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Abstract

In molecular dynamics applications there is a growing interest in mixed
quantum-classical models. The quantum-classical Liouville equation (QCL)
describes most atoms of the molecular system under consideration by
means of a classical phase space density but an important, small portion
of the system by means of quantum mechanics. The QCL is derived from
the full quantum dynamical (QD) description by applying the Wigner
transform to the “classical part” of the system only. We discuss the con-
ditions under which the QCL model approximates the full QD evolution
of the system. First, analysis of the asymptotic properties of the Wigner
transform shows that solving the QCL yields a first order approximation
of full quantum dynamics. Second, we discuss the adiabatic limit of the
QCL. This discussion shows that the QCL solutions may be interpre-
tated as classical phase space densities, at least near the adiabatic limit.
Third, it is demonstrated that the QCL yields good approximations of
non-adiabatic quantum effects, especially near so-called avoided crossings
where most quantum-classical models fail.

1 Introduction

In molecular dynamics applications there is a growing interest in including quan-
tum dynamical effects into the description of large molecular systems. Unfor-
tunately, full quantum dynamical (QD) calculations for larger molecules are
beyond the scope of simulations, today and in the next decades. Thus, typical
molecular dynamics simulations describe the molecular motion by means of clas-
sical mechanics; quantum effects are considered only indirectly via parametriza-
tion of the force fields used [1]. In the mixed quantum-classical approach to this
problem, an important (and mostly small) portion of the system is in fact de-
scribed by the means of quantum mechanics while most atoms are still modelled
classically.

The most prominent quantum-classical model is the so-called time-dependent
Born-Oppenheimer model (BO), going back to the late 20’s [8]. In this model,
the quantally modelled subsystem is adiabatically coupled to the classical sub-
system, i.e., the classical motion does not change the populations of the quantal
energy levels of the molecule.1 The literature contains an extensive discussion

1That is, the populations are assumed to be adiabatic invariants as in the well-known
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concerning the conditions under which the BO model approximates the full QD
evolution. In the mathematical literature, this discussion is based on the fact
that, in many important situations, the Schrödinger equation governing the full
QD evolution,

iε ∂tΨ =
(
− ε2

2 Δq + H(q)
)
Ψ, (1)

is a singularly perturbed partial differential equation since ε is some small pa-
rameter that originates, e.g., from large mass differences between the particles
in the molecular system (cf. Sec. 2 below). G. Hagedorn and others have
demonstrated that —under certain “non-crossing”-conditions— the BO model
is the singular or adiabatic limit of full QD for ε → 0, see, e.g., [13, 27, 35, 41].
“Non-crossing”-conditions exclude so-called energy level crossings or intersec-
tions between the potential energy surfaces2 of the quantum subsystem.3

Thus, the BO model describes the adiabatic motion of the system. However,
it leads to entirely wrong descriptions whenever transitions between the energy
levels of the quantum system play an important role, i.e., when the molecular
dynamics is significantly non-adiabatic. Such non-adiabatic transitions may
be seen as resonance effects between the classical and quantum subsystems
and occur whenever the spectral gap between the energy levels of the quantal
subsystem becomes small enough in comparison to ε. The most important
reasons for such resonances are (a) energy level crossings (zero spectral gap)
and (b) so-called avoided crossings (small but non-vanishing spectral gaps; see
the example in Sec. 6).

The possible effects of energy level crossings on the limit dynamics of full QD
for ε→ 0 have been analyzed in detail by means of matched asymptotics [23,24].
Effects of avoided crossings have been studied by asymptotic techniques under
the assumption that the spectral gap is closing when ε tends to zero [25, 26].
These and other approaches [32] are modern rigorous contributions to more than
60 years of discussion of the well-known Landau-Zener formula [37,53,59] which
allows to compute the asymptotic effect of avoided crossings in various specific
situations.

Non-adiabatic deviations from adiabatic motion are not limited to the well-
known electronic transitions in electronic relaxation processes or reactive molec-
ular collisions. Other examples in realistic molecular systems are proton transfer
processes in solution [4, 6, 22, 28, 29, 52, 54, 55] or in the active site of a pro-
tein [2, 47], electron diffusion in molten salts [51], or photo-induced effects in
molecular systems [15, 36, 42, 48, 58]. In these examples the dynamics is only
“mildly” non-adiabatic typically, i.e., it can be described with decisive, but
rather “small” corrections to the adiabatic evolution. However, the mathemat-
ical results mentioned above do not suffice to describe most of these processes
in detail, mainly because of two reasons: they cover rather specific situations
only, and, as asymptotic results for ε → 0, they (in general) do not include all
“higher order effects” that are relevant contributions due to the positive value
of ε > 0 associated with the molecular system of interest.

adiabatic theorem of quantum mechanics [7, 17, 18, 34].
2The potential energy surfaces or energy levels are given by the q-dependent eigenvalues

of the (self-adjoint) Hamiltonian operator H(q) occurring in (1); see Sec. 2.
3More precisely, most types of crossings must be excluded; some specific types (e.g., codi-

mension 1 and non-transversal) do not effect the adiabatic motion [24].
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Since, in most cases, the available theoretical results are not sufficient to
describe molecular systems of real chemical interest correctly, a whole bunch of
quantum-classical methods have been introduced in order to allow the numer-
ical reproduction of the non-adiabatic corrections for ε > 0. Some prominent
methods have been discussed extensively, e.g., the so-called surface hopping
method [3, 30, 55, 56], mean-field models like QCMD and TDSCF [9, 10, 21, 50],
path integral oriented methods [12, 45, 46], or the semi-classical initial value
representation [43, 44]. For each single of these methods the literature contains
specific examples in which it reproduces the non-adiabatic effects correctly but
also examples in which it fails to do so, cf. Part III of [5].

Recently, Martens and others introduced a novel density-matrix descrip-
tions for the coupling between the quantum and classical subsystem based on
the so-called quantum-classical Liouville equation (QCL) [33, 40]. In addition,
Martens and coworkers also derived a deterministic particle method based on
the QCL and applied it to certain examples with avoided crossings [16]. Unfor-
tunately, these articles do not contain more than an intuitive derivation of the
QCL and its numerical realizations.

Thus, a variety of quantum-classical methods is available. However, rigorous
approximation results for these methods concerning non-adiabatic effects are
extremely rare. This is the case, mainly because the necessary “higher order”
corrections to the adiabatic limit are difficult to achieve, at least by means of
the typical techniques like WKB expansions or matched asymptotics.

Herein, it is proposed to gain higher order expansions by means of the
Wigner transform [57] and its asymptotic properties as studied by Gérard,

Markowich et al. in their remarkable article [20]. This will permit us to
analyze the non-adiabatic behavior of the QCL: we will not only present a “first
order” approximation result for different variants of the QCL (which can be
generalized to higher orders, see Sec. 4) but will also demonstrate that the
QCL allows to approximate non-adiabatic quantum effects near avoided cross-
ings (Sec. 6). In this approach, the QCL will result from a partial Wigner
transform [57] of the full Schrödinger equation of the system.

The present author expects that the primary importance of the QCL lies in
the fact that it allows the construction of quantum-classical particle methods,
either of deterministic character as in [16] or stochastic ones leading to surface-
hopping-like techniques as studied in [33]. Therefore, it is important whether
the QCL solution may be interpreted in terms of classical phase space densities.
We will be able to justify this by studying the adiabatic limit of the QCL and
exploiting the mathematical discussion concerning Wigner measures [19,38,39],
see Sec. 5.

2 Quantum Dynamical Description

To simplify the notation we restrict our study to the case of a system with
just two degrees of freedom x ∈ �m and q ∈ �d with significantly different
associated masses, m and M . We suppose that the mass ratio ε2 = m/M
is a small parameter. After an appropriate rescaling [27], the time-dependent
Schrödinger equation of this systems becomes

iε ∂tΨ =
(
− ε2

2 Δq + H(q)
)
Ψ. (2)
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H = H(q) is a q-parametrized, selfadjoint Hamiltonian in the coordinate x,
which in general is given by

H(q) = − 1
2Δx + V (x, q), (3)

where V = V (x, q) denotes the interaction potential of the system (cf. [27]).
The term −ε2Δq/2 denotes the kinetic energy operator in q-direction; in the
following, we will often use the short notation T = −ε2Δq/2.

In general, the state space associated with the operator H(q) for some fixed
position q is L2(�m ). Instead of working in L2(�m ), we restrict ourselves to
finite-dimensional Hilbert spaces (dimension N),4 making H an N ×N matrix.
In the chemical literature, H is typically directly given in this form, since the
chemical preparation of the model already includes the restriction to the sub-
space spanned by the interesting electronic states of the molecule. This is often
called the diabatic representation of molecular quantum dynamics. Typically,
the associated diabatic Hamiltonian H has real-valued entries Hkl(q) = Vkl(q)
that can be interpreted as interaction potentials between the electronic states
considered. Furthermore, the diabatic Hamiltonian normally does not depend
on ε. However, some specific situations require the Hamiltonian to be of the
more general form H(q) = H0(q) + εH1(q), see, e.g., [25, 26].

We assume that the matrix H inherits the self-adjointness of the original
Hamiltonian, i.e., that H(q) is some Hermitian matrix (H(q) = H(q)∗ for every
position q, with ∗ denoting the Hermitian transposition). We moreover always
suppose in the following thatH = H(q) is an arbitrarily smooth (matrix-valued)
function of q which is defined on the entire �d .

With H being a matrix, the solution Ψ : �d×� → �N , (q, t) �→ Ψ(q, t) of (2)
is vector-valued. This solution describes what we call the full QD evolution of
the system. Typically, a proper choice of the coordinate system allows to assume
that the initial wavefunction ΨI = Ψ(·, t = 0) is Gaussian in each component
or arbitrarily smooth and rapidly decreasing.

Adiabatic Basis Whenever we consider the so-called adiabatic basis in the
subsequent, let the following “non-crossing” assumption on the eigenspaces and
eigenenergies of the zero order partH0 of the q-parametrizedN×N Hamiltonian
H = H0 + εH1 be satisfied:

(A) For every q ∈ �d , H0(q) has N distinct eigenvalues Ek(q) such that the
ordering E1(q) < . . . < EN (q) does not depend on q.

This assumption guarantees that all eigenspaces of H0(q) are one-dimensional
and that the eigenvalues Ek = Ek(q) as well as the associated eigenfunctions
ek = ek(q) with

H0(q)ek(q) = Ek(q)ek(q), ‖ek(q)‖ = 1, ∀k = 1, . . . , N,

are smooth functions of q. This is a rather strong and thus convenient assump-
tion. It can be substantially weakened in nearly all situations of interest in the
following; we will give short comments on this question whenever appropriate.

4The reader may think of a finite dimensional subspace of the original state space. This
subspace may, e.g., be associated with a suitable discretization in space.
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In the chemical literature the orthonormal set {ek(q)} is often called the
adiabatic basis with respect to the Hamiltonian H = H(q). One often finds that
the solution Ψ = Ψ(q, t) of (2) is expanded in this adiabatic basis:

Ψ(q, t) =
N∑
k=1

Φk(q, t) ek(q). (4)

Inserting this into (2) results in the following equation of motion for the vector
Φ = (Φk) of expansion coefficients:

iε∂tΦ(q, t) = E(q)Φ(q, t) − ε2

2 ΔqΦ(q, t)

+ εV(q)Φ(q, t) + ε2

2 T (q)Φ(q, t) − ε2 C(q) ·DqΦ(q, t),
(5)

where the matrix-valued functions E, T , and V (the perturbing potential), and
the tensor-valued function C (the coupling tensor) are given by

E(q) = diag(Ek(q))

V(q) = (Vkl(q)) Vkl = 〈ek(q)|H1(q)el(q)〉
T (q) = (Tkl(q)) Tkl = 〈ek(q)|Δqel(q)〉
C(q) = (Cjkl(q)) Cjkl = 〈ek(q)|Dqj el(q)〉

with (C ·DqΦ)k =
∑
j,l C

j
klDqjΦl,

(6)

where 〈·|·〉 denotes the scalar product in L2(�d )N . The first two terms on the
RHS of (5) represent the evolution of the “wavefunction” Φk = Φk(q, t) on
the kth adiabatic energy surface, while the last three terms represent the non-
adiabatic couplings between these surfaces. The definition of the coupling tensor
C has the consequence that for all possible k, l, j:

Cjkl = 〈ek|Dqj el〉 = −i 〈ek, iDqjel〉

= −i
(
〈el|iDqjek〉∗

)
= −

(
Cjlk

)∗
, (7)

i.e., a specific antisymmetry which we shortly denote C∗ = −C in the following.
In the adiabatic basis, the typical initial condition often has the following

particularly simple form: All entries of Φ(·, t = 0) vanish excluding a single one,
Φk(q, t = 0), which is given by

Φk(q, t = 0) =
1

Aε
exp

(
− 1

4ε
(q − q0)

2 − i

ε
pT0 q

)
, (8)

with some normalization factor Aε such that
∫
|Φ0|2dq = 1 for all ε > 0, cf.

[27, 49].

3 The Wigner Transform

The typical approach to the reformation of a quantum dynamics in terms of
classical phase space densities uses the well-known Wigner transform [57]. For
the coordinate scalings used herein, this transform has to be defined as follows:
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Definition 3.1 The transformation wε defined via

wε(ψ, φ)(q, p) = (2π)−d
∫
Rd

ψ
(
q − ε

y

2

)
φ∗

(
q + ε

y

2

)
exp(ipT y) dy, (9)

for scalar functions ψ, φ : �d → � , is called the Wigner transform of ψ and φ.
For vector-valued arguments, e.g., for ψ, φ ∈ L2(�d )N , the Wigner matrix is
defined by

W ε(ψ, φ)(q, p) = (2π)−d
∫
Rd

ψ
(
q − ε

y

2

)
⊗ φ∗

(
q + ε

y

2

)
exp(ipT y) dy, (10)

where ⊗ defines the tensor product of vectors.

In the following, S ′ denotes the dual space to the space S of all rapidly
decreasing functions.5 The Wigner transform can be defined as a bilinear map-
ping from S ′(�d) × S ′(�d ) to S ′(�d × �d ) (in the scalar case) and also as a
mapping from S(�d ) × S(�d) to S(�d × �d ). For the cases considered herein,
the following property will be of importance: If ψ and φ lie in some bounded
subset of L2(�d ), then (the family) wε(ψ, ψ) lies in some bounded subset of
S ′(�d ) (Prop. 1.1 in [20]).

It is an immediate consequence of the definition that for scalar ψ, φ:

wε(ψ, φ) = wε(φ, ψ)∗. (11)

Thus, the Wigner transform wε(ψ, ψ) of ψ is real-valued.
The Wigner transform is of particular importance since it allows to reformu-

late quantum dynamical expectation values in terms of their classical counter-
parts. To understand this, let us first consider the position densities associated
with the full quantum dynamical description and its Wigner transform:

3.1 Position Densities and Wigner Measures

Due to the typical interpretation of quantum mechanics, the wavefunction ψ =
ψ(q, t) corresponds to the position density |ψ(q, t)|2, that is, the probability
density for finding the corresponding quantum system in position q. One of the
basic properties of the Wigner transform is that, for smooth functions ψ and φ:∫

�d

wε(ψ, φ)(q, p) dp = ψ(q)φ(q)∗. (12)

Thus, the position density associated with the wavefunction ψ = ψ(q) can al-
ternatively be expressed by

∫
wε(ψ, ψ)dp with the immediate consequence that∫

�d

∫
�d

wε(ψ, ψ)(q, p) dqdp =

∫
�d

|ψ(q)|2dq.

The last formulae seem to state that wε(ψ, ψ) might be nonnegative. However,
wε(ψ, ψ) can have negative values and only its Huisimi transform (the convolu-
tion with two narrow Gaussians in the position and momentum space, see [39])
is a pointwise nonnegative function. Despite this, wε(ψ, ψ) is often interpreted
as a probability density in phase space. Under certain conditions this is justified,
at least in the limit ε→ 0:

5We will use the notations S and S′ with respect to functions living on different definition
domains; if not explicitly stated the exact meaning should be clear from the context.
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Proposition 3.2 ( [19] and [20], Prop. 1.3) Let (ψε) be some bounded family in
L2(�d )N of vector-valued functions. Let W 0 be the limit of the Wigner matrices
W ε(ψεk , ψεk) of some subsequence (ψεk). Then, W0 is a nonnegative matrix-
valued measure,6 called the Wigner measure.

3.2 Weyl Operators and Expectation Values

Let Dq denote the derivative with respect to q and let us now consider some
pseudo-differential operator A(q, εDq) related to the symbol A = A(q, p) ∈
S ′(�d × �d ) and defined via

(A(q, εDq)u)(q) =
1

(2π)d

∫
�d

∫
�d

A(q, εξ)u(ξ) exp(i(q − y)T ξ) dξ dy, (13)

for u ∈ S(�d ). One can easily generalize this definition for matrix-valued sym-
bols; as a simple example for matrix-valued pseudo-differential operators, con-
sider the Hamiltonian

H(q, εDq) = − ε
2

2
Δq + H(q)

associated with the full Schrödinger equation (2) from Sec. 2. The corresponding
matrix-valued symbol is H(q, p) = |p|2/2 +H(q).

TheWeyl operator associated with the pseudo-differential operatorA(q, εDq)
is defined via

(AW (q, εDq)u)(q) =
1

(2π)d

∫
�d

∫
�d

A

(
q + y

2
, εξ

)
u(ξ) ei(q−y)

T ξ dξ dy. (14)

Whenever A is a sum of two expressions that depend on q and on p only,
respectively, we find

A(q, p) = a(q) + b(p) ⇒ AW (q, εDq) = A(q, εDq).

For other observables, the Weyl operator and the corresponding pseudo-differential
operator are different. However, even in these cases one can often evaluate the
symbol A associated with some given Weyl operator AW (or find an asymptotic
expansion in terms of ε; cf. Appendix A).

Let now 〈·, ·〉 denote the duality bracket between S ′ and S. A quantum
observable is a self-adjoint Weyl-operator with associated symbol A ∈ S ′. The
quantal expectation value of the observableAW (·, εDq) with respect to the quan-
tum state ψ ∈ S is given by

〈AW (·, εDq)〉ψ = 〈ψ|AW (·, εDq)ψ〉,

while the expectation value of the associated classical observable A with respect
to the Wigner transform wε(ψ, ψ) of ψ can be written as

[A]wε(ψ) = 〈wε(ψ, ψ), A〉 =

∫
�d

∫
�d

A(q, p)wε(ψ, ψ)(q, p) dq dp.

6That is, for any z ∈ �N , we have z∗W 0z ≥ 0.
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Consequently, the general identity

〈ψ|AWφ〉 = 〈wε(ψ, φ), A〉, for ψ, φ ∈ S, A ∈ S ′ or ψ, φ ∈ S ′, A ∈ S, (15)

guarantees that [A]wε(ψ) = 〈AW 〉ψ, i.e., we can compute quantal expectation
values via classical expectation values of the Wigner transform. This relation is
particularly simple whenever A is the sum of some function of q only and some
function of p only:

A(q, p) = a(q) + b(p) ⇒ 〈A(·, εDq)〉ψ = [A]wε(ψ). (16)

For matrix-valued operators, the expectation values are defined via the cor-
responding traces, i.e., if Ψ = Ψ(q) is some vector-valued wavefunction and
AW (q, εDq) some (self-adjoint) matrix-valued Weyl operator, the expectation
value is given by

〈AW 〉Ψ =

∫
tr
{
AW (·, εDq)Ψ⊗Ψ∗} dq.

If A = A(q, p) is the associated matrix-valued symbol, we have the identity∫
tr
{
AW (·, εDq)Ψ⊗Ψ∗} dq =

∫
�d

∫
�d

tr {AW ε(Ψ,Ψ)} dq dp. (17)

3.3 Asymptotic Properties

In the sequel we will be interested in studying the asymptotic expansion of
the action of some pseudo-differential operator under the Wigner transform.
Therefore, we will frequently make use of the following

Assumption 3.3 Suppose that A is smooth matrix-valued symbol, i.e., A ∈
C∞(�d×�

d)n×n such that, for someM ≥ 0 and every multi-index α ∈ �
d×�

d ,

|Dα
(q,p)A(q, p)| ≤ Cα(1 + |p|)M ,

componentwise.

For symbols satisfying this assumption the following asymptotic expansion
is valid:

Lemma 3.4 ( [20], Prop. 1.4) Let {·, ·} denote the classical Poisson bracket,7

and suppose that the matrix-valued symbol B satisfies Assumption 3.3. Then,
for vector-valued ψ, φ lying in some bounded subset of L2(�d)N we have

W ε(BW (·, εDq)ψ, φ) = BW ε(ψ, φ) + ε
2i {B,W ε(ψ, φ)} + ε2Rε

W ε(ψ,BW (·, εDq)φ) = W ε(ψ, φ)B∗ + ε
2i {W ε(ψ, φ),B∗}+ ε2Qε

(18)

with Rε, Qε being bounded in S ′.

Lemma 3.4 will be our main working tool. The reader might notice that the
results of [31], Sec. 18.5, allow to calculate the next terms in the expansions,
too.

7That is, for smooth functions ψ = ψ(q, p) and φ = φ(q, p) write {ψ, φ} = Dpψ(q, p) ·
Dqφ(q, p)−Dqψ(q, p) ·Dpφ(q, p). For matrix-valued arguments, the order is relevant.
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Remark 3.5 Closer inspection of the proof in [20] reveals that the action of Rε
(and of Qε respectively) is more precisely characterized by the following: there
is some family {rε} ⊂ S, being bounded in S, such that the reminder Rε in (18)
satisfies

〈Rε, A〉 = 〈AW rWε ψ|φ〉 (19)

for any matrix-valued symbol A ∈ S.

The symbol T (p) = |p|2/2 associated to the kinetic energy operator T =
−ε2Δq/2 satisfies Ass. 3.3, such that, due to Lemma 3.4, the action of T under
the Wigner transform is given by

W ε(T ψ, ψ) =
1

2
p2W ε(ψ, ψ) +

ε

2i
p ·DqW

ε(ψ, ψ) +O(ε2).

But straightforward computations reveal that exactly

W ε (T ψ, ψ) − W ε (ψ, T ψ) = −iε p ·DqW
ε(ψ, ψ), (20)

i.e., that the above O(ε2)-error term vanishes for this specific difference.

4 Quantum-Classical Liouville Equation

We will consider q to be the “classical” coordinate and x to have significant
“quantum” nature. Thus, we are interested in some description of the system in
which the distribution in q is modelled by a kind of classical phase space density
while the other degree of freedom is modelled quantally, i.e., in our formulation
by some vector-valued wave-“function” Ψ or the corresponding density matrix
Ψ⊗Ψ∗.

4.1 Partial Wigner Transform

To this end, we will apply the Wigner transform to the vector-valued solution
Ψε = Ψε(q, t) of (2).8 In contrast to the typical application of Wigner transforms
in quantum theory, we apply the Wigner transform to the q-coordinate only,
leaving the “quantum nature” in the other degree of freedom untouched: This
leads to the Wigner matrix

Wε(q, p, t) = W ε(Ψε(·, t),Ψε(·, t))(q, p). (21)

Because of (11), this Wigner matrix Wε is a Hermitian matrix.
In order to determine the equation of motion governing Wε, we have to

introduce the formal notation

K±
ε (q, p) = (2π)−d

∫
Rd

exp(ipT y)H(q ± εy/2) dy,

denoting some operator for which the convolution with matrix-valued functions
ρ = ρ(q, p) is defined by

(
K±
ε ∗ ρ

)
(q, p, t) =

∫
�d

K±
ε (q, p− η) ρ(q, η, t) dη.

8The super-index is often used to indicate that we are concerned with a family of solutions
depending on the parameter ε.
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Using this notation, simple explicit computations reveal that the evolution of
the Wigner density matrix ρε defined by (21) is given by the following Wigner
equation

∂tWε = −p ·DqWε − i

ε

(
K−
ε ∗Wε − Wε ∗K+

ε

)
, (22)

with initial values given by the Wigner density matrix Wε
I =W ε(ΨεI ,Ψ

ε
I) asso-

ciated with the initial wavefunction ΨεI .
Obviously, we can repeat the same procedure for the adiabatic representation

(5) of QD, that is, we can also consider the adiabatic density matrix Wad,ε, i.e.,
the partial Wigner transform of the solution Φε of (5):

Wad,ε(q, p, t) = W ε(Φε(·, t),Φε(·, t))(q, p)
= 1

(2π)d

∫
Rd Φ

ε
(
q − ε y2

)
⊗ Φε∗

(
q + ε y2

)
exp(ipT y) dy.

(23)

Since the adiabatic basis ek = ek(q) depends on q, it is, at least at first
glance, not clear which is the relation between the two Wigner density matrices
Wε and Wad,ε. But application of Lemma 3.4 yields the following:

Corollary 4.1 Suppose that the family {Ψε} of solutions of (2) lies in some
bounded subset of L2(�d )N . Then, the two families of Wigner matrices Wε =
W ε(Ψε,Ψε) and Wad,ε =W ε(Φε,Φε) are related via

Wε =

N∑
k,l=1

(
Wad,ε
kl +

iε

2
([C,DpWad,ε]+)kl

)
ek ⊗ e∗l + ε2Rε, (24)

where Rε is bounded in S ′, and [C,DpWad,ε]+ =
∑
j [C

j , DpjWad,ε]+.

Proof: By applying Lemma 3.4 to (4), we find the following:

Wε =

N∑
k,l=1

W ε(Φεkek,Φ
ε
lel)

=

N∑
k,l=1

(
ek ⊗W ε(Φεk,Φ

ε
lel) − ε

2i
Dqek ⊗DpW

ε(Φεk,Φ
ε
lel)

)
+ ε2Rε

=

N∑
k,l=1

(
Wad,ε
kl ek ⊗ e∗l − ε

2i
DpWad,ε

kl ·Dqek ⊗ e∗l

+
ε

2i
DpWad,ε

kl ek ⊗Dqe
∗
l

)
+ ε2Rε,

where Rε is bounded in S ′. Moreover, we have (using the notation introduced
above)

DpWad,ε ·Dqek =

d∑
n=1

DpnWad,ε
N∑
j=1

〈ej |Dqnek〉 ej = DpWad,ε ·
N∑
j=1

Cjk ej .

Inserted above, this yields (together with C = −C∗):

Wε =
N∑

k,l=1

Wad,ε
kl ek ⊗ e∗l

− ε
2i

N∑
k,l,j=1

(
Ckj ·DpWad,ε

jl + Cjl ·DpWad,ε
kj

)
ek ⊗ e∗l + ε2Rε

10



from which the assertion follows.

4.2 First Order Approximations

We now want to find asymptotic expansions of the equations of motion governing
Wε and Wad,ε. In order to handle the two representations of QD (equations (2)
and (5)) simultaneously, we consider the following general Schrödinger equation

iε∂tΨ
ε = − ε

2

2
ΔqΨ

ε + Eε(q)Ψε − ε C(q) · (εDq)Ψ
ε, (25)

where Eε(q) =
∑2

j=0 ε
jEj(q) is Hermitian matrix-valued and C = C(q) may be

some smoothly q-dependent, real-valued tensor as C in (5), which satisfies the
antisymmetry relation C∗ = −C in the sense of (7). Thus, E0 = H0, E1 = H1,
E2 = 0, and C = 0 lead to (2), while E0 = E, E1 = V , E2 = T/2, and C �= 0
yield (5).

Let us denote the operator on the RHS of (25) by the Weyl operator

HW (q, εDq) = − ε2

2
Δq + Eε − ε C · (εDq)︸ ︷︷ ︸

=BW (q,εDq)

. (26)

Since HW and BW are no longer simple sums of terms depending on q or εDq

only, it is not automatically clear which symbols are associated with them. But
due to the results presented in Appendix A, the symbols can be computed and
are given by

H(q, p) =
1

2
|p|2 + Eε(q) − iε C(q) · p +

ε2

2
Dq · C(q)︸ ︷︷ ︸

=B(q,p)

, (27)

where Dq · C is matrix-valued with entries (Dq · C)kl =
∑
j DqjC

j
kl.

We will have to make the following technical assumptions on the general
Hamiltonian HW :

(B1) HW is essentially self-adjoint on L2(�d )N .

(B2) Its symbol H satisfies Assumption 3.3 (uniformly for all 0 < ε < ε0).
9

These assumption are valid for a rather wide range of interaction potentials
defining the original quantum HamiltonianH . They allow to prove the following

Theorem 4.2 Let Ψε = Ψε(q, t) be the solution of (25) with (uniformly) nor-
malized initial conditions Ψε(t = 0).10 Moreover, let Wε = W ε(Ψε,Ψε) de-
note the corresponding partial Wigner transform. Then, the evolution of Wε =

9Due to (27) this implies that H ∈ S2(�d × �d) uniformly with the consequence that the
Sobolev space H2(�d) is in the domain of HW .

10That is, for all values of ε, the family of initial conditions is lying on the unit sphere in
L2(�d)N , cf. (8).
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Wε(q, p, t) is governed by the following equation of motion:

∂tWε(q, p, t) = − i
ε [E0(q) + εE1(q)− iεp · C(q) , Wε(q, p, t)]−

−p ·DqWε(q, p, t) + 1
2 [DqE0(q), DpWε(q, p, t)]+

+εRε,

(28)

where the family of functions Rε = Rε(q, p, t) is uniformly (in ε and t) bounded in
S ′ and [·, ·]± denotes the usual commutator and anti-commutator, i.e., [A,B]± =
AB ±BA for two square matrices A,B.

Additionally, we exactly have Rε ≡ 0 whenever E1 = E2 ≡ 0, C ≡ 0, and E0
is linear in q componentwise.

Proof: Differentiation of the definition of Wε yields

iε∂tWε = W ε (iε∂tΨ
ε,Ψε) − W ε (Ψε, iε∂tΨ

ε) . (29)

Inserting the equation of motion (25) governing Ψε, each of the two terms on
the RHS of (29) can be handled by applying Lemma 3.4:11

W ε (iε∂tΨ
ε,Ψε) = W ε

(
− ε

2

2
ΔqΨ

ε,Ψε
)

+ W ε
(
BWΨε,Ψε

)

= W ε

(
− ε

2

2
ΔqΨ

ε,Ψε
)

+ BWε +
ε

2i
{B,Wε}+ ε2R̃ε,

where R̃ε is bounded in S ′. Inserting this together with equation (20) into (29),
we find

iε∂tWε = −iε p ·DqWε + (BWε −WεB∗) +
ε

2i
({B,Wε} − {Wε,B∗}) + ε2R̄ε,

where R̄ε is again bounded in S ′. Using the explicit representation (27) of the
symbol B and the antisymmetry of C, we easily compute that

BWε −WεB∗ = [E0 + εE1,Wε]− − iε [p · C,Wε]− + ε2r1,ε

{B,Wε} − {Wε,B∗} = −DqE0 ·DpWε −DpWε ·DqE0 + εr2,ε,

where again r1,ε and r2,ε are bounded in S ′. Putting all this together, we end
up with

∂tWε = −p ·DqWε − i

ε
[E0 + εE1,Wε]− − [p · C,Wε]−

+
1

2
[DqE0, DpWε]+ + ε2Rε,

where Rε = R̄ε + r1,ε + r2,ε is bounded in S ′.
Explicit calculations concerning the error terms associated with B show that

Rε ≡ 0 whenever E1 = E2 ≡ 0, C ≡ 0, and the second derivative of E0 vanishes,
i.e., if E0 is linear in q componentwise.

We are now interested in studying the properties of the solution of (28) with
the reminder Rε set to zero.

11Assumption (A1) implies that the evolution of (25) is unitary, so that ‖Ψε(t)‖2 = ‖Ψε(t =
0)‖2 in L2(�d)N . Thus, Lemma 3.4 can be applied since Ψε = Ψε(t) lies in some bounded
subset of L2(�d)N .
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Definition 4.3 Let the assumption of Thm. 4.2 be valid and ε > 0. The
equation

∂tρ
ε(q, p, t) = − i

ε [E0(q) + εE1(q)− iεp · C(q) , ρε(q, p, t)]−
−p ·Dqρ

ε(q, p, t) + 1
2 [DqE0(q), Dpρ

ε(q, p, t)]+ ,
(30)

with initial conditions ρε(t = 0) =W ε(ΨεI ,Ψ
ε
I) given by the initial conditions

Ψε(t = 0) = ΨεI of the Schrödinger equation (25), is called the quantum-
classical Liouville equation (QCL); we refer to its solution ρε = ρε(q, p, t) as to
the QCL solution. We sometimes express the QCL in the form iε∂tρ

ε = Lερε;
the operator Lε being defined via the RHS of (30) is called the QCL operator.

Remark 4.4 The special case Rε ≡ 0 for E1 = E2 ≡ 0, C ≡ 0, and linear E0,
shows that the QCL reproduces the well-known Landau-Zener formula for the
nonadiabatic redistribution of populations in a two-state quantum system which
passes through an avoided crossing. This can be seen as follows: According to its
original derivation by Zener [59], this formula holds, if E1 = E2 ≡ 0, C ≡ 0 and
(a) the transition zone of the avoided crossing is small, (b) H0 is componentwise
linear in this transition zone, and (c) the off-diagonal entries of H0 are small
enough compared to the kinetic energy of the system. Thus, the fact that the
QCL is identical to the Wigner equation for E1 = E2 ≡ 0, C ≡ 0, and linear
E0 = H0, demonstrates that the QCL embodies the full QD effects in exactly
the case satisfying the conditions for Zener’s derivation. Obviously, this is
not a rigorous mathematical statement, but its rigorous justification is a severe
problem (see [25, 26]) and not the aim of this article.

Expectation Values Next, the question will be addressed to which accuracy
the QCL solution allows to compute the expectation value of an observable
associated with some matrix-valued symbol A. Therefore, one should remember
that the expectation value of an observable A ∈ S(�d×�

d) with respect to some
density matrix ρ ∈ S ′ is given by

〈ρ,A〉 =

∫
�d

∫
�d

tr(ρA∗) dp dq.

We will show that the expectation values 〈ρε, A〉 computed due to the QCL
solution ρε are O(ε)-approximations of the expectation values 〈W ε(Ψε,Ψε), A〉
computed due to the Wigner transform of the full QD solution Ψε.

For any fixed ε, the QCL operator Lε generates the semigroup Uε(t), i.e.,
the QCL solution can be written as ρε(t) = Uε(t)ρε(0). Due to the assumptions
on the Hamiltonian HW above, the semigroup Uε(t) maps S to S, and S ′ to S ′.
The special properties of the Ek and of C imply that, for every ε > 0,

〈Uε(t)ρ,A〉 = 〈ρ,AUε(−t)〉, for all A ∈ S, ρ ∈ S ′. (31)

This insight leads to the following

Theorem 4.5 Suppose that the assumptions of Thm. 4.2 are valid and that a
finite time span [0, T ] of interest is given. Let the solutions of the Schrödinger
equation (25) be denoted by Ψε and the solution of the QCL (30) by ρε. Then,
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for any observable A ∈ S(�d × �d ) there exists some constant C such that for
all ε > 0 and for all t ∈ [0, T ]:

|〈W ε(Ψε,Ψε), A〉 − 〈ρε, A〉| < C ε. (32)

Proof: Due to (28) and Thm. 4.2, we can express the Wigner matrices of the
QD solutions Ψε in the form

W ε(Ψε,Ψε)(t) = ρε(t) − i ε

t∫
0

Uε(t− s)Rε(s) ds,

which (together with (31)) yields

〈W ε(Ψε,Ψε), A〉 − 〈ρε, A〉 = −i ε
t∫

0

〈Rε(s), AUε(s− t)〉.

which implies the assertion since Rε is bounded in S ′.12

As a consequence of this theorem and equation (15), the QCL solution ρε al-
lows to compute the quantal expectation values with respect to the QD solutions
Ψε = Ψε(q, t) due to∫

�d

tr
{
AWΨε ⊗ (Ψε)∗

}
dp dq = 〈ρε, A〉 + O(ε)

for all quantum observables AW given by symbols A ∈ S(�d × �d ).

Remark 4.6 We have to accept the restriction to observables induced by sym-
bols from S, since we decided to consider the Wigner matrices as distributions
from S ′. The main reason for this decision lies in the fact that, in the limit
ε → 0, typical initial conditions like (8) lead to δ-like Wigner matrices. When-
ever one can guarantee that W ε(Ψε,Ψε) remains in some bounded subset of S,
one may allow for observables associated to polynomially growing symbols. But
even the restriction to S is no serious limitation: For Hamiltonians satisfying
Assumptions (B1) and (B2), initial conditions like (8), and finite time intervals,
the QD solution remains to be exponentially small outside of some sufficiently
large compact subset K of the position space �d . Thus, we may neglect the
exponentially small error introduced by replacing an observable associated to
some symbol A ∈ C∞ by the observable associated to the symbol ϕ · A ∈ S,
where ϕ is some smooth, compactly supported function with ϕ|K ≡ 1.

4.3 QCL in Diabatic and Adiabatic Basis

Suppose that the diabatic Hamiltonian H(q) = H0(q) + εH1(q) satisfies the
assumptions (A1) and (A2). Then, the diabatic QCL reads

∂tρ(q, p, t) = − i
ε [H(q), ρ(q, p, t)]−

−p ·Dqρ(q, p, t) + 1
2 [DqH0(q), Dpρ(q, p, t)]+ .

(33)

12In the proof of Thm. 4.2, the reminder Rε resulted from applications of Lemma 3.4. Thus,
the terms 〈Rε, AUε〉 can be expressed as in (19) in Rmk. 3.5. This implies the required uniform
bound since the L2-norm of Ψε is independent of t and ε and the (AUε)W and rWε resulting
from the application of (19) are bounded in the operator norm in L2 uniformly in ε (cf. [31],
Lemma 18.6.1).
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Remark 4.7 The reader might notice that, for the diabatic QCL, the state-
ments of Thms. 4.2 and 4.5 are valid even if energy level crossings or not ex-
cluded.

Analogously, if the adiabatic Hamiltonian E(q)+ ε(V(q)−C · (εDq)) satisfies
the assumptions (A1) and (A2), the equation

∂tρ
ad,ε(q, p, t) = − i

ε [E(q) + ε (V(q)− ip · C(q)) , ρad,ε(q, p, t)]−
− p ·Dqρ

ad,ε(q, p, t) + 1
2 [DqE(q), Dpρ

ad,ε(q, p, t)]+ .
(34)

is called the adiabatic QCL.

Total Energy The total energy observable associated with the Wigner trans-
form W ε(Ψε,Ψε) of the diabatic QD solution Ψε is given by

Hdia(q, p) =
1

2
|p|2 + H(q).

The associated expectation value is conserved along the evolution, i.e.,∫
tr (HdiaW ε(Ψε,Ψε)) dp dq = const.

The solution ρ of (33) also conserves this magnitude, but only if H = H0.
Due to (27), the total energy observable associated with the exact Wigner

transform W ε(Φε,Φε) of the QD solution Φε in adiabatic basis is given by

Had(q, p) =
1

2
|p|2 + E(q) + ε (V(q)− iε C(q) · p) +

ε2

2
Dq · C(q),

with the property that∫
tr {HadW ε(Φε,Φε)} dp dq = const.

This total energy expectation value is not conserved along the evolution of
the adiabatic QCL (in contrast to the observations for the diabatic QCL); the
associated expectation value

∫
tr {Had ρad,ε} dp dq is conserved up to order O(ε)

only.

Energy Level Populations In order to discuss nonadiabatic effects we have
to introduce the notion of “energy level populations” for the different types of
description. To this end, let Pj = Pj(q) denote the orthonormal projection
onto energy level j, which (under the assumptions of Sec. 2) is given by Pj =
ej(q)⊗ ej(q)

∗. In the full QD and Wigner description the population of level j
is defined by

θεj(t) =

∫
|〈ej(q)|Ψε(q, t)〉|2dq =

∫
tr (Pj(q)W ε(Ψε,Ψε)(q, p, t)) dqdp. (35)

The analogous definitions for the adiabatic and diabatic representations are

θdia

j (t) =

∫
tr {Pj(q) ρ(q, p, t)} dqdp, (36)

θad

j (t) =

∫
ρad,ε

jj (q, p, t) dqdp. (37)

The relation between the θad

j and the full QD populations
∫
|Φj |2 dq is discussed

in Sec. 5 and illustrated in Sec. 6.
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5 Adiabatic Limit of the QCL

For the sake of simplicity we directly use the adiabatic basis to discuss the adi-
abatic limit of the QCL. To this end, we turn back to the Schrödinger equation
(5) in this basis: Let Φε denote the family of solutions, and H = H(q, p) the
matrix-valued symbol of the associated Hamiltonian HW (given by (26) with
E0 = E, E1 = V , E2 = T , and C �= 0) which is again supposed to satisfy
assumptions (B1) and (B2) given on page 11.

The eigenvalues of the zero order part E0 = E of the Hamiltonian are exactly
the eigenenergies Ek = Ek(q), k = 1, . . . , N , which are supposed to satisfy
Assumption (A) on page 4. The corresponding eigenvectors are the unit vectors
uk, k = 1, . . . , N , of the coordinate directions (with entries uk,j = δkj where δ
denotes the Kronecker symbol).

Finally, let the family of initial conditions ΦεI = Φε(·, t = 0) be bounded in
L2(�d )N and suppose that ρ0I is the unique Wigner measure of the family (ΦεI)
(cf. Prop. 3.2) and that it satisfies

tr ρ0I
(
�
d × �

d
)
= lim sup

ε→0

∫
�d

|ΦεI |2dq. (38)

This condition allows a trivial physical interpretation and is satisfied for initial
conditions like (8) that are typical for applications in physical chemistry.13

Under these conditions, the following theorem holds:

Theorem 5.1 The solutions ρ0,k = ρ0,k(q, p, t) of the classical Liouville equa-
tions

∂tρ
0,k = − p ·Dqρ

0,k + DqEk ·Dpρ
0,k (39)

with initial conditions given by the diagonal entries of ρ0I , i.e., by ρ0,k(0) =
ρ0I,kk, are continuously t-dependent positive measures on �d × �d . The family
of Wigner matrices Wε = Wε(q, p, t) associated with the family of solutions
Φε, and the family of solutions ρad,ε of the adiabatic QCL (34), both, converge
weak-∗ in L∞(�,S ′ ) to the (diagonal) matrix-valued measure

ρ0 =

N∑
k=1

ρ0,k uk ⊗ uTk , (40)

and the corresponding position densities Φε⊗(Φε)∗ converge in L∞(�,S ′ ) weak-
∗ to

∫
�d ρ

0(·, dp, ·). Furthermore, the diagonal entries of the Wigner matrices
Wε and the diagonal entries of the solution ρad,ε of the adiabatic QCL converge
locally uniformly with respect to t:

Wε
kk → ρ0,k and ρad,ε

kk → ρ0,k. (41)

Proof: The asserted weak-∗ convergences are corollaries to Thm. 6.1 in [20]
(the additional correction on the RHS of the limit equation (6.10) in [20] van-
ishes in our special case). The assertion concerning the uniform convergence

13It can be checked without explicit reference to the Wigner matrix ρ0I : Sec. 1 in [20]
contains equivalent conditions in the form of direct conditions on the decay of Φε

I and its
Fourier transform.
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follows along the same line of argument as in [10,11,20], since the diagonal en-
tries of [E, ρ]− = [E0, ρ]− vanish so that the time derivatives ∂tWε

kk and ∂tρ
ad,ε

kk

of the diagonal entries are bounded in L∞(�,S ′ (�d × �
d )).

Theorem 5.1 demonstrates, that the highly oscillatory parts in the adia-
batic QCL (34) (i.e., the first term on its RHS) do not contribute to the limit
dynamics, but embody oscillatory corrections to the adiabatic behavior.

The scalar functions ρ0,k = ρ0,k(q, p, t) are classical phase space distributions
that are transported along the energy surfaces Ek = Ek(q) according to the
classical Liouville equation (39). Thus, the total mass θ0k =

∫
ρ0,k(dq, dp, ·) of

each ρ0,k is conserved — it is nothing but the population of the corresponding
energy level. Thus, along the limit solution, the populations are constant. In
addition, the uniform convergence stated in (41) guarantees that the family of
energy level populations given by the QCL solution ρad,ε converges uniformly to
these constants:

θad

j (t) =

∫
ρad,ε

kk (q, p, t) dp dq → θ0k, for ε→ 0.

Thus, the QCL populations come out to be adiabatic invariants, i.e., they con-
verge to constants in the adiabatic limit, exactly as in the alternative approaches
to the adiabatic limit of QD [10, 11, 13, 27, 41]. As a consequence, the relation
between the QCL populations θad

j and the populations θεj =
∫
|Φεj |2 dq in full

QD comes out to be of the form

θad

j = θεj + o(1). (42)

Remark 5.2 Concerning the spectrum of the zero order part of the Hamilto-
nian, weaker assumptions than the “non-crossing”-assumption A are possible
(cf. [20], Sec. 6).

Remarks 5.3 1. The application of the general Thm. 6.1 in [20] to the
diabatic QCL yields the analogous adiabatic limit. To achieve this, some
assumption excluding energy level crossings as, e.g., Assumption A is re-
quired.

2. In the diabatic case, the diagonal entries of the Wigner matrices do not
converge uniformly as in the adiabatic case. Consider, e.g., the q-indepen-
dent Hamiltonian

H(q) =

(
1 1
1 1

)
with eigenvalues E1 = 0 and E2 = 2.

Then, the diagonal entries of the diabatic QCL solution for initial condi-
tions ρI are given by

ρ11(q, p, t) =
1

2
(1 + cos

2it

ε
)ρI,11(q − pt, p)

+
1

2
(1 − cos

2it

ε
)ρI,22(q − pt, p)

ρ22(q, p, t) =
1

2
(1− cos

2it

ε
)ρI,11(q − pt, p)

+
1

2
(1 + cos

2it

ε
)ρI,22(q − pt, p),
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with (only) weak-∗ convergence in both cases.

6 Nonadiabatic Effects

Up to now we only discussed the adiabatic limit behavior and the asymptotic
approximation properties of the different versions of the QCL. We observed that
the QCL may allow to reproduce Landau-Zener-like redistributions of popula-
tions in full QD (see Rmk. 4.4). However, the question remains to which extent
and with which precision the reproduction of nonadiabatic effects in QD may
be possible whenever the parameter ε is small but not arbitrarily small. In
this section we will compare the nonadiabatic effects in the QCL and the QD
solutions of a generic example.

6.1 An Avoided Crossing Example

In the subsequent, let us consider the particularly simple test case where the
quantum subsystem can be described as a two state system and the classical
subsystem is one-dimensional. Thus, q ∈ �1 and the full Schödinger equation
has the form:

iε Ψ̇ =
(
− ε2

2 Δq + H(q)
)
Ψ, (43)

with H = H(q) denoting the 2× 2 hermitian matrix:

H(q) =

(
V1(q) c
c V2(q)

)
.

The wavefunction Ψ ∈ L2(�)×L2(�) consists of two components Ψ = (Ψ1,Ψ2)
T ,

each of which a function in q and t.
Herein, we choose the potentials to be V1(q) = q2 and V2(q) = 1/|q|. The

interpretation is as follows: V1 describes a harmonic bond, V2 a repulsive poten-
tial, and c a weak coupling between these two (electronic) configurations. We
choose ε = 0.01 which is a suitable scaling for electrons. In the following we set
c = 0.1. For the choices made, Fig. 1 shows the energy eigenvalues E1 = E1(q)
and E2 = E2(q) < E1(q) of H(q) and the corresponding off-diagonal entry C12

of the coupling tensor C. Notice that there is some “transition zone” around
q = 1 where the gap between the two energy levels is minimal and the coupling
tensor entry significantly large.

We are interested in the following initial condition: Let e1 = e1(q) be the
eigenvector to E1, q0 = 0.4 and p0 = 1. Then the initial wavefunction is centered
at q0 with momentum expectation p0 and the energy level E1 is occupied only,
i.e.,

Ψ(q, t = 0) = 1
A exp

(
− 1

4ε(q − q0)
2 − i

εp
T
0 q

)
· e1(q). (44)

Figure 2 illustrates the full quantum dynamical solution of (43) for the initial
condition given. We observe that the centers of the two components Ψ1 and
Ψ2 of the wavefunction diverge when crossing the transition zone. The motion
of each of these two centers is governed by the Born-Oppenheimer solutions on
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Figure 1: (a) Potentials V1 and V2 (solid lines) and energy levels E1 and E2 (dashed lines)
versus q. (b) Non-Adiabatic coupling matrix element C12 versus q

the corresponding14 energy levels E1 and E2 (cf. Fig. 2). We can conclude
that the non-adiabatic effect of the transition zone induces some significant
population of the initially unoccupied energy level whereas the motion outside
of the transition zone is governed by classical dynamics on the energy levels and
induces the observed divergence.
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Figure 2: Avoided Crossing Example: Evolution of the full QD wavepacket in q and t for
parameter ε = 0.01. Absolute value of (a) Ψ1 and (b) Ψ2

6.2 Deterministic Integrator for the Adiabatic QCL

In the subsequent, a deterministic integrator for the adiabatic QCL will be
constructed based on some finite-difference-like spatial discretization of the cor-
responding phase space and on a Trotter-splitting in time. This methods is
introduced only to compute a reliable, highly accurate numerical solution of the

14Away from the transition zone, the eigenvectors of H are approximately given by the two
unit vectors.
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QCL, not to establish a competitive numerical solver for such equations of mo-
tion.15 The QCL should rather be seen as the starting point for the derivation of
quantum-classical particle methods, either of deterministic character as in [16]
or in stochastic form as variants of the surface-hopping technique.

In order to propagate the adiabatic QCL equation (34), we use the following
decomposition of its RHS:

∂tρ
ad = [pC, ρad]−︸ ︷︷ ︸

=Ĉρad

− i

ε
[E, ρad]−︸ ︷︷ ︸

=− i
ε Êρ

ad

+Lρad,

L = −p ·Dq +
1

2
[DqE,Dp ]+,

with the following obvious physical interpretations: Ĉ represents the exchange
between the energy levels, Ê the oscillatory phase effects, and L embodies the
transport on the level surfaces.

For stepsizes τ = O(ε), we may approximate the QCL evolution ρad = ρad(t)
by the following Trotter splitting up to order O(ε):

ρad(τ) ≈ ρad

1 = exp(τL) exp(τĈ) exp(− iτ
ε
Ê) ρad(0).

For the sake of simplicity, we restrict ourselves to the case N = 2, i.e., we
consider two energy levels only. Moreover, we assume that the eigenvectors
ek = ek(q) of H = H(q) are real-valued,16 so that the coupling matrix C is zero
on the diagonal:

C(q) =

(
0 C12(q)

−C12(q) 0

)
⇒ p · C(q) =

(
0 γ
−γ 0

)
,

with γ = γ(q, p) = p · C12(q).

Under these conditions we can easily find numerical realizations for each of the
three subproblems:

1: The oscillatory phase effects do not change the diagonal entries of ρad:

exp(− iτ
ε
Ê)ρad =

(
ρad
11 exp(−iτε (E2 − E1))ρ

ad
12

c.c. ρad
22

)
.

2: The exchange between the energy levels is generated by a rotation by the
angle τγ(q, p):

exp(τĈ)ρad = exp(τp · C) ρad exp(−τp · C)

with exp(τp · C) =

(
cos(τγ) sin(τγ)
sin(−τγ) cos(τγ)

)
.

15Based on the technique introduced herein, numerical integration of the QCL definitely
produces more computational effort than numerical integration of the full Schrödinger equation
itself.

16This is always possible if H itself is real-valued.
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3: The transport on the level surfaces requires an approximation of the
Hamiltonian flow Φτkl on the surfaces Ekl = (Ek + El)/2:

η = exp(τL)ρad ⇒ ηkl(q, p) = ρad

kl

(
Φ−τ
kl (q, p)

)
,

which is realized via the well-known Verlet discretization Φ̃−τ
kl of Φ−τ

kl given
by

Φ̃−τ
kl (q, p) = (q1, p1) with

⎧⎨
⎩

q12 = q − τp/2
p1 = p + τDqEkl(q12)
q1 = q12 − τp1

.

In order to realize this step, we have to introduce some (spatial) dis-
cretization of the interesting phase space volume. We will herein choose a
uniform grid with nodes (qj , pr). Let ρ

ad be given on the grid and let ρ̃ad

denote the linear interpolation of ρad between the nodes. Then, the new
values on the nodes are computed via

ηkl(qj , pr) = ρ̃ad

kl(Φ̃
−τ
kl (qj , pr)).

6.3 QCL Solution of the Avoided Crossing Example

The initial state given in (44) implies the following initial condition for the
adiabatic QCL evolution:

ρad

11(q, p, 0) =
1

πε
exp

(
− (q − q0)

2

2ε

)
exp

(
−2(p− p0)

2

ε

)
, ρad

22(0) = ρad

12(0) ≡ 0.

In order to approximate the solution ρad = ρad(t) of (34) numerically, the in-
tegration scheme explained in Sec. 6.2 above was applied based on a highly
accurate box discretization of the interesting phase space volume.17 The result-
ing energy level populations (see (37)) are illustrated in comparison with the
exact QD populations in Fig. 3 below. Obviously, the QCL solution allows an
intriguing reproduction of the nonadiabatic effects in full QD.
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Figure 3: Avoided Crossing Example: Evolution of the energy level populations for ε = 0.01.
Solid lines: QD; dashed lines: QCL.

17The (q, p)-volume [0.01, 4] × [−1, 4] was divided into 1000 × 500 nodes. The stepsize of
the Trotter splitting was set to τ = ε/10.
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In order to compare the QCL solution with the QD solution, we first examine
the QCL position densities defined by

Qad

jj(q, t) =

∫ N∑
k,l=1

ρad

kl(q, p, t) e
j
k(q) · e

j
l (q) dp,

where ejk denotes the jth component of the eigenvalue ek. The numerical approx-
imations of the Qad

jj are shown in Fig. 4. Comparison with Fig. 2 (QD solution)
shows that even details of the full quantum evolution can be reproduced by the
QCL dynamics. To allow a detailed inspection of the slight differences visible,
Fig. 5 shows some snapshots of the QCL and QD distributions. It becomes
clear, that the most significant differences between the QCL and QD densities
are differences in the width of the distributions.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

0

1

2

3

q

s
q
rt

(Q
2
2
)

t

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

0

1

2

3

q

t

s
q
rt

(Q
2
2
)

Figure 4: Avoided Crossing Example: QCL position densities. Square root of the absolute
value of (a) Qad

11 and (b) Qad
22 versus q and t. To be compared with the QD position densities

shown in Fig. 2.
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Figure 5: Comparison between QD and QCL position densities at times t = 0.2/0.4/0.6/0.8
for ε = 0.01. On top: QD (|Ψ1(·, t)|2 and |Ψ2(·, t)|2); bottom: QCL (Qad

11(·, t) and Qad
22(·, t)).

Last but not least, we will inspect the behavior of the off-diagonal entry of
the QCL solution. Fig. 6 shows the snapshot of the solution at t0 = 0.5, i.e., as
it moves through the transition zone; we observe that the off-diagonal entry is
oscillatory and takes significantly large values.
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hand side figures show the associated position distributions Qad

11, Q
ad
22, Q

ad
12 (versus q) ; the
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11 , V

ad
22 , V

ad
12 , V ad

jk =
∫
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Appendix A: Product Weyl Operators and Asso-

ciated Symbols

Suppose that A and B are matrix-valued symbols with A ∈ S and B satisfying
Assumption 3.3. Let AW and BW be the associated Weyl operators. Then, also
the product operator AWBW is a Weyl operator. Its symbol is denoted A�B,
i.e., we write AWBW = (A�B)W . Due to [20] (Appendix A) or [31], Sec. 18.5,
this symbol also satisfies the Assumption 3.3 and is given by

(A�B)(q, p) = A(q, p)B(q, p) +
ε

2i
{A,B} (q, p) + ε2Rε(q, p), (45)

where Rε is bounded in S.
In some simple cases, the representation of A�B can be determined directly.

As an example, let us consider the case required in Sec. 4:

Proposition 6.1 Let be C be some smooth tensor-valued symbol. The symbol
associated with AW = C(q) ·εDq is given by A(q, p) = ip ·C(q) − ε

2 (Dq · C(q)),
where Dq · C(q) is matrix-valued with entries (Dq · C)kl =

∑
j DqjC

j
kl.

This can be seen by direct evaluation:

1
(2π)d

∫
�d

∫
�dA

(
q+y
2 , εξ

)
u(ξ) exp(i(q − y)ξ) dξ dy

= ε
(2π)d

∫
�d

∫
�d

[
Dqe

i(q−y)ξ] · C (
q+y
2

)
u(ξ) dξ dy

− ε
2 (Dq · C(q)) u(q)

= ε
(2π)dDq ·

[∫
�d

∫
�dC

(
q+y
2

)
u(ξ) ei(q−y)ξ dξ dy

]
− ε

(2π)d

∫
�d

∫
�d

1
2 (Dq · C)

(
q+y
2

)
u(ξ) ei(q−y)ξ dξ dy

− ε
2 (Dq · C(q)) u(q)

= ε
(
Dq · [C(q)u(q)]− 1

2 (Dq · C(q)) u(q)
)
− ε

2 (Dq · C(q)) u(q)

= C(q) · εDqu(q)

Thus, we find Rε ≡ 0 in (45) with A(q, p) = C(q) and B(q, p) = ip.
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[31] L. Hörmander. The Analysis of Linear Partial Differential Operators III. Springer, 1985.

[32] A. Joye. Proof of the Landau-Zener formula. Asymptotic Analysis, 9:209–258, 1994.

[33] R. Kapral and G. Cicotti. Mixed quantum-classical dynamics. J. Chem. Phys.,
110(5):8919–8929, 1999.

[34] T. Kato. On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jap., 5:435–439,
1950.

[35] M. Klein, A. Martinez, R. Seiler, and X.P. Wang. On the Born-Oppenheimer expansion
for polyatomic molecules. Comm. Math. Phys., pages 607–639, 1992.

[36] M. Klessinger and J. Michl. Excited States and Photochemistry of Organic Molecules.
VCH–Wiley, New York, 1995.

[37] L. D. Landau. Zur Theorie der Energieübertragung bei Stößen. Phys. Z. Sowjetunion,
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