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EULER IS STANDING IN LINE
DIAL-A-RIDE PROBLEMS WITH FIFO-PRECEDENCE-CONSTRAINTS

D. HAUPTMEIER, S. O. KRUMKE, J. RAMBAU, AND H.-C. WIRTH

Abstract. In this paper we study algorithms for “Dial-a-Ride” transporta-
tion problems. In the basic version of the problem we are given transporta-
tion jobs between the vertices of a graph and the goal is to find a shortest
transportation that serves all the jobs. This problem is known to be NP-hard
even on trees. We consider the extension when precedence relations between
the jobs with the same source are given. Our results include a polynomial
time algorithm on paths and an approximation algorithm on general graphs
with a performance of 9/4. For trees we improve the performance to 5/3.

1. Introduction and Overview

Transportation problems where objects are to be transported between given
sources and destinations in a metric space are classical problems in combina-
torial optimization. Applications include the routing of pick-up-and-delivery
vehicles, the control of automatic storage systems and scheduling of elevators.
This leads to the following optimization problem (Darp): We are given trans-
portation jobs between the vertices of a graph and the goal is to find a shortest
transportation that serves all the jobs.

A natural extension of Darp is the addition of precedence constraints be-
tween the jobs that start at the same vertex. This variant is motivated by
applications in which first-in-first-out (FIFO) waiting lines are present at the
sources of the transportation jobs. In this case, jobs can be served only ac-
cording to their order in the line. Examples with FIFO-lines are cargo elevator
systems where at each floor conveyor belts deliver the goods to be transported.
Elevators also motivate the restriction of Darp to paths, i.e., to the case where
the underlying graph forms a path.

We show that in the case of FIFO-precedence relations, the problem can
be solved in polynomial time on paths. On trees, however, the problem be-
comes NP-hard. We present an approximation algorithm which works on gen-
eral graphs and which has performance (ρTsp + 3)/2, where ρTsp is the perfor-
mance of the best approximation for the TSP with triangle inequality. Using
Christofides’ algorithm for the TSP this yields a performance of 9/4. For trees
we improve this performance to 5/3 by modifiying our algorithm appropriately.

We also show how to extend our results to the case when there are start- and
stop-penalties, which makes the problem more realistic in view of applications.

Key words and phrases. Vehicle Routing, Elevator system, Eulerian Cycle, Approximation
Algorithms.
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In elevator systems the time that the elevator needs to accelerate or decelerate
in order to pick up or deliver persons (or cargo) can usually not be neglected.
Thus, it is natural to penalize each stop and start of the server on its route.

Start- and stop-penalties do not introduce a completely new situation: the
problem with penalties can be modelled as Darp on a slightly larger graph.
However, the penalties change the complexity of the problem when restricted
to the simplest class of graphs. We prove that the problem with penalties
becomes NP-hard even on paths without any precedence constraints, which
contrasts with the polynomial solvability of the problem without penalties.

This paper is organized as follows. In Section 2 we formally state the problem
Darp and introduce notation. We also show that Darp can be equivalently
formulated as a graph augmentation problem. This key observation will be used
to design our algorithms. In Section 5 we prove structural facts about Eulerian
cycles in a graph that respect a given “FIFO-order” on the arcs. In Section 6
we prove hardness results. Section 7 contains a polynomial algorithm for paths.
In Section 8 we present approximation algorithms for general graphs and trees.
Section 9 discusses the extension to start- and stop-penalties.

2. Preliminaries and Problem Formulations

A mixed graph G = (V, E, A) consists of a set V of vertices, a set E of
undirected edges, and a set A of directed arcs (parallel arcs allowed). An edge
with endpoints u and v will be denoted by [u, v], an arc from u to v by (u, v).
We denote by n := |V |, mE := |E| and mA := |A| the number of vertices, edges
and arcs, respectively. For a vertex v ∈ V we let Av be the set of arcs in A
emanating from v.

If X ⊆ E ∪ A, then we denote by G[X] the subgraph of G induced by X,
that is, the subgraph of G consisting of the arcs and edges in X together with
their endpoints. Throughout the paper we assume that G[E] is connected and
contains all endpoints of arcs from A. The out-degree of a vertex v in G,
denoted by d+

G(v), equals the number of arcs in G leaving v. Similarly, the
in-degree d−G(v) is defined to be the number of arcs entering v.

If X ⊆ A we briefly write d+
X(v) and d−X(v) instead of d+

G[X](v) and d−G[X](v).
A graph G is called degree balanced if d+

G(v) = d−G(v) for all vertices v ∈ V .
A closed walk in the mixed graph G = (V, E, A) is a cycle which may visit
vertices, edges and arcs multiple times.

A directed spanning tree rooted towards o ∈ V is a subgraph D = (V, Y ) of a
directed graph H = (V, R) which is a tree and which has the property that for
each v ∈ V it contains a directed path from v to o.

Since most of the problems under study are NP-hard, we are interested in
approximation algorithms for them. Let Π be a minimization problem. A
polynomial-time algorithm A is said to be a ρ-approximation algorithm for Π,
if for every problem instance I of Π with optimal solution value OPT(I) the
solution of value A(I) returned by the algorithm satisfies A(I) ≤ ρ ·OPT(I).

2.1. Basic Problem. In the “Dial-a-Ride Problem” Darp we are given a finite
set of locations and a finite set of transportation jobs, where each job is a pair of
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locations, the source and the target of the job. The problem consists of finding
a shortest transportation for the jobs starting and ending at a designated start
location. More formally, we can define Darp as follows:

Definition 2.1 (Dial-a-Ride Problem (Darp)). The input for Darp consists
of a finite mixed graph G = (V, E,A), an origin vertex o ∈ V and a nonnegative
weight function c : E ∪A → R≥0. It is assumed that for any arc a = (u, v) ∈ A
its cost c(a) equals the length of a shortest path from u to v in G[E].

The goal of Darp is to find a closed walk in G of minimum cost which starts
in o and traverses each arc in A.

An important observation is that Darp can be equivalently formulated as
a graph augmentation problem. Let A(E) be the set of arcs such that for
each undirected edge e ∈ E the set A(E) contains an anti-parallel pair of arcs
between the endpoints of e. We can then extend the cost function c to A(E)
in a natural way by defining the cost of an arc in A(E) to be the cost of the
corresponding undirected edge in E.

Let W be any feasible solution to a given instance of Darp, i.e., a closed
walk that starts in o and traverses each arc in A. Then W induces a multiset S
of arcs in the following way: For each time an undirected edge e = [u, v] ∈ E is
traversed by W from u to v, the set S contains a copy of the directed arc (u, v).
The graph G[A ∪ S] consisting of the arcs in A ∪ S and their endpoints (which
include the origin o) is then Eulerian. This follows, since tracing W and for
each undirected edge in W traversing the corresponding directed arc in S in
the respective direction yields an Eulerian cycle.

Conversely, let S be a multiset of arcs from A(E) such that G[A∪S] is Euler-
ian and includes the origin o. Then we can easily obtain a feasible solution W
for our instance of Darp as follows: Choose an Eulerian cycle C in G[A ∪ S ]
which starts and ends in o. The walk W starts at o and then follows C. If
the current arc r from C is in A then W traverses this arc in G, otherwise W
traverses the undirected edge corresponding to r.

Thus, any feasible solution for Darp corresponds to an augmenting set S of
arcs such that G[A∪S ] is Eulerian and contains o and vice versa. This enables us
to reformulate Darp equivalently as the problem of finding a multiset S ⊆ A(E)
minimizing the weight c(A ∪ S) such that G[A ∪ S ] is Eulerian and includes o.

2.2. Precedence Constraints. Fifo-Darp is an extension of Darp. For
each vertex v ∈ V we are additionally given a partial order ≺v on the arcs
in Av. For each feasible solution we require that the arcs from Av are traversed
according to that partial order: whenever a ≺v a′, then a must be traversed
before a′ in any feasible solution.

A partial order ≺ on the arc set of a graph H = (V,R) is a FIFO-order, if it
satisfies: r ≺ r′ implies that r and r′ have the same source. The partial order ≺
on the arc set A of G = (V,E, A) resulting from the disjoint union of the partial
orders ≺v is clearly a FIFO-order. In the sequel ≺ is extended to A ∪A(E) by
defining that arcs from A(E) are incomparable to each other and to those of A.

FIFO-orders are useful to model situations in applications, when FIFO wait-
ing lines are present at each source and objects can be picked only from the
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head of the queue. Figure 1 shows an example where a FIFO-respecting trans-
portation is strictly longer than a transportation neglecting the FIFO-order.
The undirected edges of the graph (which form a path) are drawn as solid lines,
and the arcs corresponding to the transportation jobs are shown as dashed arcs.
If no constraints have to be obeyed, then the jobs can be served without any
“empty move”, i.e., without traversing any undirected edge. If the constraint
a′ ≺ a must be obeyed then two empty moves are necessary.

o u v w

a′a

Figure 1. One precedence constraint increases the cost.

Again, Fifo-Darp can be reformulated as a graph augmentation problem.
To do this, we need some additional notations:

Definition 2.2 (≺-respecting Eulerian Cycle, ≺-Eulerian). Let H = (V, R) be
a directed graph, ≺ be a FIFO-order on the arcs R, and o ∈ V . A ≺-respecting
Eulerian cycle in H with start o is a Eulerian Cycle C in G such that a ≺ a′ im-
plies that in the walk from o along C the arc a appears before a′. The graph H
is then called ≺-Eulerian with start o.

Notice that in contrast to the case of classical Eulerian cycles, for≺-respecting
Eulerian cycles it is meaningful to specify a start node explicitly. Consider the
graph in Figure 1, with solid edges removed. Then, for a ≺ a′, there is a
≺-respecting Eulerian cycle with start vertex o, but there is none starting at v.

Definition 2.3 (Graph Augmentation Version of Fifo-Darp). An instance of
the problem Fifo-Darp consists of the same input as for Darp and addition-
ally a FIFO-order ≺ on the arc set A. The goal is to find a multiset S of arcs
from A(E) minimizing the weight c(A ∪ S) such that G[A ∪ S ] is ≺-Eulerian
with start o and to determine a ≺-respecting Eulerian cycle in G[A ∪ S].

In the sequel we consider Fifo-Darp as a graph augmentation problem. We
use S∗ to denote an optimal solution and OPT := c(A∪ S∗) to denote its cost.
Notice that if C∗ is a ≺-respecting Eulerian cycle in G[A ∪ S∗] with start o,
then the length of C∗ is equal to OPT.

2.3. Related Work. The problem Darp is also called the Stacker-Crane-
Problem. In [FG93] it is shown that the problem is NP-hard even on trees,
i.e., if the graph G[E] induced by the edges in the mixed graph G = (V, E,A)
is a tree. In [FHK78] the authors present a 9/5-approximation algorithm for
the problem on general graphs. An improved algorithm for trees with perfor-
mance 5/4 is given in [FG93]. On paths Darp can be solved in polynomial
time [AK88].

Precedence constraints have been studied in the case of Chinese Postman
tours in [DST87] (Recall that the Chinese Postman Problem consists of finding
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a shortest walk in a graph that traverses all edges and arcs). The authors
show that for general precedence relations it is NP-hard to determine a Chinese
Postman tour of minimum length. Under strong restrictions on the precedence
relation the problem can be solved in time O(n5), where n denotes the number
of vertices in the input graph.

Online variants of Darp have been studied in [AKR98, FS99]. All of the
competitive algorithms from [AKR98, FS99] have to solve offline instances of
Darp during their run. The performance of the employed offline algorithm
directly affects the competitive ratio of the online algorithm. Thus, the con-
struction of efficient polynomial time (approximation) algorithms for Darp is
important to obtain practical, i.e., run time efficient online algorithms.

3. Summary of Results

The results obtained in this paper are summarized in Table 1 and Table 2. Ta-
ble 1 displays the results for Fifo-Darp obtained in this paper and the known
results from literature for Darp. Tabular 2 addresses the problem Penalty-
Fifo-Darp which is the extension of Fifo-Darp with start- and stop-penalties
discussed in Section 9.

Graph class Fifo-Darp Darp
Paths Polynomial time solvable

(Theorem 7.2)
Polynomial time solvable
[AK88]

Trees NP-hard, even on
caterpillars (Theorem 6.1)

NP-hard, even on
caterpillars (Theorem 6.1)

Approximable within 5/3
(Theorem 8.7)

Approximable within 5/4
[FG93]

General Graphs NP-hard NP-hard [FHK78]
Approximable within 9/4
(Corollary 8.6)

Approximable within 9/5
[FHK78]

Table 1. Complexity and approximation results for the prob-
lems Fifo-Darp and Darp.

Graph class Penalty-Fifo-Darp
Paths NP-hard (Lemma 9.4)

Approximable within 5/3. (Theorem 9.3)
Trees NP-hard

Approximable within 5/3. (Theorem 9.3)
General Graphs NP-hard

Approximable within 9/4. (Theorem 9.3)
Table 2. Results obtained for the problem Penalty-Fifo-Darp.
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4. Basic Observations and Balancing

In this section we illustrate a couple of basic properties of the problem under
consideration. We also provide examples for some cases in which intuition might
be misleading.

4.1. Simplifying Technical Assumptions. We first start with some techni-
cal assumptions about the input instances depending on the structure of the
undirected graph G[E] given in an instance I = (G = (V, E, A), c, o) of Fifo-
Darp. While all these assumptions are without loss of generality they greatly
simplify the presentation of our algorithms in Sections 7 and 8.

Suppose that G[E] is a tree. Let v ∈ V \ {o} be a vertex of degree at most
two in G[E] which is neither source nor target of an arc from A. If the degree
of v is one, i.e., if v is a leaf, we can remove v and its incident edge without
affecting the optimal solution. Similarly, if the degree of v is two, we can replace
v and its incident edges by a single edge with cost equal to the sum of the two
edges. Thus, for trees we can make the following assumption without loss of
generality (cf. [FG93] for Darp on trees):

Assumption 4.1 (Technical assumption for Fifo-Darp on trees).
Each vertex v ∈ V of degree one or two is either the origin o or incident to at
least one arc from A.

If G[E] is a path, then every vertex has degree one or two. It is easy to
see that in this case we can make an even stronger assumption without loss of
generality (cf. [AK88] for Darp on paths):

Assumption 4.2 (Technical assumption for Fifo-Darp on paths).
Each vertex v ∈ V is incident to at least one arc from A.

We now turn to Fifo-Darp on general graphs.

Assumption 4.3 (Technical assumption for Fifo-Darp on general graphs).

(i) Each vertex v ∈ V is incident to at least one arc from A.
(ii) G[E] is complete and the cost function c obeys the triangle inequality, i.e.,

for any edge [u, v] ∈ E the cost c(u, v) does not exceed the length of a
shortest path in G[E] between u and v.

Note that Assumption 4.3 can be enforced without increasing the value of
an optimal solution. If the start vertex o is not incident to any arc from A we
can add a new vertex o′, a new arc (o, o′) and a new edge [o, o′], each of cost
zero. The new vertex o′ is joined by undirected edges to all neighbors v of o.
The cost of an edge [o′, v] is set to c(o, v). We can then remove vertices which
are not source or target of an arc. For every pair u and v of vertices we insert
new edges of cost equal to the shortest path in G[E] between u and v. (see also
[FHK78] for Darp without precedence constraints).

Assumption 4.3 can not be made without loss of generality for Darp on trees,
since removing vertices and later completing the graph as described in general
destroys the “tree-property”. See also Section 4.3.
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4.2. Balancing. An important concept for tackling Fifo-Darp on paths and
trees is that of balancing.

Definition 4.4 (Balancing set). Let G = (V,E, A) be a mixed graph. A mul-
tiset B ⊆ A(E) of arcs is called a balancing set if in H = G[A ∪ B] we have
d+

H(v) = d−H(v) for all vertices v ∈ H.

Suppose that G[E] is a tree and that Assumption 4.1 is satisfied. Let [x, y]
be an arbitrary edge from E. The removal of [x, y] cuts V into the sets X
and Y := V \X with x ∈ X and y ∈ Y . Any closed walk W in G = (V, E,A)
which traverses each arc from A must traverse the cut (X, Y ) the same number
of times in each direction. Denote by φ(X,Y ) the number of arcs emanating
from X, i.e., φ(X, Y ) := |{ r = (x, y) ∈ A | x ∈ X, y ∈ Y }|. Hence, W must
must traverse edge [x, y] from x to y at least b(x, y) times, where

b(x, y) :=











1 if φ(X,Y ) = φ(Y, X) = 0
φ(Y, X)− φ(X,Y ) if φ(Y, X) > φ(X, Y )
0 otherwise.

The above observation has the following consequence for the equivalent graph
augmentation version: If B ⊆ A(E) is a multiset of arcs such that B contains
exactly b(x, y) copies of the directed arc (x, y), then there is at least one optimal
solution S∗ such that B ⊆ S∗. This leads to the following lemma which is proved
in [AK88, FG93].

Lemma 4.5. Let I = (G, c, o) be an instance of Darp such that G[E] is a
tree. Then in time O(nmA) one can find a balancing set B ⊆ A(E) such that
B ⊆ S∗ for some optimal solution S∗.

Notice also that Lemma 4.5 remains valid even in the presence of FIFO-
orders. As is also shown in [AK88, FG93] the time bound of O(nmA) can be
improved to O(n + mA) by allowing balancing arcs to be from V × V instead
of just A(E) (which does not change the problem).1

4.3. Some Notes about Darp on Trees. An instance of Darp is balanced if
G[A] is degree-balanced. A balanced instance dissects the directed graph (V,A)
consisting of the vertex set V of G and the arcs in A into strongly connected
components Gi (each connected component must be strongly connected due to
the degree balance). Any component can either be traversed by an Euler tour
in A or consists of a single unused vertex in G.

In this case, the graph of strongly connected components Ĝ = (V̂ , Ê) of G is
defined as follows: V̂ is the set of all strongly connected components Gi. For
two vertices Gi and Gj in V̂ we have an edge in Ê if there is an edge [vi, vj ] ∈ E
from some vertex in vi ∈ Gi to some vertex in vj ∈ Gj . Its cost is set to the
shortest edge in E connecting Gi and Gj .

Assume now that we are given a balanced instance of Darp on a tree. Then
we are left with the task of connecting a collection of Euler tours by inserting
a minimum cost set of new arcs. This task can be accomplished in polynomial

1In this case the cost function c is extended from A(E) to V × V by defining the cost of
arc (v, w) to be the length of the shortest path in G[E] from v to w.
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time if every component Gi contains either the origin or at least a source or
target of an arc from A. In this case, the task can be accomplished by computing
a minimum spanning tree (MST) on the complete graph on the vertex set of
all strongly connected components; an edge between two strongly connected
components has cost equal to the shortest edge between connecting them. Then,
for every edge (Gi, Gj) in the MST insert the two arcs (vi, vj) and (vj , vi), where
vi ∈ Gi and vj ∈ Gj and (vi, vj) is the shortest edge between Gi and Gj in G.
The collection of arcs so obtained strongly connects the graph and makes it
Eulerian. It can be shown that this solution is indeed optimal [AK88] (see also
Section 7 for the generalization to Fifo-Darp).

What is different on trees? The point is that we cannot get rid of the unused
nodes without destroying the tree-property. Thus, we need to solve a Steiner
tree problem rather than an MST problem on the graph of connected compo-
nents. In some instances where the doubled MST is not optimal, yet the Steiner
points to use are canonical (see Figure 2) because, e.g, Ĝ happens to be a tree,
and hence the problem is efficiently solvable. In general, however, we cannot
expect this (see Figure 3)—not even on a path. Neither does Ĝ in general have
other, maybe more sophisticated properties that would help to solve the Steiner
problem efficiently (see again [FG93] for details).

Figure 2. The doubled MST solution (dotted) does not equal
the optimal tour (dashed) on trees. The given requests are:
bring a unit from each symbol to its counterpart; this induces
back-and-forth arcs between equally shaped nodes; the grey node
is neither start nor end point of any request. From left to
right: the instance with four connected components, the graph
of strongly connected components Ĝ, and Ĝ after removal of
Steiner points and shortest-path completion.

5. Euler Tours respecting FIFO-Orders

In this section we prove some structural results about Eulerian cycles which
respect a given FIFO-order. Notice that it is easy to decide whether a given
graph H is ≺-Eulerian with start o, provided the restriction of ≺ to each set Av
is total: The ≺-respecting cycle (if it exists) is uniquely determined and can be
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Figure 3. A small instance on a tree where Ĝ is not a tree.

found by a walk through the graph where at each vertex v we always choose
among the yet unused arcs from Av the minimal (with respect to ≺). In the
sequel we prove a necessary and sufficient condition for a graph to be ≺-Eulerian
with start at a given vertex.

Let C be an Eulerian cycle starting at o in a directed graph. We define the
set of last arcs of C, denoted by L, to contain for each vertex v ∈ V the unique
arc emanating from v which is traversed last by C. Observe that L contains a
directed spanning tree rooted towards o.

Let ≺ be a FIFO-order. We denote the set of maximal elements with respect
to ≺ by M≺, that is, M≺ := { a ∈ A : there is no arc a′ such that a ≺ a′ }.

Definition 5.1 (Possible set of last arcs). Let H = (V, R) be a directed graph
and o ∈ V be a distinguished vertex. A set L ⊆ R is called a possible set of last
arcs, if it satisfies the following conditions:

(i) d+
L (v) = 1 for all v ∈ V , and

(ii) for each v ∈ V there is a path from v to o in H[L].

Theorem 5.2. Let H = (V,R) be a directed Eulerian graph with distinguished
vertex o ∈ V and let L ⊆ R be a possible set of last arcs.

(i) There exists an Eulerian cycle C in H such that for each vertex v ∈ V the
(unique) arc from L emanating from v is traversed last at v by C.

(ii) Let ≺ be any FIFO-order with L ⊆ M≺. Then there exists a ≺-respecting
Eulerian cycle with start o in H. This cycle can be found in time O(|V |+
|R|).

Proof. We first show (i). Color the arcs from L red and the arcs in R \ L blue.
We claim that by the following procedure we construct an Eulerian cycle C in H
with the desired properties. Start with current vertex o. If possible, choose an
arbitrary (but yet untraversed) blue arc emanating from the current vertex,
otherwise choose the red arc. Traverse the arc, let its target be the new current
vertex, and repeat the iteration. Stop, if there is no untraversed arc emanating
from the current vertex. Call the resulting path of traversed arcs C. Since H
is Eulerian by assumption, for each vertex its in-degree equals its out-degree.
Therefore, C must end in the origin o and forms in fact a cycle.

We show that there is no arc in H which is not traversed by C. For a node v ∈
V , let dist(v, o) be the distance (i.e., the number of arcs) on the shortest path
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from v to o in the subgraph H[L]. We show by induction on dist(v, o) that all
arcs emanating from v are contained in C.

If dist(v, o) = 0 then v = o. Since our procedure stopped, all arcs emanating
from o are contained in C. This proves the induction basis. Assume that
the claim holds true for all vertices with distance t ≥ 0 and let v ∈ V with
dist(v, o) = t + 1. Let a = (v, w) be the unique red arc emanating from v.
Then dist(w, o) = t and by the induction hypothesis all arcs emanating from w
are contained in C. For d+

H(w) = d−H(w), it follows that all arcs entering w,
in particular arc a, are also contained in C. Since red arc a is chosen last
by our procedure, all other arcs emanating from v must be contained in C.
This completes the induction. Hence, C is actually an Eulerian cycle with the
claimed properties.

We proceed to show (ii). Analogously to (i) construct a Eulerian cycle with
the sole difference that at each node v we choose the next arc according to the
≺-constraint at v. Since by assumption L ⊆ M≺ this yields a valid ≺-respecting
Eulerian cycle with start o.

Corollary 5.3. Let H = (V, R) be a graph, o ∈ V and ≺ a FIFO-order. Then
the following two statements are equivalent:

1. H is ≺-Eulerian with start o.
2. H is Eulerian and the set M≺ of maximal elements with respect to ≺

contains a possible set of last arcs.

Proof. If H is ≺-Eulerian with start o, then the set of last arcs of any ≺-
respecting Eulerian cycle forms a possible set of last arcs which must be con-
tained in M≺. Thus Statement 1 implies 2. The other direction is an immediate
consequence of part (ii) of Theorem 5.2.

Observe that Corollary 5.3 in fact implies a polynomial time algorithm for
deciding whether a given graph H is ≺-Eulerian with start o. Provided H is
Eulerian it suffices to check whether the subgraph formed by the arcs from M≺
contains a directed spanning tree D rooted towards o (which can be done in
linear time). Adding to D an arbitrary arc from Ao ∩M≺ then yields indeed a
possible set of last arcs.

6. Hardness Results

Since Fifo-Darp generalizes Darp, it follows from the hardness result in
[FG93] that Fifo-Darp is NP-hard even on trees. We show that this hardness
continues to hold even if the FIFO-order ≺ is total. We can also strengthen the
hardness result of [FG93] and show that Darp is hard on caterpillar graphs.

A caterpillar graph is a special case of a tree, consisting of a path, called the
backbone of the caterpillar, and additional vertices of degree one, called the feet
of the caterpillar. The edges between vertices on the path and feet are called
hairs. Notice that caterpillars are trees with maximum degree three.

In our case, the backbone of the caterpillar is the path G[E], the edges
between vertices in V and their copies constitute its hairs.

Theorem 6.1. Darp and Fifo-Darp on caterpillars are NP-hard to solve.
This result continues to hold, if the transportation jobs are restricted to have
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sources and targets only in the feet of the caterpillar. Furthermore, all hardness
results for Fifo-Darp remain true if the FIFO-ordering is restricted to be total.

Proof. We first address the hardness of Darp. To show that Darp on cater-
pillars is NP-complete, we reduce the Steiner tree problem on bipartite graphs
Bipartite-Stp to it, which is known to be NP-complete [GJ79, Problem ND12].
An instance of Bipartite-Stp consists of a bipartite graph H = (X ∪ Y, F )
and a nonnegative number k ≤ |F |. The problem consists of deciding whether
there exists a subtree of H that spans all the vertices in Y and has at most k
edges.

In the sequel we assume without loss of generality, that each vertex in Y has
degree at least two, since for a vertex y ∈ Y with degree one, the single edge
incident to p has to be included in every tree spanning Y . We also assume
without loss of generality that the bipartite graph H is connected. Otherwise,
either there is a connected component containing Y , or H can not contain a
Steiner tree for the set Y .

We show how to construct an instance I = (G = (V,E, A), c, o) of Darp
with G[E] being a caterpillar. We start with the backbone of the caterpillar.
We first construct a path of |X| vertices, where for each vertex in X the path
contains a copy of this vertex. The weights of the edges on the path are all
set to M := 2|F |+ 1. We then replace each vertex x by a path P (x) of dH(x)
vertices with zero weight on the edges. Here, dH(x) denotes the degree of x
in H. Let Q′ denote the vertices on the backbone.

We proceed with the feet and the hairs of the caterpillar. For each vertex y ∈
Y the set P ′ of feet contains a set S(y) of dH(p) vertices. For each edge in F
with we add a hair of cost one to the edge set E of the caterpillar. This is
done by iteratively choosing an edge [x, y] ∈ F and then adding a hair between
vertices in P (x) and S(y) which are not yet incident to a hair. Notice that there
always exist such “free” vertices. Clearly, the graph G[E] constructed this way
is a caterpillar graph. The construction is illustrated in Figure 4. The directed
arcs are drawn beneath the corresponding vertices to avoid cluttering.

S(f)

P (c)

ff

bbb

g h

cb a

Y

X

f f hgg h

a

Figure 4. Transformation of the Steiner tree problem on a bi-
partite graph into Darp on a caterpillar in Theorem 6.1
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We proceed to construct the transportation jobs A on the caterpillar G[E]:
Let y ∈ Y and S(y) = {y1, . . . , ys} be the set of vertices in G corresponding
to y. Then, the set A contains the directed arcs (y1, y2), . . . , (ys−1, ys), (ys, y1)
which form a simple cycle on S(y). Finally, the origin o of the server is chosen
to be the source of an arbitrary arc in A.

Notice that the graph G[A] is by construction degree balanced, i.e., the in-
degree of each vertex is equal to its out-degree. Also each set P (y) containing
the copies of a vertex y ∈ Y corresponds to a strongly connected component
in G[A]. Since G[A] is degree balanced, each strongly connected component is
Eulerian and there are no arcs between different components.

Let K =
∑

a∈A c(a). We will show, that H contains a Steiner tree with at
most k edges if and only if there is a feasible solution to the instance I of Darp
with cost at most K + 2k, i.e., a multiset S ⊆ A(E) with c(A ∪ S) ≤ K + 2k.

Suppose that T is a Steiner tree in H of at most k edges connecting the
vertices in Y . We now describe how to construct a set of arcs S such that
G[A∪S ] is Eulerian and contains o and which has cost c(A∪S) at most K+2k.

Let XT be the subset of vertices in X, which are spanned by T . For each
x ∈ X we add the antiparallel arcs of zero cost from the path P (x) to S. Notice
that these arcs ensure that all the vertices in P (x) will be in the same strongly
connected component of G[A ∪ S ].

For each edge [x, y] ∈ T we now add two antiparallel arcs between the corre-
sponding vertices in P (x) and and S(y). (Recall that the hairs of the caterpillar
correspond to edges in F , such that for each edge f ∈ F there is a hair con-
necting copies of the endpoints of f .)

The set S constructed this way clearly results in a Eulerian graph G[A ∪ S ]
containing o. The cost c(S) is at most 2k. This shows the first direction.

Assume conversely that S is a feasible solution for the instance I of Darp
with cost at most K + 2k. Then G[A ∪ S ] is Eulerian and contains o. The
set S can not contain any arc of cost M = 2|F |+ 1, since otherwise c(A∪S) =
c(A) + c(S) ≥ K + 2|F |+ 1 > K + 2k.

Since G[A] and G[A∪S] are degree balanced and S∩A = ∅, we can decompose
the set S into arc disjoint cycles C1, . . . , Cp. Since S contains only (multiple)
copies of arcs from A(E) and G[E] is a tree it follows that r ∈ S implies that
the inverse arc r−1 must also be contained in S.

We now define a subgraph T of H as follows: If S contains (at least one copy)
of an arc between a vertex in P (x) and S(y), then the edge [x, y] is included
in T . Since S contains antiparallel pairs of arcs and each arc in S of nonzero
cost has cost one, it follows that T has at most c(S)/2 = k edges.

It remains to show that T is connected and spans the vertices in Y . To
this end, let y and y′ be two arbitrary vertices from Y . Let yi and y′j be the
corresponding vertices in S(y) and S(y′). Since G[A∪S ] is strongly connected,
there is a directed path P from yi to y′j in G[A∪S ]. There are only three types
of arcs in P :

1. Arcs from A. These connect the feet S(ỹ) corresponding to the same
vertex ỹ ∈ Y .
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2. Arcs in S with weight zero. These connect vertices on the backbone from
the (sub-) path P (x̃) corresponding to the same vertex x̃ ∈ X.

3. Arcs in S of cost one. Such an arc of cost one connects a vertex from a
set P (x̃) to a vertex in S(ỹ) or vice versa.

For every arc of Type 3 between vertices from in P (x̃) and S(ỹ) the subgraph T
contains the corresponding undirected edge [x̃, ỹ]. This implies that traversing
the edges in T that correspond to arcs in P of Type 3 yields a walk connecting y
and y′. This completes the proof of the hardness results for Darp.

To establish the claimed hardness for Fifo-Darp observe that in the above
construction each vertex has at most one arc in A emanating from it. Thus,
the instance constructed above can also be seen as an instance of Fifo-Darp
with total FIFO-ordering.

7. Fifo-Darp on Paths

In this section we consider Fifo-Darp on paths and show that the prob-
lem can be solved in polynomial time. To this end, let G = (V, E, A) be a
mixed graph such that G[E] is a path. We assume throughout this section that
Assumption 4.2 holds.

Lemma 7.1. Let B∪N be the set returned by Algorithm Alg-Path. The set B∪
N is a feasible solution for Fifo-Darp, i.e., G[A ∪B ∪N ] is ≺-Eulerian with
start o.

Proof. In G[A ∪ B] each node has in-degree equal to its out-degree. Since N
consists of pairs of anti-parallel arcs, the graph G[A ∪ B ∪ N ] is also degree
balanced. Since by construction G[A∪B∪N ] contains a directed spanning tree
rooted towards o and G[A∪B∪N ] is degree balanced it follows that this graph
is strongly connected and hence Eulerian.

Input: A mixed graph G = (V, E, A), such that G[E] is a path, a cost function c on E,
an initial vertex o ∈ V , and a FIFO-order ≺

1 Compute a balancing set B ⊆ A(E) such that B ⊆ S∗ for some optimal solution S∗.
2 Let M≺ be the set of maximal elements with respect to ≺.
3 Set H = G[B ∪M ∪A(E)] with cost function c′ on the arcs defined by

c′(r) =

(
0 if r ∈ B ∪M≺

c(r) if r ∈ A(E) \ (B ∪M≺)

4 Compute a directed spanning tree D rooted towards o of minimum weight c′(D) in G[B ∪
M≺ ∪A(E)].

5 Set N := ∅. For each directed arc r ∈ D which is not in B∪M≺, add r and its anti-parallel r−1

to N .
6 Define L := D ∪ {r}, where r is an arbitrary arc from Ao ∩ (M≺ ∪B)
fNotice that such an arc must exist since o is source or target of at least one job and G[A∪B]

is degree-balanced.g
7 Use the method from Theorem 5.2 to find a ≺-respecting Eulerian cycle C with start o

in G[A ∪B ∪N ] such that L is the last set of arcs of C.
8 return the set B ∪N and the cycle C.

Algorithm 1: Algorithm Alg-Path for Fifo-Darp on paths.
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The set L of arcs determined in Step 6 is clearly a set of possible last arcs. By
Theorem 5.2 (ii) there exists indeed a ≺-respecting Eulerian cycle with start o
in G[A ∪B ∪N ].

Theorem 7.2. Algorithm Alg-Path finds an optimal solution for Fifo-Darp
on paths.

Proof. Let S∗ be an optimal solution such that B ⊆ S∗. By feasibility of S∗

the graph G[A ∪ S∗] is ≺-Eulerian with start o.
We now consider the set Z := (A ∪ S∗) \ (A ∪ B) = S∗ \ B. Since G[A ∪ B]

and G[A∪S∗] = G[A∪B∪Z] are degree balanced and Z ∩ (A∪B) = ∅, we can
decompose the set Z into arc disjoint cycles C1, . . . , Cp. Since Z contains only
(multiple) copies of arcs from A(E) and G[E] is a tree it follows that r ∈ Z
implies that r−1 ∈ Z.

Let C be a ≺-respecting Eulerian cycle in G[A∪ S∗] and let L be its last set
of arcs. Notice that L ⊆ B∪M ∪Z, where the set M is defined in Step 2 of the
algorithm. The set L must contain a directed spanning tree D′ rooted towards o.
We partition D′ into the sets D′

B∪M≺
:= D′ ∩ (B ∪ M≺) and D′

Z := D′ ∩ Z.
Thus, c′(D′

B∪M≺
) = 0 and c′(D′

Z) = c(D′
Z). Since we have seen that for each

arc r ∈ Z also its anti-parallel version r−1 ∈ Z (and D′
Z does not contain a pair

of anti-parallel arcs) we get that

c(Z) ≥ 2c(D′
Z) = 2c′(D′

Z) + 2 c′(D′
B∪M≺)

︸ ︷︷ ︸

=0

= 2c′(D′) ≥ 2c′(D). (1)

Here, D is the directed spanning tree of minimum weight computed in Step 4.
The set N computed in Step 5 has cost

c(N) = 2c(D \ (B ∪M≺)) = 2c′(D \ (B ∪M≺)) = 2c′(D)
(1)
≤ c(Z). (2)

Using this result yields that

c(A ∪B ∪N) = c(A ∪B) + c(N) = c(A ∪ (S∗ \ Z)) + c(N)
(2)
≤ c(A ∪ (S∗ \ Z)) + c(Z) = c(A ∪ S∗).

Thus, B ∪N is an optimal solution as claimed.

We briefly comment on the running time of Algorithm Alg-Path. Computing a
balancing set B can be found in timeO(nmA) by techniques as shown in [AK88].
As noted before this time bound can be improved to O(n + mA) by allowing
balancing arcs to be from V ×V instead of just A(E). A rooted spanning tree of
minimum weight in a graph with n vertices and m arcs can be computed in time
O(min{m log n, n2}) by the algorithm from [Tar77] Thus Algorithm Alg-Path
can be implemented to run in time O(n + mA + min{(mA + n) log n, n2}).

8. Approximation Algorithms

8.1. Algorithms for General Graphs. In this section we present our ap-
proximation algorithm for Fifo-Darp on general graphs. The algorithm uses
ideas similar to the ones in [FHK78]. In this section we will assume tacitly that
Assumption 4.3 is satisfied.
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Input: A mixed graph G = (V, E, A), a cost function c on E, an initial vertex o ∈ V ,
and a FIFO-order ≺

1 Let Vs be the set of vertices which are sources of arcs from A.
2 Compute a complete undirected auxiliary graph U with vertex set Vs. The weight d(v, w) of

edge [v, w] is set to be the length of a shortest path in G[E] from v to w.
3 Find an approximately shortest Traveling Salesperson tour P in U starting and ending in o.

Let the order in which the vertices of V are visited by P be v0 = o, v1, . . . , v|Vs|, v|Vs|+1 = o.
4 Construct a feasible tour C for Fifo-Darp as follows:
5 Start with the empty tour C.
6 for i := 0, . . . , |Vs| do
7 Let a1, . . . , ak be the arcs from A emanating from vertex vi. Set C ← C +

(a1, p1, . . . , ak, pk), where pj is a shortest path in G[E] from the endpoint of aj to vi.
8 Append to C the shortest path in G[E] from vi to vi+1.
9 end for

10 Let S be the multi-set of directed edges used in C which are not contained in A.
11 return the set S and the cycle C.

Algorithm 2: TSP-based Approximation Algorithm Alg-TSP for Fifo-Darp.

Our algorithm actually consists of two different sub-algorithms, Alg-TSP and
Alg-Last-Arcs, which are run both and the best solution is picked. The first sub-
algorithm, Alg-TSP, is extremely simple: It computes a shortest tour which
visits each vertex from which emanates an arc at least once. Then, it uses this
TSP-tour to obtain a feasible solution for Fifo-Darp in the most obvious way.
The algorithm is shown in Algorithm 2.

Lemma 8.1. If in Step 3 a ρTsp-approximation algorithm for computing a
TSP-tour is employed, then algorithm Alg-TSP finds a solution of cost at most
ρTsp ·OPT + 2c(A).

Proof. Let S∗ be an optimum augmenting set and C∗ be a≺-respecting Eulerian
cycle in G[A ∪ S∗] starting at o. Since C∗ visits all vertices from Vs, the
length of C∗ (which equals OPT) is at least that of a shortest TSP-tour on the
vertices Vs. Thus, if a ρTsp-approximation is used, the tour computed in Step 3
will have length at most ρTsp · OPT. The additional cost incurred in Step 7
is not greater than 2c(A), since each path added has weight not greater than
the corresponding arc from A. Hence, the total cost of the cycle C found by
algorithm Alg-TSP is bounded from above by ρTsp ·OPT+2c(A) as claimed.

Since the cost of the optimum tour serving all jobs is at least c(A), Lemma 8.1
implies that Alg-TSP is a (ρTsp + 2)-approximation algorithm for Fifo-Darp.
Using Christofides’ algorithm [Chr76] we get ρTsp = 3/2 and thus Alg-TSP
provides a 7/2-approximation for Fifo-Darp. In the sequel we will improve
this bound by providing a second algorithm and combining this algorithm with
Alg-TSP.

Our second algorithm, Alg-Last-Arcs, is based on similar ideas as the algo-
rithm from Section 7 for paths. We first compute a set of balancing arcs B
which makes G[A∪B] degree balanced. Again, we then compute a rooted tree
directed towards the origin o of minimum cost, double the arcs which are not
yet in A∪B and add the resulting set N to the solution. Our second algorithm,
Alg-Last-Arcs is shown in Algorithm 3.
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Input: A mixed graph G = (V, E, A), a cost function c on E, an initial vertex o ∈ V ,
and a FIFO-order ≺

1 Compute a balancing multiset B ⊆ A(E) of minimum cost.
2 Follow steps 2 to 7 of Algorithm Alg-Path to compute a set N of arcs and a ≺-respecting

Eulerian cycle C with start o.
3 return the set B ∪N and the cycle C

Algorithm 3: Algorithm Alg-Last-Arcs “mimicking” the algorithm for paths.

By a proof similar to Lemma 7.1 it follows that the set B ∪ N found by
Algorithm Alg-Last-Arcs is indeed a feasible solution.

Lemma 8.2. The balancing set B found in Step 1 of algorithm Alg-Last-Arcs
has cost at most OPT − c(A). Step 1 can be accomplished in the time needed
for one minimum cost flow computation on a graph with n vertices and 2mE
arcs.

Proof. Let S∗ ⊆ A(E) be an optimal solution, i.e., an augmenting (multi-)
set of arcs from A(E) with minimum cost. Then the graph G[A ∪ S∗] is ≺-
Eulerian with start o. Thus, in particular, the addition of the arcs from S∗

turns G Eulerian, which means that each vertex has an in-degree equal to its
out-degree. Thus, the cost c(S∗) = OPT− c(A) is at least that of a minimum
cost set B ⊆ A(E) which achieves the degree balance.

Step 1 can be carried out by performing a minimum cost flow computation
in the auxiliary graph F = (V, A(E)). A vertex v has charge d−G(v) − d+

G(v)
and the cost of sending one unit of flow over arc r ∈ A(E) equals its cost c(r).
We then compute an integral minimum cost flow in F . If the flow on an arc r
is t ∈ N, we add t copies of arc r to the set B. It is easy to see that this yields
in fact a balancing set of minimum cost.

Lemma 8.3. The cost of the set N computed in Algorithm Alg-Last-Arcs is at
most 2(OPT− c(A)).

Proof. The proof of the lemma is similar to the one for Theorem 7.2. The
major difference is that in general we can not assure that the balancing set B
computed in Step 1 is a subset of an optimal solution.

Let S∗ be again an optimal augmenting set and L be the set of last arcs of
a ≺-respecting Eulerian cycle in G[A ∪ S∗]. We can find a directed spanning
tree rooted towards o in L. The only arcs from A that L can contain are those
from the set M≺. Thus L \ (A ∪ B) = L \ (M≺ ∪ B). Similar to Theorem 7.2
we can now conclude that

OPT− c(A) = c(S∗) ≥ c(L \ (A ∪B)) = c(L \ (M≺ ∪B)) = c′(L) ≥ c(N)
2

.

This shows the claim.

Corollary 8.4. Algorithm Alg-Last-Arcs finds a solution of cost at most 3 ·
OPT− 2c(A).

Proof. By Lemma 8.2, c(A ∪ B) ≤ OPT. Lemma 8.3 establishes that c(N) ≤
2 ·OPT− 2c(A). Thus c(A ∪B ∪N) ≤ 3 ·OPT− 2c(A) as claimed.
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We are now ready to combine our algorithms into one with an improved
performance guarantee. The combined algorithm Alg-Combine simply runs both
algorithms and picks the better solution.

Theorem 8.5. Algorithm Alg-Combine has a performance of ρTsp+3
2 .

Proof. Let β := 4
3−ρTsp

. If OPT ≤ βc(A), then the solution returned by Alg-TSP
has cost at most

(ρTsp + 2/β)OPT =
(

ρTsp + 2
3− ρTsp

4

)

OPT =
ρTsp + 3

2
·OPT.

If OPT > βc(A), then the cost of the solution found by Alg-Last-Arcs is bounded
from above by

(3− 2/β)OPT =
(

3− 2
3− ρTsp

4

)

OPT =
ρTsp + 3

2
·OPT.

This shows the claim of the theorem.

Using Christofides’ algorithm [Chr76] with ρTsp = 3/2 results in a perfor-
mance guarantee of 3/4 + 3/2 = 9/4 for algorithm Alg-Combine.

Corollary 8.6. There is an approximation algorithm for Fifo-Darp with per-
formance 9/4. This algorithm can be implemented to run in time O(max{n3 +
mAmE + mAn log n,m2

E log n + mEn log2 n}).

Proof. The performance has already been proved. The running time of Algo-
rithm Alg-TSP is dominated by that of Christofides’ algorithm, which can be
implemented to run in time O(n3), and the time needed for the addition of the
paths in Step 7 which can be done in total time O(mAmE + mAn log n). The
running time of Alg-Last-Arcs is dominated by the minimum cost flow compu-
tation which can be accomplished in time O(m2

E log n + mEn log2 n) by using
Orlin’s enhanced capacity scaling algorithm [AMO93].

8.2. Improved Performance on Trees. For graph classes where the TSP
can be approximated within a factor better than 3/2, the performance improves
over the one stated in Corollary 8.6. In particular, for trees where the TSP can
be solved in polynomial time Theorem 8.5 already implies a 2-approximation
algorithm. However, we can still improve this performance guarantee.

Theorem 8.7. There exists a polynomial time approximation algorithm for
Fifo-Darp on trees with performance 5/3. This algorithm can be implemented
to run in time O(nmA + n2 log n).

Proof. Our algorithm for trees uses a modified version of Alg-Last-Arcs. We
defer removal of the vertices in V which are neither start nor endpoint of an arc
from A and the completion of G via shortest paths until after the (modified)
balancing step. The balancing step Step 1 of Alg-Last-Arcs is modified so that
we find a balancing subset B ⊆ S∗ as in Lemma 4.5. After the balancing we
remove all vertices which are not incident to the arcs in A ∪ B and continue
with Alg-Last-Arcs from Step 2 on.

Let I = (G = (V, E,A), c, o,≺) be the original instance given such that G[E]
is a tree. We can consider the instance I ′ = (G = (V, E,A ∪ B), c, o,≺) of
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Fifo-Darp (still on a tree) which results from adding the balancing arcs B as
new transportation jobs. Since any feasible solution to I will have to use the
arcs from B anyway (cf. Lemma 4.5), we get that OPT(I) = OPT(I ′).

Now look at the instance I ′′ of Fifo-Darp which is obtained by removing
vertices and completing G along shortest paths as in our algorithm. It is easy to
see that OPT(I ′′) = OPT(I ′). Notice also that we can transform any feasible
solution to I ′′ to a feasible solution to I ′ (by replacing arcs not in A(E) by
shortest paths). Let S∗ and S′′ be optimal solutions for I and I ′′, respectively.
Define Z := S∗ \ B and Z ′′ := S′′ \ B. Since OPT(I) = c(A ∪ B) + c(Z) =
OPT(I ′′) = c(A ∪B) + c(Z ′′), we have that c(Z) = c(Z ′′).

Let A∪B∪N be the solution found by the modified version of Alg-Last-Arcs.
Then, using the arguments of Lemma 8.3 we get that

c(A ∪B ∪N) = c(A ∪B) + c(N) = c(S∗)− c(Z) + c(N)

≤ c(S∗)− c(Z) + 2c(Z ′′) ≤ c(S∗) + c(Z)

= 2 ·OPT(I)− c(A).

As noted before, Alg-TSP finds a solution of cost at most OPT + 2c(A), since
we can solve the TSP on the tree G[E] in polynomial time. We can estimate
the cost of the best of the two solutions returned by Alg-TSP and the modified
Alg-Last-Arcs by the techniques from Theorem 8.5 where this time β = 3. This
yields a performance of 5/3 as claimed.

The time bound for the algorithm is derived as follows: We can solve the
TSP on the metric space induced by G[E] in time O(n). We then root the tree
G[E] at an arbitrary vertex. With O(n) preprocessing time, the least common
ancestor of any pair of vertices can be found in constant time (see [HT84,
SV88]). Thus, we can implement Alg-TSP in such a way that the invocations of
Step 7 take total time O(nmA). This means that Alg-TSP can be implemented
to run in time O(nmA).

The balancing in the modified version of Alg-Last-Arcs can be accomplished
in time O(n + mA). Completion of the graph by computing all-pairs shortest
paths can be done in time O(nmE + n2 log n) = O(n2 log n) [CLR90, AMO93].
All other steps can be carried out in time O(n2) where again the algorithm
from [Tar77] is employed for computing a minimum weight directed spanning
tree.

9. Fifo-Darp with Start and Stop Penalties

In this section we show how to incorporate additional start- and stop-penal-
ties into the problem Fifo-Darp. In the Dial-a-Ride-Problem with penal-
ties, short Penalty-Fifo-Darp, we are given additional penalty functions p+

and p− on the set of vertices, where p+(v) is the time penalty for starting from
a vertex and p−(v) is the penalty for stopping at a vertex. The objective is to
find a closed walk serving all requests, such that the cost of the walk plus the
cost of starting and stopping is minimized.

To formulate Penalty-Fifo-Darp in a meaningful way as a graph augmen-
tation problem, we have to allow augmenting arcs from V × V and not just
from A(E), since each arc corresponds to a move and incurs a start and stop
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penalty. The cost function c : E → R≥0 is extended by defining the cost of
arc (v, w) to be the length of a shortest path from v to w in G[E].

Definition 9.1 (Graph augmentation version of Penalty-Fifo-Darp). An in-
stance of Penalty-Fifo-Darp consists of the same input as for Fifo-Darp
together with additional penalty functions p+, p− : V → R≥0 on the set of ver-
tices V . The objective is to find a multiset of arcs S from V × V minimizing
the weight

c(A ∪ S) +
∑

u∈U+

d+(u)p+(u) +
∑

u∈U−
d−(u)p−(u)

such that G[A ∪ S ] is ≺-Eulerian with start o. Here, U+ is the set of sources
of arcs in A ∪ S and U− is the set of endpoints of arcs in A ∪ S.

In the sequel we show that an instance I = (G = (V, E,A), c, o,≺, p−, p+) of
Penalty-Fifo-Darp can be transformed into an equivalent instance of Fifo-
Darp I ′ = (G′ = (V ′, E′, A′), c′, o′,≺′) on a slightly larger graph.

The transformation is accomplished as follows: For each vertex v ∈ V we
add both v and a new vertex v(±) to V ′. Vertex v(±) is used to model starting
or stopping at vertex v. The set E′ consists of the edges in E and an additional
edge ev between v and v(±) for each vertex v ∈ V . The cost of the new edges
is c′(ev) = 1/2(p+(v) + p−(v)). The cost function c′ coincides with c on the
set E. For each arc a = (u, v) ∈ A we add an arc a′ = (u(±), v(±)) to A (the
arcs in A are not contained in A′). The partial order on the set Au(±) is induced
in the obvious way by that on Au. Finally, the start vertex o′ equals o.

Lemma 9.2. Let I = (G, c, o,≺, p+, p−) be an instance of Penalty-Fifo-
Darp and I ′ = (G′,≺, c′, o′) be the instance of Darp constructed by the above
method. Then, I and I ′ are equivalent in the following sense: Any feasible
solution for I ′ can be transformed into a feasible solution for I of the same cost
and vice versa. This transformation can be accomplished in polynomial time.

Proof. Let S′ be a valid solution for problem instance I ′ of Fifo-Darp where S′

is an augmenting set of arcs. Let C ′ be a ≺-respecting Eulerian cycle in G′[A′∪
S′] with start o′.

We first construct an auxiliary set M of arcs by traversing C ′ and replacing
all chains of arcs from S′ with a single arc from the start vertex of the chain to
its end vertex. Notice that all endpoints of arcs in M are contained in V ′ \ V .
We now construct a solution S by replacing each arc (u(±), v(±)) by (u, v). It
is easy to see that S is in fact a valid solution for I of cost equal to that of S′.

Conversely, let S be a feasible solution for I. We can construct a solution S′

for I ′ with equal cost by adding to S′ for each arc (u, v) in S the arc (u(±), v(±)).
The time bound is obvious from the construction.

It follows from the construction that if G[E] is a tree then G′[E′] is also a
tree. Thus, the last lemma implies that approximation results for Fifo-Darp
on trees can be applied directly to Penalty-Fifo-Darp on trees. Similarly,
approximation results for general graphs carry over immediately. Hence, we
obtain the following result:
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Theorem 9.3. The problem Penalty-Fifo-Darp can be approximated on
trees with performance 5/3 and with performance 9/4 on general graphs.

However, transforming an instance of Penalty-Fifo-Darp where G[E] is a
path yields an instance of Fifo-Darp where G′[E′] is a caterpillar graph. This
seems unfortunate, since we know from Theorem 6.1 that Fifo-Darp is NP-
hard to solve on caterpillars. Is there a better transformation? More general,
is Penalty-Fifo-Darp on paths still polynomial time solvable?

The caterpillar constructed in the proof of Theorem 6.1 has the property that
jobs have sources and targets only in the feet of the caterpillar. Actually every
instance of Fifo-Darp on caterpillars with these properties can be transformed
into an equivalent instance of Penalty-Fifo-Darp on a path: Let f be a foot
and v be its unique adjacent vertex on the backbone. We replace all arcs from A
which are incident with f by corresponding arcs with source or target v. We
then remove foot f . The start- and stop-penalty on v are set to the length c(f, v)
of the hair between v and the foot f . It follows by arguments similar to those
given in Lemma 9.2 that the constructed instance of Penalty-Fifo-Darp on
the path (which corresponds to the former backbone) is in fact an equivalent
instance to the instance of Fifo-Darp on the caterpillar. Thus, we obtain the
following result which contrasts with the polynomial solvability of Fifo-Darp
on paths:

Lemma 9.4. Penalty-Fifo-Darp on paths is NP-hard to solve.

10. Concluding Remarks

We have presented a natural extension of a “Dial-a-Ride-Problem”, which
was originally motivated by the performance analysis of a large distribution
center of Herlitz AG, Berlin [AG+98]. We have shown that even in the presence
of FIFO-precedence constraints for the transportation jobs the problem can
be solved in polynomial time on paths. On trees, however, the problem is
NP-hard. Our approximation algorithms for general graphs and trees with
performance 9/4 and 5/3, respectively, compare well to the performances of 9/5
[FHK78] and 5/3 [FG93] obtained for Darp without precedence constraints.
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