
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

DIETRICH HAUPTMEIER SVEN O. KRUMKE JÖRG RAMBAU

The Online Dial-a-Ride Problem under
Reasonable Load

ZIB-Report 99-08 (November 1999, Revised Version from March 2000)

THE ONLINE DIAL-A-RIDE PROBLEM UNDER REASONABLE LOAD

DIETRICH HAUPTMEIER1, SVEN O. KRUMKE1, AND JÖRG RAMBAU1

ABSTRACT. In this paper, we analyze algorithms for the online dial-a-ride prob-
lem with request sets that fulfill a certain worst-case restriction: roughly speak-
ing, a set of requests for the online dial-a-ride problem is reasonable if the re-
quests that come up in a sufficiently large time period can be served in a time
period of at most the same length. This new notion is a stability criterion imply-
ing that the system is not overloaded.

The new concept is used to analyze the online dial-a-ride problem for the
minimization of the maximal resp. average flow time. Under reasonable load it
is possible to distinguish the performance of two particular algorithms for this
problem, which seems to be impossible by means of classical competitive anal-
ysis.

1. INTRODUCTION

It is a standard assumption in mathematics, computer science, and operations
research that problem data are given. However, many aspects of life are online.
Decisions have to be made without knowing future events relevant for the current
choice. Online problems, such as vehicle routing and control, management of
call centers, paging and caching in computer systems, foreign exchange and stock
trading, had been around for a long time, but no theoretical framework existed for
the analysis of online problems and algorithms.

Meanwhile, competitive analysis has become the standard tool to analyze online-
algorithms [4, 6]. Often the online algorithm is supposed to serve the requests one
at a time, where a next request becomes known when the current request has been
served. However, in cases where the requests arrive at certain points in time this
model is not sufficient. In [3, 5] each request in the request sequence has a release
time. The sequence is assumed to be in non-decreasing order of release times. This
model is sometimes referred to as thereal time model. A similar approach was used
in [1] to investigate theonline dial-a-ride problem—OLDARP for short— which is
the example for the new concept in this paper.

Since in the real time model the release of a new request is triggered by a point
in time rather than a decision of the online algorithm we essentially do not need a
total order on the set of requests. Therefore, for the sake of convenience, we will
speak ofrequest setsrather than request sequences.

In the problemOLDARP objects are to be transported between points in a given
metric spaceX with the property that for every pair of points(x,y) ∈ X there is a
pathp : [0,1]→ X in X with p(0) = x andp(1) = y of lengthd(x,y). An important
special case occurs whenX is induced by a weighted graph.

1Konrad-Zuse-Zentrum für Informationstechnik Berlin, Department Optimization, Takustr. 7, D-
14195 Berlin-Dahlem, Germany. Email:{hauptmeier,krumke,rambau }@zib.de

Research supported by the German Science Foundation (grant 883/5-3).
1

2 DIETRICH HAUPTMEIER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

A request consists of the objects to be transported and the corresponding source
and target vertex of the transportation request. The requests arrive online and must
be handled by a server which starts and ends its work at a designated origin vertex
and which moves along the paths inG. The server picks up and drops objects at
their starts and destinations. It is assumed that neither the release time of any future
request nor the number of requests is known in advance.

A feasible solution to an instance of theOLDARP is a schedule of moves (i.e.,
a sequence of consecutive moves inX together with their starting times) inX so
that every request is served and that no request is picked up before its release time.
The goal ofOLDARP is to find a feasible solution with “minimal cost”, where the
notion of “cost” depends on the objective function used.

Recall that an online-algorithmA is calledc-competitiveif there exists a con-
stantc such that for any request setσ (or request sequenceσ if we are concerned
with the classical online model) the inequalityA(σ) ≤ c · OPT(σ) holds. Here,
X(σ) denotes the objective function value of the solution produced by algorithm
X on inputσ and OPT denotes an optimal offline algorithm. Sometimes we are
dealing with various objectives at the same time. We then indicate the objective
obj in the superscript, as inXobj(σ).

Competitive analysis ofOLDARP provided the following (see [1]):

• There are competitive algorithms (IGNORE and REPLAN, definitions see
below) for the goal of minimizing thetotal completion timeof the schedule.

• For the task of minimizing themaximal (average) waiting timeor themax-
imal (average) flow timethere can be no algorithm with constant com-
petitive ratio. In particular, the algorithmsIGNORE andREPLAN have an
unbounded competitive ratio.

We do not claim originality for the actual online-algorithmsIGNORE andRE-
PLAN; instead we show a new method for their analysis. As the reader will see in
the definitions, bothREPLAN and IGNORE are straight-forward online strategies
based on the ability to solve the offline version of the problem to optimality or a
constant-factor approximation thereof.

The first—to the best of our knowledge—occurrence of the strategyIGNORE

can be found in the paper by Shmoys, Wein, and Williamson [13]: They show
a fairly general result about obtaining competitive algorithms for minimizing the
total completion time in machine scheduling problems when the jobs arrive over
time: If there is aρ-approximation algorithm for the offline version, then this im-
plies the existence of a2ρ-competitive algorithm for the online-version, which is
essentially theIGNORE strategy. Recall that aρ-approximation algorithm is a poly-
nomial algorithm that always finds a solution that is at mostρ times the optimum
objective value. The results from [13] show thatIGNORE-type strategies are2-
competitive for a number of online-scheduling problems. The strategyREPLAN

is probably folklore; it can be found also under different names likeREOPT or
OPTIMAL.

It should be noted that the corresponding offline-problems with release times
(where all requests are known at the start of the algorithm) areNP-hard to solve for
the objective functions of minimizing the average or maximal flow time—it is even
NP-hard to find a solution within a constant factor from the optimum [11]. The
offline problem without release times of minimizing the total completion time is
polynomially solvable on special graph classes butNP-hard in general [8, 2, 7, 10].

THE ONLINE DIAL-A-RIDE PROBLEM UNDER REASONABLE LOAD 3

If we are considering a continuously operating system with continuously arriv-
ing requests (i.e., the request set may be infinite) then the total completion time
is meaningless. Bottom-line: in this case, the existing positive results cannot be
applied and the negative results tell us that we cannot hope for performance guar-
antees that may be relevant in practice. In particular, the two algorithmsIGNORE

andREPLAN cannot be distinguished by classical competitive analysis.
The point here is that we do not know any notion from the literature to describe

what a particular set of requests should look like in order to allow for a continu-
ously operating system. In queuing theory this is usually modelled by a stability
assumption: the rate of incoming requests is at most the rate of requests served. To
the best of our knowledge, so far there has been nothing similar in the existing the-
ory of discrete online-algorithms. Since in many instances we have no exploitable
information about the distributions of requests we want to develop a worst-case
model rather than a stochastic model for stability of a continuously operating sys-
tem.

Our idea is to introduce the notion of∆-reasonablerequest sets. A set of re-
quests is∆-reasonable if—roughly speaking—requests released during a period of
time δ ≥ ∆ can be served in time at mostδ. A set of requestsR is reasonableif
there exists a∆ < ∞ such thatR is ∆-reasonable. That means, for non-reasonable
request sets we find arbitrarily large periods of time where requests are released
faster than they can be served—even if the server has the optimal offline schedule.
When a system has only to cope with reasonable request sets, we call this situation
reasonable load. Section 3 is devoted to the exact mathematical setting of this idea.

We now present our main result on theOLDARP under∆-reasonable which we
prove in Sections 4 and 5.

Theorem 1.1. For theOLDARP under∆-reasonable load,IGNORE yields a maxi-
mal and an average flow time of at most2∆, whereas the maximal and the average
flow time ofREPLAN are unbounded.

The algorithmsIGNORE and REPLAN have to solve a number of offline in-
stances ofOLDARP, which is in generalNP-hard, as we already remarked. We
will show how we can derive results forIGNORE when using an approximate algo-
rithm for solving offline instances ofOLDARP (for approximation algorithms for
offline instances ofOLDARP, refer to [8, 2, 7, 10]). For this we refine the notion
of reasonable request sets again, introducing a second parameter that tells us, how
“fault tolerant” the request set is. In other words, the second parameter tells us, how
“good” the algorithm has to be to show stable behavior. Again, roughly speaking, a
set of requests is (∆,ρ)-reasonable if requests released during a period of timeδ≥∆
can be served in time at mostδ/ρ. If ρ = 1, we get the notion of∆-reasonable as
described above. Forρ > 1, the algorithm is allowed to work “sloppily” (e.g., em-
ploy approximation algorithms) or have break-downs to an extent measured byρ
and still show a stable behavior.

2. PRELIMINARIES

Let us first sketch the problem under consideration. We are given a metric space
(X,d). Moreover, there is a special vertexo∈ X (the origin). Requests are triples
r = (t,a,b), wherea is the start point of a transportation task,b its end point, and
t its release time, which is—in this context—the time wherer becomes known. A

4 DIETRICH HAUPTMEIER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

transportation moveis a quadruplem = (t,a,b,R), wherea is the starting point
andb the end point, andt the starting time, whileR is the set (possibly empty) of
requests carried by the move. Thearrival time of a move is the sum of its starting
time andd(a,b). A (closed) transportation scheduleis a sequence(m1,m2, . . .) of
transportation moves such that

• the first move starts in the origino;
• the starting point ofmi is the end point ofmi−1;
• the starting time ofmi carryingR is no earlier than the maximum of the

arrival time ofmi−1 and the release times of all requests inR.
• the last move ends in the origino.

An online-algorithmfor OLDARP has to move a server inX so as to fulfill all re-
leased transportation tasks without preemption (i.e., once an object has been picked
up it is not allowed to be dropped at any other place than its destination), while it
does not know about requests that come up in the future. In order to plan the work
of the server, the online-algorithm may maintain a preliminary (closed) transporta-
tion schedule for all known requests, according to which it moves the server. A
posteriori, the moves of the server induce a complete transportation schedule that
may be compared to an offline transportation schedule that is optimal with respect
to some objective function (competitive analysis). For a detailed set-up see [1].

We start with some useful notation.

Definition 2.1. Theoffline versionof r = (t,a,b) is the request

roffline := (0,a,b).

Theoffline versionof R is the request set

Roffline :=
{

roffline : r ∈ R
}

.

An important characteristic of a request set with respect to system load consid-
erations is the time period in which it is released.

Definition 2.2. Let R be a finite request set forOLDARP. Therelease spanδ(R)
of R is defined as

δ(R) := max
r∈R

t(r)−min
r∈R

t(r).

Provably good offline-algorithms exist for the total completion time and the
weighted sum of completion times. How can we make use of these algorithms
in order to get performance guarantees for minimizing the maximum (average)
waiting (flow) times? We suggest a way of characterizing request sets which we
want to consider “reasonable”.

3. REASONABLE LOAD

In a continuously operating system we wish to guarantee that work can be ac-
complished at least as fast as it is presented. In the following we propose a mathe-
matical set-up which models this idea in a worst-case fashion. Since we are always
working on finite subsets of the whole request set, the request set itself may be
infinite, modeling a continuously operating system.

We start by relating the release spans of finite subsets of a request set to the time
we need to fulfill the requests.

THE ONLINE DIAL-A-RIDE PROBLEM UNDER REASONABLE LOAD 5

Definition 3.1. Let Rbe a request set for theOLDARP. A weakly monotone func-
tion

f :

{
R → R,
δ 7→ f (δ);

is a load boundon R if for any δ ∈ R and any finite subsetS of R with δ(S) ≤
δ the completion timeOPTcomp(Soffline) of the optimum schedule for the offline
versionSoffline of S is at mostf (δ). In formula:

OPTcomp(Soffline)≤ f (δ).

Remark 3.2. If the whole request setR is finite then there is always the trivial load
bound given by the total completion time ofR. For every load boundf we may set
f (0) to be the maximum completion time we need for a single request, and nothing
better can be achieved.

A “stable” situation would easily obtained by a load bound equal to the identity
x 7→ x on R. (By “stable” we mean that the number of unserved requests in the
system does not become arbitrarily large.) In that case we would never get more
work to do than we can accomplish. If it has a load bound equal to a function
id/ρ, whereid is the identity and whereρ ≥ 0, thenρ measures the tolerance of
the request set: assume we have an offline-algorithm at our disposal that is by
a factorρ worse than the optimal offline algorithm then we can still accomplish
all the incoming work by using theIGNORE-heuristic: compute aρ-approximate
schedule for the setRof all released but unserved requests. The load bound and the
performance guarantee ensure that the schedule takes no longer thanρ ·∆(R)/ρ =
∆(R). Thus, the set of requests that are released in the meantime has a release span
no larger than∆(R), and we can proceed by computing aρ-approximate schedule
for that set.

However, we cannot expect that the identity (or any linear function) is a load
bound forOLDARP because of the following observation: a request set consisting
of one single request has a release span of0 whereas in general it takes non-zero
time to serve this request. In the following definition we introduce a parameter
describing how far a request set is from being load-bounded by the identity.

Definition 3.3. A load boundf is (∆,ρ)-reasonablefor some∆,ρ ∈ R if

ρ f (δ)≤ δ for all δ≥ ∆

A request setR is (∆,ρ)-reasonableif it has a (∆,ρ)-reasonable load bound. For
ρ = 1, we say that the request set is∆-reasonable.

In other words, a load bound is(∆,ρ)-reasonable, if it is bounded from above
by id(x)/ρ for all x≥ ∆ and by the constant function with value∆/ρ otherwise.

Remark 3.4. If ∆ is sufficiently small so that all request sets consisting of two
or more requests have a release span larger than∆ then the first-come-first-serve
strategy is good enough to ensure that there are never more than two unserved
requests in the system. Hence, the request set does not require scheduling the
requests in order to provide for a stable system.

In a sense,∆ is a measure for the combinatorial difficulty of the request setR.
Thus, it is natural to ask for performance guarantees for algorithms in terms of this
parameter. This is done for the algorithmIGNORE in the next section.

6 DIETRICH HAUPTMEIER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

4. BOUNDS FOR THEFLOW TIMES OF IGNORE

We are now in a position to prove bounds for the maximal resp. average flow
time in theOLDARP for algorithm IGNORE stated in Theorem 1.1. We start by
recalling the algorithmIGNORE from [1]

Definition 4.1 (Algorithm IGNORE). Algorithm IGNORE works with an internal
buffer. It may assume the following states (initially it is IDLE):

IDLE: Wait for the next point in time when requests become available. Goto
PLAN.

BUSY: While the current schedule is in work store the upcoming requests
in a buffer (“ignore them”). Goto IDLE if the buffer is empty else goto
PLAN.

PLAN: Produce a preliminary transportation schedule for all currently avail-
able requestsR (taken from the buffer) minimizingcompfor Roffline. (Note:
This yields a feasible transportation schedule forR because all requests in
Rare immediately available.) Goto BUSY.

We assume thatIGNORE solves offline instances ofOLDARP employing aρ-
approximation algorithm.

Let us consider the intervals in whichIGNORE organizes its work in more detail.
The algorithmIGNORE induces a dissection of the time axisR in the following
way: We can assume, w.l.o.g., that the first set of requests arrives at time0. Let
δ0 = 0, i.e., the point in time where the first set of requests is released (these are
processed byIGNORE in its first schedule). Fori > 0 let δi be the duration of the
time period the server is working on the requests that have been ignored during the
lastδi−1 time units. Then the time axis is split into the intervals

[δ0 = 0,δ0],(δ0,δ1],(δ1,δ1 +δ2],(δ1 +δ2,δ1 +δ2 +δ3], . . .

Let us denote these intervals byI0, I1, I2, I3, Moreover, letRi be the set of those
requests that come up inIi . Clearly, the complete set of requestsR is the disjoint
union of all theRi .

At the end of each intervalIi we solve an offline problem: all requests to be
scheduled are already available. The work on the computed schedule starts imme-
diately (at the end of intervalIi) and is doneδi+1 time units later (at the end of
interval Ii+1). On the other hand, the time we need to serve the schedule is not
more thanρ times the optimal completion time ofRi

offline. In other words:

Lemma 4.2. For all i ≥ 0 we have

δi+1 ≤ ρ ·OPTcomp(Ri
offline).

Let us now recall and prove the first statement of Theorem 1.1.

Theorem 4.3. Let ∆ > 0 and ρ ≥ 1. For all instances ofOLDARP with (∆,ρ)-
reasonable request sets,IGNORE employing aρ-approximate algorithm for solving
offline instances ofOLDARP yields a maximal flow time of no more than2∆.

Proof. Let r be an arbitrary request inRi for somei ≥ 0, i.e.,r is released inIi . By
construction, the schedule containingr is finished at the end of intervalIi+1, i.e., at
mostδi +δi+1 time units later thanr was released. Thus, for alli > 0 we get that

IGNOREmaxflow(Ri)≤ δi +δi+1.

THE ONLINE DIAL-A-RIDE PROBLEM UNDER REASONABLE LOAD 7

If we can show thatδi ≤ ∆ for all i > 0 then we are done. To this end, let
f :R→R be a(∆,ρ)-reasonable load bound forR. ThenOPTcomp(Ri

offline)≤ f (δi)
becauseδ(Ri)≤ δi .

By Lemma 4.2, we get for alli > 0

δi+1 ≤ ρOPTcomp(Ri
offline)≤ ρ f (δi)≤max{δi ,∆}.

Usingδ0 = 0 the claim now follows by induction oni. ¤

The statement of Theorem 1.1 concerning the average flow time ofIGNORE

follows from the fact that the average is never larger than the maximum.

Corollary 4.4. Let ∆ > 0. For all ∆-reasonable request sets algorithmIGNORE

yields a average flow time no more than2∆.

5. A DISASTROUS EXAMPLE FORREPLAN

We first recall the strategy of algorithmREPLAN for the OLDARP. Whenever
a new request becomes available,REPLAN computes a preliminary transportation
schedule for the setR of all available requests by solving the problem of minimiz-
ing the total completion time ofRoffline.

Then it moves the server according to that schedule until a new request arrives
or the schedule is done. In the sequel, we provide an instance ofOLDARP and
a ∆-reasonable request setR such that the maximal and the average flow time
REPLANmaxflow(R) is unbounded, thereby proving the remaining assertions of The-
orem 1.1.

Theorem 5.1. There is an instance ofOLDARP under reasonable load such that
the maximal and the average flow time ofREPLAN is unbounded.

Proof. In Figure 1 there is a sketch of an instance for theOLDARP. The metric
space is a path on four nodesa,b,c,d with origin a; the length of the path is̀, the
distances ared(a,b) = d(c,d) = ε, and henced(b,c) = `−2ε. At time 0 a request
from a to d is issued; at time3/2`−ε, the remaining requests periodically come in
pairs fromb to a and fromc to d, resp. The time distance between them is`−2ε.

We show that for̀ = 18ε the request setR indicated in the picture is22
3`-

reasonable. Indeed: it is easy to see that the first request froma to d does not
influence reasonability. Consider an arbitrary setRk of k adjacent pairs of requests
from b to a resp. fromc to d. Then the release spanδ(Rk) of Rk is

δ(Rk) = (k−1)(`−2ε).

The offline versionRk
offline of Rk can be served as follows: first, move the server

to c, the starting point of the upper requests: this contributes cost`−ε. Next, serve
all the upper requests and go back toc: this contributes costk×2ε. Then, go down
to b, the starting point of the lower requests: this contributes another`−2ε to the
cost. Now, serve the first lower requests: the additional cost for this isε. Finally,
serve the remaining lower requests at an additional cost of(k−1) ·2ε. In total, we
have the following:

OPTcomp(Rk
offline) = 2`+(k−1) ·4ε.

8 DIETRICH HAUPTMEIER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

G

0

t

ε ε ε

`

ε ε ε

3/2`− ε `−2ε `−2ε

a

b

c

d

FIGURE 1. A sketch of a(22
3`)-reasonable instance ofOLDARP

(` = 18ε). The horizontal axis holds the time, the vertical axis
depicts the metric space in which the server moves. A request is
denoted by an arrow from its starting point to its end point hori-
zontally positioned at its release time.

In order to find the smallest paramter∆ for which the request setRk is ∆-
reasonable we solve for the integerk−1 and get

k−1 =
⌈

2`

`−6ε

⌉
= 3.

Hence, we can set∆ to

∆ := OPTcomp(R4
offline) = 22

3`.

Now we define

f :





R → R,

δ 7→
{

∆ for δ < ∆,

δ otherwise.

By construction,f is a load bound forR4. Because the time gap after which a
new pair of requests occurs is certainly larger than the additional time we need to
serve it (offline),f is also a load bound forR. Thus,R is ∆-reasonable, as desired.

Now: how doesREPLAN perform on this instance? In Figure 2 we see the
track of the server following the preliminary schedules produced byREPLAN on
the request setR.

The maximal flow time ofREPLAN on this instance is realized by the flow time
of the request(3/2`− ε,b,a), which is unbounded.

Moreover, since all requests fromb to a are postponed after serving all the re-
quests fromc to d we get thatREPLAN produces an unbounded average flow time
as well. ¤

In Figure 3 we show the track of the server under the control of theIGNORE-
algorithm. After an initial inefficient phase the server ends up in a stable operating
mode. This example also shows that the analysis ofIGNORE in Section 4 is sharp.

THE ONLINE DIAL-A-RIDE PROBLEM UNDER REASONABLE LOAD 9

G

0

t

ε ε ε

`

ε ε ε

3/2`− ε `−2ε `−2ε

FIGURE 2. The track of theREPLAN-server is drawn as a line in
the diagram: at each point in timet we can read off the position
of the server by looking at the height of the line at the horizontal
positiont. Because a new pair of requests is issued exactly when
the server is still closer to the requests at the top all the requests
at the bottom will be postponed in an optimal preliminary sched-
ule. Thus, the server always returns to the top when a new pair of
requests arrives.

FIGURE 3. The track of theIGNORE-server.

6. HOW ABOUT REPLANNING WITH A DIFFERENT OBJECTIVE?

It is quite a natural question to ask whether modified replan strategiesFLOWRE-
PLAN or MAXFLOWREPLAN that repeatedly minimizes the average resp. maximal
flow times on the known request sets would give a reasonable bound on the maxi-
mal and average flow times in the online situation.

We mentioned already that the offline problem of minimizing the average flow
time is very hard. In the offline problem thatFLOWREPLAN has to solve, however,

10 DIETRICH HAUPTMEIER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

G

t
a

b

c

d

0
3
2 `− ε `+4ε

i×Ru
i (i +1)×Ru

i+1

Rl
i+1Rl

i

`+2(i−2)ε

Rl
5Rl

4Rl
3Rl

2Rl
1

`−2ε `+2ε
`

2×Ru
2

1×Ru
1 3×Ru

3

4×Ru
4

5×Ru
5

FIGURE 4. The track of theFLOWREPLAN-server on a the exam-
ple from Theorem 6.1.

all requests have release times in the past. It is then easy to see that the problem
is equivalent to the minimization of the average completion time counted from the
point in time where the planning takes place. Moreover, since the average flow
time is larger by the “average age” of the requests, the performance guarantees
of approximation algorithms minimizing the average completion time carry over.
Still, in our computational experience minimization of the average completion time
takes more time than minimizing the total completion time.

Anyway: the following result shows that even under reasonable load we cannot
expect a worst case stable behaviour ofFLOWREPLAN.

Theorem 6.1. There is an instance ofOLDARP under reasonable load such that
the maximal and average flow times ofFLOWREPLAN are unbounded.

Proof. We construct a set of requests in the same metric space as in the previous
Section 5 as follows:

• At time 0 we issue again one request froma to d.
• At time T0 := 3/2`− ε we issue a pair of requestsRu

1 from c to d andRl
1

from b to a.
• At time Ti+1 := Ti + `+2(i−2)ε we issue

– a set ofi “upper” requestsRu
i+1 from c to d and

– one “lower” requestRl
i+1 from b to a.

Figure 4 sketches the construction.
For ` = 18ε this request set is again22

3`-reasonable since we have increased the
time intervals between the release times of the requests by the additional amount
that is needed to serve the additional copies of upper requests.

At time Ti , for all i > 0, FLOWREPLAN has still to serve as many upper requests
as there are lower requests. Thus, atTi the schedule with minimum average flow
time for the currently available requests serves the upper requests first. Hence, the
requests at the bottom have to wait for an arbitrarily long period of time.

THE ONLINE DIAL-A-RIDE PROBLEM UNDER REASONABLE LOAD 11

In order to prove the assertion concerning the average flow time we consider the
result f (RN) that FLOWREPLAN produces on the input setRN which contains all
requests up to timeTN.

The sum of all flow timesfΣ(RN) is dominated by the waiting times of the lower
requests. That is, it is a least

fΣ(RN)≥
N

∑
k=1

N

∑
i=k

(`+2(i−2)ε)

≥
N

∑
k=1

N

∑
i=k

(i−2)ε.

The number of requests#RN in RN is

#RN = 1+
N

∑
k=1

(k+1),

so that

f (RN) =
fΣ(RN)
#RN

N→∞−→ ∞,

which completes the proof. ¤

A strategy that minimizes just the maximal flow time does not make a lot of
sense since sometimes this only determines which request is to be served first;
the order in which all the other requests are scheduled is unspecified. Thus, the
most sensible strategy in this respect seems to be the following: consider an of-
fline instance of the dial-a-ride problem. The vector consisting of all flow times of
requests in a feasible solution ordered decreasingly is theflow vector. All flow vec-
tors are ordered lexicographically. The online strategyMAXFLOWREPLAN for the
online dial-a-ride problem does the following: whenever a new request becomes
availableMAXFLOWREPLAN computes a new schedule of all yet unserved requests
minimizing the flow vector.

It is an open problem what the performance of this strategy is under∆-reasonable
load. In practice, however, it is probably too difficult to solve the offline problem
with this objective function.

7. REASONABLE LOAD AS A GENERAL FRAMEWORK

We introduced the new concept of reasonable request sets, using as example
the problemOLDARP. However, the concept can be applied to any combinatorial
online problem with (possibly infinte) sets of time stamped requests, such as on-
line scheduling, e.g., as described by Sgall [12], or the Online Traveling Salesman
Problem, studied by Ausiello et.al. [3].

The algorithmsIGNORE and REPLAN represent general “online paradigms”
which can be used for any online problem with time-stamped requests. We notice
that the proof of the result that the average and maximal flow and waiting times
of IGNORE are bounded by2∆ has not explicetly drawn on any specific property
of OLDARP—this result holds for all combinatorial online problems with requests
given by their release times.

The proof that the maximal flow and waiting time of a∆-reasonable request set
is unbounded forREPLAN is equally applicable to the Online Traveling Salesman
Problem by Ausiello et.al. [3]. We expect that the same is true for any “sufficiently

12 DIETRICH HAUPTMEIER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

difficult” online problem with release times—for very simple problems, such as
OLDARP on a zero dimensional space, the result trivially does not hold.

8. CONCLUSION

We have introduced the mathematical notion∆-reasonable describing the com-
binatorial difficulty of a possibly infinite request set forOLDARP. For reasonable
request sets we have given bounds on the maximal resp. average flow time of al-
gorithm IGNORE for OLDARP; in contrast to this, there are instances ofOLDARP

where algorithmREPLAN yields an unbounded maximal and average flow time.
One key property of our results is that they can be applied in continuously working
systems. Computer simulations have meanwhile supported the theoretical results
in the sense that algorithmIGNORE does not delay individual requests for an arbi-
traryly long period of time, whereasREPLAN has a tendency to do so [9].

While the notion of∆-reasonable is applicable to minimizing maximal flow
time, it would be of interest to investigate an average analogue in order to prove
non-trivial bounds for the average flow times.

REFERENCES

[1] Norbert Ascheuer, Sven O. Krumke, and Jörg Rambau,The online transportation problem,
Preprint SC 98-34, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1998.

[2] Mikhail J. Atallah and S. Rao Kosaraju,Efficient solutions to some transportation problems
with applications to minimizing robot arm travel, SIAM Journal on Computing17 (1988),
849–869.

[3] Georgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo,
Competitive algorithms for the traveling salesman, Proceedings of the 4th Workshop on Algo-
rithms and Data Structures (WADS’95), Lecture Notes in Computer Science, vol. 955, August
1995, pp. 206–217.

[4] Allan Borodin and Ran El-Yaniv,Online computation and competitive analysis, Cambridge
University Press, 1998.

[5] Esteban Feuerstein and Leen Stougie,On-line single server dial-a-ride problems, Manuscript,
submitted for publication, 1998.

[6] Amos Fiat and Gerhard J. Woeginger (eds.),Online algorithms: The state of the art, Lecture
Notes in Computer Science, vol. 1442, Springer, 1998.

[7] Greg N. Frederickson and D. J. Guan,Nonpreemptive ensemble motion planning on a tree,
Journal of Algorithms15 (1993), 29–60.

[8] Greg N. Frederickson, Matthew S. Hecht, and Chul Kim,Approximation algorithms for some
routing problems, SIAM Journal on Computing7 (1978), 178–193.

[9] Martin Grötschel, Dietrich Hauptmeier, Sven O. Krumke, and Jörg Rambau,Simulation studies
for the online dial-a-ride-problem, Preprint SC 99-09, Konrad-Zuse-Zentrum für Information-
stechnik Berlin, 1999.

[10] Dietrich Hauptmeier, Sven O. Krumke, Jörg Rambau, and Hans C. Wirth,Euler is standing in
line—dial-a-ride problems with fifo-precedence-contraints, Preprint SC 99-06, Konrad-Zuse-
Zentrum f̈ur Informationstechnik Berlin, 1999.

[11] Hans Kellerer, Thomas Tautenhahn, and Gerhard Woeginger,Approximability and nonapprox-
imabiblity results for minimizing total flow time on a single machine, Proceedings of the Sym-
posium on the Theory of Computing, 1996.

[12] Jǐrí Sgall, Online scheduling, Online Algorithms: The State of the Art (Amos Fiat and Ger-
hard J. Woeginger, eds.), Lecture Notes in Computer Science, vol. 1442, Springer, 1998.

[13] David B. Shmoys, Joel Wein, and David P. Williamson,Scheduling parallel machines on-line,
SIAM Journal on Computing24 (1995), no. 6, 1313–1331.

THE ONLINE DIAL-A-RIDE PROBLEM UNDER REASONABLE LOAD 13

{DIETRICH HAUPTMEIER, SVEN O. KRUMKE, JÖRG RAMBAU }, KONRAD-ZUSE-ZENTRUM

FÜR INFORMATIONSTECHNIK BERLIN, TAKUSTR. 7, 14195 BERLIN, GERMANY
E-mail address: {hauptmeier,krumke,rambau }@zib.de
URL: http://www.zib.de/ {hauptmeier,krumke,rambau }

