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1 Introduction

In this paper we consider linear elliptic problems

−div(a(x)∇u) + cu = f

on general domains with space dimension d = 2 or d = 3, where typically the co-
efficient a(x) is strongly discontinuous. Standard multiplicative multigrid methods
or additive multilevel methods such as KASKADE [15] with BPX preconditioner
[13] deal quite efficiently with such a situation – apart from certain pathologi-
cal examples in 3D. However, the recently developed cascadic multigrid methods
(CMG) such as cascadic conjugate gradient (CCG) methods [6, 7, 14, 8], which
are extremely fast for homogeneous problems, tend to exhibit some slow-down
whenever the material jumps are “too strong”. Moreover, in such a problem adap-
tive mesh refinements may lead to unnecessarily fine grid regions on “coarse grid”
subdomains that touch “fine grid” subdomains.

To overcome this undesirable effect, a method combining CCG on homogeneous
subdomains with non-overlapping domain decomposition (DD) methods was pro-
posed in [16]. In order to allow for non-matching grids and large jumps at inter-
faces, mortar elements had been used. In a 2D model problem, that DD/CCG
iteration had turned out to be slower than KASKADE/BPX roughly by a factor of
two. One reason for that slow performance was that – due to the saddle point struc-
ture induced by the mortar elements at interfaces – a conjugate residual method
had to be applied as iterative solver (smoother).

The present paper aims at overcoming that weak point. Following algorithmic ideas
of [11] for the Stokes problem, we organize the iteration for the state variables and
Lagrange multipliers such that the iteration never leaves some subspace wherein
the problem appears to be positive definite. Consequently, this iteration can be
combined with any reasonable preconditioner. As will be shown by numerical
experiments, this idea leads to an improved cascadic multigrid (CMG) algorithm
that is now faster than KASKADE/BPX.

In Section 2 we describe the mortar element setting in the framework of mixed
methods [2, 3, 4, 5] with piecewise constant Lagrangian multipliers. In Section 3
we present a conjugate gradient method with iterates remaining in the subspace of
those functions that satisfy the weak matching conditions at the interfaces. The
smoothing property of the method follows from results in [7, 9, 20]. In Section 4 we
formulate our new subspace CMG method and prove its convergence for the case of
quasi-uniform grids. An adaptive version of the method based on an edge-oriented
error estimator in the spirit of [15] is discussed in Section 5. Finally, comparative
numerical results for a notorious material jump problem are given in Section 6.
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2 Mortar element setting

Let Ω ⊂ R
d, d = 2, 3, be a polygonal Lipschitz domain. We consider the elliptic

Dirichlet problem: find u ∈ H1
0 (Ω) such that

∫
Ω

[a(x)∇u∇v + c(x)uv] dΩ =
∫
Ω

fv dΩ ∀v ∈ H1
0 (Ω). (2.1)

Here f ∈ L2(Ω), a(x) is a positive bounded function, and c(x) is a nonnegative
bounded function. We specify a non-overlapping partitioning of Ω into subdomains
Ωk:

Ω̄ =
K⋃

k=1

Ω̄k.

For ease of writing, we identify Ωk also with its triangular (d = 2) or tetrahedral
(d = 3) regular covering relying on the context. Let Γkl denote the interface
between the subdomains Ωk and Ωl, and assume that Γkl is simply connected.
Since non-matching grids are usually admitted, the traces of the grids Ωk and Ωl

at the interface Γkl need not coincide. Following a commonly used notation, we
identify Γkl with the trace of Ωk at Γkl, which implies that Ωl represents the so-
called mortar side. As a standard, the mortar side is chosen to be the one with
the larger (average) diffusion coefficient a(x) as introduced in (2.1) above. The
Lagrange multipliers are associated to the non-mortar side Ωk, and live therefore
on the side with the smaller (average) diffusion coefficient.

We denote the finite element spaces associated with the grids Ωk and Γkl by Vk

and Λkl, respectively. Moreover, let

Vh :=
K∏

k=1

Vk , Λh :=
∏
k<l

Γkl �=∅

Λkl , and Xh := Vh × Λh.

In this framework, we consider the finite element problem with Lagrange multi-
pliers at the interfaces Γkl, k < l, k, l = 1, 2, . . . , K: find (uh, λh) ∈ Xh such
that

a(uh, vh) + b(λh, vh) = f(vh),

b(μh, uh) = 0

}
∀ (vh, μh) ∈ Xh (2.2)
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where

a(u, v) :=
K∑

k=1

∫
Ωk

(a(x)∇u∇v + c(x)uv) dΩ,

b(λ, v) :=
∑
k �=l

∫
Γkl

λklvk ds,

f(v) :=
K∑

k=1

∫
Ωk

fv dΩ.

By setting λkl = −λlk for k �= l, we assure that the bilinear form b depends
exclusively on the jumps at the interfaces.

There are several ways of choosing finite element spaces Vk and Λkl that satisfy
the inf-sup condition [2, 3, 4, 5, 10]. In this paper Vk will be the space of piecewise
linear finite elements in H1(Ωk) associated to the grid Ωk – without any continuity
assumptions at the cross points in 2D (and edges in 3D). In contrast to the earlier
paper [16], but in the spirit of suggestions due to [23], we here select the space Λkl

as piecewise constant functions in L2(Γkl) on the grid Γkl. In Fig. 2.1 we elucidate
the basis functions of Λkl for the case of a 1D interface Γkl. Let the nodes of the
mesh be located at points with Cartesian coordinates xm, m = 0, 1, . . . , nkl + 1
and 0 = x0 < x1 < . . . < xnkl+1. Basis functions φ(kl)

m of Λkl are associated only to
the nodes in the interior of Γkl:

φ(kl)
m (x) :=

{
1, ym ≤ x ≤ ym+1, m = 1, 2, . . . , nkl

0, otherwise

where ym := (xm−1 + xm)/2 for m = 2, 3, . . . , nkl and y1 := x0, ynkl+1 := xnkl+1.

◦ ◦ ◦ ◦
x0 = y1 x1 y2 x2 y3 x3

Figure 2.1: Nodal basis functions of Λkl next to a cross point for a staggered grid.

In the 3D case the support of a basis function φ
(kl)
1 ∈ Λkl associated with a vertex

of a triangle on a 2D interface is slightly more technical (to be expressed in terms
of barycentric coordinates) and is therefore omitted here.
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Once the finite element spaces have been fixed, problem (2.2) results in a system
of linear algebraic equations in saddle point form:

Az :=

[
A BT

B 0

] [
u

λ

]
=

[
f

0

]
=: F (2.3)

The above matrix A is a positive definite block diagonal matrix

A =

⎡
⎢⎢⎢⎣

A1

. . .

AK

⎤
⎥⎥⎥⎦ .

Let nk be the size of the matrix Ak, nu :=
∑K

k=1 nk the size if u, nλ the size of
λ, and N := nu + nλ the total problem size of z. We conclude from the inf-sup
condition that B is a matrix with full rank. Therefore problem (2.3) has a unique
solution.

3 Subspace confined conjugate gradient iteration

The system of linear equations (2.3) characterizes the solution of the constrained
minimization problem

min
v

{(Av, v) − 2(f, v)} subject to Bv = 0. (3.1)

In principle, the equations (2.3) can be solved by any PCG method realized in the
subspace

U := {v: Bv = 0}. (3.2)

In order to confine all iterates to this subspace, we follow [11] and introduce a
preconditioner for the matrix A as

H :=

[
D BT

B 0

]
.

Here D should be some positive definite matrix having a simple structure and
satisfy the inequality

(Dv, v) ≥ (Av, v) ∀v ∈ R
nu . (3.3)

In the spirit of [11], the 2×2 block system (2.3) is solved iteratively. We introduce
the corresponding splitting zi = (ui, λi) for the block variables at iteration step
i (i = 0, 1, . . .) and ri = F − Azi = (ri

u, r
i
λ) for the block residuals. With this

notation, we are now ready to write our suggested PCG method as follows:
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1. Initial guess: Fix z̃ := (ũ, λ̃), where ũ ∈ U is not required.

2. Subspace entering:

z00 = (u00, λ00) = z̃ + H−1(F −Az̃),

z0 = (u0, λ0) = (u00, λ̃),
s0 = (s0

u, s
0
λ) = H−1(F −Az0) .

p0 = s0
u .

(3.4)

3. Subspace iteration: i = 1, 2, . . .

ui = ui−1 + αi−1p
i−1,

λi = λi−1 + si−1
λ ,

ri = F −Azi with zi = (ui, λi),

si = (si
u, s

i
λ) = H−1ri,

pi = si
u + γi−1p

i−1,

(3.5)

where
αi =

σi

(Api, pi)
, γi =

σi

σi−1

, σi = (si, ri).

The above iteration actually confines the iterates ui to the subspace U as desired.
In fact, a short calculation verifies that u0 ∈ U as well as pi ∈ U, i ≥ 0, from which
ui ∈ U follows by induction.

Note that in the above subspace iteration only the u-components are computed by
the rules of cg-iteration, whereas the λ-components are evaluated by the underlying
Jacobi iteration. This is motivated by Stevenson’s observation that the Jacobi
iteration yields the correction of the Lagrange multiplier that minimizes the residue
with respect to the norm | · |D−1 := (·, D−1·)1/2. This correction uses only terms
that are anyway available.

Remark 3.1 (Stevenson [22]). Let ui, λi be approximate solutions of the saddle
point problem (2.3) and let ri, si be defined by (3.5). Then the minimization problem

|Aui + BT λ − f |D−1 → min
λ

is solved by λ = λi + si
λ.

This statement is verified by a simple calculation. We obtain si = H−1ri in (3.5)
by solving the equation BD−1BT si

λ = BD−1ri
u. The solution of this equation
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characterizes the minimum of |BT λ− ri
u|D−1 and the proof is completed by adding

λi.

The preconditioning in the subspace entering part (3.4) and the subspace iteration
(3.5) contains terms with H−1. We need to solve interface equations of the type

BD−1BT λ = g (3.6)

with suitable right hand sides g for their implementation. We will solve this
equation directly on the coarsest grid. The computation of the arising matrix is
comparatively cheap. Following [23], the solution of such systems just involves
static condensation towards the cross points in 2D, but still iterative solution at
interfaces in 3D. In the present version of our algorithm, we implemented (in 2D
and 3D) an inner iteration to be terminated as soon as the condition

‖Bui‖ ≤ 10−2 ‖Bu0‖ (3.7)

has been passed. This part of computation consumed only 4 – 8 % of the total
computing time and turned out to supply sufficient intermediate accuracy in the
multigrid setting to be discussed in Section 4.

Once the iteration is computationally defined, we want to analyze its iterative
convergence behavior. For this purpose, we introduce the D-orthogonal projection
onto U :

R := I − D−1BT (BD−1BT )−1B. (3.8)

It is symmetric with respect to the scalar product (·, ·)D since

(RD−1)T = RD−1 and (DR)T = DR. (3.9)

Recalling (3.3) and using straightforward calculations we obtain

|R|D ≤ 1, |I − D−1A|D ≤ 1, and |I − D−1A|A ≤ 1. (3.10)

in terms of the induced norm | · |2D := (·, D·).
Since ui, u ∈ U , the iterative errors ui − u, i ≥ 1, are known to be independent of
the error of the Lagrange multiplier λi; cf. [11]. They are given by the formulas:

u0 − u = R(I − D−1A)(ũ − u), (3.11)

ui − u = (ui−1 − u) + αi−1p
i−1, (3.12)

pi = R(I − D−1A)(ui−1 − u) − (ui−1 − u) + γi−1p
i−1

= −RD−1A(ui−1 − u) + γi−1p
i−1, i = 1, 2, . . .
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where

αi =
σi

(Api
u, p

i
u)

, γi =
σi

σi−1

, σi =
(
RD−1A(ui − u), A(ui − u)

)
.

After m iterative steps we thus arrive at

um − u = Sm[RD−1A](u0 − u) (3.13)

where Sm[RD−1A] is a nonlinear operator due to the CG iterations. Because of
(3.9), the spectrum of A1/2RD−1A1/2 is real. From (3.3) we even conclude that
it is contained in the interval [0, 1]. The same holds for the equivalent matrices
RD−1A and D−1AR. Due to the optimality of the CG iterations in the A-norm,
the nonlinear operator Sm can be majorized by a linear operator in the form

|um − u|A ≤ min
qm∈Pm

|qm[RD−1A](u0 − u)|A

where Pm denotes the subset of those polynomials with degree less or equal to m
which satisfy qm(0) = 1. In this context, a spectral analysis in terms of certain
Chebyshev polynomials qm is applicable, which satisfy (2m + 1)

√
t|qm(t)| ≤ 1 for

t ∈ [0, 1]. Upon applying the product rule qm(XY )X = Xqm(Y X), the relation
(3.10), and Cauchy’s inequality, we obtain

|qm[RD−1A]Rv|2A = (Rv, qm[D−1AR]D−1AR qm[D−1AR]v)D

≤ 1

(2m + 1)2
|Rv|D |v|D ≤ 1

(2m + 1)2
|v|2D .

Thus we have proved the main part of the following lemma.

Lemma 3.2 There exists a linear operator Lm = qm[RD−1A] with qm ∈ Pm such
that for all v ∈ U we have

|Lmv|A ≤ 1

2m + 1
|v|D and |Lmv|A ≤ |v|A. (3.14)

The m-asymptotics in (3.14) is poor compared to the standard Chebyshev esti-
mates, but it has been shown in [20, 7] to open the door for the construction of
a cascadic conjugate gradient (CCG) algorithm of optimal complexity already in
2D. We omit 1D on purpose. An exchange of CG by another smoother like Gauss–
Seidel or Gauss–Jacobi would at best lead to some nearly optimal complexity in
2D – compare Lemma 1.1 in [7]. In 3D, however, any smoother would be optimal
in terms of the energy norm with differences only in the leading coefficient.
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Up to now, we have not yet specified the matrix D. The simplest (local) choice
certainly is just αkIk, a multiple of the identity matrix, as suggested in [9] for the
Stokes problem. In our present context, however, a more suitable choice appeared
to be the still simple diagonal matrix

D := 2 diag(A). (3.15)

Remark. Following ideas of Kuznetsov [18, 19], we have also experimented

with D as a small-rank perturbation of a diagonal matrix: Let
◦
Ak denote the

special stiffness matrix in the Helmholtz-free case ck = 0, Mk the corresponding

specification in the pure Helmholtz case; then, with wk the vector spanning ker
◦
Ak

and normalized according to wT
k Mkwk = 1, we have the projections Pk := wkw

T
k

and PkMk = (MkPk)
T . In this notation, the suggested preconditioner associated

to the subdomain Ωk reads

D−1
k = (Ik − PkMk)D

−1
Ak

(Ik − MkPk) +
1

ck

Pk. (3.16)

In our numerical experiments including example (6.1) below, however, our diag-
onal preconditioner (3.15) has clearly outperformed the variant with (3.16). The
reason for this behavior is that the iteration is just required to serve as a smoother
within a multilevel algorithm rather than as a preconditioner. Moreover we note
that the specification (3.16) will cause trouble in the Helmholtz-free case with
ck = 0. Therefore, in order to be able to run comparisons between the two pre-
conditioners (3.15) and (3.16), we have selected some “small” Helmholtz term in
the test example (6.1) of Section 6.

4 Multigrid convergence analysis

As for the finite element solution of problem (2.2), there are quite a number of
a-priori error estimates for the case of mortar elements with piecewise linear La-
grange multipliers [3, 4, 5, 10, 23]. For piecewise constant multipliers as considered
in the present paper, the theory can be easily extended using arguments from the
Crouzeix-Raviart element. We recall the basic result here; cf. [2, 23].

Lemma 4.1 Assume that the exact solution of problem (2.2) is in H1
0 (Ω)∩

K∏
k=1

H2(Ωk).

Let h̄ := maxk hk. Then

K∑
k=1

(
h̄−1‖u − uh‖L2(Ωk) + ‖u − uh‖H1(Ωk)

)
≤ C

K∑
k=1

hk‖u‖H2(Ωk). (4.1)
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We will employ this lemma later to analyze our subspace cascadic multigrid algo-
rithm for mortar elements and its convergence properties for nested quasi-uniform
grids.

The definition of the multilevel procedure requires some notation. For subdomain
index k = 1, . . . , K, let Ωk denote the corresponding triangulation. For refinement
levels j = 0, 1, . . . , J , a nested family of finite element spaces X0 ⊂ X1 ⊂ . . . ⊂ XJ

is defined with

Xj := Vj × Λj and Vj :=
K∏

k=1

Vkj .

As a natural generalization of (3.2), the subspace Uj of Vj will contain those finite
element functions on the level j that satisfy the mortar conditions.

In pseudocode formulation our subspace cascadic multigrid (for short SCMG) al-
gorithm reads (compare [9])

j = 0 : u∗
0 , λ∗

0

direct solution of the saddle point problem
on the coarse grid

(4.2)

j = 1, . . . , J : u∗
j = Ij,mj

IUj
u∗

j−1

iterative solution of saddle point problems
on successively finer grids

(4.3)

The first step on each refinement level j = 1, . . . , J is to prolongate the (approxi-
mate) solution u∗

j−1, λ
∗
j−1 from the previous coarser level for use as starting points

of the iteration on the level j. It is done here simply by interpolation. The op-
erator IUj

performs the projection to the subspace Uj, as specified by the process
ũ �→ u0 in (3.4). Similarly, the operator Ij,mj

represents mj subspace iterations
(3.5) on the level j.

For the analysis of this iteration, let hkj be the discretization parameter associated
with Vkj and hk = hkJ . As usual uj ∈ Vj denotes the finite element solution of the
saddle point problem (2.2) and Nj the dimension of the vectors on level j just as
defined at the end of Section 2.

Let ‖ · ‖a denote the energy norm induced by the bilinear form a(·, ·), and let | · |A
be the equivalent norm of its vector representation, i.e.,

‖v‖a = |v|A , for v ∈ Vh.
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Moreover, since the meshes are shape regular, we have

‖vk‖L2(Ωk) ∼ hk|vk|Dk
. (4.4)

Let h̄j denote the maximal mesh size of the triangles on the level j. The general
quasi-uniformity assumption is

1

C
h̄j ≤ hkj ≤ h̄j , 1 ≤ k ≤ K ,

with a constant C > 0. For nested meshes, this assumption is often replaced by
the relation hkj ≈ 2J−jhk. Recall from Lemma 3.2 that

‖Lmj
vj‖a ≤ C

mj

h−1
j ‖vj‖L2(Ω) and ‖Lmj

vj‖a ≤ ‖vj‖a ∀vj ∈ Uj.

An L2 estimate of the following kind is typical for the analysis of cascadic multigrid
algorithms with nonconforming or mixed elements (cf. [9, 21]).

Lemma 4.2 There is a linear mapping Fj : Vj → Uj such that

‖vj − Fjvj‖L2(Ω) ≤ Ch̄j ‖vj‖a and ‖Fjvj‖a ≤ ‖vj‖a for all vj ∈ Uj−1.

The idea of the proof of this lemma is to apply the Fortin interpolation operator
for the mapping Fj as in Lemma 2 of [9]. The desired L2 estimate can then
be obtained by a standard duality argument, which has been exemplified for the
Stokes problem in [9, chapter 7]. Therefore, the quite similar proof for mortar
elements is omitted here.

With these preparations, we are now ready to state the main convergence estimate
for the SCMG method.

Theorem 4.3 Let h̄j = 2J−jh̄J , j = 0, 1, . . . , J , and 2 < β < 2d for d = 2, 3. If
the numbers of iteration steps are chosen according to

mj :=
[
mJβJ−j

]
, (4.5)

then the final error of the subspace CMG method is bounded by

‖u∗
J − uJ‖a ≤ C(mJ)

h̄J

1 − 2/β
‖f‖L2(Ω), (4.6)

and the computational complexity is bounded by

J∑
j=1

mjNj ≤ C
mJNJ

1 − β/2d
. (4.7)
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Proof. For j = 1, 2, . . . , J we have

u∗
j − uj = Ij,mj

IUj
u∗

j−1 − uj = Sj,mj
(RjJj(u

∗
j−1 − uj)).

Here Jj := I −D−1
j Aj and Rj denotes the Dj-orthogonal projection operator onto

the subspace Uj as introduced in (3.8). The error propagation operator RjJj for
one step of the Richardson method on the level j is defined as in (3.11). Similarly
the error propagation operator Sj,mj

for the PCG method is found in (3.13). Let
Lj,mj

be the linear operator appearing in Lemma 3.2. Upon applying Lemma 3.2,
Lemma 4.1, and estimate (3.10) for the operator Jj, we proceed as follows

‖u∗
j − uj‖a ≤ ‖Lj,mj

(RjJj(u
∗
j−1 − uj))‖a

≤ ‖Lj,mj
(RjJj(uj−1 − uj))‖a + ‖Lj,mj

(FjJj(u
∗
j−1 − uj−1))‖a

+ ‖Lj,mj
(FjJj − RjJj)(u

∗
j−1 − uj−1)‖a (4.8)

≤ C

mj

|RjJj(uj−1 − uj)|Dj
+ ‖(u∗

j−1 − uj−1)‖a

+
C

mj

|(Rj − Fj)Jj(u
∗
j−1 − uj−1)|Dj

.

Since uj − uj−1 can be expressed in terms of the discretization error at the levels
j and j − 1, we obtain from (3.10), (4.4), and Lemma 4.1

|RjJj(uj−1 − uj)|Dj
≤ |uj−1 − uj|Dj

≤ Ch̄−1
j ‖uj−1 − uj‖L2(Ω) ≤ Ch̄j

K∑
k=1

‖ujk‖H2(Ωk)

≤ Ch̄j‖f‖L2(Ω).

Moreover, by exploiting (3.10) and Lemma 4.2 we conclude that

|(Rj − Fj)Jj(u
∗
j−1 − uj−1)|Dj

= |Rj(I − Fj)Jj(u
∗
j−1 − uj−1)|Dj

≤ Ch̄−1
j ‖(I − Fj)Jj(u

∗
j−1 − uj−1)‖L2(Ω)

≤ C‖u∗
j−1 − uj−1‖a.

Inserting this into (4.8) we obtain

‖u∗
j − uj‖a ≤ c

h̄j

mj

‖f‖L2(Ω) + (1 +
C

mj

)‖u∗
j−1 − uj−1‖a. (4.9)

Before summing up terms by virtue of this recursion relation, we note that the
iteration numbers mj decrease so fast that by (4.5) we have

∑J
j=1(1/mj) ≤ 2/mJ .
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Hence,
∏J

j=1(1 + C/mj) ≤ exp(2C/mJ). Having these tools we finally estimate

‖u∗
J − uJ‖a ≤ C

J∑
j=1

h̄j

mj

‖f‖L2(Ω)

J∏
�=j+1

(1 +
C

m�

)

≤ C exp(2C/mJ)
J∑

j=1

h̄j

mj

‖f‖L2(Ω). (4.10)

Since β > 2, the last sum is a geometric series that leads to the inequality (4.6).
Similarly, the assumption β < 2d guarantees that the sum in (4.7) is also bounded
by a convergent geometric series.

The undesirable exponential factor in (4.10), which contains a problem dependent
generic constant C, seems to be unavoidable for nonconforming methods, com-
pare [9, 21]. Fortunately, our numerical experiments done so far (including those
presented in Section 6) seem to indicate that this factor is typically “not too large”.

5 Realization of an adaptive version

In this section we derive an adaptive mesh refinement strategy following mainly
the lines of [7]. Assume that up to level j − 1 such a strategy has already led to a
triangulation satisfying the assumptions

h−1
τ ‖uj − uj−1‖L2(τ) ≤ C‖uj − uj−1‖H1(τ) , (5.1)

‖uj − uj−1‖a ≤ CN
−1/d
j ‖f‖L2(Ω) , (5.2)

wherein τ is an arbitrary element (triangle in 2D or tetrahedron in 3D). We refer
to [12] for a theoretical justification. Inequality (5.1) means that the finite ele-
ment correction is locally of high frequency with respect to the finer triangulation.
Inequality (5.2) is the assumption of optimal global accuracy. The above assump-
tions are slightly stronger than inequality (4.1) in Lemma 4.1. Considerations
similar to those that led to Theorem 4.3 now yield the result

‖u∗
j − uj‖a ≤ C(mJ)

J∑
j=1

N
−1/d
j

mj

‖f‖L2 . (5.3)

With this estimate we are in the setting of [7]. Hence, we can apply the same
strategy as suggested there.

The termination criterion developed in [7] is based on a recursion formula similar
to (4.9): Let εj−1 denote some estimate of the discretization error ‖uj−1 − u‖,

12



which can usually be provided by an adaptive multilevel algorithm. Let δj denote
an appropriate estimate of the algebraic error ‖uj − u∗

j‖. Then the threshold for
terminating the iteration on the level j appears as

δj ≤ δj−1 + ρ

⎛
⎝TOL

εj−1

(
Nj

Nj−1

)1/d
⎞
⎠

(d+1)/2

εj−1 ,

where ρ is a safety factor, ρ < 1, and TOL is some user prescribed error tolerance
such that εJ ≤ TOL is to be reached on the final level J .

In [23] the edge-oriented a-posteriori error estimator due to [15] is naturally trans-
ferred to the case of mortar elements. It is based on a hierarchical extension of
the space of linear finite elements, say VkL, by a space of quadratic functions, say
VkQ, living on the edges of the grid Ωk. Each quadratic “bubble” in VkQ vanishes
at the vertices of Ωk and is parametrized by its midpoint values on the edge. Let

VL :=
K∏

k=1

VkL VQ :=
K∏

k=1

VkQ , Vh := VL ⊕ VQ , Xh = Vh × Λh .

Note that an extension for the Lagrange multipliers is not needed since these are
anyway defined via the traces of the associate subdomain grids.

Then the finite element problem in Xh with uL ∈ VkL, uQ ∈ VkQ leads to the
algebraic equations:

⎡
⎢⎢⎣

ALL ALQ BT
L

AQL AQQ BT
Q

BL BQ 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

uL

uQ

λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

fL

fQ

0

⎤
⎥⎥⎦ .

Let x∗
L = (u∗

L, λ∗) be an approximate solution obtained by the SCMG method
based on linear elements. Upon introducing the defects dQ := uQ for the dis-
cretization error and dL := uL −u∗

L, dλ := λ−λ∗ for the iterative errors, we arrive
at the system ⎡

⎢⎢⎣
ALL ALQ BT

L

AQL AQQ BT
Q

BL BQ 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

dL

dQ

dλ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rL

rQ

rλ

⎤
⎥⎥⎦ , (5.4)

with residual right hand sides

rL := fL − ALLu∗
L − BT

Lλ∗, rQ := fQ − AQLu∗
L − BT

Qλ∗, and rλ := −BLu∗
L.

13



Of course, we do not aim at an exact solution of equation (5.4), but only at a
rough approximation for the mere purpose of mesh refinement. An appropriate
estimator can be obtained from the simpler system⎡

⎢⎢⎣
ALL 0 0

0 DQQ 0

0 0 SQ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d̃L

d̃Q

d̃λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rL

rQ

rλ

⎤
⎥⎥⎦ , (5.5)

where DQQ is just the diagonal part of AQQ and

SQ = [BL BQ]

[
ALL ALQ

AQL AQQ

]−1 [
BT

L

BT
Q

]
.

As has been shown in [15] for shape regular triangulations, the block diagonal
matrix diag{ALL, DQQ} is spectrally equivalent to the corresponding 2 × 2 block
matrix in (5.4). Therefore the stiffness matrices in (5.4) and (5.5) are also spec-
trally equivalent (see [18]). As a consequence, the energy norm ‖dQ‖a of the
discretization error can be estimated roughly by

‖dQ‖a ≈ ‖d̃Q‖DQQ
.

As usual, the global discretization error estimator is given just as the sum over all
local contributions on the edges of the triangulations Ωk.

On the basis of this error estimation technique, we suggest the following first step
of our mesh refinement strategy. Let ηe be a local error estimator living on the
edge e of Ωk, which can be either matching or non-matching. Then those edges
with

ηe ≥
1

4
max

e′
ηe′ .

are marked for refinement.

Note that due to the decoupling of the defects in (5.5), the defect estimate d̃λ need
not be computed at all. Hence, the adaptive strategy so far does not monitor the
mortar edges in particular. This led us to propose a second step of mesh refinement
strategy. For this purpose, consider the functional

Φ(u) := (ALLu, u) − 2(fL, u)

that had already appeared in (3.1). Recall that the solution uL of a saddle point
problem is a minimizer of Φ(u) subject to the constraint Bu = 0. From variational
calculus, we know that

BT λL =
∂Φ(u)

∂u

∣∣∣∣∣
u=uL

14



is the sensitivity of the functional with respect to local changes of uL. Let θe be a
sensitivity measure at u = uL related to an edge e: for piecewise constant Lagrange
multipliers as used here we may set

θe := BT λL

∣∣∣
e
[uL]e (5.6)

where [u]e denotes an average absolute value of the jump of uL at e. In order
to select the “most sensitive” edges (with respect to changes in the constrained
functional), we mark those edges for additional refinement which satisfy

θe ≥ 0.95 max
e′

θe′ .

For the sake of completeness, we want to mention that we had also experimented
with the quadratic bubbles dQ|e = uQ|e replacing the jumps [uL]e in (5.6). We
obtained nearly the same numerical results. That is why we stick to the above
definition.

6 Numerical experiments

In this section, we want to illustrate the performance of our adaptive subspace
cascadic multigrid algorithm (in short: SCMG) with CG as selected smoother.
An implementation of this algorithm is compared to the following two adaptive
multilevel methods

• the best DD/CCG method from [16], and

• the code KASKADE with BPX as preconditioner.

The DD/CCG method is a domain decomposition method combined with cascadic
multigrid methods on convex subdomains with homogeneous materials; it also
allows for non-matching grids as the method presented herein, but it uses an
indefinite iterative solver. The KASKADE code is an implementation of an additive
multilevel method on matching grids. In 2D the BPX preconditioner could, in
principle, be replaced by a hierarchical basis preconditioner – which has not been
done since our intention is the design of an efficient 3D code.

The outer iterations in SCMG were terminated by the condition ‖u − uh‖a ≤
0.02 ‖u‖a, whereas the inner iterations were terminated by the requirement (3.7).

Notorious test problem. We have chosen a relatively simple test problem from
the literature [15] – adding a “small” perturbation term as in [16] in view of
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possible comparisons with the alternative preconditioner (3.16) that we abandoned
afterwards. Consider the domain Ω = [0, 1]d and the elliptic equation

−div(a(x)∇u) + 10−4u = 100 in Ω,

u = 0 on ∂Ω
(6.1)

with material jumps modelled by

a(x) =

{
a0 := 1 if x ∈ [0.25, 0.75]d \ [0.375, 0.625]d,

a1 := 106 otherwise.

In order to study the influence of jumps, variations of the coefficient a1 were also
included in our computations.

For the application of mortar elements, the domain Ω is decomposed into three
subdomains according to the jumps of the diffusion coefficient – see Fig. 6.1. Note
that for the earlier DD/CCG method, these subdomains have to be decomposed
further into convex subdomains; see [16]. As already stated in Section 2, the La-
grange multipliers are chosen on the sides with the smaller diffusion coefficients. In
Fig. 6.2 we compare the non-matching grids arising from the SCMG method with
the matching grids from KASKADE/BPX. Obviously, KASKADE/BPX produces ex-
cess refinements near interfaces between “fine grid” and “coarse grid” subdomains
– an effect that is even more severe in 3D problems. The non-matching grids and
the new SCMG algorithm, however, lead to a more flexible adaptive algorithm
which is also better parallelizable.

0

0.5

1

0

0.5

1
0

0.5

1

1.5

Figure 6.1: Domain decomposition with initial grid and the solution for a1 := 106.
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Figure 6.2: Adaptive grids from KASKADE/BPX (left) and from the SCMG method (right).

In Table 6.1 below we list the numerical results for this problem when solved by
the three adaptive multilevel methods above. Obviously, the new SCMG version
gains a factor of about 3 compared to the older CCG method. The new method
turns out to be also faster than KASKADE/BPX with matching grids. We note
that about 60 % of the computation time is spent on the two finest grids where
only 2 iteration steps are required.

Next, we studied the dependence of the new method (for d = 2) upon variations
of the jumps in the diffusion coefficients. Results for a1 = 106, 103, and 100, resp.,
are presented in Fig. 6.3.
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Figure 6.3: Number of outer iterations versus level for the SCMG method. Comparison of
two adaptive mesh refinement strategies from Section 5: one step strategy only (left), two step
strategy (right). Material jumps: (�) a1 = 100 (+) a1 = 103 (�) a1 = 106.
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mortar elements standard elements

DD / CCG SCMG KASKADE / BPX
j itr N time itr N acc time inn itr N acc time
1 15 87 0.17 5 87 0.195 0.06 6 4 45 0.386 0.02
2 14 163 0.41 7 173 0.126 0.09 8 4 145 0.256 0.07
3 12 319 0.78 10 333 0.100 0.17 13 5 257 0.120 0.17
4 10 521 1.08 10 537 0.077 0.31 14 4 489 0.081 0.34
5 12 759 1.63 7 771 0.060 0.49 15 6 685 0.086 0.62
6 10 1021 2.33 9 939 0.053 0.72 12 4 973 0.048 1.01
7 6 1657 3.22 5 1559 0.040 1.06 12 4 1821 0.032 1.74
8 12 2717 5.47 4 2435 0.030 1.67 11 3 2477 0.031 2.77
9 6 3463 7.42 2 3455 0.025 2.51 14 3 4153 0.024 4.51
10 6 7109 12.2 2 5683 0.019 4.74 14 2 6313 0.016 7.22

Table 6.1: Comparison of three adaptive multilevel methods to solve problem (6.1) with a1 =
106. [j: level – N : number of variables – acc: energy norm accuracy – itr: number of outer
iterations – inn: number of inner iterations – time: computation time.]

Finally, we provide results of the SCMG method for problem (6.1) with d = 3.
The domain Ω is now decomposed into 3 subdomains by 2D interfaces that match
the jumps of the diffusion coefficient. As shown in Table 6.2, there is no significant
difference in the behavior of the method in two and three space dimensions. The
only slight difference is that due to the large size of the algebraic equations on the
coarsest grid, that part is no longer solved directly, but also iteratively using inner
iterations as well. Moreover we have more than half a million unknowns on the
finest level.

j itr N acc inn nλ

0 32 1543 0.755 41 690
1 6 2553 0.524 15 1122
2 8 8005 0.354 14 2706
3 13 35506 0.254 14 8480
4 14 137036 0.184 9 30047
5 8 545531 0.137 12 93043

Table 6.2: Performance of the new SCMG method for problem (6.1) with d = 3 and a1 = 106.
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