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MY FAVORITE THEOREM:

CHARACTERIZATIONS OF PERFECT GRAPHS

MARTIN GRÖTSCHEL

The favorite topics and results of a researcher change over time, of course. One
area that I have always kept an eye on is that of perfect graphs. These graphs, in-
troduced in the late 50s and early 60s by Claude Berge, link various mathematical
disciplines in a truly unexpected way: graph theory, combinatorial optimization,
semidefinite programming, polyhedral and convexity theory, and even informati-
on theory.

This is not a survey of perfect graphs. It’s just an appetizer. To learn about the
origins of perfect graphs, I recommend to read the historical papers [1] and [2].
The book [3] is a collection of important articles on perfect graphs. Algorithmic
aspects of perfect graphs are treated in [13]. A comprehensive survey of graph
classes, including perfect graphs, can be found in [5]. Hundreds of classes of
perfect graphs are known, 96 important classes and the inclusion relations among
them are described in [16].

So, what is a perfect graph? Complete graphs are perfect, bipartite, interval, com-
parability, triangulated, parity, and unimodular graphs are perfect as well. The
following beautiful perfect graph is the line graph of the complete bipartite graph
K3,3.

Due to the evolution of the theory, definitions of perfection (and versions thereof)
have changed over time. To keep this article short, I do not follow the historical
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development of the notation. I use definitions that streamline the presentation.
Berge defined

G is a perfect graph,

if and only if

ω(G′) = χ (G′) for all node-induced subgraphs G′ ⊆ G,(1)

where ω(G) denotes the clique number of G (= largest cardinality of a clique of
G, i.e., a set of mutually adjacent nodes) and χ(G) is the chromatic number of G
(= smallest number of colors needed to color the nodes of G). Berge discovered
that all classes of perfect graphs he found also have the property that

α(G′) = χ(G′) for all node-induced subgraphs G′ ⊆ G,(2)

where α(G) is the stability number of G (= largest cardinality of a stable set of G,
i.e., a set of mutually nonadjacent nodes) and χ(G) denotes the clique covering
number of G (= smallest number of cliques needed to cover all nodes of G exactly
once).

Note that complementation (two nodes are adjacent in the complement G of a
graph G iff they are nonadjacent in G) transforms a clique into a stable set and
a coloring into a clique covering, and vice versa. Hence, the complement of a
perfect graph satisfies (2). This observation and his discovery mentioned above
led Berge to conjecture that G is a perfect graph if and only if

G is a perfect graph.(3)

Developing the antiblocking theory of polyhedra, Fulkerson launched a massive
attack on this conjecture, see [10], [11], and [12]. The conjecture was solved in
1972 by Lovász [17], who gave two short and elegant proofs. Lovász [18], in
addition, characterized perfect graphs as those graphs G = (V,E) for which the
following holds:

ω(G′) · α(G′) ≥ |V (G′)| for all node-induced subgraphs G′ ⊆ G.(4)

A link to geometry can be established as follows. Given a graph G = (V,E), we
associate with G the vector space �V where each component of a vector of �V is
indexed by a node of G. With every subset S ⊆ V , we can associate its incidence
vector χS = (χS

v )v∈V ∈ �
V defined by

χS
v := 1 if v ∈ S, χS

v := 0 if v �∈ S.

The convex hull of all the incidence vectors of stable sets in G is denoted by
STAB(G), i.e.,

STAB(G) = conv {χS ∈ �
V | S ⊆ V stable}
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and is called the stable set polytope of G. Clearly, a clique and a stable set of
G can have at most one node in common. This observation yields that, for every
clique Q ⊆ V , the so-called clique inequality

x(Q) :=
∑

v∈Q
xv ≤ 1

is satisfied by every incidence vector of a stable set. Thus, all clique inequalities
are valid for STAB(G). The polytope

QSTAB(G) := {x ∈ �
V | 0 ≤ xv ∀ v ∈ V, x(Q) ≤ 1 ∀ cliques Q ⊆ V },

called fractional stable set polytope of G, is therefore a polyhedron containing
STAB(G), and trivially,

STAB(G) = conv {x ∈ {0, 1}V | x ∈ QSTAB(G)}.

Knowing that computingα(G) (and its weighted version) is NP-hard one is temp-
ted to look at the LP relaxation

max cTx, x ∈ QSTAB(G),

where c ∈ �
V
+ is a vector of node weights. However, solving LPs of this type

is also NP-hard for general graphs G, see [14]. For the class of perfect graphs
G, though, these LPs can be solved in polynomial time — albeit via an involved
detour, see below.

Let us now look at the following chain of inequalities and equations, typical for
IP/LP approches to combinatorial problems. Let G = (V,E) be some graph and
c ≥ 0 a vector of node weights:

max {
∑

v∈S
cv | S ⊆ V stable set of G}

= max {cTx | x ∈ STAB(G)}
= max {cTx | x ≥ 0, x(Q) ≤ 1 ∀ cliques Q ⊆ V, x ∈ {0, 1}V }
≤ max {cTx | x ≥ 0, x(Q) ≤ 1 ∀ cliques Q ⊆ V }
= min {

∑

Q clique

yQ |
∑

Q�v
yQ ≥ cv ∀ v ∈ V, yQ ≥ 0 ∀ cliques Q ⊆ V }

≤ min {
∑

Q clique

yQ |
∑

Q�v
yQ ≥ cv ∀ v ∈ V, yQ ∈ �+ ∀ cliques Q ⊆ V }
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The inequalities come from dropping or adding integrality constraints, the last
equation is implied by LP duality. The last program can be interpreted as an IP
formulation of the weighted clique covering problem. It follows from (2) that
equality holds throughout the whole chain for all 0/1 - vectors c iff G is a perfect
graph. This, in turn, is equivalent to

The value max {cTx | x ∈ QSTAB(G)} is integral for all c ∈ {0, 1}V .(5)

Results of Fulkerson [10] and Lovász [17] imply that (5) is in fact equivalent to

The value max {cTx | x ∈ QSTAB(G)} is integral for all c ∈ �
V
+.(6)

and that, for perfect graphs, equality holds throughout the above chain for all c ∈
�

V
+. This, as a side remark, proves that the constraint system defining QSTAB(G)

in totally dual integral for perfect graphs G. Chvátal [6] observed that (6) holds iff

STAB(G) = QSTAB(G)(7)

These three characterizations of perfect graphs provide the link to polyhedral theo-
ry (a graph is perfect iff certain polyhedra are identical) and integer programming
(a graph is perfect iff certain LPs have integral solution values).

Another, quite surprising road towards understanding properties of perfect gra-
phs was paved by Lovász [19]. He introduced a new geometric representation of
graphs linking perfectness to convexity and semidefinite programming.

An orthonormal representation of a graph G = (V,E) is a sequence (ui | i ∈ V )
of |V | vectors ui ∈ �

V such that ||ui|| = 1 for all i ∈ V and uT
i uj = 0 for

all pairs i, j of nonadjacent nodes. For any orthonormal representation (ui |i ∈
V ) of G and any additional vector c of unit length, the so-called orthonormal
representation constraint ∑

i∈V
(cTui)

2xi ≤ 1

is valid for STAB(G). Taking an orthonormal basis B = {e1, ..., e|V |} of �V and a
clique Q of G, setting c:= ui := e1 for all i∈Q, and assigning different vectors of
B\{e1} to the remaining nodes i∈V \Q, one observes that every clique constraint
is a special case of this class of infinitely many inequalities. The set

TH(G) := {x ∈ �
V
+ | x satisfies all orthonormal representation constraints}

is thus a convex set with

STAB(G) ⊆ TH(G) ⊆ QSTAB(G).
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It turns out, see [14], that a graph G is perfect if and only if any of the following
conditions is satisfied:

TH(G) = STAB(G).(8)

TH(G) = QSTAB(G).(9)

TH(G) is a polytope.(10)

The last result is particularly remarkable. It states that a graph is perfect if and
only if a certain convex set is a polytope.

If c ∈ �
V
+ is a vector of node weights, the optimization problem (with infinitely

many linear constraints)
max cTx, x ∈ TH(G)

can be solved in polynomial time for any graph G. This implies, by (8), that the
weighted stable set problem for perfect graphs can be solved in polynomial time,
and by LP duality, that the weighted clique covering problem, and by complemen-
tation, that the weighted clique and coloring problem can be solved in polynomial
time. These results rest on the fact that the value

ϑ(G, c) := max {cTx | x ∈ TH(G)}

can be characterized in many equivalent ways, e.g., as the optimum value of a se-
midefinite program, the largest eigenvalue of a certain set of symmetric matrices,
or the maximum value of some function involving orthornormal representations.

Details of this theory can be found, e.g., in Chapter 9 of [14]. The algorithmic
results involve the ellipsoid method. It would be nice to have “more combinato-
rial” algorithms that solve the four optimization problems for perfect graphs in
polynomial time.

Let us now move into information theory. Given a graph G = (V,E), we call a
vector p ∈ �

V
+ a probability distribution on V if its components sum to 1. Let

G(n) = (V n, E(n)) denote the so-called n-th conormal power of G, i.e., V n is the
set of all n-vectors x = (x1, . . . , xn) with components xi ∈ V , and

E(n) := {xy | x, y ∈ V n and ∃ i with xiyi ∈ E}.

Each probability distribution p on V induces a probability distribution pn on V n

as follows: pn(x) := p(xi) · p(x2) · . . . · p(xn). For any node set U ⊆ V n, let
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G(n)[U ] denote the subgraph of G(n) induced by U and χ(G(n)[U ]) its chromatic
number. Then one can show that, for every 0 < ε < 1, the limit

H(G, p) := lim
n→∞

1

n
min

p�(U)≥1−ε
logχ(G(n) [U ])

exists and is independent of ε (the logs are taken to base 2). H(G, p) is called
the graph entropy of the graph G with respect to the probability distribution p. If
G = (V,E) is the complete graph, we get the well known Shannon entropy

H(p) = −
∑

i∈V
pi log pi.

Let us call a graph G = (V,E) strongly splitting if for every probability distribu-
tion p on V

H(p) = H(G, p) +H(G, p)

holds. Csiszár et al [9]. have shown that a graph is perfect if and only if

G is strongly splitting.(11)

I.e., G is perfect iff, for every probabiltity distribution, the entropies of G and
of its complement G add up to the entropy of the complete graph (the Shannon
entropy). I recommend [9] for the study of graph entropy and related topics.

Given all these beautiful characterizations of perfect graphs and polynomial time
algorithms for many otherwise hard combinatorial optimization problems, it is
really astonishing that nobody knows to date whether perfectness of a graph can
be recognized in polynomial time. There are many ways to prove that, deciding
whether a graph is not perfect, is in NP . But that’s all we know!

Many researchers hope that a proof of the most famous open problem in perfect
graph theory, the strong perfect graph conjecture:

A graph G is perfect if and only if G neither contains an odd hole nor
an odd antihole as an induced subgraph.

results in structural insights that lead to a polynomial time algorithm for recogni-
zing perfect graphs. It is trivial that every odd hole (= chordless cycle of length at
least five) and every odd antihole (= complement of an odd hole) are not perfect.
Whenever Claude Berge encountered an imperfect graph G he discovered that G
contains an odd hole or an odd antihole and, thus, came to the strong perfect graph
conjecture. In his honor, it is customary to call graphs without odd holes and odd
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antiholes Berge graphs. Hence, the strong perfect graph conjecture essentially
reads: every Berge graph is perfect.

This conjecture stimulated a lot of research resulting in fascinating insights into
the structure of graphs that are in some sense nearly perfect or imperfect. E.g.,
Padberg [20], [21] (introducing perfect matrices and using proof techniques from
linear algebra) showed that, for an imperfect graph G = (V,E) with the property
that the deletion of any node results in a perfect graph, satifies the following:

• |V | = α(G) · ω(G) + 1,

• G has exactly |V | maximum cliques, and every node is contained in exactly
ω(G) such cliques.

• G has exactly |V | maximum stable sets, and every node is contained in
exactly α(G) such stable sets.

• QSTAB(G) has exactly one fractional vertex, namely the point xv = 1/ω(G)
∀ v ∈ V , which is contained in exactly |V | facets and adjacent to exactly
|V | vertices, the incidence vectors of the maximum stable sets.

Similar investigations (but not resulting in such strong structural results) have re-
cently been made by Annegret Wagler [24] on graphs which are perfect and have
the property that deletion (or addition) of any edge results in an imperfect graph.
The graph of Figure 1 is from Wagler’s Ph.D. thesis. It is the smallest perfect
graph G such that whenever any edge is added to G or any edge is deleted from
G the resulting graph is imperfect.

Particular efforts have been made to characterize perfect graphs “constructively”
in the following sense. One first establishes that a certain class C∞ of graphs
is perfect and considers, in addition, a finite list C∈ of special perfect graphs.
Then one defines a set of “operations” (e.g., replacing a node by a stable set or a
perfect graph) and “compositions” (e.g., take two graphs G and H and two nodes
u ∈ V (G) and v ∈ V (H), define V (G ◦ H) := (V (G) ∪ V (H))\{u, v} and
E(G◦H) := E(G−u)∪E(G−v)∪{x, y | xu ∈ E(G), yv ∈ E(H)} and shows
that every perfect graph can be constructed from the basic classes C∞ and C∈ by
a sequence of operations and compositions. Despite ingenious constructions (that
were very helpful in proving some of the results mentioned above) and lots of
efforts, this route of research has not led to success, yet. A paper describing many
compositions that construct perfect graphs from perfect graphs is, e.g., [8].

Chvátal [7] initiated research into another “secondary structure” related to per-
fect graphs in order to come up with a (polynomial time recognizable) certificate
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of perfection. For a given graph G = (V,E), its P4-structure is the 4-uniform
hypergraph on V whose hyperedges are all the 4-element node sets of V that in-
duce a P4 (path on four nodes) of G. Chvátal observed that any graph whose
P4-structure is that of an odd hole is an odd hole or its complement and, thus, con-
jectured that perfection of a graph depends solely on its P4-structure. Reed [23]
solved Chvátal’s semi-strong perfect graph conjecture by showing that a graph G
is perfect iff

G has the P4-structure of a perfect graph.(12)

There are other such concepts, e.g., the partner-structure, that have resulted in
further characterizations of perfect graphs through secondary structures. We re-
commend [15] for a thorough investigation of this topic. But the polynomial-time-
recognition problem for perfect graphs is still open.

A relatively recent line of research in the area of structural perfect graph theory is
the use of the probability theory. I would like to mention just one nice result of
Prömel und Steger [22]. Let us denote the number of perfect graphs on n nodes
by Perfect (n) and the number of Berge graphs on n nodes by Berge (n), then

lim
n→∞

Perfect (n)
Berge (n)

= 1.

In other words, almost all Berge graphs are perfect which means that, if there are
counterexamples to the strong perfect graph conjecture, they are “very rare”.

The theory of random graphs provides deep insights into the probabilistic behavior
of graph parameters, see [4] for instance. To take a simple example, consider a
random graph G = (V,E) on n nodes where each edge is chosen with probality
1
2
. It is well known that the expected values of α(G) and ω(G) are of order logn

while χ(G) and χ(G) both have expected values of order n/ logn. This implies
that such random graphs are almost surely not perfect. An interesting question
is to see whether the “LP-relaxation of α(G)”, the so-called fractional stability
number α∗(G) := max{1lT x | x ∈ QSTAB(G)}, is a good approximation of
α(G). Observing that the point x = (xv)v∈V with xv := 1/ω(G), v ∈ V , satisfies
all clique constraints and is thus in QSTAB(G) and knowing that ω(G) is of order
logn one can deduce that the expected value of α∗(G) is of order n/ logn, i.e., it
is much closer to χ(G) than to α(G). Hence, somewhat surprisingly, α∗(G) is a
pretty bad approximation of α(G) in general – not so for perfect graphs, though.

To summarize this quick tour through perfect graph theory (omitting quite a num-
ber of the other interesting developments and important results), here is my favo-
rite theorem:
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Theorem Let G be a graph. The following twelve conditions are equivalent and
characterize G as a perfect graph:

ω(G′) = χ (G′) for all node-induced subgraphs G′ ⊆ G.(1)

α(G′) = χ(G′) for all node-induced subgraphs G′ ⊆ G.(2)

G is a perfect graph.(3)

ω(G′) · α(G′) ≥ |V (G′)| for all node-induced subgraphs G′ ⊆ G.(4)

The value max {cTx | x ∈ QSTAB(G)} is integral for all c ∈ {0, 1}V .(5)

The value max {cTx | x ∈ QSTAB(G)} is integral for all c ∈ �
V
+.(6)

STAB(G) = QSTAB(G).(7)

TH (G) = STAB(G).(8)

TH(G) = QSTAB(G).(9)

TH(G) is a polytope.(10)

G is strongly splitting.(11)

G has the P4-structure of a perfect graph.(12)
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[3] C. Berge, V. Chvátal (eds.), Topics on perfect graphs, Annals of Discrete
Mathematics 21, North-Holland, Amsterdam, 1984.

[4] B. Bollobás, Random Graphs, Academic Press, 1985.
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