combining interior point
and simplex methods. Operations Research, 40:885 – 897.

Bixby, R. E. and Martin, A. (1995). Parallelizing the dual simplex method. Preprint
SC 95-45, Konrad-Zuse-Zentrum Berlin.

Bondy, J. A. and Murty, U. S. R. (1976). Graph Theory with Applications. American
Elsevier, New York, and Macmillan, London.

Borndörfer, R. (1998). Aspects of Set Packing, Partitioning, and Covering. PhD
thesis, Technische Universität Berlin.

Borndörfer, R., Ferreira, C. E., and Martin, A. (1998). Decomposing matrices into
blocks. SIAM Journal on Optimization, 9:236 – 269.

Borndörfer, R. and Weismantel, R. (1997a). Relations among some combinato-
rial programs. Technical Report Preprint SC 97-54, Konrad-Zuse-Zentrum für
Informationstechnik Berlin.

Borndörfer, R. and Weismantel, R. (1997b). Set packing relaxations of some inte-
ger programs. Technical Report Preprint SC 97-30, Konrad-Zuse-Zentrum für
Informationstechnik Berlin.

Brady, M. L. and Brown, D. J. (1984). VLSI routing: Four layers suffice. In
Preparata, F. P., editor, VLSI theory, volume 2 of Advances in Computing
Research, pages 245 – 258. Jai Press, London.

Burstein, M. and Pelavin, R. (1983). Hierarchical wire routing. IEEE Transactions
on Computer-Aided-Design, 2:223 – 234.

Caprara, A. and Fischetti, M. (1997). Branch-and-cut algorithms. In Dell’Amico,
M., Maffioli, F., and Martello, S., editors, Annotated Bibliographies in Combi-
natorial Optimization, pages 45–63. John Wiley & Sons Ltd, Chichester.

Carøe, C. C., Ruszczyński, A., and Schultz, R. (1997). Unit commitment under
uncertainty via two-stage stochastic programming. Technical Report DIKU-
TR-97123, Department of Computer Science, University of Copenhagen.

Ceria, S., Cordier, C., Marchand, H., and Wolsey, L. A. (1998). Cutting planes for
integer programs with general integer variables. Mathematical Programming,
81:201 – 214.

Chang, M. D., Engquist, M., Finkel, R., and Meyer, R. R. (1988). A parallel
algorithm for generalized networks. Annals of Operations Research, 14:125 –
145.

Chartrand, G. and Lesniak, L. (1986). Graphs & digraphs (Second edition).
Wadsworth & Brooks/Cole Advanced Books and Software, Pacific Grove, Cal-
ifornia, USA.

BIBLIOGRAPHY 195

Chvátal, V. (1973). Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete Mathematics, 4:305 – 337.

Chvátal, V. (1983). Linear Programming. W. H. Freeman and Company.

Cohoon, J. P. and Heck, P. L. (1988). BEAVER: A computational-geometry-based
tool for switchbox routing. IEEE Transactions on Computer-Aided-Design,
7:684 – 697.

Cordier, C., Marchand, H., Laundy, R., and Wolsey, L. A. (1997). bc – opt: a
branch-and-cut code for mixed integer programs. Technical Report CORE
DP9778, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

CPLEX (1997). Using the CPLEX Callable Library. ILOG CPLEX Division, 889
Alder Avenue, Suite 200, Incline Village, NV 89451, USA. Information available
at URL http://www.cplex.com.

Crama, Y. and Oosten, M. (1996). Models for machine-part grouping in cellular
manufacturing. Int. J. Prod. Res., 34:1693 – 1713.

Crowder, H., Johnson, E., and Padberg, M. W. (1983). Solving large-scale zero-one
linear programming problems. Operations Research, 31:803–834.

Dahl, G., Martin, A., and Stoer, M. (1995). Routing through virtual paths in layered
telecommunication networks. Research Note N 78/95, Telenor Research and
Development, Kjeller, Norway. To appear in Operations Research.

Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear programs.
Operations Research, 8:101–111.

Davis, T. A. and Yewr, P. (1990). A nondeterministic parallel algorithm for general
unsymmetric sparse LU factorization. SIAM Journal on Matrix Analysis and
Application, 11:383 – 402.

Dell’Amico, M., Maffioli, F., and Martello, S., editors (1997). Annotated Bibliogra-
phies in Combinatorial Optimization. John Wiley & Sons Ltd, Chichester.

Dreyfus, S. E. and Wagner, R. A. (1971). The Steiner problem in graphs. Networks,
1:195 – 207.

Duff, I. S., Erisman, A. M., and Reid, J. K. (1986). Direct Methods for Sparse
Matrices. Oxford University Press.

Eckstein, J. (1994). Parallel branch-and-bound algorithms for general mixed integer
programming on the CM-5. SIAM Journal on Optimization, 4:794 – 814.

Eckstein, J., Boduroglu, I. I., Polymenakos, L. C., and Goldfarb, D. (1995). Data-
parallel implementation of dense simplex methods on the connection machine
CM-2. ORSA Journal on Computing, 7:402 – 416.

Ehrgott, M. (1992). Optimierungsprobleme in Graphen unter Kardinalitätsrestrik-
tionen. Master’s thesis, Univ. Kaiserslautern, Dept. of Mathematics.

Erickson, R. E., Monma, C. L., and Veinott, A. F. (1987). Send-and-split method
for minimum concave-cost network flows. Mathematics of Operations Research,
12:634 – 664.

Ferreira, C. E. (1994). On Combinatorial Optimization Problems Arising in Com-
puter System Design. PhD thesis, Technische Universität Berlin.

Ferreira, C. E., Grötschel, M., Kiefl, S., Krispenz, C., Martin, A., and Weisman-
tel, R. (1993). Some integer programs arising in the design of main frame
computers. ZOR – Methods and Models of Operations Research, 38:77 – 100.

Ferreira, C. E., Martin, A., de Souza, C. C., Weismantel, R., and Wolsey, L. A.
(1998). The node capacitated graph partitioning problem: A computational
study. Mathematical Programming, 81:229 – 256.

196 BIBLIOGRAPHY

Ferreira, C. E., Martin, A., and Weismantel, R. (1996). Solving multiple knapsack
problems by cutting planes. SIAM Journal on Optimization, 6:858 – 877.

Ferris, M. C. and Horn, J. D. (1998). Partitioning mathematical programs for
parallel solution. Mathematical Programming, 80:35 – 61.

Fiduccia, C. M. and Mattheyses, R. M. (1982). A linear-time heuristic for improving
network partitions. Proc. 19th. DAC, pages 175–181.

Forrest, J. J. H. and Goldfarb, D. (1992). Steepest-edge simplex algorithms for
linear programming. Mathematical Programming, 57:341 – 374.

Forrest, J. J. H. and Tomlin, J. A. (1972). Updating triangular factors of the
basis to maintain sparsity in the product-form simplex method. Mathematical
Programming, 2:263 – 278.

Frank, A. (1990). Packing paths, circuits, and cuts – a survey. In Korte, B., Lovász,
L., Prömel, H. J., and Schrijver, A., editors, Paths, Flows, and VLSI-Layout,
pages 47 – 100. Springer, Berlin Heidelberg.

Gallivan, K. A., Heath, M. T., Ng, E., Ortega, J. M., Peyton, B. W., Plemmons,
R. J., Romine, C. H., Sameh, A. H., and Voigt, R. G. (1990). Parallel Algo-
rithms for Matrix Computations. Society for Industrial and Applied Mathe-
matics, Philadelphia.

Garey, M. R. and Johnson, D. S. (1977). The rectilinear Steiner tree problem is
NP-complete. SIAM Journal on Applied Mathematics, 32:826 – 834.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, New York.

Gerez, S. H. and Herrmann, O. E. (1989). Switchbox routing by stepwise reshaping.
IEEE Transactions on Computer-Aided-Design, 8:1350 – 1361.

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H. (1989). A practi-
cal anti-cycling procedure for linearly constrained optimization. Mathematical
Programming, 45:437 – 474.

Goldberg, A. V. and Tarjan, R. E. (1988). A new approach to the maximum flow
problem. Journal of ACM, 35:921 – 940.

Gomory, R. E. (1960). Solving linear programming problems in integers. In Bellman,
R. and Hall, M., editors, Combinatorial analysis, Proceedings of Symposia in
Applied Mathematics, volume 10, Providence RI.

Gomory, R. E. (1969). An algorithm for integer solutions to linear programming.
In Graves, R. L. and Wolfe, P., editors, Recent Advances in Mathematical
Programming, pages 269 – 302, New York. McGraw-Hill.

Gondzio, J. (1994). Presolve analysis of linear programs prior to apply an interior
point method. Technical Report 1994.3, University of Geneva, Switzerland.

Gottlieb, E. S. and Rao, M. R. (1990a). (1,k)-configuration facets for the generalized
assignment problem. Mathematical Programming, 46:53–60.

Gottlieb, E. S. and Rao, M. R. (1990b). The generalized assignment problem: Valid
inequalities and facets. Mathematical Programming, 46:31–52.

Grötschel, M., Lovász, L., and Schrijver, A. (1988). Geometric Algorithms and
Combinatorial Optimization. Springer.

Grötschel, M., Martin, A., and Weismantel, R. (1995). Routing in grid graphs by
cutting planes (extended version). ZOR – Methods and Models of Operations
Research, 41:255 – 275.

BIBLIOGRAPHY 197

Grötschel, M., Martin, A., and Weismantel, R. (1996b). Packing Steiner trees: A
cutting plane algorithm and computational results. Mathematical Program-
ming, 72:125 – 145.

Grötschel, M., Martin, A., and Weismantel, R. (1996c). Packing Steiner trees:
Further facets. European Journal on Combinatorics, 17:39 – 52.

Grötschel, M., Martin, A., and Weismantel, R. (1996a). Packing Steiner trees:
Polyhedral investigations. Mathematical Programming, 72:101 – 123.

Grötschel, M., Martin, A., and Weismantel, R. (1996d). Packing Steiner trees:
Separation algorithms. SIAM Journal on Discrete Mathematics, 9:233 – 257.

Grötschel, M., Martin, A., and Weismantel, R. (1997). The Steiner tree packing
problem in VLSI-design. Mathematical Programming, 78:265 – 281.

Grötschel, M. and Monma, C. L. (1990). Integer polyhedra associated with cer-
tain network design problems with connectivity constraints. SIAM Journal on
Discrete Mathematics, 3:502 – 523.

Grötschel, M., Monma, C. L., and Stoer, M. (1992). Computational results with
a cutting plane algorithm for designing communication networks with low-
connectivity constraints. Operations Research, 40:309 – 330.

Gu, Z., Nemhauser, G. L., and Savelsbergh, M. W. P. (1994). Lifted cover inequal-
ities for 0 − 1 integer programs: computation. Technical Report LEC 94-09,
Georgia Institute of Technology.

Gu, Z., Nemhauser, G. L., and Savelsbergh, M. W. P. (1997). Lifted cover inequali-
ties for 0−1 integer programs: Complexity. Technical report, Georgia Institute
of Technology. to appear in INFORMS Journal on Computing.

Gupta, A. (1996). Fast and effective algorithms for graph partitioning and sparse
matrix ordering. Research Report RC 20496, IBM T. J. Watson Research
Center, Yorktown Heights.

Hammer, P. L., Johnson, E. L., and Peled, U. N. (1975). Facets of regular 0-1
polytopes. Mathematical Programming, 8:179 – 206.

Harris, P. M. J. (1973). Pivot selection methods of the devex LP code. Mathematical
Programming, 5:1 – 28.

Helgason, R. V., Kennington, J. L., and Zaki, H. A. A. (1988). Parallelization of
the simplex method. Annals of Operations Research, 14:17 – 40.

Helmberg, C., Mohar, B., Poljak, S., and Rendl, F. (1995). A spectral approach to
bandwidth and separator problems in graphs. Linear and Multilinear Algebra,
39:73–90.

Hoffman, K. L. and Padberg, M. W. (1991). Improved LP-representations of zero-
one linear programs for branch-and-cut. ORSA Journal on Computing, 3:121–
134.

Hoffman, K. L. and Padberg, M. W. (1993). Solving airline crew-scheduling prob-
lems by branch-and-cut. Management Science, 39:657–682.

Johnson, E. and Padberg, M. W. (1981). A note on the knapsack problem with
special ordered sets. Operations Research Letters, 1:18 – 22.

Joobbani, R. and Siewiorek, D. P. (1986). WEAVER: A knowledge-based routing
expert. IEEE Design and Test, pages 12 – 23.

Jou, J. M., Lee, J. Y., Sun, Y., and Wang, J. F. (1990). An efficient VLSI switch-box
router. IEEE Design and Test, pages 52 – 65.

198 BIBLIOGRAPHY

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E.
and Thatcher, J. W., editors, Complexity of Computer Computations, pages 85
– 103. Plenum Press, New York.

Klabjan, D., Nemhauser, G. L., and Tovey, C. (1996). The complexity of cover in-
equality separation. Technical report, Georgia Institute of Technology, Atlanta,
USA. To appear in Operations Research Letters.

Koch, T. and Martin, A. (1998). Solving Steiner tree problems in graphs to opti-
mality. Networks, 32:207 – 232.

Korte, B., Prömel, H. J., and Steger, A. (1990). Steiner trees in VLSI-layout. In
Korte, B., Lovász, L., Prömel, H. J., and Schrijver, A., editors, Paths, Flows,
and VLSI-Layout, pages 329 – 371. Springer, Berlin Heidelberg.

Kramer, M. R. and van Leeuwen, J. (1984). The complexity of wire-routing and
finding minimum area layouts for arbitrary VLSI circuits. In Preparata, F. P.,
editor, VLSI theory, volume 2 of Advances in Computing Research, pages 129
– 146. Jai Press, London.

Kumar, V., Grama, A., Gupta, A., and Karypis, G. (1994). Introduction to Parallel
Computing. The Benjamin/Cummings Publishing Company, Inc.

Land, A. and Powell, S. (1979). Computer codes for problems of integer program-
ming. Annals of Discrete Mathematics, 5:221 – 269.

Laurent, M. and Sassano, A. (1992). A characterization of knapsacks with the
max-flow-min-cut property. Operations Research Letters, 11:105–110.

Lengauer, T. (1990). Combinatorial algorithms for integrated circuit layout. Wiley,
Chichester.

Lin, Y. L., Hsu, Y. C., and Tsai, F. S. (1988). A detailed router based on simulated
evolution. Proc. Int. Conf. Computer-Aided-Design, pages 38 – 41.

Linderoth, J. T. and Savelsbergh, M. W. P. (1997). A computational study of
search strategies for mixed integer programming. Technical Report LEC-97-
12, Georgia Institute of Technology.

Lipski, W. (1984). On the structure of three-layer wireable layouts. In Preparata,
F. P., editor, VLSI theory, volume 2 of Advances in Computing Research, pages
231 – 244. Jai Press, London.

Löbel, A. (1997). Optimal Vehicle Scheduling in Public Transit. PhD thesis, Tech-
nische Universität Berlin.

Lomonosov, M. V. (1985). Combinatorial approaches to multiflow problems. Dis-
crete Applied Mathematics, 11:1 – 94.

Lorentzen, R. (1994). Mathematical methods and algorithms in the network utiliza-
tion planning tool ruginett. In Telektronikk, volume 90, pages 73 – 82, Telenor
Research, P.O.Box 83, 2007 Kjeller, Norway.

Lovász, L. and Plummer, M. D. (1986). Matching theory. North-Holland.

Luk, W. K. (1985). A greedy switch-box router. Integration, 3:129 – 149.

Magnanti, T. L., Mirchandani, P., and Vachani, R. (1995). Modeling and solving
the two–facility capacitated network loading problem. Operations Research,
43:142–157.

Marchand, H. (1998). A Polhedral Study of the Mixed Knapsack Set and its Use to
Solve Mixed Integer Programs. PhD thesis, Université Catholique de Louvain,
Louvain-la-Neuve, Belgium.

BIBLIOGRAPHY 199

Marchand, H. and Wolsey, L. A. (1997). The 0− 1 knapsack problem with a single
continuous variable. Technical Report CORE DP9720, Université Catholique
de Louvain, Louvain-la-Neuve, Belgium.

Martello, S. and Toth, P. (1990). Knapsack Problems. Algorithms and computer
implementations. John Wiley & Sons Ltd, Chichester.

Martin, A. (1992). Packen von Steinerbäumen: Polyedrische Studien und Anwen-
dungen. PhD thesis, Technische Universität Berlin.

Martin, A. and Weismantel, R. (1997). Contributions to general mixed integer
knapsack problems. Preprint SC 97-38, Konrad-Zuse-Zentrum Berlin.

Martin, A. and Weismantel, R. (1998). The intersection of knapsack polyhedra and
extensions. In Bixby, R. E., Boyd, E. A., and Ríos-Mercado, R. Z., editors,
Integer Programming and Combinatorial Optimization, Proceedings of the 6th
IPCO Conference, pages 243 – 256.

Mitra, G. (1973). Investigations of some branch and bound strategies for the solution
of mixed integer linear programs. Mathematical Programming, 4:155 – 170.

Nemhauser, G. L., Savelsbergh, M. W. P., and Sigismondi, G. C. (1994). MINTO,
a Mixed INTeger Optimizer. Operations Research Letters, 15:47 – 58.

Nemhauser, G. L. and Vance, P. H. (1994). Lifted cover facets of the 0−1 knapsack
polytope with GUB constraints. Operations Research Letters, 16:255 – 263.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimiza-
tion. Wiley.

Nemhauser, G. L. and Wolsey, L. A. (1990). A recursive procedure to generate all
cuts for 0 − 1 mixed integer programs. Mathematical Programming, 46:379 –
390.

Nicoloso, S. and Nobili, P. (1992). A set covering formulation of the matrix equipar-
tition problem. In Kall, P., editor, System Modelling and Optimization, Pro-
ceedings of the 15th IFIP conference, Zürich, September 1991, pages 189 – 198.
Springer.

Nobili, P. and Sassano, A. (1989). Facets and lifting procedures for the set covering
polytope. Mathematical Programming, 45:111–137.

Nobili, P. and Sassano, A. (1992). A separation routine for the set covering polytope.
In Balas, E., Cornuéjols, G., and Kannan, R., editors, Integer Programming and
Combinatorial Optimization, Proceedings of the 2nd IPCO Conference, pages
201 – 219.

Padberg, M. W. (1973). On the facial structure of set packing polyhedra. Mathe-
matical Programming, 5:199–215.

Padberg, M. W. (1975). A note on zero-one programming. Operations Research,
23:833–837.

Padberg, M. W. (1980). (1, k)-configurations and facets for packing problems. Math-
ematical Programming, 18:94–99.

Padberg, M. W. (1995). Linear Optimization and Extensions. Springer.

Padberg, M. W., Roy, T. J. V., and Wolsey, L. A. (1985). Valid inequalities for
fixed charge problems. Operations Research, 33:842 – 861.

Park, K., Kang, S., and Park, S. (1994). An integer programming approach to the
bandwidth packing problem. Technical report, Dept. of Industrial Engineering,
Korea Advanced Institute of Science and Technology, Taejon, Korea.

Parker, M. and Ryan, J. (1994). A column generation algorithm for bandwidth
packing. Telecommunications Systems, 2:185 – 195.

200 BIBLIOGRAPHY

Peters, J. (1990). The network simplex method on a multiprocessor. Networks,
20:845 – 859.

Pothen, A., Simon, H. D., and Liou, K.-P. (1990). Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal on Matrix Analysis, 11:430–452.

Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell
System Technical Journal, 36:1389 – 1401.

Robertson, N. and Seymour, P. D. (1990). An outline of a disjoint paths algorithm.
In Korte, B., Lovász, L., Prömel, H. J., and Schrijver, A., editors, Paths, Flows,
and VLSI-Layout, pages 267 – 292. Springer, Berlin Heidelberg.

Rothberg, E. and Hendrickson, B. (1996). Sparse matrix ordering methods for
interior point linear programming. Technical Report SAND96-0475J, Sandia
National Laboratories.

Roy, T. J. V. and Wolsey, L. A. (1987). Solving mixed integer programming prob-
lems using automatic reformulation. Operations Research, 35:45 – 57.

Sarrafzadeh, M. (1987). Channel-routing problem in the knock-knee mode is NP-
complete. IEEE Transactions on Computer-Aided-Design, 6:503 – 506.

Schrijver, A. (1980). On cutting planes. Annals of Discrete Mathematics, 9:291 –
296.

Schrijver, A. (1986). Theory of Linear and Integer Programming. Wiley, Chichester.

Schrijver, A. (1990). Homotopic routing methods. In Korte, B., Lovász, L., Prömel,
H. J., and Schrijver, A., editors, Paths, Flows, and VLSI-Layout, pages 329 –
371. Springer, Berlin Heidelberg.

Sharda, R. (1995). Linear programming solver software for personal computers:
1995 report. OR/MS Today, 22(5):49 – 57.

Soumis, F. (1997). Decomposition and Column Generation. In Dell’Amico, Maffioli,
and Martello [1997], chapter 8, pages 115 – 126.

Stevens, W. R. (1990). Unix Network Programming. Prentice-Hall.

Stoer, M. and Dahl, G. (1994). A polyhedral approach to multicommodity surviv-
able network design. Numerische Mathematik, 68:149–167.

Stougie, L. and van der Vlerk, M. H. (1997). Stochastic Integer Programming. In
Dell’Amico, Maffioli, and Martello [1997], chapter 9, pages 127 – 141.

Suhl, U. H. and Szymanski, R. (1994). Supernode processing of mixed-integer
models. Computational Optimization and Applications, 3:317 – 331.

Szymanski, T. G. (1985). Dogleg channel routing is NP-complete. IEEE Transac-
tions on Computer-Aided-Design, 4:31 – 40.

Thienel, S. (1995). ABACUS A Branch-And-CUt System. PhD thesis, Universität
zu Köln.

Tomlin, J. A. and Welsh, J. S. (1986). Finding duplicate rows in a linear program.
Operations Research Letters, 5:7 – 11.

Truemper, K. (1992). Matroid Decomposition. Acadamic Press.

Truemper, K. (1997). Personal communication.

Tzeng, P. and Séquin, C. H. (1988). Codar: a congestion-directed general area
router. Proc. Int. Conf. Computer-Aided Design, pages 30 – 33.

Weismantel, R. (1997). On the 0/1 knapsack polytope. Mathematical Programming,
77:49–68.

Wolsey, L. A. (1975). Faces of linear inequalities in 0-1 variables. Mathematical
Programming, 8:165 – 178.

BIBLIOGRAPHY 201

Wolsey, L. A. (1990). Valid inequalities for 0-1 knapsacks and MIPs with generalized
upper bound constraints. Discrete Applied Mathematics, 29:251–261.

Wunderling, R. (1996). Paralleler und objektorientierter Simplex. Technical Report
TR 96-09, Konrad-Zuse-Zentrum Berlin.

Zemel, E. (1989). Easily computable facets of the knapsack polytope. Mathematics
of Operations Research, 14:760 – 764.

Index

(1, k)-configuration, 11
inequality, 11

aggregation, 80
alternating cycle, 33

inequality, 33

basis, 137
dual feasible, 137

best first search, 83
best projection, 83
bfs, see best first search
big-edge inequality, 115
bin-packing inequality, 116
block, 106

capacity, 106
inequality, 112

decomposition, 108
invariant inequality, 111

block-discernible inequality, 111
border, 106
bordered block diagonal form, 106
bound inequality, 169
branch-and-bound tree, 182
branch-and-cut algorithm, 181
BTRAN, 139

capacity inequality, 27, 179
cell, 28
clique inequality, 111
coefficient reduction, 79
column

intersection graph, 109
singleton, 78

comparability digraph, 162
composition of cliques, 116

inequality, 116
conflict graph, 111
COQ, see composition of cliques
cover, 11

extended, 17
inequality, 11
minimal, 11
inequality, 11

multiple, 13

minimal, 13
covering number, 12, 159
critical cut, 38

inequality, 38
cross free, 177

maximal, 33
cut, 177

critical, 38
horizontal, 41
inequality
strengthened, 58

vertical, 41
cutting plane, 181

phase, 181
cycle, 177

alternating, 33
inequality, 62

δ, 177
depth first search, 83
detailed routing, 28
dfs, see depth first search
diff (·), 179
digraph, 178

acyclic, 178
disaggregation, 80
disjoint

net, 31
dual linear program, 136
duality fixing, 78

edge
cross, 177
cross free, 177
diagonal, 177

edge-connected, 177
ei, 178
Enter, 139
extended composition of cliques, 117

inequality, 117
extended cover inequality, 17
extended weight inequality, 12, 93

feasible set, 158
inequality, 158

202

INDEX 203

flow, 178
multicommodity, 53

flow-cutset inequality, 59
FMIK, 99
FTRAN, 139

Gc(A, β), see conflict graph
gen. upper bound constraint, 96, 179
generalized assignment problem, 10
global routing, 28
graph, 177

grid, 178
GUB, see gen. upper bound constr.

h× 2 grid inequality, 36
horizontal cut, 41
hypomatchable, 60

inequality, 60

incidence vector, 178
incomparability number, 159
indegree, 178
individual inequality, 5, 11, 32, 57,

157
inequality

(1, k)-configuration, 11
alternating cycle, 33
big-edge, 115
bin-packing, 116
block capacity, 112
block invariant, 111
block-discernible, 111
bound, 169
capacity, 27
clique, 111
composition of cliques, 116
cover, 11
critical cut, 38
cycle, 62
extended composition of cliques,

117
extended cover, 17
extended weight, 12, 93
feasible set, 158
lifted, 158

flow-cutset, 59
h× 2 grid, 36
hypomatchable, 60
individual, 5, 11, 32, 57, 157
joint, 5, 11, 33, 57
Manhattan, 49
melted, 166
minimal cover, 11
mixed integer weight, 99

multiple cover, 13
odd cycle, 112
permutation, 122
strengthened, 122

range, 77
row preference, 122
set covering, 179
set packing, 179
special ordered set, 96
star, 118
Steiner partition, 39
Steiner cut, 27
strengthened cut, 58
tie-breaking, 121
trivial, 7, 27, 62, 84, 108
two-partition, 112
weight, 12
z-clique, 115
z-cover, 114
z-cycle, 116

intersection graph
column, 109
row, 109

joint inequality, 5, 11, 33, 57

knapsack
consecutively intersecting, 164
inequality, 7
polytope, 10
problem, 10

knock-knee, 29
model, 29

layer, 28
layout of electronic circuits, 9, 27
leaf, 177, 182
lifted feasible set inequality, 158
lifting, 170, 185
linear program, 136
logical design, 27
LP, see linear program

Manhattan inequality, 49
Manhattan model, 29
matching, 178

perfect, 178
matrix decomposition

integer program, 108
problem, 106

matrix equipartition problem, 110
melted inequality, 166
mixed integer weight inequality, 99
multicommodity flow, 53

204 INDEX

multiple cover, 13
inequality, 13

multiple knapsack
integer program, 7
polytope, 7, 10
problem, 7
instance, 10
weighted instance, 7

multiple layer model, 29

net, 8, 26, 28
list, 26

node selection, 83
best first search, 83
best projection, 83
depth first search, 83

node-connected, 177

odd cycle inequality, 112
outdegree, 178

partition, 177
path, 177
permutation inequality, 122

strengthened, 122
physical design, 28
PIPE

integer program, 55
problem, 55

PIsK, 157
PK, 10
placement problem, 28
PMAD, 110
PMCF, 56
PMIK, 99
PMK, 7
pool, 182
pricing, 139
probing, 81, 100
pseudo-costs, 88

down, 88
up, 88

PSTP, 27

range constraint, 77
Ratio Test, 137
reduced cost fixing, 183
residual knapsack capacity, 99
root, 179
root node, 182
routing problem, 28
row

dominated, 78
forcing, 78

singleton, 78
row intersection graph, 109
row preference, 122

inequality, 122
r(T), 99

semaphores, 145
separation problem, 181
set covering

inequality, 179
problem, 179

set packing
inequality, 179
problem, 109, 179

Shared Memory, 145
SOS inequality, see special ordered set

inequality
special ordered set inequality, 7, 96,

179
star inequality, 118
steepest-edge, 138

norm, 138
Steiner cut inequality, 27
Steiner partition, 39

inequality, 39
special, 44

Steiner tree, 25
edge-minimal, 26
packing, see Steiner tree packing
polyhedron, 27
problem, 26

Steiner tree packing, 25
edge-minimal, 26
incidence vector, 26
integer program, 26
polyhedron, 27
problem, 25
weighted, 25

strong branching, 89
supermatching, 60
supp(·), 178
switchbox routing, 29

terminal, 26, 28
tie-breaking inequality, 121
track, 28
tree, 177
trivial inequality, 7, 27, 62, 84, 108
two-partition inequality, 112

variable
binary, 74
branching, 84
entering, 137

INDEX 205

implied free, 79
leaving, 137

variable selection, 84
most infeasible, 88
pseudo-costs, 88
strong branching, 89

vertical cut, 41
via, 28

weight inequality, 12

xCOQ, see extended composition of
cliques

z-clique inequality, 115
z-cover inequality, 114
z-cycle inequality, 116
zero edges, 33
zero graph, 33

