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Abstract

The function of many important biomolecules comes from their dynamic
properties and their ability to switch between different conformations. In a
conformation, the large scale geometric structure of the molecule is understood
to be conserved, whereas on smaller scales the system may well rotate, oscillate
or fluctuate. In a recent article [J. Comp. Phys., 151,1 (1999)], the present au-
thor and his coworkers demonstrated that (a) conformations can be understood
as almost invariant sets of some Markov chain being defined via the Hamil-
tonian system governing the molecular dynamics and that (b) these sets can
efficiently be computed via eigenvectors of the corresponding Markov operator.
The present manuscript reviews the mathematical modelling steps behind the
novel approach, includes a rigorous analytical justification of this approach and
the corresponding numerical realization, and illustrates the performance of the
algorithm when applied to realistic molecular systems.
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1 Introduction

This manuscript presents a novel approach to the direct numerical approxima-
tion of the so-called “conformational dynamics”, that is, the essential dynam-
ical behavior of mechanical systems moving on multi-minima energy surfaces.
It includes the derivation of the underlying mathematical model, its theoretical
analysis, and a first proposal for its efficient numerical realization, all this tai-
lored to the application to biomolecules. Hence, this introduction should start
with a brief description of the importance of this application and of the origin
of the phrase “conformational dynamics”:

Conformational Dynamics The classical description of molecular processes
deals with the molecule’s microscopic configuration (positions q and momenta p
of all atoms) and leads to a mathematical model in terms of some Hamiltonian
differential equation (cf. Sec. 2.1). The solution of this equation, given by the
associated Hamiltonian flow, is understood as the representation of the motion
of the molecular system.

The chemically interesting function of many important biomolecules, like
proteins or enzymes, results from their dynamical properties, particularly from
their ability to undergo so-called conformational transitions (cf. [116]). In a
conformation, the large scale geometric structure of the molecule is understood
to be conserved, whereas on smaller scales, that is, in the details of each micro-
scopic configuration visited, the system may well rotate, oscillate or fluctuate.
Thus, the phrase “conformation” means a meta-stable quasi-equilibrium of the
molecule. In comparison to the configurational fluctuations inside every confor-
mation, transitions between different conformations are extremely rare events.
As an implication, the computational characterization of such conformational
changes via direct simulation of the associated Hamiltonian system often re-
quires inaccessibly long time spans. Even worse, long-term simulation of a
single trajectory comes out to be ill-conditioned (cf. Sec. 2.1.5). Nevertheless,
most applications of molecular dynamics (MD) to the characterization of con-
formations deal with some kind of statistical analysis based on averages over
long term trajectories or with remodelling steps for artificial acceleration of the
process, compare [4, 47, 104]. Herein, a different line of method is advocated:
it is suggested to attack the determination of conformations and the transi-
tion probabilities between them directly, i.e., without long term simulation or
artificial remodelling.

Dynamical System Approach The key insight having finally led to the ap-
proach presented herein goes back to P. Deuflhard. He observed that the
problem of algorithmic characterization of conformations is related to the prob-
lem of the identification of almost invariant sets of dynamical systems as studied
by M. Dellnitz and O. Junge: If the conformations were invariant sets of
the flow of the Hamiltonian system, then there could not be any transitions
between different conformations. Since such transitions exist but are rare, we
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may understand every conformation as being an “almost” invariant subset of
the phase space of the Hamiltonian system.

In [19], M. Dellnitz and O. Junge suggest the direct computation of in-
variant and almost invariant sets of deterministic discrete dynamical systems
via eigenmodes of the associated Frobenius-Perron operator without long-term
simulations. In broad terms, their key idea is the following: since the natural
invariant sets and measures of the dynamical system are given by the eigen-
vectors of the Frobenius-Perron operator for its (maximal) eigenvalue λ0 = 1
(infinite relaxation time), the eigenvectors for eigenvalues |λj | < 1 near λ0 = 1
should correspond to “almost” invariant structures (“large” finite relaxation
times). The eigenmodes of the Frobenius-Perron operator are approximated by
means of a discretization of this operator embedded in a multilevel subdivision
algorithm. Dellnitz and Junge show that this technique is efficient whenever the
part of the phase space, which is important for the long-term dynamics of the
system, is some “low-dimensional” object [19, 18]. Otherwise, even the subdivi-
sion technique produces an exploding number of discretization boxes (a pitfall
which we will call the “curse of dimension” in the following).

Deuflhard’s suggestion to use similar techniques for the identification of con-
formation as almost invariant sets has been realized for small Hamiltonian sys-
tems. As reported in [21], the numerical results are intriguing and seem to
catch the essential features of the dynamics. However, the main problem was
obvious: the essential dynamics of highly-dimensional Hamiltonian systems is
not supported on any low-dimensional object so that any kind of determinis-
tic discretization —whether adaptive or not— must inevitably suffer from the
curse of dimension. But the investigation also revealed some unexpected, deep-
lying theoretical problems: In the space of measures with Lp(Γ)-densities, the
Frobenius–Perron operator for Hamiltonian systems has infinitely many invari-
ant densities and its entire spectrum lies on the unit circle (so that the iden-
tification of (almost) invariant sets via eigenvalues near λ = 1 but inside the
unit circle makes no sense).1 Despite these problems, this “dynamical system
approach” to the identification of conformations has been an important inter-
mediate step for the development of the “ensemble approach” advocated herein.
This ensemble approach does also exploit the intriguing idea of computing con-
formations as almost invariant structures via an eigenvalue problem. However,
the underlying statistical operator and the notion of “almost invariance” are
fundamentally different (see below).

Ensemble Approach The starting point of this approach is the following in-
sight: at least in the biomolecular context, molecular dynamics (MD) deals with

1The underlying reason is that the unavoidable discretization of the Hamiltonian flow in
time destroys some of the conservation properties of the flow such that the essential dynamics
of the discrete solution is supported on subsets of the full dimension of Γ. Hence, the spatial
discretization of the Frobenius–Perron operator has to deal with measures supported on such
sets, and thus, numerically, with Lp(Γ)-densities. The above statements concerning invariant
densities and spectrum of the Frobenius–Perron operator are substantiated in Secs. 2.2 and
2.3 below. For more details see [21, 94].
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statistical ensembles of molecules instead of single molecular systems, since only
such ensembles can be an object of experimental investigation. Consequently,
the rate of conformational transitions has to be characterized with respect to
some experimentally given stationary ensemble, i.e., in terms of statistical me-
chanics and not for any single Hamiltonian system (cf. Sec. 2.2):

Suppose that the probability of systems in the ensemble to be in some state
x ∈ Γ at time t = 0 is given by the density f0 : Γ → [0, 1]. Then, the transition
probability w(B,C, τ) from B ⊂ Γ to C ⊂ Γ during some fixed observation time
τ , is given by the fraction of systems in the ensemble, which are found in B at
t = 0 and in C at t = τ . Since all systems move due to the Hamiltonian flow
Φτ , this transition probability can be expressed as

w(B,C, τ) =

(∫
B

f0(x)dx

)−1 ∫
B

χC(Φ
τx) f0(x) dx.

We are interested in almost invariant subsets, i.e., in sets B ⊂ Γ with large
probabilities to stay within, which, for the time being, can be expressed as
w(B,B, τ) ≈ 1. In particular, conformations are given by sets of configurations
with similar large scale geometric structure, that is, they are spatial subsets A
of positions q ∈ A such that the associated phase space fiber

Γ(A) = {(q, p) ∈ Γ, q ∈ A}

is almost invariant in the above sense. It should again be emphasized that there
are two fundamentally different notions of almost invariance:

1. We may call some set A almost invariant if the single dynamical system
under consideration remains inside of A for some long period of time before leav-
ing it. The “dynamical system approach” to the identification of conformations
due to [21] should be understood in this sense.2

2. In the ensemble approach, A is called almost invariant, if the fraction of
systems in the ensemble, which leave A during some fixed observation time τ ,
is small.

In [95], the differences between the two notions are discussed in detail by
applying both concepts to the same kind of randomly perturbed dynamical
system.

In terms of statistical mechanics, the Frobenius–Perron operator of the
Hamiltonian system under investigation has to be interpreted as the propa-
gator of the ensemble governing the evolution of the corresponding probability
density. As illustrated in detail in Sec. 2.2 below, this observation implies that

2Not only the “dynamical system approach” to the identification of conformations but
the entire approach of Dellnitz and Junge is often interpreted in this sense. However, in
order to give a rigorous justification of their approach for general discrete dynamical systems,
Dellnitz and Junge have to add small random perturbations to the discrete mapping, cf.
[19]. For nonvanishing perturbations, their approach may also be interpreted as an ensemble
approach in the above sense with exactly the same interpretation of almost invariance. What
is herein called the “dynamical system approach” corresponds to the limit of vanishing random
perturbations.
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every invariant density of the Frobenius–Perron operator corresponds to the ini-
tial experimental preparation of some specific stationary ensemble. This insight
led the present author to the definition of some transition operator T as a certain
“restriction” of the Frobenius–Perron operator to the unique invariant density
induced by the ensemble under consideration (for more details see Schütte et
al. [94] and Sec. 2.3 herein). This can be realized such that T in fact describes
the corresponding transition probabilities within the ensemble (cf. Sec. 3.1). As
we will see in detail in Sec. 3, the transition operator T is a Markov operator (in
an appropriate L1-space) and self-adjoint (in the associated L2-space). This im-
plies that its spectrum is real-valued and satisfies σ(T ) ⊂ [−1, 1]. Similar as in
the dynamical system approach, the basic algorithmic idea is the identification
of almost invariant sets of the ensemble via the eigenvectors of the transition
operator for eigenvalues near the (maximal) eigenvalue λ1 = 1.
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Figure 1: Illustration of the particles-in-a-box ensemble. A statistical ensemble of free
particles is moving without interactions between three ideally reflecting walls. Every particle
(position q and momentum p) with energy E = p2/2 ≤ E0 is locked between q = 0 and q = ±a
by a reflecting barrier of energetic height E0; particles with p2/2 > E0 do not feel this barrier
and move between q = −a and q = a.

Guiding Example In order to illustrate the key idea “Identification of con-
formational subsets via eigenvectors of the transition operator”, consider the
simple particles-in-a-box ensemble explained in Fig. 1. In terms of the zigzag
functions from Fig. 1, the position z = z(q, p) of some particle with initial
position q and momentum p after some time span τ can be denoted as

z(q, p) =

{
Za(q + τp), 1

2p
2 > E0

Z±
a (q + τp), otherwise,±q > 0

Let the initial distribution of energy E = p2/2 for the particles in the ensemble
be given by the Boltzmann distribution P(p) = exp(−βp2/2)/Z with β being
Boltzmann’s inverse temperature and Z such that

∫
�
P(p)dp = 1. In addition,

suppose that the initial positions are equidistributed in (−a, a). Then, the
transition probability in the ensemble from B ⊂ (−a, a) to C ⊂ (−a, a) is given

4



by

w(Γ(B),Γ(C), τ) =

(∫
B

dq

)−1 ∫
B

∫
�

χC(z(q, p))P(p) dp dq.

Whenever β and E0 are chosen such that particles with energy E > E0 are rare,
that is, whenever ε =

∫
p2/2>E0

P(p)dp is small, then the two sets B = (−a, 0)
and C = (0, a) are almost invariant in the sense that only a small fraction of
the particles can move from B to C. In this case, the fundamental difference
between the two notions of almost invariance is particularly significant: the
ensemble has two obvious almost invariant sets, while for none of the single
particles the notion of “almost invariant sets” makes sense.

The associated transition operator T acts on functions u : (−a, a) → � and
is defined via

Tu(q) =

∫
�

u (z(q, p))P(p) dp.

In fact, this transition operator allows to represent the transition probabilities:
Using the usual scalar product 〈·, ·〉 in the Hilbert space L2(−a, a), we find that

w(Γ(B),Γ(C), τ) =
1

〈χB, χB〉
〈TχC , χB〉.
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Figure 2: Eigenvectors for the largest eigenvalues λ1 = 1, λ2 = 0.974, and λ3 = 0.477 (from
the left to the right) of the transition operator T for the particles-in-a-box ensemble from
Fig. 1 above (a = 1, β = 25, τ = 2, E0 = 1/10, leading to ε ≈ 0.025). The eigenvectors for
λ1 = 1 and λ2 = 0.974 are constant on the two almost invariant sets (−1, 0) and (0, 1) and
their signs suffice to decompose (−1, 1) into these two almost invariant sets. For details see
Sec. 3.2.

We will see in detail in Sec. 3.2 that, with respect to L2(−a, a), the spec-
trum of T lies in the interval (−1, 1] and is discrete. For ε =

∫
p2/2>E0

P(p)dp

being small, it shows some significant gap between the two dominant eigenvalues
λ1 = 1 and λ2 ≈ 1− ε and the remaining eigenvalues. As can be seen in Fig. 2,
the eigenfunctions v1 and v2 for these two dominant eigenvalues suffice to de-
compose (−1, 1) into these two almost invariant sets simply by the two different
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combination of signs ((positive,positive) for (−1, 0) and (positive,negative) for
(0, 1)).

Properties of the Transition Operator It is the fundamental strategy of
our approach to compute conformational subsets from eigenstates of T for eigen-
values near λ = 1. It is, thus, of main importance, whether such eigenvalues
exist and the eigenvalue λ = 1 is simple. Since we are interested in a numeri-
cally stable approximation result, we have to demand for the existence of isolated
eigenvalues near λ = 1. Hence, the second part of the manuscript (Sec. 4) is
concerned with the construction of conditions which guarantee that the essential
spectrum σess(T ) of the transition operator is strictly bounded away from λ = 1
(Sec. 4.2). Under some additional mixing assumption (open set accessibility),
the specific properties of the Markov operator T also guarantee that the eigen-
value λ = 1 is simple and dominant (Sec. 4.4). So far the manuscript follows
the “operator–oriented” approach mainly by using classical results from linear
functional analysis.

The investigation of the fundamental properties of the transition operator
T reveals another crucial insight: T is associated with some specific stochastic
dynamical system, which can be simulated via the corresponding Markov chain
(Sec. 3.6). We will see that some results of the operator–oriented approach
(e.g., that λ = 1 is simple and dominant) can also be shown under weaker con-
ditions by means of the well-established convergence theory for Markov chains
(Sec. 4.5).

The abstract conditions for the above mentioned results are worth the effort
only if we can give explicit evidence that they are in fact valid for some realistic
“biomolecular” type of Hamiltonian systems. This is the case as we will see in
the final subsection of Sec. 4. Thus, at the end of Sec. 4, it will be obvious that
our novel approach is built on solid mathematical ground.

Numerical Realization Typical biomolecular systems contain hundreds or
thousands of atoms such that any direct spatial discretization of the transition
operator T suffers from the curse of dimension. This problem can be (at least
partly) circumvented by two decisive insights:

1. Chemical observations reveal that conformational transitions of biomole-
cules can be described via relatively few conformational degrees of freedom
or essential variables. Hence, only the essential configuration space associ-
ated with these variables has to be discretized which leads to a tremendous
reduction of dimension. Therefore, some restricted transition operator has
to be introduced which now acts on the essential configuration space only
(Sec. 3.5) but inherits all the crucial spectral properties of the full spatial
transition operator discussed above (Sec. 4.6).

2. Since the underlying invariant density is given in advance by the experi-
mental realization of the ensemble, one can use appropriate Monte-Carlo
(MC) schemes to sample this distribution. Hence, the transition operator

6



can be discretized via some Galerkin ansatz and the entries of the result-
ing transition matrix can be evaluated simply by counting the transitions
between discretization boxes during the MC sampling. The details of the
MC scheme will result from the deep connection between our transition
operator T and the associated Markov chain, which will lead us to so-called
Hybrid Monte-Carlo (HMC) schemes. The specific Markov chain induced
by HMC can be seen as an approximation of the original chain associated
with T and inherits all its fundamental properties (see Sec. 5.4).

Last but not least, we need some algorithm for the final identification of almost
invariant sets on the basis of the discrete eigenvectors of Tn. The molecular
dynamics group at the Zuse Center developed some prototype which is based
on the interpretation of almost invariant sets as perturbed invariant sets (see
Deuflhard et al. [24]). This identification algorithm is discussed in detail in
Sec. 5.3. It exploits that the transition matrix Tn is a stochastic matrix with a
cluster of eigenvalues near λ = 1 and associated eigenvectors that are approxi-
mately constant on the underlying almost invariant sets (compare Fig. 2). With
the HMC-based evaluation of the transition matrix Tn discretizing T the appli-
cation to realistic molecular systems comes into reach. The applicability of the
ensemble approach to realistic molecular systems including Galerkin discretiza-
tion of the transition operator and identification of conformational subsets is
documented in Sec. 6.
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2 Mathematical and Physical Modelling

In this section, we complement the introductory comments on the modelling
issue. In the first part of this section, some aspects of molecular dynamics are
collected which are of special importance for the understanding of the side-
conditions of realistic applications to biomolecular systems: the structure of the
energy function determining the Hamiltonian equations of motion, the neces-
sity of periodic boundary conditions, the existence and origin of conformations
and conformational degrees of freedom, and the numerical background of the
fundamental difficulties of long-term simulation. The second part is concerned
with some notions and concepts from statistical mechanics which are necessary
for the final definition of transition probabilities and almost invariance. It also
includes a short discussion of the Frobenius–Perron operator in the context of
statistical mechanics and molecular dynamics.

2.1 Classical Molecular Dynamics

2.1.1 Hamiltonian and Flow

In classical MD (cf. textbook [1]) a molecule is modeled by a Hamiltonian
function

H(q, p) = 1
2 p

TM−1p + V (q), (1)

where q and p are the corresponding positions and momenta of the atoms, M
the diagonal mass matrix, and V a differentiable potential. The Hamiltonian
H is defined on the phase space Γ ⊂ �2d . Realistic MD-simulations typically
include a large number N of atoms resulting in d = 3N spatial coordinates.
Thus, the dimension of Γ is 2d = 6N . The corresponding canonical equations
of motion

q̇ = M−1p, ṗ = −gradV (q) (2)

describe the dynamics of the molecule. The formal solution of (2) with initial
state x0 = (q(0), p(0)) is given by x(t) = (q(t), p(t)) = Φtx0, where Φt denotes
the flow.

It is well–known that Hamiltonian flows have several important conservation
and invariance properties. For the considerations herein, three of these prop-
erties are of main importance [5]: First, the conservation of energy H(Φtx) =
H(x); second, the symplecticness of the flow, which implies the well-known vol-
ume conservation property, the local expression of which is

detDΦtx = 1, for all x ∈ Γ, (3)

where DΦt denotes the Jacobian matrix of the flow; and, third, the reversibility
of Φt:
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Lemma 2.1 Let R denote the momentum reversion, i.e., R(q, p) = (q,−p).
Then, the flow Φt is R-reversible, i.e.,

R ◦ Φ−t ◦R = Φt.

Proof: The equations of motion (2) are invariant under the substitution t→ −t
and p→ −p, a fact which directly implies Φ−t ◦R = R ◦ Φt.

An x ∈ Γ is called a state of the system. For a given state x = (q, p), we will
make frequent use of the notations

q = π1x and p = π2x, (4)

which allow us to extract the position and momentum information from x. The
set Ω = π1Γ ⊂ �d is then called the position space. In most cases the phase
space is simply given by Γ = Ω × �

d , i.e., for every position q ∈ Ω arbitrary
momenta p ∈ �d are allowed.

2.1.2 Potentials and Atomic Interactions

In classical molecular dynamics, the interaction potential V of a molecular sys-
tem is modelled as a sum of contributions from different types of interaction. To
explain this, let the N atoms in the molecule be numbered by 1, . . . , N and let
the position of the kth atom in the molecule be denoted qk ∈ �

3 such that the
molecule’s entire position state is given by q = (qT1 , . . . , q

T
N )T ∈ Ω. The typical

interactions and associated types of potentials can be divided into “local” inter-
actions and “long-range” interactions. Typically, local interactions are induced
by the bond structure of the molecule as, e.g.,

• stretching of a covalent bond between two atoms k and l, modelled by
some potential with radial symmetry, for example, by a harmonic potential
Vb(qk, ql) = α(rkl − r0)

2 with rkl = |qk − ql|;

• changes in the angles between some bonds, modelled via bond angle poten-
tials Vba (depending only on the angle between two bonds, i.e., depending
on three atomic positions),3 and via so-called dihedral angle potentials
Vdih (depending on the “dihedral angle” between the two planes which are
spanned by four neighboring atoms, compare Fig. 3),

while typical long-range interactions are independent of the bond structure, e.g.,

• electrostatic interactions induced by the (partial) charges of the atoms k
and l, modelled by the Coulomb potentials Vc ∼ r−1

kl ;

• van der Waals interactions, modelled by Lennard-Jones potentials VLJ of
the form br−12 − ar−6.

3The bond angle contribution of the two bonds between atoms k and l, and l and j depends
only on the bond angle φklj given by cosφklj = (qk − ql)

T (ql − qj)/rklrlj , i.e., is of the form
Vba = Vba(φklj).
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The resulting total potential then reads:

V (q) =
∑
k,l

Vb(qk, ql) +
∑
k,l,j

Vba(qk, ql, qj) +
∑

k,l,j,m

Vdih(qk, ql, qj , qm)

+
∑
k,l

VLJ(qk, ql) +
∑
k,l

Vc(qk, ql),

where the sums run over each pair, triple, or quadruple of atoms which con-
tributes to the corresponding type of interaction. Generally speaking, all other
many-body interactions are incorporated in an “average” way via these pair-,
triple-, quadruple-additive terms. Errors in one term are compensated by pa-
rameter adjustments in other terms, so that the applicability of the resulting
force field is always limited: it is never more than semi-empirical. There are
some other types of interaction like, e.g., polarizability, which are included in
essentially different ways. For more details, the interested reader is referred to
[1].

ω1 ω2

0 1 2 3 4 5 6
0

2

4

6

8

10

ω
k
 (radiant)

en
er

gy
 (

kc
al

/m
ol

)

Figure 3: United atom model of n-pentane with the two dihedral angles ω1 and ω2. On the
right: Dihedral angle potential Vdih as a function of the dihedral angle due to [89]. The main
minimum corresponds to the so-called trans orientation of the angle, the two side minima to
the so-called ±gauche orientations.

Remark 2.2 Some of the contributing potentials are unbounded. This is an
artifact contradicting the physical situation: when excited with enough energy,
any bound will break (thus the harmonic form of Vb is inappropriate for large
energies); for any pair of atoms the situation |qk − ql| = 0 is impossible, i.e.,
Coulomb and Lenard-Jones potential are inappropriate for |qk − ql| < δ for
some δ representing, e.g., the size of the atoms.4 One can deal with these
problems by simply adapting the potentials: For example, we may introduce
hard core collision conditions for two atoms k and l whenever |qk − ql| = δ.
As a consequence, we may assume that all types of potentials are smooth and
bounded but we have to pay for this by accepting collision boundary conditions.

4Obviously, these problems can only occur when the kinetic energy of the system is huge
which typically is not the case. Nevertheless, in typical models (as, for example, in the
canonical ensemble, see Sec. 2.2.2) such a situation is a rare event but not impossible.
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Figure 4: The triribonucleotide adenylyl(3’-5’)cytidylyl(3’-5’)cytidin [r(ACC)] in the ex-
tended atom representation of GROMOS96 [109]. A and C denote the bases adenine and
cytosine. Small greek letters refer to the set of torsion angles, which is necessary for a rough
reconstruction of the molecule’s configuration. The torsion angles of the ribose can be ap-
proximated by the pseudorotation angle P and the phase θ [3].

2.1.3 Essential Variables and Conformations

The typical molecular force fields are mixtures of bond-structure effects and
strong long-range interactions. The potentials modelling bond interactions are
functions of certain internal degrees of freedom like bond angles or dihedral an-
gles. It suggests itself to rewrite the equations of motion in terms of these inter-
nal coordinates. Unfortunately, this provokes a whole bunch of nasty problems,
e.g., with the efficiency of the evaluation of the forces, in particular of the long-
range forces. However, the internal coordinates represent the (spatial) geometry
of the molecule so that changing some internal coordinate affects the molecule’s
“form”. But most of the energetically possible changes are of minor importance;
they can be seen as small fluctuations around the actual (meta)stable “global”
molecular geometry, called the conformation. Biomolecules typically appear in
different conformations and the coordinate changes which transform one confor-
mation into another one are object of main chemical interest. Normally, these
conformational transitions can be described in terms of only a few internal coor-
dinates, which are therefore called conformational degrees of freedom or essential
variables. In many cases, essential variables simply are specific dihedral angles
connecting some otherwise nearly rigid subgroups of the molecule (cf. Fig. 4),
but they may also be combinations of different internal coordinates (see [4] or
Sec. 3.3 of Berendsen’s survey in [23]). Clearly, whether a certain internal
variable may be an essential variable, depends on the structure of the whole
molecule and can be made sure only by inspection of its dynamical behavior.
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Nevertheless, chemical experience and intuition can often point out a collection
of candidates and the statistical analysis of simulation data (for example via
diagonalization of the covariance matrix [4, 30]) can supply other candidates.

The dynamics of every (bio)molecular system contains a large number of
extremely different time scales: On the smallest time scales (around 1 femtosec-
ond), the motion of the molecule consists of fast oscillations around equilibrium
positions,5 while all chemically significant molecular processes like conforma-
tional changes will show up, e.g., on a millisecond time scale. Thus, investiga-
tion of conformational transitions requires extremely long time spans so that
it still is inaccessible to conventional simulation methods (compare Sec. 2.1.5
below).

Today, a varied collection of methods for describing conformational dynam-
ics is available. These approaches are substantially different; they range from
“simply” visualizing a hypothetical path for conformational transitions via in-
terpolation between experimentally observed crystal structures [111] to methods
artificially changing the atomistic description of molecular dynamics for allow-
ing the acceleration of conformational transitions. The latter kind of approach
includes such different concepts as the combination of molecular dynamics with
reaction path methods [84], so-called “conformational flooding” via subsequent
modifications of the original potential energy surface [47], or “steered molec-
ular dynamics” by simulating atomistic force microscope experiments [59, 48].
Despite all differences, these methods share the same basic idea: to circumvent
the inaccessibility of conformational transitions by means of changing the phys-
ical model. In contrast to this, our direct approach tries to leave the (reliable)
atomistic model intact but replaces long-term simulation by an appropriately
chosen ensemble of short subtrajectories.

2.1.4 Boundary Conditions

Typically, biomolecular experiments are concerned with large numbers of some
certain type of biomolecule embedded in a crystal or in solution. For modelling
a crystal, it suggests itself to use periodic boundary conditions,6 because a crys-
tal may be understood as an infinite repetition of some elementary cell, where
each of these cells contains, e.g., one of the molecular systems under investiga-
tion. Similarly, periodic boundary conditions are also used to model biomolec-
ular solute/solvent systems in the typical test-tube situation: a large number
of biomolecules of the same type is irregularly, but nearly homogeneously dis-
tributed in a solute which itself consists of (small) molecules (e.g., water and
ions). Each of the “large” biomolecules is surrounded by its “hydration shell”
consisting of many solute molecules, so that the molecule together with its shell
can be understood as a large “biomolecular unit”. These large units are only
loosely coupled to each other via the exchange of electrostatic energy and so-

5These are nothing but fluctuations (e.g., bond length or bond angle vibrations) inside the
otherwise (meta-)stable conformation of the system.

6In molecular dynamics the phrase “periodic boundary conditions” means the reformula-
tion of the associated Hamiltonian equation of motion on some torus Ω.
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lute molecules. Typically this situation is modelled by a system containing
one of the biomolecular units with periodic boundary conditions allowing for
some exchange with its neighbors (=copies), see Fig. 5.7 In this sense, periodic
boundaries are of main importance for modelling the intermolecular exchange.

Figure 5: Illustration of periodic boundary conditions for modelling intermolecular exchange.
In the lower left corner of each periodicity cell a water molecule is exchanged between neigh-
boring cells.

While efficient algorithmic realization of periodic boundary conditions for
the long-range interactions has achieved a lot of attention (cf. [67, 17]), there
is no general strategy for dealing with bond-interactions in a periodic setting.
Normally, one tries to fix the biomolecule inside the periodicity cell and imple-
ments periodic boundaries only for the motion of the small solute molecules and
for the long-range interactions.

Summarizing, for crystals or pure liquids, it is realistic to assume that the
potential used in MD simulations is periodic, while this is a crude but not totally
misleading assumption for biomolecular systems in solution.

Assumptions concerning Potentials and Position Space As a conse-
quence of the above considerations the subsequent investigation is restricted to
the following cases: We always assume that the potential is smooth and that
singularities in the interior of the position space Ω are avoided, for example by
means of collision boundary conditions. Whenever Ω is unbounded (that is, in
most cases, Ω = �d) we always suppose that the potential V is binding, i.e.,
satisfies lim|q|→∞ V (q) = ∞. The case that the position space Ω is bounded
is always considered in context with periodic boundary conditions: Then, Ω
is some rectangular box in �d (that is, in particular, Ω is compact) and the
potential V is assumed to be bounded and smooth at the boundary (that is, it
can be extended smoothly as Ω-periodical function).

7Without the periodic boundary, i.e., if the model would only include a single “free”
biomolecular unit, the polarization of the water molecules in the hydration shell would be
significantly different. But the hydration shell has important influence on the behavior of the
biomolecule, which illustrates the importance of the periodic boundary.
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2.1.5 Problems with Long-term Simulation

Despite all problems mentioned so far, let us assume, now and in the follow-
ing, that we are concerned with some potential V and corresponding bound-
ary conditions which together appropriately model the interactions of a certain
molecular system. In order to analyze the dynamical behavior of this system,
we then have to approximate the associated flow Φt, i.e., we have to apply some
numerical discretization technique to the equation of motion (2). Typically, one
uses symplectic one-step methods like the well-known “Verlet” scheme, named
after its early inventor L. Verlet [110]. Generally, in the process of one-step
numerical integration of (2) we replace Φt by a discrete flow ΨΔt, so that

xk+1 = ΨΔtxk ⇒ xk =
(
ΨΔt
)k
x0,

with stepsize Δt (assumed to be constant, for the time being).
It is an important feature of molecular processes that long term predictions

over periods tremendously longer than the time steps applied in the discretiza-
tion are required. As already mentioned, the dynamics of every (bio)molecular
system contains extremely different time scales, from fast vibrations on scales
around 1 femtosecond to chemically significant molecular processes on, e.g., a
millisecond time scale. Unfortunately, every numerical discretization schemes
is forced to use time-steps of the order of magnitude of the fastest vibrations;
already time steps of about 5 femtoseconds result in dramatic instabilities [98].
Consequently, inspection of most chemically relevant processes by direct long-
term simulation requires such a huge number of time steps that it still is inac-
cessible to conventional MD methods.

But numerical long term predictions seem to be inappropriate also for an-
other, perhaps more important reason: Numerical analysis of present discretiza-
tions restricts the validity of the discrete solution to only short time spans and to
comparatively small discretization steps. Let us shortly illuminate this statement
by summarizing the results of so-called “forward” and “backward” analysis:

In “forward” analysis, one is interested in the propagation of initial pertur-
bations δx0 along the flow Φt of (2), i.e., in the growth of the perturbations
δx(t;x0) = Φt(x0 + δx0) − Φtx0. The condition number κ(t) may be defined
as the worst case error propagation factor (cf. textbook [20]), so that, in first
order perturbation analysis and with a suitable norm | · |:

|δx(t;x0)| < κ(t)|δx0| for all x0.

Note that this number κ(t) is independent of any discretization. From this
point of view, numerical integration is reasonable only over time intervals [0, T ]
with κ(T ) sufficiently small compared to expected input errors. In real life
MD problems, however, κ seems to be exponentially increasing (see [1, 21] for
examples).

The results of “backward” analysis [91, 49, 7] are more specific: For sym-
plectic discretizations, the discrete solution of a certain Hamiltonian system
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with Hamiltonian H is “exponentially close” to the exact solution of some per-
turbed Hamiltonian system, in which, for consistency order p and stepsize Δt,
the perturbed Hamiltonian has the form

H̃ = H +
N∑

k=0

Δtp+kHk (5)

This means that the discrete solution nearly conserves the Hamiltonian H̃ and,
thus, conserves H up to O(Δtp).8 In fact, numerical observations show that the
average of the total energy is nearly constant over rather long time spans for large
stepsizes, say Δt ≈ 1 femtosecond. Whenever one is not interested in a single
discrete trajectory but in approximating time averages of (macro-)observables
over a time interval [0, T ] via associated mean values of xk, k = 1 . . . T/Δt, the
results of backward analysis may lead to much better error estimates than the
worst case estimates of forward analysis (but clearly, only as long as T (or Δt)
are small enough). Compare [87] for more details.

2.2 Statistical Mechanics

It is not the only problem that long term prediction of single solutions of the
Hamiltonian system (2) is numerically ill-conditioned. There also are purely
physical reasons which let it seem questionable to compute any single solution,
even if this solution were arbitrarily accurate. This may come as a surprise, but
it has a simple reason: We can never know the precise initial state —all the
positions and momenta— of the whole molecule, simply because we in principle
always have to accept measurement uncertainties when determining the initial
state. When modelling the physical reality, this simple insight always forces
us to propagate a collection of trajectories which “samples” the distribution of
possible initial states. In this sense, we always have to simulate an ensemble
of molecular systems which represents the distribution of possible initial states
determined via the initial measurement. Then, every comparison of later mea-
surements with simulation results will concern mean or expectation values and
not any single system in the ensemble. Hence, we have to consider an ensemble
of systems described by a time dependent probability density f = f(x, t) in phase
space, which obviously has to satisfy

f(x, t) = f0(Φ
−tx), with f0 = f(·, t = 0), (6)

i.e., the probability f0(x) of being in x ∈ Γ at time t = 0 is simply transported
along the trajectory Φtx of the system. Even if the initial density f0 is concen-
trated near an initial position x0, it may become disintegrated or “smeared out”,
so that the trajectory Φtx0 alone cannot describe the situation appropriately.

8In general, however, the above formal series diverges as N → ∞ and the term “exponen-
tially close” has to be specified carefully. See [50] for details.
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Initial Preparation of an Ensemble The density f0 describes the initial
probability distribution in the statistical ensemble, i.e., f0(x) is interpreted as
the relative frequency in the ensemble of systems in state x at time t = 0.
Therefore, the density f0 has to be defined in accordance with the initial experi-
mental preparation of the ensemble. The phrase “preparation” reflects that the
ensemble should be imagined as a collection of copies of the same system, each
initially in one of the possible states with the collector having to “prepare” the
collection such that the correct relative frequencies are achieved. In this sense,
the evolution of the density f = f(x, t) should not be interpreted as describing
the “possibility” of finding a certain single system in a certain state, but as a
“relative frequency” of systems in the ensemble occupying this certain state:
The latter can be measured, the first not at all.

2.2.1 Liouville Equation

Another formulation of the evolution (6) of the probability density uses the
Liouville equation associated with the Hamiltonian H :

∂t f = iLf = {H, f}, f(t = 0) = f0, (7)

where {·, ·} denotes the well–known Poisson bracket.9 L = −i{H, ·} is a self-
adjoint operator on the Hilbert space L2(Γ), called the associated Liouville
operator (cf. [65, 62]). The solution of (7) in fact satisfies (6). On the other
hand, it can be denoted using the semi-group generated by L:

f(·, t) = exp(itL) f0 = f0 ◦ Φ−t, (8)

for example, on the Hilbert space L2(Γ).

2.2.2 Stationary Ensembles and Invariant Densities

By far the most experiments are performed using equilibrium ensembles, i.e.,
ensembles which are described by stationary densities of the Liouville equation.
In view of (6), these stationary densities f are given by invariant densities of
the flow, i.e., densities f such that f(x) = f(Φ−tx) for all instances t and all
x ∈ Γ. In particular, for arbitrary smooth functions F : � → �

+
0 with∫

Γ

F(H(x)) dx = 1,

the associated densities f(x) = F(H(x)) are invariant. In our context the most
important features of these “energy prepared” densities are the following two:

f = f ◦ Φ−τ , i.e., f is invariant, (9)

f = f ◦R, i.e., f is p-symmetric, (10)

9That is, for smooth functions f, g : Γ → �: {f, g} = Dqf ·Dpg−Dqg ·Dpf , with Dq and
Dp denoting the derivatives with respect to positions and momenta, respectively.
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where R denotes the momentum reversion R(q, p) = (q,−p).

Canonical Density Most experiments on molecular systems are performed
under the equilibrium conditions of constant temperature, particle number, and
volume. The corresponding stationary density is the canonical density associ-
ated with the Hamiltonian H

fcan(x) =
1

Z exp (−β H(x)) , with Z =

∫
Γ

exp (−βH(x)) dx,

where β = 1/kBT , with T being the system’s temperature and kB Boltzmann’s
constant.10 Since H was assumed to be separable, fcan is a product

fcan(x) =
1

Zp
exp

(
−β
2
pTM−1p

)
︸ ︷︷ ︸

=P(p)

1

Zq
exp (−β V (q))︸ ︷︷ ︸

=Q(q)

, (11)

where we normalize P and Q such that∫
P(p)dp =

∫
Q(q)dq = 1. (12)

For the case that the position space Ω is unbounded, we have to guarantee
that the partition function Z is finite and the normalization (12) is possible.
Thus, we restrict our consideration to the case of binding potentials, for which
we always assume that the asymptotic growth is fast enough to guarantee that∫
Γ exp(−βH(x))dx <∞.

2.3 Frobenius–Perron and Koopman Operators

One can analyze the statistical properties of rather general deterministic dy-
namical systems independent of any connection to statistical mechanics and its
interpretation. Typically, this is realized by means of the Frobenius–Perron op-
erator of the dynamical system on the set M of probability measures. For the
discrete Hamiltonian system xk+1 = Φτxk, the Frobenius–Perron operator can
be defined by

(Pμ)(B) = μ
(
Φ−τ (B)

)
, for all measurable B ⊂ Γ and μ ∈ M.

We are mainly interested in absolutely continuous measures μ and, thus, in the
form of the operator acting on the associated densities. When restricted to
densities, the Frobenius–Perron operator takes a particularly simple form for

10The canonical density is often called the Boltzmann distribution or Gibb’s canonical distri-
bution. It is known to be the maximizer of Boltzmann’s entropy function S(f) = −

∫
f log fdx

in the space of all densities under the condition of given energy expectation 〈H〉 of the ensem-
ble. If β is associated with the temperature T , the maximal entropy S(fcan) = logZ + β〈H〉
is just the thermodynamic entropy for systems with fixed temperature T and internal energy
〈H〉 and for given volume and particle number (cf.[117], Chap. 1.3).
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measure-preserving maps like our discrete Hamiltonian system. In this case it
is defined by

Pf = f ◦ Φ−τ , (13)

a definition, which we may extend, e.g., to the usual function spaces Lp(Γ) =
{f :

∫
Γ |f(x)|

p dx < ∞}, p = 1, 2. Our short encounter with the Liouville
equation, especially equality (8), allows us to rewrite our Frobenius–Perron
operator P in terms of the Liouville operator L as

P = exp(iτL) in Lp(Γ), p = 1, 2. (14)

The associated adjoint operator P ∗ = exp(−iτL) is called Koopman operator
due to B.O. Koopman [62]. Koopman’s lemma (cf. Lemma A.16 in Appendix
A) states that P ∗, and herein also P , are unitary as operators on L2(Γ).11 Con-
sequently, for Hamiltonian systems, the L2-spectrum of the Frobenius–Perron
operator lies on the unit circle, i.e., it has no eigenvalues inside the unit cir-
cle. As already mentioned in the introduction of this manuscript, this is the
central difficulty of the “dynamical system approach” to the identification of
conformations.

Ensembles versus Single Systems There are at least two significantly dif-
ferent interpretations of the Frobenius–Perron operator P for Hamiltonian sys-
tems:

• Due to (14), we can understand P in the context of Statistical Mechanics as
the propagator of an ensemble. Its norm-preserving properties guarantee
the possibility of this statistical interpretation (no “loss” of probability).

• One can also interpret P in a probabilistic sense for single systems, as typ-
ically done in the theory of dynamical systems, via its invariant measures,
i.e., measures μ ∈ M such that Pμ = μ. If an invariant measure μ is
ergodic,12 Birkhoff’s ergodic theorem states that we have

A(x) = lim
n→∞

1

n

n−1∑
k=0

A(Φkτx) =

∫
Γ

A(y)μ(dy), (15)

for μ-almost every x ∈ Γ and every integrable function A. Hence, μ de-
scribes the relative frequency with which the single system visits a certain
phase space region during its evolution in time.

The total energy of our Hamiltonian system (2) is preserved along its trajectory
so that the system stays on a certain energy surface, i.e., on a 2d−1-dimensional
submanifold of the phase space Γ. This implies

11For the special case of Hamiltonian systems, P is norm-preserving in L1(Γ), too. This
results from [66], Prop. 3.1.2.

12That is, it satisfies μ(B) ∈ {0, 1} for every invariant set B ⊂ Γ.
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Proposition 2.3 Every ergodic invariant measure of our Hamiltonian system
(2) is singular with respect to the volume measure on Γ.

In the context of molecular dynamics, the two above interpretations are
mostly expected to be equivalent, in the sense of the physical ergodicity hypoth-
esis which states that the ensemble average (expectation value for the stationary
ensemble) equals the running average A(x) for some single system in the en-
semble. Prop. 2.3 states that this can be true only for ensembles which are
distributed according to singular measures on Γ, that is, only such ensembles
can be simulated by following the long-term dynamics of some single system in
the ensemble.13

In turn, the ensembles with L1(Γ)-densities considered herein (like the canon-
ical ensemble, for example), cannot be generated by iterates of a single system.

In general, the invariant density associated with the evolution of any single
system is determined by the corresponding initial state, while every stationary
ensemble density is determined by the initial preparation of the ensemble.

2.4 Conformations as Almost Invariant Sets

Assume that an (arbitrary) stationary density f0 is given. How to define the
transition probability from one region B ⊂ Γ of the phase space to another one,
C ⊂ Γ? We are herein only interested in considering transition probabilities
which allow for an experimental determination. The typical measurement pro-
cess for any kind of transition probabilities is the following two-step experiment:

1. Pre-Selection: Select from the ensemble f0 at t = 0 all such systems with
states x ∈ B. This selection prepares a new ensemble, which now has the
density

fB(x) =

(∫
B

f0(x) dx

)−1

χB(x) f0(x).

2. Transition-Counting: After a time span τ , determine the relative fre-
quency of systems in the ensemble fB with states in C. Since all systems
evolve due to Φt, this relative frequency is equal to∫

B

χC (Φτx) fB(x) dx.

Hence, in order to get a measurable quantity, the transition probabilities have
to be defined as

13The physical ergodicity hypothesis is mostly used in the context of the micro-canonical
ensemble which is given by the equidistribution on a certain energy surface (with respect to the
projected Lebesgue measure). Then, it has to be understood as the assumption that Birkhoff’s
ergodic theorem holds with μ being this micro-canonical measure. Systems satisfying this
condition are called “physically ergodic”.
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w(B,C, τ) =

∫
Γ
χC (Φτx) f0(x) dx∫

B
f0(x) dx

. (16)

Using this definition we can introduce our notion of “almost invariance”: A
subset B ⊂ Γ is called invariant under the flow Φt iff, for all t ∈ �,

Φt(B) = B and, thus, w(B,B, t) = 1,

where the last equality is independent of the choice of the stationary density
f0. We are interested in subsets B with w(B,B, τ) sufficiently close to 1, to be
denoted as almost invariant subsets. This first rough “definition”,

B ⊂ Γ almost invariant ⇔ w(B,B, τ) ≈ 1, (17)

clearly depends on the interpretation of “sufficiently close to 1”. For the next
steps we will ignore the question how to define ≈ 1 precisely; it will later come
out to be problem-dependent and related to the eigenvalue structure of the
associated transition operator. However, our definition of almost invariance
depends on the choice of the stationary density f0 and on the time span τ .

Conformations Before introducing a mathematical definition of the phrase
“conformation”, let us collect the main aspects of the chemical intuition behind
this phrase. Every conformation contains a lot of configurations, that is, it is a
set of configurations characterized by the following properties:

• Geometric similarity: Every configuration in the set induces nearly the
same global geometry of the molecule which can be described in terms of
a certain set of internal variables, the so-called essential variables of the
molecule (cf. Sec. 2.1.3).

• Meta-stability: The trajectory of a single system including all its fast
oscillations around equilibrium positions remains inside this set for a long
period of time before leaving it eventually.

• Hierarchy of conformations: Every conformation corresponds to one of the
“main wells” of the potential. The potential has a huge number of local
minima. Thus, every such main well must contain many local minima
and must be separated from the remaining parts of the potential energy
surface by substantially large energy barriers such that the trajectory of
a single system is trapped in this well for some long period of time. Thus,
there is a hierarchy of potential wells (every main well will decompose into
several wells with less significant meta-stability). In turn, we also have to
deal with a hierarchy of conformations.
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Consequently, the connections between these three aspects are as follows:
We need some measure of meta-stability in order to define the hierarchy of
conformations. Then, we have to decide which level of this hierarchy we are
willing to resolve and this decision determines whether two different kinds of
global geometry are distinguished as indicating two different conformations or
not.

Unfortunately, the above characterization of meta-stability is related to the
concept of a single system. In order to define the notion “conformation” in terms
of the ensemble under consideration, we have to transfer these characterization
to the statistical level of description. The statistical concept of meta-stability
is given by the notion of almost invariance due to (17), which leads us to the
following statistical definition: every conformation is an almost invariant set of
the ensemble in the sense of (17).

As the above considerations indicate, the chemical usage of the phrase “con-
formation” never refers to any momentum information. Consequently, we are
only interested in spatial subsets, i.e., subsets of the position space Ω. The tran-
sition probability between such spatial subsets B ⊂ Ω and C ⊂ Ω is given by
the transition probability between the associated phase space fibers Γ(B) and
Γ(C):

w(B,C, τ) = w(Γ(B),Γ(C), τ) with Γ(B) = {(q, p) ∈ Γ, q ∈ B}, (18)

where the notational ambiguity is accepted for the sake of simplicity; in every
case, the meaning of w(B,C, τ) is clear from the context. Consequently, some
spatial subset B ⊂ Ω is called almost invariant iff w(B,B, τ) ≈ 1.

The probability w(B,B, τ) to stay within some set B ⊂ Ω induces our kind
of a statistical hierarchy: an almost invariant set B may contain almost invariant
subsets Bj but, whenever w(Bj , Bj , τ) < w(B,B, τ), the decomposition of B is
interesting at most on finer levels of resolution. We will see that this statistical
hierarchy induces an associated hierarchy of potential wells. In this sense, a
decomposition of the potential energy landscape into several “main wells” cor-
responds to a decomposition of the position space into almost invariant sets
with superior probability to stay within.

If we —due to the usual belief in chemistry— suppose that conformational
transitions can be characterized via some few essential variables only, then we
may further restrict the form of the almost invariant sets of interest: We do no
longer consider arbitrary spatial sets B ⊂ Ω or the associated fibers Γ(B) ⊂ Γ
but only such sets which can be characterized in terms of the essential variables
alone. This final restriction to such conformational subsets will be discussed in
Sec. 3.5 in detail.

Summarizing, in order to characterize the conformational dynamics of the
molecular system, almost invariant (spatial or conformational) subsets with su-
perior probability to stay within and the transitions between them are the ob-
jects of interest.
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3 Problem-Adapted Transition Operators

We are now ready to define the transition operator T for replacing the inappro-
priate Frobenius–Perron operator P . The needs explained above require that T
must have the following properties:

• T must have a unique invariant density reflecting the distribution in the
experimentally prepared ensemble.

• T has to represent the correct transition probabilities between subsets of
the position space.

• Considered in appropriate spaces, T must have isolated eigenvalues which
allow to identify the conformations via the associated eigenvectors.

To this end, we will first define a spatial transition operator, which acts on func-
tions living on the entire position space. After studying its basic properties, we
will generalize this definition for allowing to include the restriction to essential
variables (Sec. 3.5).

3.1 Spatial Transition Operator

Let us now assume, that the statistical ensemble under consideration is described
by a (nonnegative) invariant phase space density f0 ∈ L1(Γ) which satisfies
conditions (9) and (10) and leads to a positive reduced density

F (q) =

∫
�d

f0(q, p) dp, (19)

which is smooth and finite on Ω. The transition operator is given by

Tu(q) =
1

F (q)

∫
�d

u
(
π1Φ

−τ (q, p)
)
f0(q, p) dp, (20)

where u = u(q) is a function u : Ω → � . Thus, T is defined by a suitable
weighted average of the Frobenius–Perron operator over the momenta in each of
the trivial fibers

Γ(q) = {x ∈ Γ, π1x = q} = {q} × �
d ,

where the weights are given by the experimentally prescribed stationary density
f0. Hence, the transition operator describes the statistics of the redistribution
of systems in the ensemble via the flow Φτ with respect to the time scale τ .
Since f0 is stationary the shape of the ensemble distribution does not change.
It is thus more adequate to say that T describes the spatial fluctuations inside
the ensemble f0 induced by the flow Φτ .
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We consider T as an operator on the weighted spaces

Lp
F (Ω) = {u : Ω → � ,

∫
Ω

|u(q)|pF (q) dq <∞}, p = 1, 2.

Obviously, L2
F (Ω) is a Hilbert space with scalar product

〈u, v〉F =

∫
Ω

u∗(q) v(q)F (q) dq

and induced norm ‖u‖2F = 〈u, u〉F . On L1
F (Ω), we use the canonical norm

‖u‖1,F =
∫
Ω |u(q)|F (q)dq. In the subsequent paragraphs we will discuss the

important properties of T with respect to these spaces. But before going into
details, let us consider the special case of the canonical ensemble:

Example 3.1 For f0 = fcan, the definition (11) yields F (q) = Q(q), so that,
together with (20),

Tu(q) =

∫
�d

u(π1Φ
−τ (q, p))P(p) dp. (21)

Hence, in this case, T describes the momentum weighted fluctuations inside the
canonical ensemble with respect to the time scale τ . In the following, always
if f0 = fcan, we simplify our notation and denote the weighted spaces Lp

Q(Ω)
from above by Lp(Ω), p = 1, 2, and, consequently, the associated norms by
‖ · ‖p,Q = ‖ · ‖p.

3.1.1 Transition Operator for Periodic Potentials

Let us now discuss the case of a periodic potential, where

V (q +mljej) = V (q), ∀m ∈ �,

with ej being the unit vector in the jth coordinate direction. The associated

position space is the “periodicity cell” Ω =
∏d

j=1[0, lj) and all considered en-
semble densities f0 are supposed to be normalized with respect to the restricted
phase space Ω× �d . Hence, the transition operator T should also be restricted
to spaces of periodic functions on Ω. That is, we may consider T as acting on
Lp

per
(Ω) instead of Lp(�d ). It will later turn out that it is convenient to do this

in the following way: Let us first define the periodicity map ξ : �d → Ω as
follows: For every y ∈ �

d there is a unique q ∈ Ω such that there is a tuple
(m1, . . . ,md) ∈ �d yielding

y = q +

d∑
j=1

mj lj.

This function y �→ q is the periodicity map ξ, i.e., ξ(y) = q. Via ξΓ(q, p) =
(ξ(q), p), the map ξ induces a periodicity map ξΓ : Γ → Ω× �d for the original
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phase space Γ = �d × �d . With its help, we restrict the flow Φt to the torus
given by Ω and the periodic boundary conditions by considering the flow

Φt
ξ = ξΓ ◦ Φt ◦ ξΓ (22)

instead of Φt. The transition operator is then defined by

Tu(q) =
1

F (q)

∫
�d

u
(
π1Φ

−τ
ξ (x)

)
f0(q, p) dp, (23)

now acting on the spaces Lp
F (Ω) of functions u : Ω → � weighted with the

density F |Ω.

3.1.2 Exemplifying Spectral Properties of T

In the following three examples, we will always consider the case of canonical
ensembles (f0 = fcan) with reduced density F = Q.

Example 3.2 As a first example consider the one-dimensional harmonic oscilla-
tor (H(q, p) = (q2+p2)/2 and Ω = �). From (21) we get, with the abbreviations
c = cos τ and s = sin τ :

Tu(q) =

∫
�

u(cq − sp)P(p) dp with P(p) =

√
β

2π
exp

(
−β
2
p2
)
.

Thus, we have to distinguish between two essentially different cases:
First, assume c = 1, i.e., τ = 2mπ, m ∈ �. Then, we immediately observe

that Tu = u for all u ∈ L2(Ω). That is, T is the identity with spectrum
σ(T ) = {1} and any subset B ⊂ � is invariant. For c = −1, T is the identity
on the subspace of all symmetric functions (u(q) = u(−q)).

Second, for |c| < 1 we can generate a sequence of eigenvectors by the fol-
lowing construction: Assume that u ∈ L2(Ω) is a smooth eigenvector for the
eigenvalue λ, i.e., that Tu = λu. Differentiation of this equation with respect
to q yields

Dq(Tu) = c TDqu = λDqu.

Thus, λ∗ = λ/c is an eigenvalue with eigenvector u∗ = Dqu. Since χ� ∈ L2(Ω)
satisfies Tχ� = χ�, we can find a sequence of eigenvectors given by polynomials
un ∈ L2(Ω), n ∈ �, satisfying

Dqun = un−1 and Dqu1 = χ�.

If we additionally choose these un to be pairwise orthogonal with respect to
〈·, ·〉F , we end up with

u1(q) = q, u2(q) = q2 − s2, u3(q) = q3 − 3s2q, . . . ,

with s =
∫
p2P(p)dp = 1/β. The corresponding eigenvalues are λn = cosn(τ).

These eigenvectors are illustrated in Figure 6. We will see in Section 4.2 that,
for |c| < 1, T indeed has purely discrete spectrum with a single accumulation
point at zero.
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Figure 6: Probability density vn(q) = |un(q)|2Q(q) of the eigenvectors un for a harmonic
oscillator (H(q, p) = (q2 + p2)/2 and β = 1).

Example 3.3 As a worst case example let us consider a canonical ensemble of
free particles in space dimension one (i.e., V = 0, M = 1).14 For simplicity, set
τ = 1. From (21) we then get

Tu(q) =

∫
�

u(q − p)P(p) dp with P(p) =

√
β

2π
exp

(
−β
2
p2
)
.

Applying the Fourier transform û(k) = (1/2π)
∫
u(q) exp(ikq)dq, the convolu-

tion is reduced to a simple multiplication:

ˆ(Tu)(k) =
√
2π P̂(k) û(k) = T̂ û(k).

Since the Fourier transform is unitary on L2(�) and the transformed operator
T̂ is a multiplication operator, we simply have15

σ(T ) = σ(T̂ ) = (2π)1/2 Range(P̂) = Range(exp(−k2/2β)) = [0, 1].

Example 3.4 The simplest example for a bounded system is the free particle
in a box with reflections at the walls: choose Ω = [−a, a] for an a > 0, with

14In this case our initial assumption f0 ∈ L1(Γ) is hurt. For the scope of this example we
ignore this.

15Compare Appendix B, Thm. B.41.
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V (q) = 0 for −a < q < a and reflecting walls (V (q) = ∞ for |q| ≥ a). The flow
map associated with this “irregular” potential is

Φτ (q, p) = (Za(q + τp), p Sa(q + τp)) ,

with the 4a-periodic zigzag (cf. Fig. 1) and sign functions Za and Sa given on
[−2a, 2a] by

Za(q) =

⎧⎨
⎩

−2a− q, q ∈ [−2a,−a)
q, q ∈ [−a, a]

2a− q, q ∈ (a, 2a]
and Sa(q) =

{
−1, |q| ∈ (a, 2a]
1, q ∈ [−a, a] .

Hence, the definition of the transition operator reads

Tu(q) =

∫
�

u(Za(q − τp))P(p) dp,

acting on L2(−a, a).16 We now choose a somewhat unusual representation of
L2(−a, a): The trigonometric functions

ck(q) = cos
(
k
π

a
q
)

and sk(q) = sin

(
(k +

1

2
)
π

a
q

)
, k = 0, 1, . . .

indeed17 span L2(−a, a). Fortunately, these basis functions satisfy ck ◦Za = ck
and sk ◦ Za = sk, which directly leads us to

Tck =

⎛
⎝∫
�

cos(k
π

a
τp)P(p) dp

⎞
⎠ ck = exp

(
−k2 π

2τ2

2a2β

)
ck

Tsk =

⎛
⎝∫
�

cos((k +
1

2
)
π

a
τp)P(p) dp

⎞
⎠ sk = exp

(
−(k +

1

2
)2
π2τ2

2a2β

)
sk,

showing that ck and sk are eigenvectors of T . Moreover, we may expand any
u ∈ L2(−a, a) in this basis, yielding:

u =

∞∑
k=0

a2k ck +

∞∑
k=0

a2k+1 sk.

Hence, we may rewrite T in the form of a discrete multiplication operator:

T (ak)k∈�0 = (λk ak)k∈�0 with λk = exp

(
−k2 π2

8a2β
τ2
)
, k = 0, 1, 2, . . .

This proves that its spectrum is discrete: σ(T ) = {λk, k ∈ �0} ∪ {0}.
16The reduced density is F (q) = Q(q) = 1/2a.
17With B1 = {exp(ikπq/a), k ∈ �} also B2 = {exp(i(k + 1/2)πq/a), k ∈ �} is a basis

system in L2(−a, a), because with u ∈ L2(−a, a) also the function u(q) exp(−iπq/2a) lies
in L2(−a, a). The basis chosen herein consists of the symmetric part {ck} of B1, and the
anti-symmetric part {sk} of B2.
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These examples taught us several important lessons about the properties of
the transition operator T : If T is considered as an operator in L2, the spectrum
of T is real-valued, and may be discrete. The eigenvalues depend on the time
length τ , converging to one with τ → 0, while the eigenvectors need not depend
on τ . For τ > 0, the largest eigenvalue λ = 1 is simple and the associated
eigenvector is the constant function χΩ. But we must not forget that, in worst
case situations (e.g., T = Id if cos(τ) = 1 in Example 3.2), the spectrum may
degenerate (no eigenvalues of finite multiplicity).

But the above examples do not contain anything like an almost invariant set.
Thus, for illustrating the connection between certain eigenvectors of our tran-
sition operator T and almost invariant structures, we have to consider another
example:

3.2 The Guiding Example

Let us now consider a simple system for which the distinction between different
“conformations” or almost invariant subsets makes sense. For this purpose we
return to the particles-in-a-box ensemble from the introduction. That is, we
add a thin reflecting barrier of energetic height E0 at q = 0 to the system of
Example 3.4 (cf. Fig. 1) and consider the Hamiltonian H(q, p) = p2/2 + V (q)
in Ω = [−a, a] with the potential

V (q) =

⎧⎨
⎩

0 if 0 < |q| < a
∞ if |q| > a
E0 if q = 0

This has to be understood such that the flow Φt is given by the zigzag functions
from Fig. 1. More precisely, the flow consists of: reflections between −a and a
if the total energy is sufficient to cross the barrier, i.e.,

Φτ (q, p) = Φτ
0(q, p) = (Za(q + τp), pSa(q + τp), if H(q, p) > E0,

with the zigzag and sign functions Za and Sa from Example 3.4; and reflections
between ±a and 0 if the total energy is too small, i.e.,

Φτ (q, p) = Φτ
∓(q, p) =

(
Za/2(q ± a/2 + τp)∓ a/2, pSa/2(q ± a/2 + τp)

)
,

if H(q, p) ≤ E0,

with q ∈ (−a, 0) for the + sign and q ∈ (0, a) for the − sign.
With respect to the canonical ensemble the probability that the total energy

of some system in the ensemble is sufficient to cross the barrier is given by

prob(H(q, p) > E0) =

∫
|p|>√

2E0

P(p) dp,

which is temperature-dependent via P . Suppose that the temperature and
the barrier height E0 are chosen such that this probability is very small, i.e.,
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prob(H(q, p) > E0) = ε. Then, the two sets (−a, 0) and (0, a) are almost
invariant. In order to see how this intuitively obvious fact is described by the
eigenvectors of the transition operator T , consider the following decomposition:

Tu(q) =

(∫
|p|≤√

2E0

u(π1Φ
−τ
+ (q, p))P(p) dp

)
︸ ︷︷ ︸

=T−u(q) if q∈(−a,0)

χ(−a,0)(q)

+

(∫
|p|≤√

2E0

u(π1Φ
−τ
− (q, p))P(p) dp

)
︸ ︷︷ ︸

=T+u(q) if q∈(0,a)

χ(0,a)(q)

+

(∫
|p|>√

2E0

u(π1Φ
−τ
0 (q, p))P(p) dp

)
︸ ︷︷ ︸

=T0u(q)

We know that χ(−a,0) and χ(0,a) are eigenvectors to the largest eigenvalue λ =
1− ε of T− and T+, respectively. If we now consider

v = χ(−a,0) − χ(0,a),

we therefore find that

Tv(q) = (1− ε) v(q) + T0v(q) ≤ (1− ε) v(q) + ε.

Thus, we may interpret v as a good approximation of an eigenvector of T to an
eigenvalue λ ≈ 1 − ε. We already know that λ = 1 is the largest eigenvalue of
T with eigenvector χΩ. As we already observed in the introduction (compare
Fig. 2), v approximates the eigenvector to the second largest eigenvalue λ2 ≈
1 − ε of T (they are identical in “picture norm”). Moreover, this eigenvector
indicates the two almost invariant sets via its sign, that is, the eigenfunction
takes positive values on the first almost invariant set and negative values on the
other. For the parameter values of Fig. 2 (a = 1, β = 25, τ = 2, E0 = 1/10,
leading to ε ≈ 0.025), the dominating eigenvalues λk of T are given in the
following list

k 1 2 3 4 5 6
λk 1 0.974 0.478 0.453 0.256 0.254

We observe that the third largest eigenvalue is well-separated from λ1 = 1 and
λ2. As we will see in the following, this is the “generic” situation if the system
mainly has two almost invariant sets: There is a cluster of two eigenvalues,
λ1 = 1 and λ2 ≈ 1, clearly separated from the remaining part of the spectrum
of T , and the two corresponding eigenvectors indicate the almost invariant sets
via their signs: Denote the two eigenvectors by v1 = χ[−1,1] and v2 and define
their sign structures s(q) = (sign(v1(q)), sign(v2(q))) via the signum of the cor-
responding entries of the eigenvalues for every position q ∈ [−1, 1]. Then, the
almost invariant sets are given by all q with the same sign structure.
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Remark 3.5 When considering the limit E0 → ∞, i.e., an unbounded increase
of barrier energy leading to ε → 0, we observe that λ2(ε) → λ1(ε) = 1. Hence,
in the limit, the eigenspace of T for the eigenvalue λ = 1 is two-dimensional
and spanned by the two eigenfunctions χ(−a,0) and χ(0,a), so that (−a, 0) and
(0, a) are strictly invariant sets. That is, we may interpret the above almost
invariant case as a specific perturbation (with small perturbation parameter
ε) of the unperturbed invariant case. As a consequence, the eigenvectors of
λ1(ε) and λ2(ε) for the perturbed situation (cf. Fig. 2) correspond to the basis
{χ(−a,0) + χ(0,a);χ(−a,0) − χ(0,a)} of the “unperturbed” eigenspace for λ = 1.

Under this perturbation, the eigenvalue cluster (λ1(ε), λ2(ε)) remains iso-
lated from the remaining part of the spectrum: For example, the third and
forth largest eigenvalues, λ3(ε) and λ4(ε), both converge to exp(−π2τ2/2a2β)
(this is an implication of the results of Example 3.3).18
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Figure 7: Eigenvectors to the second (λ = 0.948), third (λ = 0.914), and forth (λ = 0.465)
largest eigenvalues of the transition operator T for a free particle in a box with two reflecting
barriers at q = −0.5 and q = 0.5 (a = 1, β = 25, τ = 2, E0 = 1/10, leading to ε ≈ 0.025).
Results of a discretization of T due to Sec. 5.

Two Barriers Figure 7 indicates that this concept can be generalized. It
shows the interesting eigenvectors for a particle in a box with two reflecting
barriers separating three almost invariant subsets. We observe that now there
is a cluster of three eigenvalues near λ = 1 with a distinct gap to the remaining
part of the spectrum and with eigenfunctions indicating the almost invariant
subsets via their sign structure.19

Again, the step-like shape of the eigenfunctions indicates that they corre-
spond to a certain “unperturbed” situation (given by the limit E0 → ∞, see
Rmk. 3.5 above) where the eigenvalue λ = 1 is three-fold and the associated
eigenspace is spanned by χ(−1,−1/2), χ(−1/2,1/2), and χ(1/2,1).

18For the parameter values from above, exp(−π2τ2/2a2β) ≈ 0.454.
19The sign structure of the three eigenvectors v1 = χ(−1,1), v2 (left in Fig. 7), and v3

(middle in Fig. 7) for the three largest eigenvalues λ1 = 1, λ2 = 0.948, and λ3 = 0.914, is as
follows: (+,−,−) for the almost invariant set (−1,−1/2); (+,≈ 0,+) for the almost invariant
set (−1/2, 1/2); (+,+,−) for the almost invariant set (1/2, 1).
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Remark 3.6 Almost invariant sets can be interpreted as specific perturbations
of invariant sets. The associated perturbation parameters are small crossing
probabilities or large barrier energies, but not the fluctuation length τ or “ex-
ternal” parameters like the temperature. To see this, observe that in the limit
τ → 0 or T → ∞, the specific isolation of the eigenvalue cluster near λ = 1 is
destroyed, because most the eigenvalues (and/or the essential spectral radius)
of T converge to 1.

3.3 Consideration as Markov Operator

We now consider the probability space (Ω,B, μ), where B denotes the σ-algebra
of Borel sets of Ω and the probability measure μ is given by

μ(B) =

∫
B

F (q) dq, for B ∈ B.

The set of all densities (i.e., nonnegative functions) in the corresponding L1-
space L1

F (Ω) is denoted DF (cf. Def. A.2 in appendix A). We want to show that
T can be considered as an Markov operator on L1

F (Ω) (cf. Def. A.3).

Lemma 3.7 T defines a bounded linear Markov operator L1
F (Ω) → L1

F (Ω).

Proof: Consider an arbitrary u ∈ L1
F (Ω). Via definition (20) we find

‖Tu‖1,F =

∫
Ω

1

F (q)

∣∣∣∣
∫
�d

u
(
π1Φ

−τ (q, p)
)
f0(q, p) dp

∣∣∣∣ F (q) dq
≤
∫
Ω

∫
�d

∣∣u (π1Φ−τ (q, p)
)∣∣ f0(q, p) dp dq

=

∫
Γ

∣∣u (π1Φ−τx
)∣∣ f0(x) dx

=

∫
Γ

|u (π1x)| f0(x) dx

=

∫
Ω

|u (q)|
∫
�d

f0(q, p) dp︸ ︷︷ ︸
=F (q)

dq = ‖u‖1,F

where the step from the third to the forth line uses the substitution x → Φτx
and exploits the invariance of f0 with respect to this transformation and the
volume conservation property of the flow. Thus, T is well-defined on the en-
tire space L1

F (Ω). In the second line, equality holds iff u ≥ 0, which shows that
‖Tu‖1,F = ‖u‖1,F for u ∈ DF . Since F, f0 ≥ 0, we also have Tu ≥ 0 for u ∈ DF .
Hence, T is a Markov operator.

Remark 3.8 The property of being a Markov operator already implies the
boundedness ‖T ‖1,F ≤ 1 (cf. [66], Prop. 3.1.1).
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3.4 Self-Adjointness and Transition Probabilities

Now, T is considered as an operator on the Hilbert space L2
F (Ω).

Lemma 3.9 The transition operator T : L2
F (Ω) → L2

F (Ω) is a bounded linear
operator with ‖Tu‖F ≤ ‖u‖F .

The following proof is nothing but an application of the Cauchy-Schwarz
inequality. Nevertheless, it is presented in detail because the same strategy will
be used again in the subsequent.
Proof: For an arbitrary u ∈ L2

F (Ω), definition (20) yields

‖Tu‖2F =

∫
Ω

1

F (q)2

∣∣∣∣
∫
�d

u
(
π1Φ

−τ (q, p)
)
f0(q, p) dp

∣∣∣∣2 F (q) dq. (24)

Consider the following family of Hilbert spaces Hq: For q ∈ Ω the space Hq

consists of all functions w : �d → � with∫
�d

|w(p)|2 f0(q, p) dp < ∞.

with the associated scalar product

(w1, w2)q =

∫
�d

w1(p)
∗ w2(p) f0(q, p) dp.

The induced norm is denoted ‖·‖q. For all q ∈ Ω, the constant function 1 = χ�d

is an element of Hq because

‖1‖2q =

∫
�d

f0(q, p) dp = F (q) <∞.

Next, consider the family of functions wq : �d → � defined by wq(p) =
u(π1Φ

−τ (q, p)). A short calculation like in the proof of Lemma 3.7 reveals
that ∫

Ω

∫
�d

|wq(p)|2 f0(q, p) dp︸ ︷︷ ︸
=‖wq‖2

q if <∞

dq = ‖u‖2F < ∞. (25)

Thus, we have wq ∈ Hq for almost every q ∈ Ω. Then, the Cauchy-Schwarz
inequality yields (again for almost every q):∣∣∣∣

∫
�d

u(π1Φ
−τ (q, p))f0(q, p) dp

∣∣∣∣2 = |(1, wq)q|2

≤ ‖wq‖2q ‖1‖2q
= ‖wq‖2q F (q).
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Inserting this into equation (24) yields

‖Tu‖2F ≤
∫
Ω

‖wq‖2q dq = ‖u‖2F ,

where the last equality results from (25).

Next, we are interested in the transition probabilities defined by T . There-
fore, let us consider two arbitrary, measurable subsets B,C ⊂ Ω. We again use
the notation

Γ(B) = {x ∈ Γ, π1(x) ∈ B}.

The characteristic functions χB and χC are elements of L2
F (Ω). Thus,

〈TχB, χC〉F =

∫
Ω

1

F (q)

∫
�d

χB

(
π1Φ

−τ (q, p))
)
f0(q, p) dp χC(q)F (q) dq

=

∫
Γ

χB

(
π1Φ

−τx
)
f0(x)χΓ(C)(x) dx

=

∫
Γ

χΓ(B)(x)χΓ(C) (Φ
τx) f0(x) dx, (26)

where the last equality results from the transformation x = Φτy together with
the invariance of f0 and the volume conservation property of the flow. We also
find that

〈χB , χB〉F =

∫
B

F (q) dq =

∫
Γ(B)

f0(x) dx,

which together with equation (26) finally reveals that

〈TχB, χC〉F
〈χB, χB〉F

=

∫
Γ(B)

χΓ(C) (Φ
τx) f0(x) dx∫

Γ(B) f0(x) dx
= w(Γ(B),Γ(C), τ), (27)

showing that T indeed represents the transition probabilities of our interest.
Using the other invariance of f0, it is easy to prove another crucial property

of T :

Lemma 3.10 The transition operator T : L2
F (Ω) → L2

F (Ω) is self-adjoint. Hence,
its spectrum satisfies σ(T ) ⊂ [−1, 1].

Proof: First, consider two arbitrary, measurable subsets B,C ⊂ Ω. Using (26)
and the reversibility of the flow (Lemma 2.1) we get

〈TχB, χC〉F =

∫
Γ

χΓ(B)(x)χΓ(C)

(
R(Φ−τRx)

)
f0(x) dx.
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Now, since f0 is p-symmetric (eq.(10)) and the sets Γ(B) and Γ(C) include all
possible momenta (i.e., x ∈ Γ(B) ⇒ Rx ∈ Γ(B), for example), a transformation
y = Rx yields

〈TχB, χC〉F =

∫
Γ

χΓ(B)(y)χΓ(C)

(
R(Φ−τy)

)
f0(y) dy

=

∫
Γ

χΓ(B)(x)χΓ(C)

(
Φ−τx

)
f0(x) dx = 〈χB, TχC〉F .

Since the step-functions are dense in L2(Ω), we get 〈Tu, v〉F = 〈u, T v〉F for
all u, v ∈ L2

F (Ω), i.e., the self-adjointness of T . Thus, its spectrum σ(T ) is
real-valued, which together with the boundedness (Lemma 3.9) implies σ(T ) ⊂
[−1, 1].

3.5 Restriction to Essential Variables

In the following we study the consequences of the restriction from full spatial
coordinates to other essential degrees of freedom. Let this set of essential vari-
ables be given in terms of the state of the system by a continuously differentiable
function ϑ : Γ → �ν ,

ϑ(x) = (ϑ1(x), . . . , ϑν(x)),

and denote the corresponding essential configuration space by Θ = ϑ(Γ). We
always assume that ϑ is independent of the momenta p, i.e., the function ϑ
depends only on the positions q. For simplicity, we use the notation ϑ = ϑ(q)
as well as the more general form ϑ = ϑ(x), where the meaning is always clear
from the context. For any possible value θ ∈ Θ we denote the corresponding
level set by

Γ(θ) = {x ∈ Γ, ϑ(x) = θ}.

We assume that these level sets are smoothly embedded submanifolds of dimen-
sion 2d− ν in Γ.20 Let dσθ(x) be the intrinsic volume element on Γ(θ).21

Let Ω ⊂ �d be the position space so that Γ = Ω × �d . Since ϑ does not
depend on the momenta p, the volume elements have the special product form

dσθ(x) = dσθ(q) ∧ dp,

where dσθ(q) denotes the intrinsic volume form of

Ω(θ) = {q ∈ Ω, ϑ(q) = θ},
20Thus, we assume that the associated Jacobian matrix Dϑ(q) has full rank for any q ∈ Ω.

Due to Sard’s lemma, this is the generic situation.
21Now and in the following, we assume that dσθ(x) is appropriately defined on all connected

submanifolds of Γ(θ). Moreover, it herein is of no importance whether Γ(θ) consists of more
than one component or not.
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which is a smoothly embedded, (d− ν)-dimensional submanifold of Ω.
For any invariant density f0 we define the reduced probability density as

Fϑ(θ) =

∫
Γ(θ)

f0(x) dσθ(x),

which is an element of L1(Θ) if f0 ∈ L1(Γ).
The transition operator associated with this set of essential variables then is

Tϑu(θ) =
1

Fϑ(θ)

∫
Γ(θ)

u
(
ϑ(Φ−τx)

)
f0(x) dσθ(x), (28)

where u = u(θ) is a function u : Θ → � .
Thus, Tϑ is again defined by a suitable f0-weighted average of the Frobenius–

Perron operator over every “essential fiber” Γ(θ), that is, the average includes
all momenta p and that part of the degrees of freedom which are “orthogonal”
to the considered essential variables ϑ.

We consider Tϑ as an operator on the weighted spaces

Lp
Fϑ

(Θ) = {u : Θ → � ,

∫
Θ

|u(θ)|pFϑ(θ) dθ <∞}, p = 1, 2,

with the scalar product

〈u, v〉Fϑ
=

∫
Ω

u∗(θ) v(θ)Fϑ(θ) dθ,

for the Hilbert space L2
Fϑ

(Θ), and induced norm ‖u‖2Fϑ
= 〈u, u〉Fϑ

.
For subsets B ⊂ Θ, the union of all fibers Γ(θ) with θ ∈ B is denoted by

Γ(B) =
⋃
θ∈B

Γ(θ) = {x ∈ Γ : ϑ(x) ∈ B},

in analogy to the notation used above. By repeating the computations from
Sec. 3.4, we observe that Tϑ in fact describes the transition probabilities between
subsets B,C ⊂ Θ, that is,

〈TϑχB, χC〉Fϑ

〈χB, χB〉Fϑ

= w(Γ(B),Γ(C), τ).

Example 3.11 For the above considered spatial case, we have to choose ϑ =
π1, that is, ϑ(q) = q with ν = d. Then, Ω(q) = {q} and Γ(q) = {q} × �d ,
implying dσq(x) = dp and the reduced probability density is Fϑ(q) = F (q) so
that definitions (28) and (20) coincide.
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Remark 3.12 Suppose that we are dealing with the canonical ensemble f0 =
fcan. Due to [64, 104], the so-called conformational free energy A = A(θ) for a
set of essential variables may be defined via

A(θ) = −β−1lnZ(θ), with Z(θ) =

∫
Γ(θ)

exp(−βH(x)) dσθ(x),

that is, it is defined via the contribution Z(θ) of the Γ(θ) to the classical partition
sum Z =

∫
Γ
exp(−βH)dx. With this definition, we obviously have

Z(θ) = exp(−βA(θ)) = Z Fϑ(θ),

which allows to rewrite the transition operator as

Tϑu(θ) =

∫
Γ(θ)

u
(
ϑ(Φ−τx)

)
exp (−β (H(x)−A(θ))) dσθ(x).

Consequently, the transition operator Tϑ describes the fluctuations inside the
ensemble f0 induced by the flow Φτ and weighted by the difference between the
potential energy surface and the conformational free energy surface.

Restriction Operator and Adjoint We next show that Tϑ may be written
as a specific restriction of the full spatial transition operator T . The associated
embedding is given by the following

Definition 3.13 Assume p = 1, 2 and let ϑ : Γ → Θ ⊂ �k be a set of essential
coordinates with the reduced probability density Fϑ = Fϑ(θ). The restriction
operator Rϑ : Lp

F (Ω) → Lp
Fϑ

(Θ) is defined by

Rϑu(θ) =
1

Fϑ(θ)

∫
Γ(θ)

u(π1x) f0(x) dσθ(x),

while the prolongation operator Bϑ : Lp
Fϑ

(Θ) → Lp
F (Ω) is simply given by

(Bϑu)(q) = u(ϑ(q)).

We next show that these operators allow to express the transition operator
for the given essential coordinates as Tϑ = RϑTBϑ. To see this, first consider

TBϑu(q) =
1

F (q)

∫
�d

u(ϑ(Φ−τ (q, p))) f0(q, p) dp.

Since also

Rϑu(θ) =
1

Fϑ(θ)

∫
Ω(θ)

u(q)

(∫
�d

f0(x) dp

)
︸ ︷︷ ︸

=F (q)

dσθ(q)

=
1

Fϑ(θ)

∫
Ω(θ)

u(q)F (q) dσθ(q), (29)
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we indeed end up with

RϑTBϑu(θ) =
1

Fϑ(θ)

∫
�d

∫
Ω(θ)

u(ϑ(Φ−τ (q, p))) f0(q, p) dσθ(q) dp = Tϑu(θ).

Thus, for further purpose we note the following

Proposition 3.14 For any integrable function u : Θ → � , the restriction and
prolongation operators Rϑ and Bϑ allow to rewrite the transition operator Tϑ
as

Tϑu = RϑTBϑu.

Moreover, Bϑ is an isometry, i.e., for p = 1, 2 we have

‖Bϑu‖p,F = ‖u‖p,Fϑ
, ∀u ∈ Lp

Fϑ
(Θ),

and Rϑ is a contraction with Markov property, i.e., for p = 1, 2

‖Rϑu‖p,Fϑ
≤ ‖u‖p,F , ∀u ∈ Lp

F (Ω), and ‖Rϑu‖1,Fϑ
= ‖u‖1,F , ∀u ∈ DF (Ω).

In addition, Rϑ : L2
F (Ω) → L2

Fϑ
(Θ) and Bϑ : L2

Fϑ
(Θ) → L2

F (Ω) are adjoint to
each other, i.e., R∗

ϑ = Bϑ and B∗
ϑ = Rϑ. Thus, in particular, if T : L2

F (Ω) →
L2
F (Ω) is self-adjoint, then Tϑ : L2

Fϑ
(Θ) → L2

Fϑ
(Θ) is, too.

Proof: The isometry of Bϑ directly results from u ◦ ϑ being constant on every
submanifold Γ(θ):

‖Bϑu‖pp,F =

∫
Ω

|u(ϑ(q))|pF (q) dq =

∫
Γ

|u(ϑ(x))|p f0(x) dx

=

∫
Θ

|u(θ)|p
∫
Γ(θ)

f0(x) dσθ(x)︸ ︷︷ ︸
=Fϑ(θ)

dθ = ‖u‖pp,Fϑ
.

The contraction property for Rϑ for p = 1 and the associated Markov property
are obvious. The contraction property for p = 2 can be proved with the similar
technique as the L2-boundedness of T in the proof of Lemma 3.9. Therefore,
define a family of Hilbert spaces Hθ with scalar product

〈u, v〉θ =

∫
Ω(θ)

u∗(q)v(q)F (q) dσθ(q)

and associated norm ‖ · ‖θ. Then, with similar arguments as in the proof of
Lemma 3.9, we can show for arbitrary u ∈ L2

F (Ω) that the Cauchy-Schwarz
inequality yields for almost every θ ∈ Θ:∣∣∣∣∣

∫
Ω(θ)

u(q)F (q) dσθ(q)

∣∣∣∣∣
2

= |〈χΩ, u〉θ|2 ≤ ‖u‖2θ Fϑ(θ),
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which permits us to estimate

‖Rϑu‖2,Fϑ
=

∫
Θ

|Rϑu(θ)|2 Fϑ(θ) dθ

=

∫
Θ

1

Fϑ(θ)

∣∣∣∣∣
∫
Ω(θ)

u(q)F (q) dσθ(q)

∣∣∣∣∣
2

dθ

≤
∫
Θ

‖u‖2θ dθ =

∫
Ω

|u(q)|2F (q) dq = ‖u‖2,F .

In order to show B∗
ϑ = Rϑ choose arbitrary v ∈ L2

F (Ω) and u ∈ L2
Fϑ

(Θ).
Then Bϑu ∈ L2

F (Ω) and

〈Bϑu, v〉F =

∫
Ω

u(ϑ(q))∗v(q)F (q) dq

=

∫
Θ

∫
Ω(θ)

u(ϑ(q))∗v(q)F (q) dσθ(q) dθ

=

∫
Θ

u(θ)∗
∫
Ω(θ)

v(q)F (q) dσθ(q)︸ ︷︷ ︸
=Fϑ(θ)(Rϑv)(θ)

dθ

= 〈u,Rϑv〉Fϑ
,

which demonstrates that B∗
ϑ = Rϑ. Since we are working in Hilbert spaces, this

also implies R∗
ϑ = B∗∗

ϑ = Bϑ.

3.6 Associated Stochastic Dynamical System

Let us return to the case ϑ = π1, that is, to the spatial transition operator and
the position space Ω. The following paragraph is crucial for the final interpre-
tation of our approach and its results. For the sake of conceptional simplicity,
we restrict the presentation to the case of the canonical ensemble, i.e., we only
consider f0(q, p) = fcan(q, p) = Q(q)P(p).

Assume B = B(Ω) to be the σ-algebra of Borel subsets of Ω. Moreover,
let Mf and M1 ⊂ Mf be the spaces of all finite and probability measures
μ : B → �+ , respectively.

We now define a specific stochastic dynamical system, which will later be
identified as the dynamical system associated with the spatial transition oper-
ator T . For a given initial position q0 ∈ Ω we define

qk+1 = π1Φ
τ (qk, pk), k = 0, 1, . . . (30)

with every pk ∈ �d being randomly chosen from the probability distribution P
on �d . According to [66], Chap. 12.4, this defines a regular stochastic dynamical
system which is described by a sequence of probability measures μk ∈ M1 given
by the probability of finding qk in a subset B ∈ B of Ω, i.e.,

μk(B) = prob(qk ∈ B).
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The sequence {μk} is also given by the iterates of the so-called Foias operator
P : Mf → Mf defined by

Pμ(B) =

∫
Ω

{∫
�d

χB (π1Φ
τ (q, p)) P(p) dp

}
μ(dq), ∀B ∈ B, (31)

in the sense that μk = P kμ0 if μ0 ∈ M1 is the probability measure according
to which the initial random position q0 is distributed.

In the following we consider measures μu ∈ Mf with densities u ∈ L1
Q, i.e.,

μu(B) =

∫
B

u(q)Q(q) dq, ∀B ∈ B.

According to (31), the Foias operator P acts on such measures as follows:

Pμu(B) =

∫
Γ

χB (π1Φ
τ (x)) u(π1x) fcan(x) dx

=

∫
Γ(B)

u(π1Φ
−τx) fcan(x) dx

=

∫
B

{∫
�d

u(π1Φ
−τ (q, p))P(p) dp

}
Q(q) dq.

Thus, Pμu has the density

Tu(q) =

∫
�d

u(π1Φ
−τ (q, p))P(p) dp,

given by the transition operator T . That is, T : L1(Ω) → L1(Ω) is the density
operator associated to the Foias operator P and therefore also associated with
the stochastic dynamical system (30). Consequently: If the initial position q0 of
(30) is distributed according to the probability density u ∈ D(Ω), the probability
density uk ∈ D(Ω) of finding qk = q is given by uk(q) = T ku(q).

Associated Markov Chain and Control Model In addition, we know
from Sec. A.1 of the appendix, that the Markov operator T induces a Markov
chain. Every iteration of (30) is a realization of this Markov chain. Meyn and

Tweedie [79] call the stochastic dynamical system (30) a “nonlinear state space
model” and also discuss its interpretation as a Markov chain (see Sec. 3.5.5 in
[79]). And they stress another important point: (30) may also be interpreted as
a “control model”, which describes the control of the positions q via the “control
variables” p. If we use the recursively defined notation

Ψk+1(q, p0, . . . , pk) = π1Φ
τ (Ψk(q, p0, . . . , pk−1), pk) , k ∈ � (32)

with Ψ1(q, p0) = π1Φ
τ (q, p0), the iterates of (30) can be denoted as

qk = Ψk(q0, p0, . . . , pk−1), (33)

Hence, we see that (p0, . . . , pk−1) may be interpreted as some control sequence
which can be designed such that some desired final position qk is accessible from
the initial position q0.
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3.7 Interpretation

It should be emphasized that —in contrast to the mathematical analogy between
the transition operator of the ensemble and the stochastic dynamical system—
there is a fundamental difference between the physical meaning of the two levels
of description, i.e., between the level of physical reality (the ensemble) and the
level of purely mathematical analogy (the associated Markov chain) (cf. Fig. 8).
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Figure 8: Illustration of transitions in an ensemble in contrast to the evolution of the as-
sociated stochastic dynamical system for the double well potential V (q) = (q2 − 1)2. Left:
Canonical ensemble fcan in the two-dimensional phase space. The white lines indicate trajec-
tories of single systems during some time span τ inside the ensemble. Since fcan is invariant
under the flow, all trajectories are parts of isolines. Only some trajectories of systems with
small probability cross the separation line q = 0 between the two almost invariant sets around
q = −1 and q = 1. Right: First 2000 steps of the discrete trajectory of a single realization
of the associated stochastic dynamical system. Again, jumps across the line q = 0 are rare.
Below: Histogram of the distribution of positions after these 2000 steps compared with the
appropriately scaled canonical position density Q. Asymptotically, the distributions converges
to Q.

3.7.1 Ensemble versus Stochastic Dynamical System

The transition operator T describes the redistribution or fluctuation in a sta-
tionary ensemble, i.e., it describes a statistical collection of single systems with
different actual states and measures how many of these single systems may per-
form some kind of transition during a single “time step” τ . Hence, some power
Tm of this operator can not necessarily be interpreted as describing fluctuations
in the ensemble on time scales mτ . As a consequence, the spatial transition
operator has no semigroup property: Let T τ denote the transition operator for
fixed time span τ as in (20), then, in general,

T τ T τ ′ �= T τ+τ ′
.

This can easily be illustrated if we assume that T τ is the transition operator of
Example 3.2 for the harmonic oscillator H(q, p) = (q2+p2)/2 with | cos(τ)| < 1.
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Then, T τu1 = cos(τ)u1 with u1(q) = q for all such τ . Hence,

T τT τ ′
u1 = cos(τ) cos(τ ′)u1 �= cos(τ + τ ′)u1 = T τ+τ ′

u1,

if only sin(τ) sin(τ ′) �= 0. Consequently, we cannot simply “link” fluctuations
on some short time scale to get fluctuations on longer scales. One can ex-
plain this observation by considering the underlying measurement processes:
〈(T τ )2χB, χC〉/〈χB, χB〉 belongs to a two-fold repetition of the two-step ex-
periment from page 19 —therefore including two pre-selection steps—, while
〈T 2τχB, χC〉/〈χB , χB〉 corresponds to a single realization with double stepsize
but with only one pre-selection step. But the physical observables associated
with the pre-selection step and the transition counting procedure do not com-
mute with respect to the Poisson bracket {·, ·}. Hence, the additional pre-
selection step changes the ensemble irreversibly so that, in general, the two
transition probabilities are different.

Independent of the interpretation with respect to an ensemble, the operator
T is associated with the stochastic dynamical system (30) and the corresponding
Markov chain {Xk}. On the one hand, the running time averages of the Markov
chain approximate the ensemble averages (see Sec. 4.5 below). But on the other
hand, the multiple-step transition probabilities P (Xm ∈ B|X0 ∈ A) of the
Markov chain from A ⊂ Ω to B ⊂ Ω after time mτ can be expressed via the
powers Tm of the transition operator (see Sec. A.1 in Appendix A), although
these powers have no direct interpretation for the ensemble.

Summarizing, multiple-step fluctuations (m > 1) of the Markov chain {Xk}
cannot be interpreted as fluctuations in the ensemble on time scales mτ ; only
single-step fluctuations and the invariant distribution of the Markov chain rep-
resent properties of the ensemble.

In this sense, the stochastic dynamical system and the corresponding Markov
chain are only artificial representations of the ensemble in an iterative way, in
form of some stochastically linked chain of single systems from the ensemble.
But in addition, the stochastic dynamical system (30) should not be taken as a
model of a single physical system.

These considerations are typical for the discussion of the correspondence
between statistical ensembles and stochastically embedded single systems. The
contributions to this discussion are varied and range from modelling decisions,22

over algorithmically oriented realizations23 to systematic investigation in, e.g.,
“stochastic realisation theory”.24 For the context discussed herein, it is only of
importance that the stochastic dynamical system (30) correctly represents the

22A typical example is the representation of a heat bath by means of adding some stochastic
excitation —external “noise”— as in Langevin dynamics [1, 115].

23For example, so-called “constant–temperature” embeddings of the Hamiltonian system
via Nosé-Hoover dynamics [81, 82] or its variants are often used in real-life applications.

24Stochastic realization theory or dilation theory stands for an overlap between systems
theory and statistical mechanics: dilations are embeddings of “small” systems into “large”
ones (“heat baths”), which have the property that the time-reversible, conservative motion of
the large system reduces to a dissipative, irreversible evolution of the small system. Use [73]
as a pointer to the literature.
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fluctuations in our ensemble moderating the transitions between certain subsets
of phase space on the given time scale τ .

Algorithmic Differences In addition to this conceptual differences between
ensemble and stochastic dynamical systems, we also have to distinguish between
transition operator and Markov chain on the algorithmic level:

1. If the system really contains almost invariant sets, then direct long term
iteration of the associated chain is algorithmically inappropriate: When-
ever some set B ⊂ Ω is almost invariant with respect to the ensemble,
it is almost invariant for the Markov chain in the dynamical sense (“long
relaxation time”), that is, the chain is trapped in B for many iterations
before it undergoes some conformational transition which then allows the
chain to sample other regions of the phase space.

2. As we will see in Sec. 5.4 below, it is difficult enough to construct an
efficient algorithmic realization of the Markov chain associated with the
spatial transition operator for the canonical ensemble fcan. In this case
we will exploit the specific multiplicative form of fcan. However, for some
arbitrary set of essential variables ϑ, we in general will not even have
any explicit expression for the associated reduced density Fϑ. Therefore,
there is no way —at least not with the strategies considered herein— to
construct any efficient realization of the Markov chain associated with the
transition operator Tϑ.

Despite these problems, we will exploit the mathematical analogy between tran-
sition operator, Markov chain and stochastic dynamical system not only for
proving convergence results (see Sec. 4.5) but also to construct an appropriate
numerical algorithm for evaluating the transition probabilities (cf. Sec. 5.4).

3.7.2 Fluctuation Length τ and Almost Invariance

How important is the choice of the “fluctuation length” τ for the identification
of almost invariant sets? In the context of the examples in Sec. 3.1, we already
observed that the eigenvectors for eigenvalues of T near λ = 1 do not show any
dramatic dependence on the actual value of τ , while these eigenvalues tend to
one with τ → 0. We will now present two additional insights which may help
to understand this observation and may support our hope that τ may not have
decisive influence on the shape of almost invariant sets.

The first of these insights is illustrated in Fig. 9 and states roughly that
mainly the (topological) properties of the potential energy surface determine
the shape of the almost invariant sets of the associated system: Around the
main minima of the energy landscape there are large flow-invariant regions.
Such a region is the “core” C of an almost invariant set, if the probability
to be within this region is large enough. In addition, each of these regions is
surrounded by some set SC of unlikely states (shaded in light grey in Fig. 9),
which have enough energy to leave SC under the action of the flow. The almost
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Figure 9: Phase portrait of the 2π-periodic potential shown in the left figure. The saddle
point at (qs, 0) between the minima separates two regions, shaded in dark grey and marked
B and C, which, both, are invariant under the flow. With the minima of the potential, the
maxima of the canonical density are located inside B and C. Thus, if the temperature is only
small enough, the canonical density is (exponentially) small for any state x 
∈ B ∪ C. But
only trajectories starting in such unlikely states from the surroundings SB ∪ SC of B ∪C can
cross the line q = qs, so that A1 = {q : q < qs} and A2 = {q : q > qs} are almost invariant
sets. This implies that some variation of the fluctuation length τ may change the transition
probability between A1 and A2, but not the almost invariant sets themselves.

invariant sets are given by the projection of these objects onto the essential
coordinates chosen. Whenever the degree of almost invariance is large enough,
the value of τ will have only minor influence, since it merely determines how
many of the unlikely states from SC will have enough time to finish the possible
transition between two almost invariant subsets (see Fig. 10). In this sense, τ
controls a kind of “melting process” for the flow-induced mixing; this mixing
generates conformational transitions but only in regions of the phase space with
insignificant probability to be within.

To understand the second observation, we have to introduce some suitable
notation: Let Φτ

V denote the flow associated with the equations of motion (2)
induced by the potential V . A simple rescaling of time in (2) reveals that

Φατ
V (q, p) = Φτ

α2V (q, αp), α > 0,

which shows that we can map an increase of the fluctuation length (α > 1) onto
an increase of potential and momenta. When considering the canonical density,
and using a generalized notation for the transition probabilities, we find that

w
(
A,B,Φατ

V , e−β(T+V )
)

= w
(
A,B,Φτ

α2V , e
− β

α2 (T+α2V )
)
,

where T = pTM−1p/2 denotes the kinetic energy and the exponential prefactor
β/α2 belongs to some increased temperature Tα = α2T . Thus, this simple trick
reveals that an increase in the fluctuation length τ may be understood as a
certain rescaling of parameters of the ensemble. Again, τ appears as some kind of
temperature-like “melting parameter”. This identification of changes in τ with
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Figure 10: Illustration of the flow-induced mixing of the surroundings SC and SB of the
system from Fig. 9. The three figures correspond to three different values (1.0/2.0/3.0) of the
fluctuation length τ . In all three cases the sets A1 = {q : q < qs} and A2 = {q : q > qs} are
almost invariant (if the temperature is small enough). States (q, p), which are transported to
A2 under the action of the flow during τ , i.e., for which π1Φτ (q, p) > qs, are colored in dark
grey. States ending up in A1 are colored in light grey.

simply rescaling the ensemble is of particular interest, since biophysical intuition
states that (mainly) the interactions (=potential) determine the conformations,
while the temperature only redistributes the probabilities to be within.

While the conformational subsets may be relatively insensitive to changes
in τ , this is different for all quantities characterizing the actual conformational
dynamics: The transition probabilities between the conformational subsets de-
pend crucially on τ and converge to zero in the limit τ → 0. The same holds
for the eigenvalues of T near λ = 1. This should not come as a surprise: the
fluctuation length τ is determined by the two-step experiment from page 19 as
the time span during which the ensemble can fluctuate freely; that is, the transi-
tion probabilities can only be understood relative to the measurement procedure
defining them.
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4 Spectral and Asymptotic Properties

We now switch to the consideration of the spectrum σ(T ) ⊂ [−1, 1] of our
spatial transition operator T : L2

F (Ω) → L2
F (Ω). We will see in Sec. 4.6, that

it is possible to get all crucial results for the spectrum of Tϑ for some set of
essential variables by transferring them from the spatial transition operator T
to Tϑ via the restriction and prolongation operators introduced in Sec. 3.5.

We already observed that the simple constant function χΩ satisfies

(TχΩ)(q) =
1

F (q)

∫
�d

f0(x) dp = 1, for all q ∈ Ω,

that is, TχΩ = χΩ. Thus, χΩ is an invariant density of T . The reader might
notice, that χΩ is an element of L2

F (Ω) because we initially assumed f0 ∈ L1(Γ).
It is the fundamental strategy of this approach to compute conformational

subsets from eigenstates of T for eigenvalues near λ = 1, and to quantify the
degree of invariance of the subsets. It is, thus, of main importance, under which
conditions such eigenvalues exist and the eigenvalue λ = 1 is simple.

Since we are interested in a numerically stable approximation result, we
have to demand for the existence of isolated eigenvalues near λ = 1, i.e., for
eigenvalues of finite multiplicity which are separated from continuous parts of
the spectrum by a finite gap. According to the well-known spectral theory of
linear operators, the spectrum may be decomposed into two disjoint subsets: the
set of all isolated eigenvalues of finite multiplicity and the essential spectrum
(cf. Appendix B). Thus, our first crucial question is:

A. Under which conditions can T have isolated eigenvalues of finite multiplic-
ity near λ = 1, i.e., which conditions guarantee that the essential spectrum
σess(T ) is bounded away from λ = 1?

For an answer to this question, we will show that, in the Hilbert space L2
F (Ω),

our transition operator T is quasi-compact. More precisely: We will show that
T —as an operator in L2

F (Ω)— can be decomposed into two linear operators,
T = T1+T2, where T1 is a strict contraction (‖T1‖2,F < 1), while T2 is compact.
Thus, due to the general results of spectral theory (cf. Appendix B), the essential
spectrum of T is given by that of T1 and, therefore, is bounded away from λ = 1
(cf. Sec. 4.2).

For the uniqueness of the invariant density, the following two questions are
of comparable importance:

B. Under which conditions is λ = 1 a simple eigenvalue, i.e., when is χΩ, up
to a factor, the unique eigenvector for λ = 1? And, when is λ = 1 the
dominant eigenvalue, that is, −1 �∈ σ(T )?

In order to find such conditions, we will exploit the stability theory for Markov
operators. That is, we will analyze the asymptotic behavior of the iterates T nu
for densities u ∈ L1

F (Ω), in order to prove asymptotic stability of T : L1
F (Ω) →

L1
F (Ω) (cf. Secs. 4.3 and 4.4). This will imply that, in L1

F (Ω) and L2
F (Ω),

44



λ = 1 is simple and dominant. It will come out to be relatively easy to realize
this “operator–oriented” approach for bounded position space Ω (Secs. 4.3 and
4.4). However, we will also see that we can easily show the same results under
weaker conditions when exploiting the well-established convergence theory for
the associated Markov chains (Sec. 4.5). In particular, we will then be able to
include the case of unbounded position space Ω. Unfortunately, this “Markov
chain theory” approach can only be applied to the spatial transition operator.
But we will be able to include the case of unbounded Ω also in the operator
oriented approach, when considering the transition operator Tϑ associated with
some set of essential variables.

In this section, we will always consider the case of canonical ensembles (f0 =
fcan). This simplifies a lot of arguments and avoids some nasty computations.
But the reader might notice, that, if not explicitly stated otherwise, the following
steps can also be realized for an arbitrary smooth stationary density f0 ∈ L1(Γ).

4.1 Transition Kernels

We now want to examine whether the spatial transition operator T , or at least
a part of it, has a representation as an integral operator with transition kernel.
That is, we ask whether there is a nonnegative measurable function k : Ω×Ω →
� such that

Tu(q) =

∫
Ω

k(q, y)u(y)Q(y) dy. (34)

To this end, let us first proceed purely heuristically: Assume that for every
q ∈ Ω the function yq(p) = π1Φ

−τ (q, p) is invertible for all p ∈ �d and let
vq = vq(y) denote the inverse of yq. Then, the transformation p �→ y = yq(p)
applied to the integral

Tu(q) =

∫
�d

u(yq(p))P(p) dp

results in

Tu(q) =

∫
Ω

P (vq(y)) |detDvq(y)| u(y) dy,

so that we have to define our transition kernel as

k(q, y) =
1

Q(y)
P (vq(y)) |detDvq(y)| ,

in order to achieve a representation like (34).

4.1.1 Momentum Invertibility

Certainly, our functions yq will in general not be invertible for all momenta.
Therefore, we define the following weaker notion of invertibility:
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Definition 4.1 The Hamiltonian flow Φτ is calledmomentum-invertible if both
of the following two conditions hold:

1. For almost every q ∈ Ω there is an open setM(q) ⊂ �d such that the func-
tion yq(p) = π1Φ

−τ (q, p) is locally invertible in M(q), i.e., detDyq(p) �= 0
for p ∈M(q).

2. There is an η > 0 such that

ess-inf
q∈Ω

∫
M(q)

P(p) dp = η. (35)

In this case, the set I = {(q, p) ∈ Γ : q ∈ Ω, p ∈ M(q)} ⊂ Γ is called the
“accessible phase space” with respect to the sets M(q).

Remark 4.2 Every set M(q) may consist of disjoint subsets. It follows from
the Inverse Function Theorem that in every of these subsets m(q) ⊂M(q) there
exists a smooth function vq : yq(m(q)) ⊂ Ω → �d such that vq(yq(p)) = p for all
p ∈ m(q). In most of the subsequent, we mostly refer to all of these functions
as to “the inverse” vq defined on the whole of yq(M(q)) without stating the
different subsets explicitly.

For compact position spaces, momentum invertibility holds under consider-
ably weak conditions:

Lemma 4.3 Let the position space Ω be compact and the potential V be smooth.
Assume that for every q ∈ Ω there is a momentum p ∈ �

d such that detDyq(p) �=
0. Then, the flow is momentum-invertible.

Proof: Consider arbitrary q ∈ Ω and p ∈ �d such that detDyq(p) �= 0. Since yq
is smooth, there is an open neighborhood of p where yq is invertible. Moreover,
since the entire flow is smooth, there even is an open neighborhood U(q) ⊂ Ω
of q such that, for all q̃ ∈ U(q), yq̃ is invertible in an open neighborhood O of
p. We may, without loss of generality, assume that the sets M(q̃) contain O.
Then, there is an α =

∫
O
P(p)dp such that

η(q̃) =

∫
M(q̃)

P(p) dp ≥ α > 0, for all q̃ ∈ U(q). (36)

Since q has been arbitrary, such α > 0 and neighborhood U(q) exists for all
q ∈ Ω. Consequently, there is a covering of Ω consisting of such open neighbor-
hoods U(q). Since Ω is compact, this system of open sets covering Ω contains a
finite subsystem U(q1), . . . , U(qm), m ∈ �, also covering Ω. Let αl denote the
α-value for the neighborhoods U(ql). Hence, minl=1,... ,m αl > 0 which implies
the assertion.
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Decomposition of T If the system is momentum-invertible in the sense of
Def. 4.1, we may define the following partial transition operator

T2u(q) =

∫
M(q)

u
(
π1Φ

−τ (q, p)
)
P(p) dp. (37)

relative to the sets M(q) chosen. Because of our assumption, the so-defined
operator has a transition kernel, i.e.,

T2u(q) =

∫
Ω

k(q, y)u(y)Q(y) dy.

The kernel can be written as:

k(q, y) =
1

Q(y)

∑
p∈M(q)
yq(p)=y

P (vq(y)) |detDvq(y)| , (38)

where the sum runs over the disjoint subsets of M(q), and we used the sim-
plifications introduced in Remark 4.2, i.e., vq denotes all different branches on
yq(M(q)). In order to guarantee that the summation in (38) is well-defined, we
introduce the following simplification:

Definition 4.4 Let n(q) denote the number of disjoint subsets in M(q), where
n(q) = ∞ whenever M(q) contains infinitely many disjoint subsets. For every
family of sets M(q) define NM = supq∈Ω n(q).

It is obvious that, if the flow is momentum-invertible, it is always possible
to choose the sets M(q) such that each M(q) contains at most a given number
of disjoint subsets25 so that NM <∞. This suggests to make the following

Assumption 4.5 In the following, we mostly suppose that the sets M(q) are
chosen such that NM <∞. This simplifies some arguments drastically but does
not change anything crucially. Whenever the case NM = ∞ is considered, we
suppose that every M(q) contains at most countably many disjoint subsets.

Remark 4.6 The reader might notice that we may choose specific sets M(q)
without loss of generality, as long as we are only interested in qualitative proper-
ties of the full transition operator T , because, in this case, some freedom is left
concerning the selection of the decomposition T = T1+T2 induced by theM(q).
For example, in order to show that T is quasi-compact, it suffices to prove the
existence of some family M(q) that leads to a compact T2 with the property
that T1 = T − T2 is a strict contraction (thus, we are free to show this under
the side-condition NM < ∞, cf. Sec. 4.2). We are not necessarily interested in
the “maximal” family of sets M(q).

25The conditions 1 and 2 from Def. 4.1 remain intact, only the value of η may change.
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Remark 4.7 The kernel k is an L1-function, i.e., it is k ∈ L1(Ω× Ω), since∫
Ω

∫
Ω

k(q, y)Q(y)Q(q) dy dq =

∫
Ω

∫
M(q)

P(p) dpQ(q) dq ≤ 1.

As another direct consequence of the definition, we find that∫
Ω

k(q, y)Q(y) dy︸ ︷︷ ︸
=η(q)

=

∫
M(q)

P(p) dp.

That is, η(q) is the probability with which q is accessible via Φτ in the canonical
ensemble (relative to the position density Q). Thus, the constant from Def. 4.1,

η = ess-inf
q∈Ω

η(q) = ess-inf
q∈Ω

∫
M(q)

P(p) dp,

may be interpreted as the minimal accessibility via Φτ in the canonical ensemble
(with respect to the sets M(q)).

The two parts T1 and T2 of the decomposition T = T1+T2 are linear bounded
operators on the Lp-spaces:

Lemma 4.8 Let the flow Φτ be momentum-invertible. Then, the transition op-
erators T2 and T1 = T − T2 are bounded operators Tj : Lp(Ω) → Lp(Ω) for
j = 1, 2 and p = 1, 2. Moreover, in L2(Ω), the operator norm of T1 satisfies
‖T1‖2 < 1, i.e., more precisely,

‖T1u‖2 ≤ κ ‖u‖2, ∀u ∈ L2(Ω), with κ =
√
1− η < 1,

where η > 0 is the constant from Def. 4.1.

Remark 4.9 In Lemma 4.8, the stated property of T1 depends on the specific
sets M(q) which were selected from all the possible sets with respect to which
the flow Φτ is momentum-invertible. The reader should be aware that, now and
in the following, statements like that of Lemma 4.8 should always be understood
in this sense “relative to the specific sets M(q)”.

Proof of Lemma 4.8: Clearly, the assertions for T2 follow from those for T1
and the properties of T itself. The operator T1 has the representation

T1u(q) =

∫
�d\M(q)

u
(
π1Φ

−τ (q, p)
)
P(p) dp,

which immediately implies the assertion for L1(Ω). In order to establish the
asserted bound in L2(Ω), consider the measurable function g : Γ → {0, 1}
defined by g(q, p) = 1− χM(q)(p) and its integral

γ(q) =

∫
�d

g(q, p)P(p) dp =

∫
�d\M(q)

P(p) dp,
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for which the normalization
∫
�d P(p) dp = 1 and condition 2 of the momentum-

invertibility implies that

ess-sup
q∈Ω

γ(q) = 1 − ess-inf
q∈Ω

∫
M(q)

P(p) dp = 1 − η < 1. (39)

In close analogy to the proof of Lemma 3.9, the following estimate results from
using the Cauchy-Schwarz inequality in the Hilbert space L2

P = {w : �d → � :∫
�d |w(p)|2P(p) dp <∞} for the inner integration:

‖T1u‖22 =

∫
Ω

[ ∣∣∣∣
∫
�d

g(q, p)u
(
π1Φ

−τ (q, p)
)
P(p) dp

∣∣∣∣2
]
Q(q) dq

≤
∫
Ω

⎡
⎢⎢⎢⎣
∫
�d

g(q, p)P(p) dp︸ ︷︷ ︸
=γ(q)

·
∫
�d

∣∣u (π1Φ−τ (q, p)
)∣∣2 P(p) dp

⎤
⎥⎥⎥⎦ Q(q) dq

≤ ess-sup
q∈Ω

γ(q) · ‖u‖22.

Together with (39), this yields the assertion.

Let us now check what is needed to establish a similar bound for T1 in the
L1-space. Obviously,

‖T1u‖1 ≤
∫
Ω

∫
�d\M(q)

|u(π1Φ−τ (q, p))| P(p) dpQ(q) dq

= ‖T |u|‖1 − ‖T2|u|‖1,

where we have equality in the first line if u is nonnegative. Hence, for proving
‖T1u‖1 < 1, we have to show that there is a κ > 0 such that ‖T2u‖1 ≥ κ for all
densities u ∈ D(Ω). But for these u ∈ D(Ω):

‖T2u‖1 =

∫
Ω

∫
M(q)

u(π1Φ
−τ (q, p))P(p)Q(q) dp dq

=

∫
I
u(π1Φ

−τx) f0(x) dx =

∫
ΦτI

u(π1x) f0(x) dx,

where I is the set introduced in Def. 4.1. We thus define new momenta subsets
M̃(q) such that

ΦτI = {(q, p) ∈ Γ : q ∈ Ω, p ∈ M̃(q)}, (40)

which, inserted into the equation above, yields the required bound:

‖T2u‖1 ≥ ess-inf
q∈Ω

∫
M̃(q)

P(p) dp.
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Hence, one observes that the condition for ‖T1‖1 < 1 requires an analogy to our
condition (35) (which implies ‖T1‖2 < 1 as we have already observed). Now, the
condition concerns the final momenta of trajectories starting in the accessible
phase space I, instead of the initial momenta in (35).

Proposition 4.10 T1 : L1(Ω) → L1(Ω) is bounded by ‖T1‖1 ≤ 1− η̃ with

η̃ = ess-inf
q∈Ω

∫
M̃(q)

P(p) dp,

where the sets M̃(q) are given by (40).

Merging the above construction with the strategy of the proof of Lemma 4.3,
we end up with

Proposition 4.11 Let the flow be smooth and momentum-invertible with ac-
cessible phase space I and suppose that the position space Ω is compact. Assume
that for every y ∈ Ω there is some (q, p) ∈ I such that y = yq(p). Then, there
is some ρ > 0 such that ‖T1‖1 ≤ 1− ρ.

4.1.2 Symmetric Momentum Invertibility

Let η̃ again be the constant from Prop. 4.10. Unfortunately, η̃ > 0 is not a
consequence of our condition (35). Because of this, we introduce a stronger
notion of invertibility:

Definition 4.12 The Hamiltonian flow Φτ is called symmetrically momentum-
invertible if it is momentum-invertible and if the sets M(q) in Def. 4.1 can be
chosen such that, simultaneously to the two conditions in Def. 4.1, the following
two conditions are satisfied, too. For all q ∈ Ω:

1. M(q) is almost everywhere momentum reversible, that is, p ∈ M(q) ⇔
−p ∈M(q).

2. If p ∈M(q) and (y, v) = Φ−τ (q, p) then v ∈M(y).

Remark 4.13 Since Φτ is (momentum) reversible, the two conditions imply
that, for p ∈ M(q), also v ∈ M(y) when (y, v) = Φτ (q, p). Hence, if Φτ is
symmetrically momentum-invertible:

ΦτI = {Φτ (q, p) : q ∈ Ω, p ∈M(q)}
= {(y, v) = Φτ (q, p) : y ∈ Ω, v ∈M(y)} = I,

which directly implies that M(q) = M̃(q) for almost all q ∈ Ω.

Thus, as a consequence of Prop. 4.10:
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Proposition 4.14 If Φτ is symmetrically momentum-invertible, then T1 : L
1(Ω) →

L1(Ω) is bounded by ‖T1‖1 ≤ 1− η with η given by

η = ess-inf
q∈Ω

∫
M(q)

P(p) dp.

Moreover, this kind of momentum-invertibility has other advantages:

Lemma 4.15 If Φτ is symmetrically momentum-invertible, then the transition
operator T2 : L2(Ω) → L2(Ω) is self-adjoint.26

Proof: Since the step-functions are dense in L2(Ω), it is sufficient to prove

〈T2χB, χC〉 = 〈χB, T2χC〉,

for the characteristic functions of two arbitrary measurable sets B,C ⊂ Ω. For
notational convenience, let us introduce for every subsets A ⊂ Ω:

I(A) = {(q, p) ∈ Γ : q ∈ A, p ∈M(q)} ⊂ I.

Following the same strategy as in the proof of Lemma 3.10, we find, by exploiting
the reversibility of Φτ and the invariances of f0, that:

〈χB, T2χC〉 =

∫
I(B)

χΓ(C)(Φ
−τx) f0(x) dx =

∫
I(B)

χΓ(C)(RΦ
τRx) f0(x) dx

=

∫
RI(B)

χΓ(C)(Φ
τx) f0(x) dx =

∫
Γ(C)

χRI(B)(Φ
−τx) f0(x) dx

=

∫
Γ(C)∩ΦτRI(B)

f0(x) dx.

But we also have

〈T2χB, χC〉 =

∫
I(C)

χΓ(B)(Φ
−τx) f0(x) dx =

∫
I(C)∩ΦτΓ(B)

f0(x) dx.

Hence, the assertion is proved if

Γ(C) ∩ ΦτRI(B) = I(C) ∩ ΦτΓ(B).

In order to finally see this, we exploit conditions 1 and 2 of Def. 4.12 and
Rmk. 4.13:

I(C) ∩ ΦτΓ(B) = {(q, p) : q ∈ C, π1Φ
−τ (q, p) ∈ B, p ∈M(q)}

= {(q, p) : q ∈ C, (y, v) = Φ−τ (q, p), y ∈ B, v ∈M(y)}
= Γ(C) ∩ {Φτ (y, v) : y ∈ B, v ∈M(y)}
= Γ(C) ∩ΦτI(B) = Γ(C) ∩ ΦτRI(B).

26That is, T2 is self-adjoint if the sets M(q), with respect to which T2 is defined, satisfy the
conditions for symmetric momentum-invertibility. Cf. Rmk. 4.9.
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Remark 4.16 Self-adjointness of T2 implies the symmetry of the kernel:27

T2 self-adjoint ⇒ k(q, y) = k(y, q) almost everywhere in Ω× Ω. (41)

This observation allows a symmetric interpretation of the minimal accessibility
of the system (cf. Rmk. 4.7). In other words: we no more have to distinguish
between transitions to and from q. Let us introduce the set A(q) of all positions
y which are accessible from q via Φ−τ :

A(q) = {y ∈ Ω, there is p ∈M(q) s.t. y = yq(p)} = yq(M(q)), (42)

which now is also the set of all positions y which are accessible from q via Φτ .
In particular, the symmetry of k yields

y ∈ A(q) ⇔ q ∈ A(y).

4.1.3 Illustrative Example

Consider the Hamiltonian system H(q, p) = p2/2 + V (q) with the smooth, pe-
riodic potential (cf. Fig. 11)

V (q) =

⎧⎨
⎩

1 − (q + 2)2/2, for − 2 ≤ q ≤ −1
q2/2, for − 1 ≤ q ≤ 1

1 − (q − 2)2/2, for 1 ≤ q ≤ 2
with V (q) = V (q + 4).

(43)
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Figure 11: Left: Periodic potential V of (43). The shaded domain is the periodicity cell Ω.
Right: Phase portrait of the flow Φ−τ

ξ for total energies E = 0.4/0.9/1.0/2.5. The thin vector

lines indicate that the end points of the curves for E = 2.5 are connected via the periodicity
map ξ. Along the flow Φ−τ the curves are circled clockwise.

27It is easy to see that the adjoint of T2 may be represented as T ∗
2 u(q) =∫

k(y, q)u(y)Q(y)dy, cf. [113], Chap. VII. If we define T2u(q) =
∫
Ω k̃(q, y)u(y)dy, the

kernel k̃ is not directly symmetric but satisfies the well-known detailed balance condition:
Q(q)k̃(q, y) = Q(y)k̃(y, q).
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Figure 12: The function yq for different q for the system with potential (43), i.e., yq(p) =
π1Φ−τ(q, p) for q = 0/0.9/1.5 versus momentum p.

Let Φt : �2 → �2 be the associated flow. We restrict our description to
the periodicity cell Ω = [−2, 2], i.e., we define the flow Φt

ξ due to (22) via the
periodicity map ξ and the transition operator acting on functions u : Ω → �

due to (23) via

Tu(q) =

∫
�

u
(
π1Φ

−τ
ξ (q, p)

)
P(p) dp, for q ∈ Ω. (44)

Let us choose τ = 2π. Then, we immediately observe that, for the harmonic
part of the potential and low energy, Φ−τ

ξ is the identity. More precisely

q ∈ [−1, 1], |p| <
√
1− q2 ⇒ Φ−τ

ξ (q, p) = (q, p).

One also finds28 that sufficient kinetic energy guarantees invertibility of yq(·) =
π1Φ

−τ
ξ (q, ·), i.e., for every q ∈ Ω:

1

2
p2 > 1 ⇒ detDyq(p) �= 0.

Thus, Φτ
ξ is symmetrically momentum-invertible with M(q) = {p : p2/2 >

1}. But we also observe that, particularly for |q| > 1, the function yq is also
invertible for some momenta with p2/2 ≤ 1 (cf. Fig. 12). This nicely illustrates,
that there is a significant freedom in the choice of the sets M(q), and that it
is a remarkable problem to identify “maximal” sets M(q) such that the flow is
(symmetrically) momentum-invertible.

Worst Case Scenario Let us go to the extreme of this example and consider
the Hamiltonian H(q, p) = p2/2 + V (q) with the potential V (q) = q2/2 for
|q| ≤ 1 as a 2-periodic function, i.e., with V (q + 2) = V (q).29 We again take
τ = 2π, define the transition operator by equation (44) via the periodic flow
Φτ

ξ , and denote yq(·) = Φ−τ
ξ (q, ·) (cf. Fig. 13). The flow is again symmetrically

momentum invertible, now, e.g., with

M(q) = {p ∈ � : H(q, p) > 1/2} = {p ∈ � : |p| >
√
1− q2},

28Compare Sec. 4.7 for more details.
29Within the limited scope of this example, the discontinuity of the force DV does not

matter.
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with associated minimal accessibility

η = 2

∞∫
1

P(p) dp.

But this time, p �∈ M(q) implies Φ−τ
ξ (q, p) = (q, p), so that the sets M(q) are

“maximal”. For the associated operator T1 this yields

T1u(q) =

∫
|p|≤

√
1−q2

u(π1Φ
−τ
ξ (q, p))P(p) dp = γ(q)u(q),

with γ(q) =
∫
|p|≤

√
1−q2

P(p)dp. That is, T1 is a multiplication operator. Due

to Thm. B.41 and Thm. B.41, its spectrum is given by

σ(T1) = σess(T1) = Ran(γ) = [0, 1− η],

i.e., the spectrum of T1 contains no discrete part.
Explicit computations show that the Jacobian Dvq is uniformly bounded

in q and y (cf. Fig. 13). The sums in the definition (38) of the kernel k
contain infinitely many terms but come out to be also uniformly bounded in
q and y.30 Moreover, the weight factor Q(y)−1 is bounded since inf [−1,1] Q =
exp(−β/2)/Zq > 0. Thus, k is bounded. We will see in the subsequent sections
that this implies that the associated operator T2 = T −T1 is compact,31 so that,
due to Thm. B.43, the essential spectrum of the full transition operator T is
identical to that of T1. This illustrates that, in the “worst case”, the (maximal)
minimal accessibility η describes the spectral gap between the essential spectrum
of T and the dominant eigenvalue λ = 1.
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Figure 13: Worst case scenario: Functions yq = yq(p), Dyq = Dyq(p), and Dvq = Dvq(y)

for q = 0.6 and p >
√

1− q2. Observe that Dyq is bounded and the branches of Dyq for
increasing momenta in yq converge to −2π = −τ so that Dvq converges to −1/τ .

30The Jacobian is uniformly bounded and the sequence of the possible values of vq(y) is
asymptotically equidistributed so that the decay properties of P together with the majorant
criterion yield a uniform bound.

31Compare Prop. 4.17.
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4.2 Compactness in L2

Let us assume all over this subsection that Φτ is momentum-invertible so that
the transition kernel of T2 is given by (38). Now, we want to collect useful
criteria guaranteeing compactness of T2 in L2(Ω).

To this end, we will exploit that T2 is a Hilbert-Schmidt operator (and, thus,
compact) in L2(Ω) if and only if its kernel satisfies k ∈ L2(Ω×Ω),32, i.e., if and
only if

I(k) =

∫
Ω

∫
Ω

k(q, y)2 Q(y)Q(q) dy dq < ∞. (45)

As a first observation, the boundedness of the kernel is enough to guarantee
compactness of T2, since k ∈ L∞(Ω×Ω) implies k ∈ L2(Ω×Ω) (cf. Prop. A.1).
Thus, we note that

Proposition 4.17 The transition operator T2 : L2(Ω) → L2(Ω) is a Hilbert-
Schmidt operator, and thus compact, if its kernel k is bounded, i.e., there is a
C <∞ such that

ess-sup
q,y∈Ω

k(q, y) = C.

This criterion suffices in many situations, particularly if the position space
Ω is bounded (cf. the worst case scenario in Sec. 4.1.3). But we can easily find
weaker criteria:

Bounded Position Space If Ω is bounded, we have infq∈Ω Q(q) > 0. Due
to Ass. 4.5 the sums in (38) defining k contain at most NM <∞ terms. Thus,
k is bounded, if only the Jacobian detDvq is uniformly bounded:

Proposition 4.18 Let Ω be bounded and assume that the sets M(q) are chosen
such that NM < ∞ and the Jacobian detDvq is uniformly bounded, i.e., there
is a C > 0 such that for almost every q ∈ Ω:

|detDvq(yq(p))| < C, for all p ∈M(q). (46)

Then, T2 is a Hilbert-Schmidt operator.

Remark 4.19 The uniform boundedness of the Jacobian detDvq will also be of
importance for other considerations. Therefore, let us call the flow Φτ (symmet-
rically) momentum invertible with uniform bound, if the setsM(q) can be chosen
such that the above condition (46) is satisfied together with the conditions for
(symmetric) momentum invertibility.

32Compare Thm. B.47 and Prop. B.46 in Appendix B.
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Remark 4.20 Whenever NM = ∞ in the sense of Ass. 4.5, we need some
additional condition on the convergence of the sum in (38) in order to prove
that k is bounded. The following condition is sufficient: Let the disjoint subsets
ofM(q) be denoted by Ml(q), l ∈ �, and the different branches of the functions
yq and vq on these sets by ylq and vlq. Moreover, suppose that the flow is
momentum-invertible with uniform bound. Then, there must be some C > 0
such that ∑

y∈yl
q(Ml(q))

P
(
vlq(y)

)
< C, uniformly for all q, y ∈ Ω.

This condition is valid, for example, if vlq(y) asymptotically increases like some
power of l (as it is the case for periodic potentials, see Rmk. 4.48).

Unbounded Position Space If Ω is unbounded, we cannot hope (to show)
that k is bounded or that a condition as simple as in Prop. 4.18 can be valid.
Thus, we need an alternative criterion for k ∈ L2(Ω×Ω). Since we will consider
the case of unbounded Ω in Sec. 4.6 again, we may herein restrict the presenta-
tion to the following result which exploits particular properties of the canonical
density. In order to derive this result we have to introduce some notation:

Let us denote the disjoint subsets of M(q) by Ml(q), l ∈ {1, . . . ,NM}, and
the corresponding branches of the functions yq and vq by y

l
q and v

l
q. Some y ∈ Ω

may be accessible via different branches of yq. Therefore, introduce the index
set Il(q, p) = {j : ylq(p) ∈ yjq(Mj(q))}. For j ∈ Il(q, p), the position y = ylq(p)

is accessible from q via the branch yjq with initial momentum vjq(y). Taking this

branch, we arrive at y = ylq(p) with final momentum

vlj(q, p) = π2Φ
−τ
(
q, vjq(y

l
q(p))

)
. (47)

The distribution of these final momenta influences whether T2 is Hilbert-Schmidt
or not:

Lemma 4.21 Suppose that the flow is momentum invertible with uniform bound.
Then, the transition operator T2 : L2(Ω) → L2(Ω) is a Hilbert-Schmidt operator
if the following integrability condition is satisfied:

∫
Ω

⎧⎪⎨
⎪⎩

NM∑
l=1

∫
Ml(q)

P(p)
∑

j∈Il(q,p)

P
(
vlj(q, p)

)
dp

⎫⎪⎬
⎪⎭ dq < ∞, (48)

where the functions vlj are given by (47).

Proof: Inserting the definition (38) of the kernel k into the condition I(k) <∞
from (45) yields

I(k) =

∫
Ω

∫
Ω

NM∑
l,j=1

P(vlq(y))P(vjq(y))

Q(y)

∣∣detDvlq(y) detDvjq(y)∣∣ Q(q) dy dq < ∞.
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Applying the transformations y �→ ylq(p) and using the boundedness of the
Jacobians transforms results in the following stronger condition:∫

Ω

⎧⎨
⎩

NM∑
l=1

∫
Ml(q)

P(p)

Q(ylq(p))

∑
j∈Il(q,p)

P(vjq(y
l
q(p))) dp

⎫⎬
⎭ Q(q) dq < ∞. (49)

The flow-invariance of the canonical density f0(q, p) = Q(q)P(p) leads to

Q(q)P(vjq(y
l
q(p))) = Q(yq(p))P(vlj(q, p)).

Inserting this into (49) finally yields the assertion.

In order to realize that this condition is satisfied, it is, e.g., sufficient to show
that |vlj(q, p)| → ∞ for q → ∞ fast enough for every fixed momentum p and
every pair of indices for which it is defined. For an illustration of the usefulness
of Lemma 4.21, consider the following

Example 4.22 Let us consider the one-dimensional harmonic oscillator, i.e.,
H(q, p) = (q2 + p2)/2 in Γ = �2 . Choose τ such that sin(τ) �= 0. Then, the
associated flow is symmetrically momentum-invertible with M(q) = � (and,
thus, NM = 1) and

yq(p) = q cos(τ) − p sin(τ) implying | detDvq| = | 1

sin(τ)
| < ∞.

Thus, condition (48) of Lemma 4.21 is satisfied, because π2Φ
−τ (q, p) = p cos(τ)+

q sin(τ) increases linearly with q. Consequently, the transition operator T = T2
is a Hilbert-Schmidt operator in this case.

Essential Spectral Radius Suppose that our partial transition operator T2
is a Hilbert-Schmidt operator and, thus, compact. Moreover, let T1 = T −T2 be
a strict contraction in L2(Ω), i.e., let there be some κ < 1 such that ‖T1‖2 ≤ κ.
Then, the essential spectrum of the full transition operator T is bounded away
from one.33 We have just observed that T1 satisfies this condition, if only the
flow is momentum-invertible (Lemma 4.8), and that, in this case, the operator
norm of T1 can be estimated via the minimal accessibility η > 0 due to ‖T1‖2 ≤√
1− η. That is, the essential spectral radius ress(T ) is strictly smaller than one

and can be estimated via the minimal accessibility:

ress(T ) = max
λ∈σess(T )

|λ| ≤
√
1− η.

We, thus, are interested in sets M(q) ⊂ �d for which the associated operator
T2 is a Hilbert-Schmidt operator and the minimal accessibility

η = ess-inf
q∈Ω

∫
M(q)

P(p) dp

33Compare Thms. B.43 and B.35 in Appendix B. It should be noticed that, for the appli-
cation of Thm. B.43, it is not necessary that T2 is self-adjoint: The essential spectrum of T is
real-valued and bounded by ‖T1‖2, whether T2 is self-adjoint or not.
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is maximal. These sets would gain the best estimate for the essential spectral
radius. Thus, maximize the minimal accessibility in choosing the sets M(q).

The worst case example of Sec. 4.1.3 illustrates that the essential spectrum
of T may indeed be as large as these estimates indicate so that the maximal
minimal accessibility in fact gives the gap between the essential spectrum of T
and its dominant eigenvalue λ = 1.

In other words, our best estimate for the essential spectral radius is given
by the maximal statistical weight of the momenta for which one of the functions
yq = yq(p) is not invertible. However, the present author wants to express his
opinion in form of the following

Conjecture 4.23 Generically, for potentials modelling realistic molecular sys-
tems, the functions yq are invertible except for very few momenta, i.e., the es-
sential spectral radius of T in L2(Ω) will be very small.

Remark 4.24 Due to Foguel [39], there exists an “optimal” decomposition of
T such that the kernel k is “maximal” and the remaining part T1 is “singular”
(for details, see Thm. A.6). However, this maximal kernel k will not necessarily
define a compact operator T2 on L2(Ω). Nevertheless, the worst case example
in Sec. 4.1.3 is one example for a situation, in which we may adopt Foguel’s
maximal decomposition (which in this case yields a compact T2 and a multi-
plication operator T1). According to Foguel, the idea of studying a Markov
process, which is a sum of a kernel and a singular part, goes back to Doeblin

[26, 27] and Yosida and Kakutani [114].

4.3 Constrictiveness in L1

We herein are interested in proving that our Markov operator T : L1(Ω) →
L1(Ω) has a unique invariant density. As a first step to this aim, we prove that
T is constrictive. Constrictiveness rules out the possibility that the iterates T nu
of some density u ∈ D eventually concentrate on a set of very small or vanishing
measure (cf. Def. A.7).

This is of importance, since for constrictive Markov operators a strong spec-
tral decomposition theorem holds. Roughly speaking: Whenever T is constric-
tive, there is a finite dimensional subspace S of L1, such that the iterates T nu
converge towards S for every u ∈ L1. Moreover, there is a (disjoint) partition
{Bj} of Ω such that S = span{χBj}, and T acts on {χBj} as a weighted permu-
tation.34 In other words: The iterates T nu for constrictive T are asymptotically
periodic.

For this subsection, assume that our decomposition T = T1 + T2 guarantees
that T1 is a strict L1-contraction, i.e., that ‖T1‖1 < 1 (cf. Props. 4.10, 4.11, and
Prop. 4.14).

In order to prove the (direct) constrictiveness of T , we have to show that
there exists some δ > 0, and γ < 1 and a measurable set B ⊂ Ω, such that for

34For a rigorous formulation see Thm. A.12 in Appendix A.
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every density u ∈ D ∫
(Ω\B)∪E

Tu(q)Q(q) dq ≤ γ,

for all measurable subsets E ⊂ B with
∫
E Q(q) dq < δ. We will do this by

exploiting again the decomposition T = T1 + T2.

Bounded Position Space Let us first analyse the rather simple case that
Ω is bounded and fix B = Ω. Our assumption ‖T1‖1 ≤ η̃ < 1 implies that for
arbitrary u ∈ D(Ω) and measurable E ⊂ Ω∫

E

Tu(q)Q(q) dq ≤
∫
Ω

T1u(q)Q(q) dq︸ ︷︷ ︸
=‖T1u‖1

+

∫
E

T2u(q)Q(q) dq

≤ η̃ +

∫
E

T2u(q)Q(q) dq. (50)

Consequently, direct constrictiveness were proved if there exist some δ > 0 and
K > 0, such that for every density u ∈ D∫

E

T2u(q)Q(q) dq ≤ K

∫
E

Q(q) dq, (51)

for all measurable subsets E ⊂ Ω with
∫
E Q(q)dq < δ. This leads to the following

Proposition 4.25 Let Ω be bounded and assume that the flow is momentum-
invertible with uniform bound35 with ‖T1‖1 < 1. Then, the transition operator
T : L1(Ω) → L1(Ω) is directly constrictive.

Proof: We will show that the assumed boundedness implies condition (51) from
above. To this end, we first remember that we may (without loss of generality)
adjust the sets M(q) such that NM < ∞ (cf. Rmk. 4.6). This bound for the
number of terms and the bound | detDvq| < C imply k ∈ L∞(Ω× Ω), i.e.,

ess-sup
y∈Ω

k(q, y) < C min
y∈Ω

1

Q(y)
NM max

p∈�d
P(p) = K < ∞.

Moreover, the particular form of T2 yields:∫
E

T2u(q)Q(q) dq =

∫
Ω

∫
E

k(q, y)Q(q)u(y)Q(y) dq dy.

Since u ∈ D(Ω), we thus have∫
E

T2u(q)Q(q) dq ≤
(
ess-sup
q,y∈Ω

k(q, y)

) ∫
E

Q(q) dq,

which implies condition (51) and, therefore, direct constrictiveness of T .

35Compare Rmk. 4.19.
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Unbounded Position Space For unbounded Ω ⊂ �d we not only may have
problems in finding a bound for k but in addition need something which prevents
the iterates T nu to be dispersed throughout the entire space. Therefore, we
may combine our above strategy with the approach outlined in [66], Chap. 5.7,
showing that the existence of a certain type of Ljapunov function suffices to
make T constrictive. This, in fact, is possible and one can easily show that, e.g.,
for the one-dimensional harmonic oscillator H(q, p) = (q2 + p2)/2 with Ω = �

and sin(τ) �= 0 such a Ljapunov function exists. But unfortunately, one again
needs the guaranty that ‖T1‖1 < 1 and the construction of such a Ljapunov
function for some realistic potential seems to be a significant problem. Since
Sec. 4.5 will provide us with a more convenient way, we avoid to go into the
details now.

However, as we will see in Sec. 4.6, constrictiveness may be established, inde-
pendent of any boundedness of k or Ω, for the transition operator Tϑ generated
by some set of essential variables.

Contrictiveness and Compactness The reader might expect that there
is a general connection between an appropriate compactness result for T2 and
constrictiveness of T . Therefore, it should be pointed out that, in fact, constric-
tiveness of T results from T2 being compact as an operator acting on L1(Ω):
Since the set D(Ω) of all densities is bounded in L1(Ω), the operator T2 takes
it into a precompact set in L1(Ω).36 Due to Lemma A.11 from Appendix A,
this precompactness implies that for all ε > 0 there is a δ > 0 such that for all
measurable subsets F ⊂ Ω with

∫
F
Q(q)dq < δ:∫

F

T2u(q)Q(q) dq < ε, for all u ∈ D(Ω). (52)

Now, repeat estimate (50) to get∫
Ω\B∪E

Tu(q)Q(q) dq ≤ ‖T1‖1 +

∫
Ω\B

T2u(q)Q(q) dq +

∫
E

T2u(q)Q(q) dq,

and choose a bounded B ⊂ Ω large enough such that
∫
Ω\B Q(q)dq < δ for the

δ associated with ε = ‖T1‖1/3. Then, (52) directly yields the following

Proposition 4.26 Let the flow be momentum-invertible, T2 be compact as an
operator acting on L1(Ω), and ‖T1‖1 < 1. Then, the transition operator T :
L1(Ω) → L1(Ω) is directly constrictive.

4.4 Asymptotic Stability

As already explained, contrictiveness implies asymptotic periodicity. Hence,
whenever T is constrictive, we are in the same situation as for Markov chains
in finite dimensional state space: in order to get a unique invariant density we
need some additional accessibility condition which guarantees aperiodicity.

36Compare Def. B.36 in Appendix B.
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4.4.1 Open Set Accessibility

Our accessibility assumption is a rather general mixing assumption:

Assumption 4.27 The flow has the following mixing property: For every pair
of open subsets B,C ⊂ Ω there is an n0 ∈ � such that∫

B

T nχC(q)Q(q) dq = 〈χB, T
nχC〉Q > 0, ∀n ≥ n0.

This kind of mixing should not be confused with the notions of “mixing”
for the flow map Φτ or for the Markov operator T (see Appendix A.4). As-
sumption 4.27 alone does imply neither the one nor the other. But the next
lemma will show that, whenever additionally T is constrictive, assumption 4.27
implies that T is mixing (which, for constrictive Markov operators, is equivalent
to asymptotic stability, see Thm. A.15).

Lemma 4.28 Let the assumption 4.27 be valid and let the transition operator
T : L1(Ω) → L1(Ω) be constrictive. Then, T has the unique invariant density
χΩ ∈ D(Ω) and is asymptotically stable, that is: For every u ∈ D(Ω) we have

‖T nu − χΩ‖1 → 0, for n→ ∞.

Proof: T is constrictive and satisfies TχΩ = χΩ. For such Markov opera-
tors, the literature provides strong results concerning the asymptotic behaviour
(cf. Appendix A). According to this, T has the spectral decomposition (98) as
explained in Thm. A.12. Let the integer r, the permutation α, and the sets Bj

be as in Thm. A.12 and the weighted characteristic functions of Thm. A.12 be
denoted by

1Bi =

(∫
Bi

Q(q) dq

)−1

χBi , i = 1, . . . , r.

In a first step we prove that each of these sets Bj contains an open subset. To
this end, choose an arbitrary j ∈ {1, . . . , r} and denote l = α−1(j), such that
T1Bl

= 1Bj due to Thm. A.12. Moreover, consider an arbitrary q ∈ Bl. Then,
T1Bl

= 1Bj guarantees that

yq(p) = π1Φ
−τ (q, p) ∈ Bj , ∀p ∈ �

d . (53)

But since the system is assumed to be momentum invertible, there is a momen-
tum p∗ ∈ �d such that yq is invertible in an open neighborhood U(p∗) ⊂ �d of
p∗. Thus, yqU(p∗) ⊂ Ω is an open neighborhood of yq(p∗) ∈ Bj , and, because of
(53), yqU(p∗) is a subset of Bj . Consequently, every Bj contains an open subset

B̃j ⊂ Bj .
For proving asymptotic stability we have to show that r = 1. To this end,

assume r > 1 and choose j, l ∈ {1, . . . , r}, j �= l. Let σ ∈ � be the period of the
permutation α. Due to Thm. A.12 we then have for all n ∈ �:

T nσ1Bj = 1Bj and Bl ∩Bj = ∅,
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and, therefore, for all n ∈ �

〈1Bl
, T nσ1Bj 〉Q = 〈1Bl

,1Bj 〉Q = 0,

which is in contradiction to the mixing assumption 4.27, since

〈1Bl
,1Bj 〉Q ≥ 〈1B̃l

,1B̃j
〉Q > 0, because of B̃i ⊂ Bi ∀i.

Thus, r = 1, and the representation (98) implies for all u ∈ L1(Ω) that

lim
n→∞T nu = λ(u)χΩ.

If u ∈ D(Ω), then limn→∞ T nu ∈ D(Ω) and thus λ(u) = 1.

Remark 4.29 We will see in Sec. 4.5 below, that asymptotic stability can also
be proved without the “detour” via constrictiveness.

4.4.2 The Dominant Eigenvalue is Simple

From the previous section we know that, under certain assumptions, the tran-
sition operator T : L1(Ω) → L1(Ω) may be asymptotically stable.

Lemma 4.30 Assume that the transition operator T , considered as a Markov
operator acting on L1(Ω), is asymptotically stable. Then, for every normalized
u ∈ L1(Ω) (that is, ‖u‖1 = 1) the condition Tu = u implies that u = χΩ or
u = −χΩ and there is no normalized u ∈ L1(Ω) such that Tu = −u. Moreover,
if we consider T as an operator on L2

Q(Ω) with ±1 �∈ σess(T ), then, λ = 1 is a
simple eigenvalue of T .37 In addition, −1 is not an eigenvalue so that λ = 1 is
dominant.

Proof: The weight function Q in the definition of the spaces Lp(Ω), p = 1, 2,
satisfies

∫
Ω
Q(q) dq = 1. Thus, every element of L2(Ω) is contained in L1(Ω),

i.e., L2(Ω) ⊂ L1(Ω) (cf. Prop. A.1). Hence, the assertions for L1(Ω) imply the
assertions for the eigenvalues in L2(Ω).

In L1(Ω), we may use a standard argument (cf. [66], proof of Prop. 5.6.1):
Consider an arbitrary normalized u ∈ L1(Ω). Then, split u into its positive
and negative part, i.e., u = u+ − u− with u+(q) = max(0, u(q)) and u− =
max(0,−u(q)). Next, introduce v± = u±/‖u±‖1 such that v± ∈ D(Ω). Since T
is asymptotically stable with TχΩ = χΩ, we have the convergence:

lim
n→∞T nv± = χΩ in L1(Ω).

Now, Tu = u implies that in L1(Ω) for n→ ∞:

u = T nu = ‖u+‖1 T nv+ − ‖u−‖1 T nv−
→ ‖u+‖1χΩ − ‖u−‖1χΩ = (‖u+‖1 − ‖u−‖1) χΩ.

37That is, {u ∈ L2
Q, Tu = u} is one-dimensional.
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Hence, Tu = u with ‖u‖1 = 1 implies u = χΩ or u = −χΩ. In addition,
Tu = −u yields T nu = (−1)nu, so that the above convergence is only possible
if u = 0, which obviously contradicts the normalization ‖u‖1 = 1.

4.5 Asymptotic Stability via Markov Chain Theory

We already know from Sec. 3.6 that the spatial transition operator T induces
an associated stochastic dynamical system given by (30) or (33), that is,

qk+1 = π1Φ
τ (qk, pk) = Ψk+1(q0, p0, . . . , pk),

with the momenta pj being randomly chosen from the canonical momentum
density P on �d . We are now again interested in the interpretation of this
system as a Markov chain {Xk}. As explained in Sec. 3.6 and Sec. A.1, the
transition function of this chain is

T (q, A) = T ∗χA(q) = TχA(q) =

∫
�d

χA(π1Φ
−τ (q, p)P(p) dp.

We also know that this chain has the probability measure μQ, given by μQ(A) =∫
A Q(q)dq, as an invariant distribution. The well-developed theory of general
state space Markov chains (cf. [83, 79]) yields strong results concerning the
convergence of the chain {Xk} to its invariant distribution μQ. We will now
exploit some of these results for our purpose. Therefore, we will make use of the
definitions and notations for Markov chains as given in the Appendix (Sec. A.1
and Sec. A.5).

Lemma 4.31 Let the flow be momentum-invertible and let the mixing assump-
tion 4.27 be satisfied. Then, the Markov chain {Xk} associated with the transi-
tion operator T is irreducible, aperiodic, and positive Harris recurrent.

Proof: This lemma is a simple corollary to the results of [79] for the “nonlin-
ear state space model”: According to [79] Prop. 7.1.5, momentum-invertibility
implies that our Markov chain {Xk} is a so-called “T-chain”. Due to [79]
Thm. 6.0.1, a T-chain is irreducible if P (τA < ∞|X0 = q) > 0 for all open
sets A ⊂ Ω and all q ∈ Ω. But momentum-invertibility and mixing assumption,
together, in fact imply this last property so that {Xk} is irreducible. In the same
way, Prop. 7.3.4 and Thm. 7.3.5 of [79] together with our assumptions guarantee
that {Xk} is aperiodic. Finally, momentum-invertibility and Thm. A.23 of the
appendix imply that our chain is positive Harris recurrent.

In order to illustrate the role of momentum-invertibility and mixing assump-
tion in these proofs, we now add a direct proof for the irreducibility assertion
which mimics the strategy of the proofs in [79]. To this end, consider the decom-
position T = T1 + T2 induced by the sets M(q) chosen in accordance with the
momentum invertibility of the flow and denote the corresponding accessibility
weight of the position q ∈ Ω by η(q) =

∫
Ω
k(q, y)Q(y)dy. Then, we choose some
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q∗ ∈ Ω such that η(q∗) > 0 and consider the associated probability distribution
ϕ defined by ϕ(A) = T2χA(q∗)/η(q∗) for all measurable A ⊂ Ω. After these
preparations, consider another arbitrary position q ∈ Ω and a set A ⊂ Ω for
which ϕ(A) > 0. Due to Def. A.21, it is sufficient to show that there is an n ∈ �

such that T n+2(q, A) > 0. We will do this in three steps:
Step 1: We already know that δ = η(q∗)ϕ(A) > 0, or equivalently,

δ = T2χA(q∗) =

∫
A

k(q∗, z)Q(z)dz > 0.

Since the flow is smooth, we can always choose the sets M(q) and with it the
kernel k such that there is an open neighborhood O ⊂ Ω such that38

T (y,A) ≥ T2χA(y) =

∫
A

k(y, z)Q(z)dz > δ/2, for all y ∈ O. (54)

Step 2: Now, return to the q ∈ Ω chosen and consider some p ∈ M(q). Set
γ = k(q, yq(p)). We can assume, without loss of generality, that there is an
open, bounded neighborhood m(p) ⊂M(q) of p such that the smoothness of yq
guarantees that there is an open, bounded neighborhood U = yq(m(p)) ⊂ Ω of
yq(p) such that k(q, z) > γ/2 for all z ∈ U . As a consequence:

T n+2(q, A) ≥ T2T
n+1χA(q) ≥

∫
U T

n+1χA(z) k(q, z)Q(z) dz

≥ γ
2

∫
U
T n+1(z, A)Q(z) dz.

(55)

Step 3: Finally, introduce the set of all sequences (p0, . . . , pn−1) of momenta
which guide the system from some z ∈ U into the set O, that is, define

Mn(z,O) = {(p0, . . . , pn−1) ∈ (�d )n : Ψn(z, p0, . . . , pn−1) ∈ O},

with the function Ψn defined in (32). As a consequence:

T n(z,O) = T nχO(z) =

∫
Mn(z,O)

n−1∏
j=0

P(pj) d
np,

with dnp = dp0 . . . dpn−1, so that we gain the estimate

T n+1(z, A) ≥
∫

Mn(z,O)

T (Ψn(z, p0, . . . , pn−1) , A)︸ ︷︷ ︸
>δ/2, because of (54)

n−1∏
j=0

P(pj) d
np,

>
δ

2
T n(z,O) =

δ

2
T nχO(z).

Inserted into (55), this yields

T n+2(q, A) >
γδ

4
〈χU , T

nχO〉Q.
38We just have to make appropriate choices for the sets M(y), y ∈ O, such that k(·, z) is

continuous in O(q∗).
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Since U and O are open sets, the mixing assumption finally guarantees that
there is an n ∈ � such that T n+2(q, A) > 0.

Remark 4.32 It should be emphasized that the quoted results of [79] allow to
gain the same result under weaker conditions. It is, for example, possible to
replace the supposed momentum-invertibility by a so-called rank condition on
the function Ψk defining the iterates of the stochastic dynamical system (30):

(RC) For all initial positions q ∈ Ω, there is an integer k ∈ � and a sequence of
momenta v = (p0, . . . , pk−1) ∈ (�d )k such that the rank of the generalized
controllability matrix Ck(q, v) (cf. Sec. 7.1.4 in [79]) is maximal.

For k = 1, it is C1(q0, p0) = Dyq(p0), i.e., condition (RC) is equivalent to the
invertibility of yq in p0. For k > 1, we get generalized invertibility conditions for
Ψk at (p0, . . . , pk−1). The reader might notice, that we could have introduced a
similar generalization in the operator approach presented above by considering
decompositions of some power T n of the transition operator; this would just fit
perfectly into our approach since, in general, quasi-compactness of T means that
there is a decomposition T n = K + R for some n ∈ � with K being compact
and R being a strict contraction.

Lemma 4.31 guarantees the convergence in distributions of iterative realiza-
tions of our Markov chain (see, e.g., Thm. A.24, Thm. A.26, and Cor. A.27
in Appendix A). For our purpose, the following immediate consequence of
Thm. A.26 is of main importance:

Corollary 4.33 Let the flow be momentum-invertible and let the mixing as-
sumption 4.27 be satisfied. Then, the spatial transition operator T : L1(Ω) →
L1(Ω) is asymptotically stable.

Proof: See Cor. A.27 in Appendix A.

Hence, asymptotic stability can be proved without any boundedness condi-
tion on Ω and without any condition which guarantees ‖T1‖1 < 1 like, e.g., the
symmetric momentum invertibility of the flow. In this sense, the application of
Markov chain theory leads to stronger results than those presented in Sec. 4.3
and Sec. 4.4.1 (cf. Rmk. 4.29).

4.6 Essential Variables

Let ϑ : Γ → Θ ⊂ �ν denote a set of essential variables, exactly as in Sec. 3.5,
where we established the representation of the associated transition operator Tϑ
as a specific restriction of the spatial transition operator T .39 We now exploit
this representation of Tϑ to finally transfer the decomposition result for T to all
sets of essential degrees of freedom.

39Since we restricted our considerations to the canonical density, i.e., to f0 = fcan, the
reduced spatial density now is F (q) = Q(q).
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Lemma 4.34 Assume that the spatial transition operator T : L2(Ω) → L2(Ω)
decomposes as T = T1 + T2 with T2 being a compact operator and T1 a strict
contraction satisfying

‖T1u‖2 ≤ κ ‖u‖2, ∀u ∈ L2(Ω),

with a constant κ < 1. Then, the transition operator Tϑ generated by a set
of essential coordinates ϑ : Γ → Θ ⊂ �ν may also be decomposed as Tϑ =
T1,ϑ + T2,ϑ with T2,ϑ being compact and T1,ϑ a strict contraction satisfying

‖T1,ϑu‖2,Fϑ
≤ κ ‖u‖2,Fϑ

, ∀u ∈ L2
Fϑ

(Θ),

with the same constant κ < 1 as for T1. Moreover, if T2 is even self-adjoint,
then T2,ϑ is self-adjoint, too.
Last but not least, Tϑ is a directly constrictive Markov operator, if T is a directly
constrictive Markov operator and the position space Ω is bounded.

Proof: Let Rϑ and Bϑ the restriction and prolongation operators from Sec. 3.5.
Then we have Tϑ = RϑTBϑ. Choose T2,ϑ = RϑT2Bϑ. Its compactness follows
from the general composition theorem for compact operators (cf. [2], Lemma 8.2
or [56], Thm. 9.5). T2,ϑ is also self-adjoint if T2 is, since Bϑ and Rϑ are adjoint
due to Prop. 3.14. The contraction property for the remaining part T1,ϑ =
RϑT1Bϑ then is a simple consequence of the isometry of Bϑ and the contraction
property of Rϑ stated in Prop. 3.14.

With T , also Tϑ is a Markov operator because of the isometry of Bϑ and
the contraction and Markov properties of Rϑ stated in Prop. 3.14. When T is
assumed to be directly constrictive, there are constants δ > 0 and 0 < γ < 1,
such that for all densities u ∈ D(Ω) and every measurable subset B ⊂ Ω with∫
B Q(q)dq < δ, it is ∫

B

Tu(q)Q(q) dq ≤ γ. (56)

We have to show the corresponding statement for Tϑ. To this end, consider an
arbitrary E ⊂ Θ with

∫
E
Fϑ(θ)dθ < δ. For an also arbitrary density u ∈ DFϑ

(Θ)
we then observe by using the spatial form (29) of the restriction operator Rϑ:∫

E

Tϑu(θ)Fϑ(θ) dθ =

∫
E

RϑTBϑu(θ)Fϑ(θ) dθ

=

∫
E

∫
Ω(θ)

(TBϑu)(q)Q(q) dσθ(q) dθ

=

∫
Ω(E)

(TBϑu)(q)Q(q) dq ≤ γ,

where the last inequality results from (56), since Bϑu ∈ D(Ω) and the choice of
E implies

∫
E
Fϑ(θ)dθ =

∫
Ω(E)

Q(q)dq < δ.
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Compactness and Constrictiveness for Unbounded Position Space In
Sec. 4.2, it has been demonstrated that it is easy to see that the transition
operator T2 is compact in L2(Ω), more exactly, that T2 is a Hilbert-Schmidt
operator, whenever its kernel k is bounded (cf. Prop. 4.17). Due to Sec. 4.3, the
same condition suffices to guarantee direct constrictiveness of the full transition
operator T . If the position space Ω is unbounded, establishing a bound for
k is difficult. In by far the most cases the essential variables will be given
by internal angles of the molecule (cf. Sec. 2.1.3) so that Θ is of the form
Θ = [0, 2π]ν . Hence, the essential configuration space Θ may be bounded, even
if Ω is unbounded. Thus, we may generalize our results by analyzing the kernel
of T2,ϑ = RϑT2Bϑ. After some simple calculations starting with the definition
of the kernel k = k(q, y) of T2, we end up with:

T2,ϑu(θ) =

∫
Θ

kϑ(θ, ϕ)u(ϕ)Fϑ(ϕ) dϕ,

with the averaged kernel

kϑ(θ, ϕ) =
1

Fϑ(θ)

1

Fϑ(ϕ)

∫
Ω(θ)

∫
Ω(ϕ)

k(q, y)Q(q)Q(y) dσϕ(y) dσθ(q). (57)

By simply repeating the proofs of Prop. 4.17 and Prop. 4.25, one realizes that
the following statement is valid (NM <∞):

Proposition 4.35 Let the essential configuration space Θ and the kernel kϑ of
T2,ϑ be bounded. Then, T2,ϑ : L2

Fϑ
(Θ) → L2

Fϑ
(Θ) is a Hilbert-Schmidt operator

and the the transition operator Tϑ : L1
Fϑ

(Θ) → L1
Fϑ

(Θ) is directly constrictive.

Remark 4.36 Assume that the sets M(q), defining the original kernel k, may
be chosen such that k is continuous. Then, even if Ω is unbounded, the averaged
kernel kϑ is continuous in Θ × Θ, and, thus, bounded if Θ is bounded. If kϑ
were continuous and Θ bounded, we may infer from Thm. B.39 that T2,ϑ is also
compact in L1

Fϑ
(Θ).40

Asymptotic Stability In order to answer the question concerning the sim-
plicity of the eigenvalue λ = 1 for Tϑ we again have to introduce a mixing
assumption:

Assumption 4.37 For every pair of open subsets B,C ⊂ Θ there is a n0 ∈ �

such that ∫
B

T n
ϑ χC(θ)Fϑ(θ) dθ = 〈χB, T

n
ϑ χC〉Fϑ

> 0, ∀n ≥ n0.

Remark 4.38 As one might expect, this form of the mixing assumption is an
implication of the previous form (assumption 4.27) and the momentum invert-
ibility of the flow.

40Compare the paragraph “Constrictiveness and Compactness” on page 60.
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With assumption 4.37 being valid and Lemma 4.34 in mind, we may prove
the following lemma in exactly the same way as we did for Lemma 4.28 above.

Lemma 4.39 Assume the assumption 4.37 to be valid and the transition opera-
tor Tϑ : L1

Fϑ
(Θ) → L1

Fϑ
(Θ) to be constrictive. Then, Tϑ has the unique invariant

density χΘ ∈ DFϑ
(Θ) and is asymptotically stable, that is:

1. For every u ∈ DFϑ
(Θ) we have

‖T n
ϑ u − χΘ‖1,Fϑ

→ 0, for n→ ∞.

2. For every normalized u ∈ L1
Fϑ

(Θ) (that is, ‖u‖1,Fϑ
= 1) the condition

Tu = u implies that u = χΘ or u = −χΘ. Moreover, there is no u ∈
L1
Fϑ

(Θ) such that Tϑu = −u.

4.7 Periodic Boundary Conditions

In this subsection, we will show that for smooth periodic potentials:

1. The flow is (symmetrically) momentum invertible with uniform bound.
As we have seen, this is sufficient to guarantee that the essential spectrum
of the transition operator T is bounded away from λ = 1, i.e., that the
essential spectral radius is strictly smaller than one.

2. The mixing assumption 4.27 is valid for smooth periodic potential. As we
have seen, this moreover guarantees that the eigenvalue λ = 1 is simple
and dominant.

In the following, we again use the notation introduced above: For all q ∈ Ω we
define yq : �

d → Ω by

yq(p) = π1
(
Φ−τ (q, p)

)
.

The statements 1 and 2 from above will both be proved by analyzing the func-
tions yq = yq(p) asymptotically, i.e., by studying their behavior for |p| → ∞.
The idea behind this is that, in a periodic —and, thus, bounded— potential,
a particle with high kinetic energy will asymptotically move like a free par-
ticle. For a free particle, symmetric momentum invertibility and the mixing
assumption are valid. Hence, for proving the statements 1. and 2., we first
show that the flow in some periodic potential asymptotically approximates the
free flow (Sec. 4.7.1). Then, the mixing assumption and symmetric momentum
invertibility will be implications.

Without loss of generality, we may assume that the mass matrix M asso-
ciated with the system is given by the identity matrix (this requires only a
rescaling of the potential).

In order to study the asymptotic behavior rigorously, choose p0 ∈ {p ∈ �d :
|p| = 1} and consider the equations of motion

q̇ε = −pε, ṗε = DV (qε), qε(0) = q, pε(0) = p0/ε. (58)
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That is, we analyze the asymptotic behavior of yq in p by studying the limit
behavior of qε(τ) = yq(p0/ε) for ε→ 0.

4.7.1 Asymptotic Accessibility for Periodic Potentials

In order to prove the desired convergence |qε(t) − (q − p0t/ε)| → 0 for ε →
0, we will exploit the averaging principle of perturbation theory of integrable
Hamiltonian systems as it can be found, e.g., in the survey [6], Chap. 5. We
could also follow the line of argumentation of [12, 13, 93], using appropriate
compactness principles, or exploit some clever two-time scale ansatz (cf., e.g.,
[61], Chap. 5). However, the averaging principle provides us with a nice tool,
fitting perfectly to our problem:

Theorem 4.40 ([6], Thm. 4 and Thm. 5 in Chap. 5) Assume f, g : �d×�d×�
to be smooth functions f = f(I, ϕ, ε), g = g(I, ϕ, ε) which, both, are 2π-periodic
with respect to the second variable ϕ.41 Let (I, ϕ) be the solution of the following
equation of motion:

İ = ε f(I, ϕ, ε), I(0) = I0,

ϕ̇ = ω + ε g(I, ϕ, ε), ϕ(0) = ϕ0,
(59)

with a vector ω ∈ �d of constant “frequencies”. Moreover, denote by J the
solution of the “averaged” equation of motion

J̇ = εF (J), J(0) = I0, with F (J) =
1

(2π)d

∫
[0,2π]d

f(J, ϕ, 0) dϕ. (60)

Then, the following averaging results hold:

1. Let ω be strongly incommensurable. Then, there is a constant C > 0, such
that |I(t)− J(t)| < Cε for all t ∈ [0, 1/ε].

2. Let ω be incommensurable. Then, for every η > 0 there is an ε∗ > 0 such
that for all ε < ε∗, it is |I(t)− J(t)| < η for all t ∈ [0, 1/ε].

The used notions of incommensurability are the following

Definition 4.41 A vector ω ∈ �d is called incommensurable if jTω �= 0 for all
nonzero integer vectors j ∈ �

d \ {0}. It is called strongly incommensurable if
there are constants c, b > 0 such that

|jTω| > c−1|j|−b, for all j ∈ �
d \ {0}.

41That is, the functions f(I, ·, ε) and g(I, ·, ε) are periodic with respect to [0, 2π]d for all
(I, ε).
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Remark 4.42 According to [80], the set of vectors ω ∈ �d , which are not
strongly incommensurable, is of measure zero. Thus, the set of strongly incom-
mensurable vectors is everywhere dense in �d .

In order to apply the averaging result to our situation, we, first, have to
introduce periodicity assumptions for the potential V , and, second, have to
transform our equation of motion (58) into an appropriate form.

We summarize our periodicity assumptions in the following

Assumption 4.43 Let the potential V be smooth on the entire space �d , and
assume it to be periodic with periodicity domain Ω =

∏d
j=1[0, lk] with periods

lk > 0, i.e., for all q ∈ Ω and every j ∈ {1, . . . , d}

V (q + mlj ej) = V (q), ∀m ∈ �,

where ej ∈ �d is the jth unit vector. Without loss of generality we may assume
that lk = 2π for all k = 1, . . . , d, so that V is periodic with respect to [0, 2π]d.

To transform our equation of motion (58) into an appropriate form, we
introduce

zε(t) = qε(ετt) and vε(t) = pε(ετt) − p0/ε, (61)

which, inserted into (58), yields new equations of motion

żε = −τp0 + ε τ vε, zε(0) = q,

v̇ε = −ετ DV (zε), vε(0) = 0,
(62)

We observe, that, via the identifications zε → ϕ and vε → I, (61) gets the form
of (59) with ω = τp0 and f = −τDV . Consequently, whenever p0 is (strongly)
incommensurable, the conditions of Thm. 4.40 are satisfied. The periodicity of
V yields F = 0, so that the theorem states that vε remains small everywhere in
[0, 1/ε]. Retransformation due to (61) gives

qε(t) = q − p0t/ε + ετ
∫ t/ετ
0 vε(s) ds

pε(t) = p0/ε − vε(t/ετ),
(63)

which results in

Corollary 4.44 Let the periodicity assumption 4.43 be valid. Then, the av-
eraging theorem 4.40 states the desired convergence |qε(t)− (q− p0t/ε)| → 0 for
ε → 0 if the initial momentum p0 satisfies certain incommensurability condi-
tions:

1. If p0 is strongly incommensurable, then there is a constant C > 0 such
that for all t ∈ [0, τ ]:

|pε(t) − p0/ε| < Cε and |qε(t) − (q − p0t/ε)| < Ctε. (64)
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2. If p0 is only incommensurable, then, for every constant η > 0 there is a
ε∗ > 0 such that for all ε < ε∗ and t ∈ [0, τ ]:

|pε(t) − p0/ε| < η and |qε(t) − (q − p0t/ε)| < ηt.

This insight finally allows us to show that the mixing assumption 4.27 is valid
for periodic potentials, see Cor. 4.46 below. This corollary will be a simple con-
sequence of the following well-known theorem stating that harmonic oscillations
with incommensurable (=nonresonant) frequencies fill out the corresponding
torus densely:

Theorem 4.45 ([6], Thm. 4 in Chap. 4.1) Let C ⊂ Ω be an arbitrary open sub-
set in Ω and assume that the initial momentum p0 is incommensurable. Then,
for every q ∈ Ω:

lim
t→∞

1

t

∫ t

0

χC(ξ(q − p0s)) ds > 0,

where ξ : �d → Ω is the periodicity map defined in Sec. 3.1.

Together with Cor. 4.44 this implies the mixing assumption for the transition
operator T for periodic potentials (cf. Def. (23)):

Corollary 4.46 Let the above periodicity assumptions 4.43 be valid. Then,
for every pair of open subsets B,C ⊂ Ω there is a n0 ∈ � such that∫

B

T nχC(q)Q(q) dq = 〈χB, T
nχC〉Q > 0, ∀n ≥ n0.

Proof: Consider arbitrary open sets B,C ⊂ Ω. We have to show that∫
B

TχC(q)Q(q) dq = 〈χB, TχC〉Q > 0. (65)

Instead of showing (65) directly, we will prove that for every q ∈ B and strongly
incommensurable p0 there is some ε > 0 such that ξ(yq(p0/ε)) ∈ C. This
is sufficient, since the maps yq and q �→ π1Φ

−τ (q, p0/ε) are smooth so that
there must be open neighborhoods O(p0/ε) ⊂ �d and U(q) ⊂ B such that
ξ(yq̃(p)) ∈ C for all p ∈ O(p0/ε) and q̃ ∈ U(q), which implies (65).

In order to demonstrate that there is some ε > 0 such that ξ(yq(p0/ε)) ∈ C,
consider an arbitrary q ∈ B. Since p0 is strongly incommensurable, Cor. 4.44
holds for the solution qε of (58). Consequently, since C is open, we find another
open set E ⊂ C together with an ε∗ > 0 such that for all ε < ε∗:

ξ(q − p0τ/ε) ∈ E ⇒ ξ(qε(τ)) = ξ(yq(p0/ε)) ∈ C.

With the replacement α = 1/ε this implies

χE (ξ(q − αp0τ)) ≤ χC (ξ(yq(αp0))) , for all α > α∗ = 1/ε∗.
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Hence, a simple transformation (s = ατ) yields:

lim
t→∞

1

t

∫ t

α∗
χC(ξ(yq(αp0))) dα ≥ lim

t→∞
1

t

∫ t

α∗
χE (ξ(q − αp0τ)) dα

= lim
t→∞

1

τt

∫ τt

τα∗
χE (ξ(q − p0s)) ds > 0,

where the last strict inequality results from Thm. 4.45. Thus, there must be
momenta p = αp0 such that ξ(yq(p)) ∈ C.

4.7.2 Asymptotic Invertibility for Periodic Potentials

Lemma 4.47 Let the above periodicity assumptions 4.43 be valid. Then, the
associated flow is momentum invertible with uniform bound.42

Remark 4.48 We again want to consider the periodic flow Φτ
ξ , introduced via

the periodicity map ξ due to (22). The replacement Φτ → Φτ
ξ does not touch the

validity of the statement of Lemma 4.47. That is, the flow Φτ
ξ also is momentum

invertible with uniform bound with the same minimal accessibility. The only
difference is that, for Φτ

ξ , the sets M(q) contain infinitely many subsets (from
which we perhaps have to choose countably many) each inducing a different
branch of the functions yq and vq. This results from the fact that in the pro-
cess ε → 0 the curve yq(p0/ε) with incommensurable “direction” p0 crosses the
periodicity cell Ω again and again (infinitely many times).

Proof of Lemma 4.47: The strategy of the proof is as follows: We will use
the asymptotic properties of qε(τ) = yq(p0/ε) to show that there are constants
0 < c < τ , C > τ such that for all q ∈ Ω and all strongly incommensurable
momenta p0 the following holds: There is an ε∗ > 0 such that

c ≤ |detDyq(p0/ε)| ≤ C, for all |ε| < ε∗. (66)

If we suppose that (66) holds, we have that yq is invertible for the momenta p0/ε
with ε < ε∗. Thus, its inverse vq satisfies the estimate | detDvq| < 1/c, since
detDyq · detDvq = 1. In general, the values ε∗ in (66) depend on the specific
momentum p0 and the initial position q chosen, a fact which may be reflected
by writing ε = ε(q, p0). But the smoothness of yq guarantees that we find some
open neighborhood

M(q, p0) ⊃ {p0/ε, |ε| < ε∗(q, p0)}

for each strongly incommensurable p0, in which yq is invertible with an uniform
bound for the Jacobian of the inverse. Then, the set M(q) may be defined as
the union of these sets M(q, p0). Since Ω is compact, the system is momentum
invertible with uniform bound (see Lemma 4.3).

42Compare Rmk. 4.19.
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Hence, we have to prove (66) for arbitrary q ∈ Ω and strongly incommensu-
rable p0. Therefore, we consider in the dependence of qε(τ) = yq(p0/ε) on its
initial momentum p0/ε. Consequently, we are interested in the Jacobian matrix
D2qε(τ) = Dyq(p0/ε), where D2 denotes the derivative of qε = qε(t; p0/ε) with
respect to the second variable (the initial momentum). Instead of D2qε, we
analyze the extended Jacobian

Jε(t) = D2qε(t) + t Id.

Differentiation of the equation of motion (58) governing qε then results in:

J̈ε = D2V (qε) · Jε, Jε(0) = 0, J̇ε(0) = 0,

which after two-fold integration in time yields

Jε(t) =

∫ t

0

∫ s

0

D2V (qε(σ)) (Jε(σ) − σ Id) dσ ds.

Using the matrix norm ‖ · ‖ induced by the norm | · | used on �d , the regularity
of V gives us the bound ‖D2V ‖ ≤ C which then implies

‖Jε(t)‖ ≤ ‖
∫ t
0

∫ s
0
σ D2V (qε(σ)) dσ ds‖

+C
∫ t
0

∫ s
0
‖Jε(σ)‖ dσ ds.

(67)

Clearly, there are numbers ρε > 0 such that

‖
∫ t

0

∫ s

0

σ D2V (qε(σ)) dσ ds‖ ≤ ρε, for all t ∈ [0, τ ]. (68)

In fact, the bound ‖D2V ‖ ≤ C ensures that (68) is satisfied with ρε = Cτ3/3.
But we can find significantly sharper estimates when using the asymptotic prop-
erties of qε: We will see below that —if the initial momentum p0 is strongly
incommensurable— these asymptotic properties and the periodicity of V indeed
imply ρε = O(ε). However, estimates (67) and (68) together with a generaliza-
tion of Gronwall’s lemma (see Lemma 4.49 below) imply that

‖Jε(τ)‖ ≤ ρε exp

(
C

2
τ2
)
. (69)

If we suppose ρε = O(ε) for a moment, (69) shows Jε(τ) = O(ε), which means
that for ε→ 0:

Dyq(p0/ε) = Jε(τ) − τ Id → −τ Id implying detDyq(p0/ε) → −τ,

which obviously implies the assertion (66).
Hence, it only remains to show that we were allowed to assume ρε = O(ε)

for some fixed strongly incommensurable initial momentum p0. To this end, we
first introduce

Iε(t) =

∫ t

0

∫ s

0

σ D2V (q − p0
ε
σ) dσ ds.
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Cor. 4.44 and the Lipschitz continuity of D2V then yield that there is some
C > 0 such that for sufficiently small ε:

‖
∫ t

0

∫ s

0

σ D2V (qε(σ)) dσ ds − Iε(t)‖ ≤ C ε, for all t ∈ [0, τ ],

so that it suffices to show that max[0,τ ] ‖Iε(t)‖ = O(ε). To this end, we use the
Fourier series expansion of V :

V (q) =
∑
j∈�d

αj exp
(
−i jT q

)
,

with coefficients αj ∈ � . Thus, by differentiation

D2V (q) = −
∑

j∈�d,j 
=0

αjj j
T exp

(
−i jT q

)
.

The smoothness of V guarantees that the expansion coefficients αj decay expo-
nentially with |j|. If we insert the Fourier expansion into the definition of Iε,
the single terms behave like:∣∣∣∣

∫ t

0

∫ s

0

σ exp
(
−i jT

(
q − p0

ε
σ
))

dσ ds

∣∣∣∣ ≤ tC

(
ε

jT p0

)2

for every j ∈ �d\{0} with a constant C independent of j. The strong incommen-
surability of p0 guarantees 1/(jTp0) < c|j|b and, together with the exponential
decay of the Fourier coefficients, the uniform convergence of the series. This
implies Iε = O(ε2), which completes the proof.

In order to fill the last gap in the proof of Lemma 4.47 we now prove the
following generalization of Gronwall’s Lemma for “second order” differential
inequalities:

Lemma 4.49 Assume that the functions ϕ, ψ : [0, τ ] → � are nonnegative and
satisfy the differential inequality

ψ(t) ≤ ρ +

∫ t

0

∫ s

0

ϕ(σ)ψ(σ) dσ ds,

for all t ∈ [0, τ ] with ρ > 0. Then, the following estimate holds

ψ(t) ≤ ρ exp

(∫ t

0

∫ s

0

ϕ(σ) dσ ds

)
, for all t ∈ [0, τ ].

Proof along the lines of the proof of Lemma 3.9 in [20]: Consider

Ψ(t) = ρ +

∫ t

0

∫ s

0

ϕ(σ)ψ(σ) dσ ds,
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such that Ψ ≥ ρ > 0 and Ψ ≥ ψ due to the assumptions. Differentiation of Ψ
with respect to t yields Ψ′′ = ϕψ ≤ ϕΨ. This implies the estimate

(logΨ)′′ = Ψ′′/Ψ − (Ψ′/Ψ)
2 ≤ Ψ′′/Ψ ≤ ϕ,

which yields by integration that

log Ψ(t) ≤ logΨ(0) + t
Ψ′(0)
Ψ(0)

+

∫ t

0

∫ s

0

ϕ(σ) dσ ds.

Since Ψ(0) = ρ and Ψ′(0) = 0, this implies the assertion.

Remark 4.50 The entire asymptotic construction can be generalized in the
following way: We can allow for initial momenta pε(0) = p0ε = p0/ε + p1 (with
p1 being ε-independent), without changing the asymptotic results. That is, if
only p0 is strongly incommensurable, we have |qε(t)− (q− p0t/ε− p1t)| < C1tε,
|pε − (p0/ε+ p1)| < C2ε, and

c < | detD2qε(t)| < C,

for all ε being small enough. Consequently, the sets M(q), with respect to
which the system is momentum-invertible with uniform bound, can be chosen
such that⋃

|ε|<ε∗(q,p0)

B1 (p0/ε) = {p0/ε+ p1 : |ε| < ε∗(q, p0), |p1| ≤ 1} ⊂M(q), (70)

for all strongly incommensurable p0 and q ∈ Ω, where ε∗(q, p0) is used in the
same sense as in the proof of Lemma 4.47. In general, ε∗(q, p0) will depend on q.
However, the smoothness of the map q �→ Φ−τ (q, p) guarantees that, for every
q ∈ Ω there is an open neighborhood O(q) ⊂ Ω such that (70) is valid for all
q̃ ∈ O(q) with the same ε∗(q, p0). Since Ω is compact this finally implies,43 that
there even is some ε∗ = ε∗(p0) such that for all q ∈ Ω:⋃

|ε|<ε∗(p0)

B1 (p0/ε) = {p0/ε+ p1 : |ε| < ε∗(p0), |p1| ≤ 1} ⊂M(q). (71)

This enables us to show the following extension of Lemma 4.47:

Lemma 4.51 Let the above periodicity assumptions 4.43 be valid. Then, the sets
M(q) can be chosen such that the flow is momentum invertible with uniform
bound and, simultaneously, ‖T1‖1 < 1. Thus, due to Prop. 4.25, the spatial
transition operator T is directly constrictive.

43Compare the proof of Lemma 4.3.
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Proof: Due to Prop. 4.11, we have to show that the sets M(q) can be chosen
such that every y ∈ Ω is accessible, that is, for every y ∈ Ω there are q ∈ Ω
and p ∈ M(q) such that y = yq(p). Therefore, consider an arbitrary y ∈ Ω, a
strongly incommensurable momentum p0, and define

v(ε) = π2Φ
τ (y, p0/ε) = −π2Φ−τ (y,−p0/ε).

Cor. 4.44 guarantees that there are some constants C > 0 and ε0 > 0 such
that |v(ε) − p0/ε| < Cε for all ε < ε0. Suppose that the sets M(q) are chosen
according to the construction of Rmk. 4.50 and let us use the notation ε∗(p0)
introduced therein. Now, choose some

ε <
1

2
min{ε∗(p0), 1/C, ε0},

and realize that then there is some q ∈ Ω such that

Φτ (y, p0/ε) = (q, v(ε)), that is, (y, p0/ε) = Φ−τ (q, v(ε)),

with v(ε) ∈ B1(p0/ε) ⊂M(q). Thus, y is accessible and the assertion is proved.

As a final remark, it should be stated that, along a similar line of argu-
ment, we can also construct the sets M(q) such that the flow is symmetrically
momentum invertible with uniform bound with respect to these M(q).

4.8 Commentary

The results presented so far are connected to different branches of the literature.
Some have already been indicated; some further comments should be added:
We proved quasi-compactness of the spatial transition operator T in L2(Ω) in
order to show that the essential spectrum of T is strictly bounded away from
λ = 1. Then, we exploited Markov operator theory in L1 to show that λ = 1
is a simple and dominant eigenvalue of T . So far, our considerations have been
based on operator theory/functional analysis. But we also observed, that, via the
stochastic dynamical system associated with T , Markov chain theory permitted
us to get similar and even more general results. As far as the author can see,
these are the two main categories for approaches in this field: via operator theory
and via Markov chain theory, with the latter mainly dealing with the asymptotic
behavior of the chain (convergence of distribution, rate of convergence), while
the first is also interested in non-asymptotic properties of the operator.

In the literature on operator theory, quasi-compactness44 of an operator has
extensively been discussed in its connection to uniform ergodicity of the op-
erator.45 Following an early contribution of Kyrlov and Bogoliubov [63],
it was shown that any quasi-compact Markov operator on a Banach space is

44In general, an operator T is called quasi-compact, if ‖Tn −K‖ < 1 for some n ∈ � with
K being compact.

45A positive operator T on a Banach lattice is uniform ergodic iff the sequence of averages
Tn =

∑n
k=1 T

k/n converges in the uniform operator topology, cf. [72].
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uniformly ergodic and that, reversely, an operator is quasi-compact, if it is uni-
formly ergodic and the eigenspace E = {u : Tu = u} is finite dimensional (for
a survey see [72]). The connection to Markov chain theory was initialized by
Yosida and Kakutani [114], who proved that Markov chains satisfying Doe-

blin’s condition [25] are associated with quasi-compact operators, for example,
in L∞.

Hence, Doeblin’s condition —abbreviated (D) in the following— can be
used as a link between quasi-compact operators and special Markov chains. It
is, again, the book of Meyn and Tweedie [79] which provides us with criteria
under which Markov chains satisfy (D): For irreducible and aperiodic Markov
chains, (D) is equivalent to the chain being uniformly ergodic46 (cf. Thm. 16.2.3
in [79]). This result is important for the context considered herein, because
any irreducible and aperiodic T-chain —like the stochastic dynamical system
associated with the spatial transition operator (cf. Sec. 4.5)— is known to be
uniformly ergodic, if the state space is compact (Thm. 16.2.5 in [79]) or if the
chain satisfies certain stability conditions (Thm. 16.2.6 in [79]). Hence, this
line of argumentation may serve to establish more general results concerning
quasi-compactness of transition operators, at least for such operators which are
directly associated with some Markov chain like our spatial transition operator.

In addition, uniform and “geometric” ergodicity of Markov chains imply
central limit theorems (see Thm. A.30), describing the rate of convergence to
the invariant distribution of the chain. The reader will find some connections
between central limit theorems and compactness of the associated transition
operator in the literature on Metropolis-Hastings and Gibbs Sampler Markov
chains, e.g., in [92, 70] and in the appendix of [100]. However, in these arti-
cles compactness of the transition operator is used as an assumption implying
uniform or geometric ergodicity and different central limit theorems; compare
the contribution of Kung Sik Chang and Geyer to the discussion in [106].
Some aspects of this discussion will reappear in the construction process of some
appropriate discretization for the spatial transition operator (see Sec. 5.4).

46The definition of “uniform ergodicity” for a Markov chain can be found in Appendix A
(see Def. A.28); as the above results indicate, this definition is much stronger than that used
in operator theory.
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5 Discretization

For simplicity of notation, from now on, the position space or, respectively,
essential configuration space under consideration is denoted by Ω, which always
is assumed to be a Lipschitz-bounded domain. Moreover, we write L2

F for the
associated weighted Hilbert spaces L2

F (Ω) or L
2
Fϑ

(Θ), respectively, and denote
the corresponding scalar products and norms by 〈·, ·〉F and ‖·‖F . In accordance
to this, the weight function F = F (q) or F = F (θ), respectively, are simply
denoted by F = F (q).

In the following, we follow the line of arguments of Schütte et al. [94] (in
Sec. 5.1 and Sec. 5.4) and Deuflhard et al. [24] (in Sec. 5.3). However, a
significant part the material is new (in particular the approximation results in
Sec. 5.4).

5.1 Spatial Discretization

In the weighted Hilbert space L2
F , we (as in [19, 21]) derive a Galerkin procedure

to discretize the eigenvalue problem Tu = λu. LetB1, . . . , Bn ⊂ Ω be a covering
of Ω so that Bk ∩Bl is of (Lebesgue) measure zero for k �= l and ∪n

k=1Bk = Ω.
Then, the sets Γ(Bk), k = 1, . . . , n, are a covering of Γ. Our finite dimensional
ansatz space Vn = span{χ1, . . . , χn} is spanned by the associated characteristic
functions χk = χBk

. The Galerkin projection Πn : L2
F → Vn of u ∈ L2

F is
defined by

Πnu =
n∑

k=1

1

ρ(Bk)
〈χk, u〉F χk, with ρ(Bk) = 〈χk, χk〉F =

∫
Bk

F (q) dq.

The resulting discretized transition operator ΠnTΠn induces the approximate
eigenvalue problem ΠnTΠnu = λu in Vn. Let λ be one of the correspond-
ing eigenvalues and let the related eigenvector be u =

∑n
k=1 αkχk. Then, the

discretized eigenvalue problem has the form

n∑
l=1

〈Tχk, χl〉F αl = λρ(Bk)αk, ∀k = 1, . . . , n.

After division by ρ(Bk) (known to be positive), we end up with the convenient
form

Tnα = λα with α = (α1, . . . , αn)
T ,

where in fact the entries of the n × n matrix Tn are given by the transition
probabilities from Bk to Bl:

Tn,kl = 〈Tχk,χl〉F
ρ(Bk)

= w(Bk, Bl, τ). (72)

Hence, Tn is the matrix representation of T in Vn with respect to the or-
thonormal basis {φj = χj/

√
ρ(Bj)}. For simplicity, we often identify Tn with
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ΠnTΠn (and �n with Vn) in the following and call Tn as well as ΠnTΠn the
Galerkin discretization of T or, alternatively, the transition matrix.

Remark 5.1 The result (72) is the main reason for the choice of the simple box
function ansatz spaces Vn suggested herein. In fact, one could also apply finite
element ansatz spaces, for example, which would result in better approximation
properties of the eigenelements (cf. Rmk. 5.5 in Sec. 5.2). But only our box
function ansatz spaces allow for a direct interpretation of the entries of the
discretization matrix as transition probabilities — a property, which will be
important for the identification algorithm to be presented in Sec. 5.3 and for the
efficient evaluation of the entries of Tn via Hybrid Monte Carlo (cf. Sec. 5.4).47

Properties of the Transition Matrix Since T is a Markov operator, its
Galerkin discretization Tn is a (row) stochastic matrix, i.e., Tn,kl ≥ 0 and∑n

l=1 Tn,kl = 1 for all k = 1, . . . , n (for details about stochastic matrices see
[8]). Hence, all its eigenvalues λ satisfy |λ| ≤ 1.

Indeed, for arbitrary coverings B1, . . . , Bn ⊂ Ω, the discretization matrices
Tn are also inheriting other important properties of the operator T :

Proposition 5.2 The Galerkin discretization Tn of the transition operator T
has the following properties:

1. The discretized invariant density, i.e., the row vector ρ = (ρ1, . . . , ρn),
ρk = ρ(Bk), is a left eigenvector to the eigenvalue λ = 1 of Tn, i.e.,
ρTn = ρ.

2. For every integer m, Tm
n is the Galerkin discretization of the mth power

Tm of the transition operator T — as usual.

3. If T is asymptotically stable, then Tn is primitive,48 i.e., the eigenvalue
λ = 1 is simple and dominant. Hence, the discretized invariant density ρ
is the unique stationary distribution of Tn.

4. Since the discretized invariant density ρ has positive entries, it induces a
weighted scalar product 〈·, ·〉ρ on Vn.

49 Tn is symmetric with respect to
〈·, ·〉ρ. As a consequence, Tn is reversible, i.e., Tn satisfies the condition
of detailed balance:50

ρk Tn,kl = ρl Tn,lk, ∀k, l ∈ {1, . . . , n}. (73)

47In fact, if finite element ansatzes are used, the entries of the transition matrix would only
be the coefficients of the polynomial approximation on the discretization cells. Thus, the re-
construction of the transition probabilities would always require some addition computations.

48A nonnegative square matrix P is called primitive, if there is a positive integer m such
that Pm > 0 (entrywise). Any primitive matrix is irreducible and aperiodic and conversely
(cf. [96], Thm. 1.4.).

49That is, for column vectors y, z ∈ Vn, we define 〈y, z〉ρ = yT diag(ρj) z.
50Stochastic matrices satisfying a detailed balance condition have been extensively analyzed

in the context of Monte-Carlo techniques. For details and implications like such in the proof
below, compare, e.g., [38].
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Moreover, obviously, all eigenvalues of Tn are real-valued, σ(Tn) ⊂ [−1, 1].

Proof: Let us check the assertions as they are numbered:
Ad 1) Exploiting TχΩ = χΩ, simple calculus reveals that

(ρTn)k =
n∑

j=1

Tn,jk ρj =
n∑

j=1

1

ρj
〈Tχj , χk〉F ρj

= 〈TχΩ, χk〉F = ρk.

Ad 2) Using the orthonormal basis {φj = χj/
√
ρj} of Vn, (72) and the

self-adjointness of T yield

(
T 2
n

)
kl

=

n∑
j=1

1

ρk
〈Tχk, φj〉F · 〈φj , Tχl〉F =

1

ρk
〈T 2χk, χl〉F .

A simple induction argument then proves the assertion for all m ∈ �.
Ad 3) Every row vector y = (y1, . . . , yn) with nonnegative entries yj ≥ 0,

satisfying
∑

j yj = 1, is called a probability vector. Since ρ is positive, we
can prove that Tn is primitive by showing that yTm

n → ρ for m → ∞ for
every probability vector y. To this end, choose an arbitrary probability vector
y. Consequently, the function u =

∑
j yjχj/ρj is a density, i.e., u ∈ DF ,

and the asymptotic stability of T together with assertion 2) yield for every
k ∈ {1, . . . , n}:

(y Tm
n )k = 〈Tmu, χk〉F → 〈χΩ, χk〉F = ρk, for m→ ∞.

Thus, Tn is primitive and the assertion concerning the eigenvalue λ = 1 then
follows from the well-known Perron-Frobenius Theorem (cf. [96], Thm. 1.1).

Ad 4) First, introduce the diagonal matrix Dρ = diag(
√
ρj) and define

S = DρTnD
−1
ρ . Simple calculus, using the self-adjointness of T , then shows

that S is symmetric with respect to the Euclidean scalar product, i.e., that
ST = S. In turn, this reveals that, for Tn itself,

ST = S ⇔ DρTnD
−1
ρ = D−1

ρ T T
n Dρ ⇔ D2

ρTn = T T
n D2

ρ,

which is nothing else than the matrix notation of the detailed balance condition
(73). Rewritten in terms of the ρ-weighted scalar product, this finally means
for every pair of (column) vectors y, z ∈ Vn:

〈y, Tnz〉ρ = yTdiag(ρj)Tnz = yTD2
ρTnz = yTT T

n D2
ρz = 〈Tny, z〉ρ,

i.e., the asserted symmetry of Tn.

Let the stochastic matrix Tn have a right eigenvector r ∈ �d , i.e., assume
that there is a λ ∈ [−1, 1] such that Tnr = λr. Then,

u =

n∑
j=1

rj χj
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is an eigenvector of ΠnTΠn with associated eigenvalue λ. Thus, the right eigen-
vectors of Tn are to be interpreted as approximate eigenvectors of T . The left
eigenvector of Tn associated with r and λ then is given by componentwise mul-
tiplication of r with ρ, i.e., by the row vector

l = rTD2
ρ ⇒ l Tn = λ l.

Consequently, if r is the right eigenvector approximating the eigenfunction u of
T , the left eigenvector l = rTD2

ρ approximates the weighted eigenfunction u ·F .
For Tn, as for every primitive stochastic matrix, the unique right eigenvector
to the eigenvalue λ = 1 is e = (1, . . . , 1)T , which results in eTD2

ρ = ρ for the
associated left eigenvector.

Finally, let R = [r1, . . . , rn] denote the matrix whose columns are the ρ-
normalized51 right eigenvectors of Tn for the n eigenvalues52 (λ1, . . . , λn). Let
LT = [l1, . . . , ln] denote the matrix whose rows are the left eigenvectors lk =
rTk D

2
ρ. Then, Tn has the following spectral decomposition:

Tn = R diag(λj)L
T with LTR = Id, since 〈rk, rl〉ρ = δkj .

Remark 5.3 This technique of discretizing the transition operator is similar to
the approach to discretizing the Frobenius-Perron operator of a discrete dynam-
ical system via subdivision techniques due to Dellnitz and Junge [19] and
to the concept of “cell-to-cell-mapping” due to Hsu [57]. However, the main
difference is obvious: we have to deal with a stochastic dynamical system whose
essential dynamics covers significantly large parts of some highly-dimensional
state space; both of the other approaches have been designed for deterministic
dynamical systems in state spaces with relatively small dimension. For more
details see [21, 94].

5.2 Convergence of Eigenvalues and Eigenvectors

From our results concerning the spectral properties of the transition operator T
we may infer that the following situation is valid:

There are some integers l and k such that the discrete spectrum of T can be
written as

σdiscr(T ) = {λ1, . . . , λl} ∪ {λ−1, . . . , λ−k},

where the second set may be empty (k = 0).53 The eigenvalues may be ordered
such that

1 = λ1 > λ2 ≥ . . . ≥ λl > 0 and − 1 < λ−1 ≤ λ−2 ≤ . . . ≤ λ−k < 0,

51That is, 〈rk, rk〉ρ = 1.
52Note, that each eigenvalue has to be repeated with respect to its multiplicity
53In fact, l and k may also be infinite, e.g., if T is compact. In this case, consider only the

l largest and k smallest eigenvalues of T .
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where some of the λj ’s may occur repeatedly according to their multiplicity.
The associated eigenvalues are denoted uj, j ∈ {1, . . . , l} ∪ {−1, . . . ,−k}; for
every repeated eigenvalue they are assumed to be normalized and to be chosen
orthogonal with respect to 〈·, ·〉F .

For the discretized representation ΠnTΠn of the transition operator, we
denote the eigenvalues by λnj . For n ≥ max(l, k) the largest and smallest ones
are assumed to be ordered accordingly:

1 = λn1 > λn2 ≥ . . . ≥ λnl and − 1 < λn−1 ≤ λn−2 ≤ . . . ≤ λn−k,

again repeated due to their multiplicity. The associated eigenvectors are denoted
by unj , again being assumed to be orthogonal and normalized with respect to
〈·, ·〉F .

Finally, let us to assume that we are considering a sequence Vn ⊂ Vn+1 ⊂ . . .
of our simple box function ansatz spaces Vn = span{χBn

j
}, which is dense in

L2
F .

54 Hence, the associated coverings Bn
j , j = 1, . . . , n, of Ω are supposed to

result from an appropriate iterative subdivision process, such that the maximal
“diameter” hn = maxj diam(Bn

j ) vanishes asymptotically, i.e., hn → 0 for n →
∞.

Under these assumptions we can prove the following simple convergence
result for the eigenelements associated with the discrete part of the spectrum.

Corollary 5.4 For every j ∈ {1, . . . , l} and i ∈ {1, . . . , k} there is an integer
n0 ∈ � such that for all n > n0

αn
j + λj ≤ λnj ≤ λj and λ−i ≤ λn−i ≤ αn

−i + λ−i, (74)

with αn
j < 0 and αn

−i > 0, but αn
j → 0 and αn

−i → 0 for n→ ∞. Moreover, for
all j ∈ {1, . . . , l}∪{−1, . . . ,−k}, the convergence of the associated eigenvectors
is guaranteed, i.e., after an appropriate adjustment of eigenvectors for repeated
eigenvalues:

lim
n→∞ ‖uj − unj ‖2 = 0.

Proof: The asserted convergence is a simple corollary of the Lemmas B.48 and
B.49 from Sec. B.3 of Appendix B. In order to meet the assumptions of these
lemmas for the l largest eigenvalues λj , j ∈ {1, . . . , l}, of our transition oper-
ator T , consider the self-adjoint operator A = (1 + γ)Id − T with an arbitrary
γ > 0.55

Remark 5.5 The explanations in Appendix B concerning Lemma B.49 illus-
trate that the rate of the convergence unj → uj crucially depends on the dis-
tribution of the eigenvalues in the spectrum of T . Moreover, as explained in

54That is, for every u ∈ L2
F and every ε > 0, there is an M ∈ � and a v ∈ VM such that

‖u− v‖2 < ε.
55For the eigenvalues λ−i, i ∈ {1, . . . , k} we may follow exactly the same idea using A =

(1 + γ)Id + T .
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more detail in Rmk. B.50, we can establish explicit convergence rates for the
convergence in Cor. 5.4, if we use finite element ansatz spaces instead of our
crude box function ansatz spaces.

5.3 Identification of Almost Invariant Aggregates

In Sec. 3.2, we already observed that almost invariant sets of the system under
investigation may be identified via the eigenvectors uj of the largest eigenvalues
of the transition operator T . Let us now switch to the situation after proper
discretization of T , assuming that the discrete eigenvectors of the resulting
transition matrix Tn are appropriate approximations of these uj .

The problem remains how to approximate the almost invariant sets on the
basis of these discrete eigenvectors. Obviously, we have to identify the almost
invariant sets in the discrete state space {1, . . . , n} of the transition matrix
Tn, which then can be interpreted as approximate almost invariant sets in the
essential configuration space Ω by identifying index sets A ⊂ {1, . . . , n} with
subsets ∪j∈ABj ⊂ Ω. In order to avoid confusion, we adopt the phrase “aggre-
gate” for any (nonvoid) index sets A ⊂ {1, . . . , n}.56 Thus, our strategy is to
approximate almost invariant sets of T via almost invariant aggregates of Tn.

In the following, the connection between almost invariant aggregates and
eigenvectors of the dominant eigenvalues of Tn is worked out. We will see that
such almost invariant aggregates exist if the Markov chain associated to Tn is
nearly uncoupled, which means that it can be interpreted as a perturbation of
an uncoupled Markov chain (UMC). Then, it will be demonstrated that the
decoupling of an UMC can be managed by inspection of the sign structure of
the dominant eigenvectors of the associated transition matrix. This technique
will be transferred to the nearly uncoupled case via an appropriate perturbation
result, which finally yields the required identification algorithm.

The idea of analyzing nearly uncoupled Markov chains as perturbed UMCs
is far from being new (compare, e.g., the approaches via coupling matrices
[78, 102, 103], via the “conductance” of a Markov chain [97], or via the “uncou-
pling measure” [52].). However, a special algorithmic concept for the identifi-
cation of almost invariant aggregates has (to the author’s knowledge) first been
presented in our article [24] and we will closely follow this presentation herein.
In [19], an essentially different treatment of the identification problem has been
demonstrated, mainly aiming at identifying almost cyclic aggregates (whereas
the case of almost invariant aggregates has only been vaguely indicated).

We first have to give a suitable definition of “almost invariance” of aggre-
gates. To this end, we start with the following

Definition 5.6 Given a Markov chain and its transition matrix P (not nec-
essarily primitive) and a stationary distribution ρ > 0.57 Let A and B be two

56This phrase has its origin in the literature concerning Markov chains with discrete state
space. Hence, it may also be used for the associated stochastic transition matrices.

57That is, the row vector ρ is a probability vector with positive entries which satisfies
ρP = ρ.
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arbitrary aggregates. Then the transition probability between A and B with
respect to ρ is given by

wρ(A,B) =

(∑
a∈A

ρa

)−1 ∑
a∈A,b∈B

ρa Pab.

Let the aggregates A1, . . . , Ak be a disjoint decomposition of the state space.
Then, the stochastic matrix Wρ, the entries of which are the transition proba-
bilities between the Aj , i.e.,

Wρ,jl = wρ(Aj , Al),

is called the coupling matrix of the decomposition.

The statistical characterization of uncoupled Markov chains (UMC) is based
on transition probabilities between aggregates. An aggregate A is said to be
invariant, if wρ(A,A) = 1.58 AMarkov chain is then called uncoupled, if it allows
to decompose the state space into disjoint invariant aggregates A1, . . . , Ak, i.e.,
wρ(Ai, Aj) = δij , or equivalently, Wρ = Id.

Before discussing more details about UMCs, let us switch to the case of some
Markov chain with primitive transition matrix. Then, its stationary distribution
is unique and we may simply write w(A,B) instead of wρ(A,B). An aggregate
A is said to be almost invariant, if w(A,A) ≈ 1. The Markov chain is called
nearly uncoupled (NUMC), if its state space can be decomposed into disjoint
almost invariant aggregates A1, . . . , Ak such that

w(Ai, Aj) ≈ δij , that is, W ≈ Id. (75)

Thus, the almost invariant character of the decomposition A1, . . . , Ak means
that the conditional probability of leaving Aj , i.e.,

∑
l 
=j w(Aj , Al), is small for

every j = 1, . . . , k. That is, we demand that

‖W − diag(W )‖∞ = ε

is sufficiently small.59

Before being able to present the algorithm for identifying almost invariant
aggregates, we have to collect some consequences of these definitions.

5.3.1 Uncoupled and Nearly Uncoupled Markov Chains

As a consequence of (75), the states of a NUMC with k almost invariant ag-
gregates can be ordered such that the transition matrix P is of block–diagonally

58Note that in the case of an UMC, the stationary distribution is not unique, because
the corresponding transition matrix is not irreducible. However, in this special case the
probabilities are independent of the chosen stationary distribution.

59Herein, diag(W ) denotes the diagonal matrix whose diagonal entries are identical to that
of W , i.e., diag(W ) = diag(w(Aj , Aj)).
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dominant form

P = D + E =

⎛
⎜⎜⎜⎜⎜⎜⎝

D11 E12 · · · E1k

E21 D22 · · · E2k

. . .

. . .

. . .
Ek1 Ek2 · · · Dkk

⎞
⎟⎟⎟⎟⎟⎟⎠ , (76)

where the matrix E is small. Here, smallness of E means

‖D2
ρE‖∞ ≤ ‖W − diag(W )‖∞ = ε,

where Dρ = diag(
√
ρi) is the weighting matrix from above. We are interested

in the limit ε→ 0.

Uncoupled Markov Chains For ε = 0, i.e., for E = 0, we end up with a
block-diagonal transition matrix associated with an uncoupled Markov chain. In
fact, as a consequence of the definition of an UMC, any associated transition
matrix takes this form after suitably renumbering the state space. Thus, each
of the block matrices Dii is a stochastic matrix, and it is primitive if k is the
maximal number of uncoupled aggregates. Then, each block Dii possesses a
unique eigenvector ei = (1, . . . , 1)T of length dim(Dii) corresponding to its
Perron root λi = 1. Therefore, λ = 1 is a k–fold eigenvalue of the transition
matrix P and the corresponding eigenspace is spanned by the vectors

χAi = (0, . . . , 0, ei
T , 0, . . . , 0)T , i = 1, . . . , k.

Here our notation deliberately emphasizes that the eigenvectors can be inter-
preted as characteristic functions of the uncoupled aggregates.

In general, any basis {ri}, i = 1, . . . , k, of the eigenspace corresponding to
λ = 1 can be written as linear combinations of the characteristic functions χAi ,
i.e., there are coefficients αij ∈ � such that

ri =

k∑
j=1

αij χAj , i = 1, . . . k. (77)

As a consequence, eigenvectors corresponding to λ = 1 are constant on each
aggregate. This structure implies the following lemma, which is a simple conse-
quence of the ρ-orthogonality of the eigenvectors (for a proof see [24]).

Lemma 5.7 Given a block–diagonal transition matrix P consisting of reversible,
primitive blocks, a stationary distribution ρ > 0 and a ρ-orthogonal basis {ri}i=1,... ,k

of its eigenspace corresponding to λ = 1. Associate with every state si its sign
structure

si �−→ (sign((r1)i), . . . , sign((rk)i)). (78)

Then
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1. invariant aggregates are collections of states with common sign structure,

2. different aggregates exhibit different sign structures.

Summarizing, Lemma 5.7 states that —for uncoupled Markov chains— the
set of all k eigenvectors can be used to identify all uncoupled aggregates via sign
structures. In principle this can also be done by using both left eigenvectors
and right eigenvectors, since their sign structures are the same: Just recall that
for every left eigenvector l there exists an associated right eigenvector r with
lT = Dρr, hence sign(lT )=sign(r).

Perturbation of Uncoupled Markov Chains In what follows we want to
analyze nearly uncoupled Markov chains as weak perturbations of uncoupled
Markov chains. In analogy to the nearly block-diagonal form (76) of the transi-
tion matrix of a NUMC, we assume that the perturbation can be embedded in
a family of block–diagonally dominant matrices P = P (ε) which is analytic in
a domain of the complex plane containing the origin:

P (ε) = P (0) + εP (1) + ε2P (2) + . . . ,

where P (0) represents the uncoupled situation, i.e., P (0) is block-diagonal with
k primitive blocksDii, i = 1, . . . , k. As normalization, let ‖D2

ρP
(1)‖∞ = 1 to fix

the scale of ε. Since the discretization process of the transition operator results
in a reversible and primitive transition matrix Tn, we, moreover, may assume
that P (ε) also is symmetric with respect to 〈·, ·〉ρ for ε ∈ � and primitive for all
ε �= 0. Consequently, we may exploit the usual theory for symmetric matrices for
the details of the perturbation analysis (cf. [60]). Finally, we have to assume that
the unique stationary distributions60 ρ = ρ(ε) of the P = P (ε) are “uniformly
bounded away from zero” (for all ε ≥ 0).

These regularity conditions imply that, for sufficiently small ε ∈ �, the eigen-
values are continuous in ε and the spectrum of P (ε) can be divided into three
parts [60, 78, 102]: the Perron root λ1(ε) ≡ 1, a cluster of k − 1 eigenval-
ues λ2(ε), . . . , λk(ε) that approach 1 for ε → 0, and the remaining part of the
spectrum, which is bounded away from 1 for ε→ 0.

In particular, for small real ε there is a spectral gap between the “Perron clus-
ter” λ1(ε), . . . , λk(ε) and the remaining part of the spectrum. The following per-
turbation theorem gives a characterization of the eigenvectors r1(ε), . . . , rk(ε)
corresponding to the Perron cluster (for a proof see [24]).

Theorem 5.8 Let P (ε) be a family of matrices satisfying the above introduced
regularity conditions. Then, for real ε, there exist ρ–orthonormal eigenvectors
r1(ε), . . . , rk(ε) of the following form: The eigenvector r1(ε) ≡ (1, . . . , 1)T cor-
responds to the Perron root λ = 1. The other k − 1 eigenvectors correspond to

60For ε > 0 the P (ε) are primitive. For ε = 0, define ρ(0) = limε→0 ρ(ε).
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the eigenvalue cluster λ2(ε), . . . , λk(ε) near λ = 1 and have the form

ri(ε) =

k∑
j=1

(αij + ε βij)χAj︸ ︷︷ ︸
=(I)

+ ε

n∑
j=k+1

1

1− λj
〈rj , P (1)ri〉ρ rj +O(ε2)

︸ ︷︷ ︸
=(II)

(79)

with appropriate coefficients αij , βij ∈ �, {ri = ri(0)} being eigenvectors of
P (0), and aggregates A1, . . . , Ak corresponding to the block–diagonal form of
P (0).

This result permits an intriguing observation: the first terms (I) are just
shifts (up or down) of the locally constant levels to be associated with the
almost invariant aggregates, whereas the second terms (II), which depend on the
spectral gap between the Perron root and the remaining part of the spectrum,
will spoil the constant level pattern to some extent. It may, however, affect the
sign structure associated with any almost invariant aggregate only to a smaller
extent. Indeed, it is one of the key ideas of this subsection to identify the
almost invariant aggregates via their sign structure. Clearly, caution must be
taken with respect to the perturbation of any “almost zero” levels (cf. Fig. 14).
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Figure 14: Illustration of Thm. 5.8 for a situation with k = 3 (almost) invariant aggregates.
In this example, the P (ε) are 90 × 90 matrices acting on a state space {1, . . . , 90}. Left:
Eigenvectors spanning the eigenspace of λ = 1 for the uncoupled case P (0). The state space is
decomposed into three invariant aggregates by different sign structures. Right: Eigenvectors
for the eigenvalues λ1 = 1, λ2 = 0.75, and λ3 = 0.52 of the Perron cluster for the nearly
uncoupled case P (ε) versus the (discrete axis of the) 90 states. The eigenvectors are almost
constant on the three almost invariant aggregates. The sign structures are the same as for the
uncoupled case except for r3 on the third aggregate, where perturbations introduce “erratic”
sign structures. See [24] for the construction of the underlying transition matrices.

Remark 5.9 This approach to almost invariant aggregates as perturbation of
invariant aggregates of uncoupled Markov chains should be compared to the
understanding of almost invariant sets as perturbed invariant sets as illustrated
in the guiding example, compare Sec. 3.2, Rmk. 3.5. An interpretation of the
perturbation parameter ε is given in Rmk. 3.6.
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Error Indicator The identification process exploiting the sign structure is
justified only via the perturbation result. Therefore, it is of main importance to
estimate the influence of the “weak modes” ri, i = k+1, . . . , n, on the coupling
of the “dominant modes” ri, i = 1, . . . , k.

To this end, let us assume that we already know the almost invariant aggre-
gates A1, . . . , Ak for P = P (ε). In terms of the n×k matrices χ = [χA1 · · ·χAk

]
and R = [r1 · · · rk] = R(ε) the perturbation result (79) may also be expressed
in the form R = χA−1 + εB, with a k × k coefficient matrix A = A(ε) and a
n× k matrix B = B(ε) representing the “weak-dominant” coupling terms (II).
This permits the computation of the associated coupling matrix in terms of the
eigenvectors R and the corresponding eigenvalues Λ = diag(λ1, . . . , λk) = Λ(ε):

W = (χTD2
ρχ)

−1 (χTD2
ρP χ) = A−1ΛA + εΔ.

Herein, the matrix Δ represents the contribution of the “weak-dominant” in-
teraction to the coupling matrix, while the first term, A−1ΛA, describes the
interaction between the dominant modes. The reader might remember, that, in
the case of an uncoupled Markov chain, we had B = 0 and Λ = Id, implying
Δ = 0 and W = A−1ΛA = Id. For the nearly decoupled Markov chains under
consideration, we may expect A−1ΛA ≈ Id and interpret the k × k matrix

err(A1, . . . , Ak) = W − A−1ΛA (80)

as error indicator measuring the influence of the weak modes on the coupling
between the aggregates (A1, . . . , Ak). Hence, if an entry of err(A1, . . . , Ak) is
large, this may essentially have two different reasons:

1. Our assumptions concerning the perturbation were not valid (e.g., ε was
too large, or the regularity conditions were hurt).

2. The identification process exploiting the sign structure resulted in “wrong”
almost invariant aggregates. This may happen if the perturbations had
crucially spoiled the sign structure resulting in an assignment of some
states to the “wrong” aggregate (see below).

5.3.2 Identification Algorithm

In this section we present the basic concept of an algorithm for the identification
of almost invariant aggregates. As derived above, this algorithm explores the
sign structure of eigenvectors corresponding to an eigenvalue cluster near λ = 1.

In a first step we have to determine the number k of almost invariant aggre-
gates. This is done by computing the cluster of eigenvalues near λ = 1 which is
well-separated from the remaining part of the spectrum by a gap (Thm. 5.8). It-
erative eigenvalue solvers with simultaneous subspace iteration (see, e.g., [90, 68]
or [22, Section 4]) are a natural way to perform this task.

We now assume the k right eigenvectors ri, associated with the Perron clus-
ter, to be computed and explain the suggested identification algorithm in three
steps:
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Step 1: We are mainly interested in sign structures which are particularly
stable with respect to the perturbations of the eigenvectors. Heuristically, the
sign of an entry of one of the eigenvectors is the more likely to remain unper-
turbed, the larger this entry is. Hence, we are particularly interested in all
those states s ∈ {1, . . . , n}, for which at least one of the eigenvectors ri has
some “significantly large” entry ri(s). Since “significantly large” will vary for
each eigenvector, we introduce an appropriate scaling: we normalize the positive
and negative parts of each eigenvector by their maximum norm, yielding scaled
eigenvectors r̃i.

61 Now, we are interested in such states s for which at least
one of the scaled eigenvectors has an entry larger than a given threshold value
0 � δ < 1. Hence, the first step of the identification algorithm is

(S1) Determine Σ = {s : max
i=1,... ,k

|r̃i(s)| > δ}.

Step 2: Based on the sign structures of the states in Σ, we now identify k
specific classes of “nonequivalent” sign structures. The sign structure σ(s, ε) =
(σ1, . . . , σk) of some state s with respect to the threshold value ε is defined
as follows: if |ri(s)| > ε, then σi = sign(ri(s)), otherwise σi = 0. Then, the
entry “0” is used as a kind of joker, being interpretable as “+1” as well as “-1”.
Consequently, two sign structures σ1 and σ2 are equivalent, denoted by σ1 ≡
σ2, iff their pointwise multiplication yields only nonnegative entries. Despite
the fact that ≡ defines no equivalence relation, it serves to decompose Σ into
“nonequivalent” classes of sign structures yielding a surjective map a : Σ →
{1, . . . , k}. For ease of presentation, we refer the reader for the details of these
procedures to our article [24]. Summarizing, the second step of the identification
algorithm contains:

(S2) Determine k classes of (incommensurable) sign structures and the associ-
ated map a. Due to a, Σ decomposes into k disjoint subsets Σ1, . . . ,Σk,
each of which represents the “core” of the almost invariant aggregates.

Step 3: We finally have to assign the remaining states s ∈ {1, . . . , n} \Σ to
one of the sign structure classes, aiming at a complete decomposition of the state
space into k aggregates. Instead of using the possibly heavily perturbed sign
structures of these states, we exploit the fact that the k eigenvectors ri allow
to approximate the k characteristic functions of the aggregates. Since a subset
Σj of each aggregate is already available, we may again apply a least squares
fit, now based only on the states from Σ, in order to determine approximate
characteristic functions χ̃j . That is, evaluate coefficients αij such that

‖χΣi −
k∑

j=1

αjirjχΣ‖π = min!, for i = 1, . . . , k, (81)

61For every vector X, we define entrywise X+(s) = max(0, X(s)) and X−(s) = min(0, X(s))
such that X = X++X−. In this notation, we set r̃i = r+i /‖r+i ‖∞+r−i /‖r−i ‖∞. In particular,

the eigenvector for λ = 1 remains unchanged: r̃1 = (1, . . . , 1)T .
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where rjχΣ means pointwise multiplication. Then, define χ̃j =
∑k

j=1 αjirj .
Having computed the χ̃j , a state s is assigned to aggregate j if χ̃j(s) is maximal
in the set {χ̃i(s), i = 1, . . . , k}.62 Thus, the third step of the algorithm is:

(S3) Evaluate coefficients αij due to (81), set χ̃j =
∑k

j=1 αjirj , and determine
the aggregates via

Aj = {s ∈ {1, . . . , n} : χ̃j(s) > χ̃i(s), for all i �= j}.

The resulting aggregates can finally be validated with respect to different
criteria, for example, via the entries of the error indicator matrix, via the devia-
tion of the approximations χ̃j from being true characteristic functions, or via a
comparison between the Perron cluster and the diagonal entries of the coupling
matrix.63

The performance of the resulting algorithm applied to a realistic problem
will be illustrated in detail in Sec. 6 below.

5.4 Evaluation of the Transition Matrix via Hybrid Monte
Carlo

Our next question is how to compute the matrix Tn for given boxes Bk ⊂ Ω.
According to (72) we have to determine the transition probabilities between
these boxes. For the scope of this section we restrict our consideration to the
case of the canonical ensemble f0 = fcan. That is, we have to compute the
transition probabilities

w(Bk, Bl, τ) =

∫
Γ(Bk)

χΓ(Bl) (Φ
τx) fcan(x) dx∫

Γ(Bk)
fcan(x) dx

=

∫
Bk

{∫
�d χBl

(π1Φ
τ (q, p))P(p) dp

}
Q(q) dq∫

Bk
Q(q) dq

, (82)

where the notation assumes for a moment, that Ω indeed denotes the position
space of the system under consideration.

The two alternative formulae show that we have at least two options for
evaluating w(Bj , Bl, τ) explicitly. We can realize the first formula by working
in the phase space Γ (option x), performing the following two steps

(X1) “Sampling of the canonical density”: That is, we have to generate a se-
quence of states S = {xk, k = 1, . . . ,M} ⊂ Γ that is approximately
distributed according to the canonical density fcan.

62In case of ambiguity, the state is assigned to an arbitrary aggregate with maximal χ̃j .
However, this case was never observed in any of the numerical experiments performed.

63The deviation εP = 1 − λk of the Perron cluster λ1 ≥ . . . ≥ λk from λ1 = 1 should be
comparable to the deviation εW = 1−minj w(Aj , Aj) of the diagonal entries from 1, especially
if the gap g = λk − λk+1 between the Perron cluster and the remaining part of the spectrum
is large enough (g � εP ).
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(X2) Approximation of the transition probabilities: Having computed S, one
has to count all such xj ∈ S for which xj ∈ Γ(Bk) and Φτxj ∈ Γ(Bl). For
checking the last condition, sufficient approximations x̃j ≈ Φτxj of all M
subtrajectories starting from S are needed.

The second formula of (82) allows to restrict the sampling problem to the po-
sition space Ω (option q) but requires an additional momenta sampling in the
approximation step of the transition probabilities. We will see that the options
can both be realized by suitable Monte-Carlo strategies.

5.4.1 Evaluation via Metropolis Monte-Carlo (MC)

The main problem with sampling the canonical density is that, in most realistic
cases, we cannot explicitly evaluate its value fcan(x) = exp(−βH(x))/Z for a
given state x ∈ Γ, because the partition function Z is not known explicitly.64

The typical approach to sampling the canonical density fcan in the entire phase
space is via Monte Carlo (MC) techniques. The literature on this topic is ex-
tremely rich and varied [11, 44] and we surely will not give particular merits to
any particular MC variant. Let us shortly recall the basic steps of a Metropolis
MC approach (for additional details see, e.g., [101]):

Metropolis MC realizes a Markov chain {xj} which is asymptotically dis-
tributed according to fcan without evaluating fcan itself. Each “update step”
xj → xj+1 of the Metropolis construction consists of two parts:

1. The proposal step xj → x̃j : The numerical realization of the proposal step
should exclude any evaluation of fcan and must yield a final update step
which satisfies the detailed balance condition.

2. The acceptance step: evaluate ΔE = H(x̃j) − H(xj) and choose r ran-
domly equidistributed from [0, 1]. The state x̃j is accepted as xj+1 if
r ≤ min{1, exp(−βΔE)}, otherwise we set xj+1 = xj .

Thus, we may apply any such Metropolis MC variant to realize option x
from above by producing a sequence S = {xk, k = 1, . . . ,M} ⊂ Γ sampling
fcan. In an additional, second step we then have to realize problem (X2) via
appropriate approximations of the flow. That is:

rel.freq. (xj ∈ Γ(Bk) ∧ Φτxj ∈ Γ(Bl))

rel.freq. (xj ∈ Γ(Bk))
→ w(Bk, Bl, τ). (83)

It is obvious, that this idea of approximation is not restricted to the case where
Ω is the position space and the Bj are spatial boxes. On the contrary, we may
use every box covering induced by a set ϑ of essential variables, only that, then,
we have to replace (83) by

rel.freq. (ϑ(xj) ∈ Bk ∧ ϑ(Φτxj) ∈ Bl)

rel.freq. (ϑ(xj) ∈ Bk)
→ w(Bk, Bl, τ). (84)

64Z =
∫
Γ
fcan(x)dx is an integral in a highly dimensional space. Its computation of which

is a tremendous task comparable to the evaluation of the transition probabilities itself.
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Evaluation via Associated Markov Chain Let us now discuss how a real-
ization of option q may look like, i.e., how we may restrict the sampling to the
position space of the system under consideration. We know from Sec. 3.6, that
our transition operator is associated with the Markov chain

qk+1 = π1Φ
τ (qk, pk), (85)

if the pk are independently chosen randomly with respect to the canonical mo-
mentum distribution P , and the initial position q0 from an arbitrary initial
distribution in position space. Thus, iterations of (85) realize sequences {qk}
which are (asymptotically) distributed due toQ. Simultaneously, such iterations
allow us to determine the relative frequency of transitions qk ∈ Bj → qk+1 ∈ Bl

for arbitrary box numbers j and l. The convergence guarantees that —as in
step (X2) above— the relative frequencies approximate the desired transition
probabilities in the sense similar to (83), i.e.,

rel.freq. (qk ∈ Bj ∧ qk+1 ∈ Bl)

rel.freq. (qk ∈ Bj)
→ w(Bj , Bl, τ),

or, for essential variables, in a sense similar to (84).
Thus, another idea for evaluating Tn could be to realize the iteration (85) by

replacing the exact flow Φτ by an appropriate approximation. Therefore, let us
apply a symplectic and reversible discretization Ψt to the Hamiltonian system65

and let us use, for example,

g =
(
Ψτ/m

)m
, m ∈ �,

instead of Φτ with m being large enough such that the stepsize τ/m is adequate.
Consequently, we are inheriting nearly all necessary properties of the flow, with
only one disadvantage: The underlying stationary density f0 is not invariant
under the action of g, since g does not preserve the energy of the system.66

As a consequence, the iteration (85) with Φτ replaced by g will not sample the
distribution Q, thus destroying the basis of our approximation idea. Hence, we
have to look for a Markov chain, iteration of which allows to sample Q while
containing only g and not the flow itself.

5.4.2 Hybrid Monte-Carlo (HMC)

So-called “hybrid” MC variants have to the author’s knowledge first been intro-
duced in the late 80’s (cf. [28]) and have in MD mostly been used for condensed
matter and polymer-like systems (cf. [76, 53, 40, 14], for example). The tech-
nique imitates the general Metropolis MC strategy of proposal and acceptance
via a specification of the proposal step for separable Hamiltonians of form (1)

65For example, Ψt may be the well-known Verlet scheme [110, 1].
66There is no discretization which is symplectic and reversible and simultaneously preserves

energy exactly [42]. We may reduce the energy error, produced by g, to an arbritrary small
value by increasing m, but this would lead to a totally inefficient computation scheme.
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by means of a reversible and symplectic discretization (cf. [69]). We merely
suggest the application of HMC herein, because it seems to be particularly ap-
propriate for linking the subproblems of sampling the canonical density and
approximating the transition probabilities by approximate trajectories.

For explaining HMC, let again the function g from above denote the re-
versible and symplectic discretization. In difference to general MC techniques,
HMC generates a sequence S = {qj} ⊂ Ω in position space. Starting with qj ,
the first part of the proposal step is to choose momenta pj randomly from P ,
gaining the state xj = (qj , pj). As the second part, compute the proposal state
x̃j via a short approximate subtrajectory of the underlying Hamiltonian system,
i.e., choose x̃j = g(xj). Then, repeat the MC acceptance procedure with xj and
x̃j , let the accepted state be xj+1, and finally set qj+1 = π1xj+1. In other
words, HMC realizes an iteration of the Markov chain

qj+1 = π1a(qj , pj , rj) with a(x, r) =

{
g(x), if r ≤ α(x),
x otherwise,

(86)

setting α(x) = min{1, exp(−βΔE(x))},
with ΔE(x) = H(g(x))−H(x),

with pj independently chosen randomly from P and rj randomly from the
equidistribution in [0, 1]. In this form, HMC has to be understood as a pure
position sampling of the spatial canonical distribution Q such that the resulting
Markov chain {qj} allows to approximate the expectation values of appropriate
spatial observables A : Ω → � in the sense that67

lim
M→∞

1

M

M∑
j=1

A(qj) = EQ(A) =

∫
Ω

A(q)Q(q) dq. (87)

Heuristically, we thus are able to construct a scheme like (83) for the evaluation
of the desired transition probabilities via HMC: First, rewrite the transition
probabilities as spatial expectation values, yielding

w(Bk, Bl, τ) =
1

EQ(χBk
)

∫
�d

{
EQ
(
χBk

◦ χBl
(π1Φ

−τ (·, p)
)}

P(p) dp.

Then, use (87) to gain the approximation

w(Bk, Bl, τ) ≈
1

M∑
j=1

χBk
(qj)

M∑
j=1

χBk
(qj)

∫
�d

χBl
(π1Φ

−τ (qj , p))P(p) dp. (88)

Hence, in addition, we need to approximate the integral in (88) for any of the
position qj from the HMC chain {qj}. Consequently, this will again be done via

67For details see paragraph “Approximation Properties” below.
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a momenta sampling {pi} of P yielding

∫
�d

χBl
(π1Φ

−τ (qj , p))P(p) dp ≈ 1

L

L∑
r=1

χBl
(π1Φ

−τ (qj , pr)). (89)

Hence, one obvious advantage of HMC in this context is that it is already
based on approximations of Φτ (qj , pr) which we need for the evaluation of the
transition probabilities. We may indeed use the approximations g(xj) already
evaluated in the proposal step (with the exception of such proposals g(xj), which
could not be accepted).

Consequently, the transition matrix is allocated by executing (88) for any
pair (l, k) of box numbers after or during an HMC iteration of “sufficient”
length.68

Theoretically, the transition matrix Tn is reversible. In order to reproduce
this property for its approximation, we may simply count each transition from
Bk to Bl as a simultaneous transition Bl → Bk (thus exploiting the reversibility
of the discretization g).

Remark 5.10 Whenever we generate the sampling data via some Metropolis
MC method yielding a sequence {x1, . . . , xM} ⊂ Γ, we may replace equations
(88) and (89) by the direct mean value, i.e., we may approximate the transition
probabilities by

w(Bk, Bl, τ) ≈

⎛
⎝ M∑

j=1

χBk
(π1xj)

⎞
⎠−1

M∑
j=1

χBk
(π1xj)χBl

(π1Φ
−τ (xj)).

In comparison to the combination of (88) and (89) this option may lead to supe-
rior convergence properties. This possibility has not been analyzed yet (mainly
because HMC has other conceptual advantages as we will see in Sec. 5.4.3 be-
low).

5.4.3 Approximation Properties

In order to understand the necessity of the acceptance step for the convergence
of an HMC chain to Q, we may consider the Foias operator P : Mf → Mf

associated with the HMC stochastic dynamical system (86). Due to the Sec. 3.6,
it is given by

Pμ(B) =

∫
Ω

{∫
�d

∫ 1

0

χB(a(q, p, r))P(p) dr dp

}
μ(dq),

for all Borel subsets B ⊂ Ω. We first have to show that the canonical measure
μQ, given by the density Q, is a stationary measure of P , i.e., that PμQ = μQ.

68It should again be emphasized that there is no restriction to spatial boxes. (88) allows to
compute Tn for every box covering of the essential configuration space of an arbitrary set of
essential variables ϑ.
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We now will see that this is the case only because the acceptance step allows to
replace the perturbed invariance fcan(g

−1(x)) �= fcan(x) by a new one, the HMC
invariance: We find that the reversibility of g implies

α(g−1R(x)) fcan(g
−1R(x)) = α(x) fcan(x), for every x ∈ Γ. (90)

This can be seen as follows: Per assumption on g we have Rg = g−1R, with
the momentum reversion R(q, p) = (q,−p). Thus, with z(x) = exp(−βΔE(x)),
one easily evaluates fcan(g

−1R(x)) = fcan(Rg(x)) = fcan(g(x)) = fcan(x)z(x).
Moreover, the symmetry H(Rx) = H(x) yields after some computation that
α(g−1Rx) = α(x)/z(x). Put together, these identities give the invariance (90).

In order to show that (90) in fact induces PμQ = μQ, rewrite P as follows:

PμQ(B) =

∫
Γ

{∫ α(x)

0

χΓ(B)(g(x)) dr +

∫ 1

α(x)

χΓ(B)(x) dr

}
fcan(x) dx

=

∫
Γ

{
α(x)χΓ(B)(g(x)) + (1 − α(x))χΓ(B)(x)

}
fcan(x) dx

= μQ(B) +

∫
Γ

α(x)
{
χΓ(B)(g(x)) − χΓ(B)(x)

}
fcan(x) dx︸ ︷︷ ︸

=(I)

.

Finally, using the transformation y = Rg(x) for the first term in (I) and the
symplecticness of g, we end up with

(I) =

∫
Γ(B)

(
α(g−1Rx) fcan(g

−1Rx) − α(x) fcan(x)
)
dx,

which, as a consequence of the HMC invariance (90), indeed implies (I) = 0 for
all subsets B. Hence, μQ is a stationary measure of the HMC Foias operator
P .69

Let THMC denote the density operator corresponding to the Foias operator
P . Then, its adjoint operator is given by

T ∗
HMCu(q) =

∫
�d

∫ 1

0

u (a(q, p, r)) P(p) dr dp

= r(q)u(q) +

∫
�d

α(q, p)u(π1g(q, p))P(p) dp, (91)

where r(q) =
∫
(1−α(q, p))P(p)dp. Together with the HMC invariance (90) and

69The whole procedure works in close analogy to the better-known strategy of Langevin
dynamics simulations for sampling the canonical density: In Langevin simulations, the dis-
cretization similarly destroys the convergence to the original stationary density, a problem
which is also solved by applying appropriate acceptance procedures after each step (cf. [45],
Sec. 6.5). In [75], HMC is in fact interpreted as a simulation methods for a specific class of
Langevin dynamics.
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the reversibility and symplecticness of g, this implies for u, v ∈ L2:

〈u, T ∗
HMCv〉Q = 〈u, rv〉Q +

∫
Γ

α(x) v(π1g(x))u(π1x)
∗ fcan(x) dx

= 〈ru, v〉Q +

∫
Γ

α(g−1Rx) v(π1x)u(π1g
−1Rx)∗ fcan(g

−1Rx) dx

= 〈THMCu, v〉Q,

so that THMC is self-adjoint70 if restricted to L2(Ω), and the Markov operator
THMC = T ∗

HMC|L1(Ω) is given by (91). Following the same strategy as in the proof
of Lemma 3.9, we again see that THMC is a bounded operator in L2(Ω) with
‖THMC‖1 ≤ 1.

Under certain conditions, THMC inherits not only self-adjointness on L2(Ω)
but also all other crucial properties of the spatial transition operator T . To see
this, let us introduce:

1. Momentum invertibility of g: We call g momentum-invertible if it satisfies
the same conditions as a momentum-invertible flow, only that this time
the sets M(q) for which γq(p) = π1g(q, p) is invertible, have to satisfy

ess-inf
q∈Ω

∫
M(q)

α(q, p)P(p) dp = η > 0.

Accordingly, g is called momentum-invertible with uniform bound (with
respect to the sets M(q)) if the Jacobian of the inverse of γq is uniformly
bounded on the M(q).

2. Mixing assumption for g: For every q0 ∈ Ω and every open set O ⊂ Ω
there is an n ∈ � and a sequence of momenta p0, . . . , pn−1 ∈ �d such that

qn ∈ O, if qk = π1g(qk−1, pk−1), k = 1, 2, . . . , n.

For smooth potentials we have the same situation as for the spatial transition
operator T : If g is momentum-invertible and satisfies the mixing assumption,
the HMC transition operator THMC has the following properties:

(1) The associated HMC Markov chain is irreducible, aperiodic and Har-
ris recurrent. Thus, the Markov operator THMC : L1(Ω) → L1(Ω) is
asymptotically stable (cf. Sec. 4.5) and the convergence (87) is guar-
anteed almost surely (cf. Thm. A.24).

70Again, this self-adjointness is associated to a detailed balance condition for the corre-
sponding Markov chain [76].
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(2) If g additionally is momentum-invertible with uniform bound and
Ω is bounded, then THMC : L2(Ω) → L2(Ω) has a decomposition
THMC = T 1

HMC + T 2
HMC into a strict contraction (‖T 1

HMC‖2 < 1) and a
compact operator T 2

HMC
. Thus, λ = 1 is simple and dominant and

isolated from the remaining part of the spectrum. Consequently, due
to Thm A.31, a central limit theorem is valid, that is, the rate of con-
vergence in (87) is at least of order M−1/2 (not explicitly depending
on the dimension of Ω).

Obviously, the properties of the discrete flow g result from the properties of
the discretization Ψt defining it. Consider Ψt to be the Verlet discretization, and
assume that the potential satisfies the periodicity assumption 4.43 of Sec. 4.7.
Then, it is easy to check that g is momentum-invertible with uniform bound
and satisfies the mixing assumption, if only the internal stepsize τ/m of the
discretization is small enough.

Remark 5.11 In order to see that g is momentum-invertible, let q1 be the
spatial component of a single Verlet step (q1, p1) = ΨΔt(q, p) with stepsize
Δt = τ/m, that is,

q1 = q0 +
Δt

2
(p0 + p1) with p1 = p0 − ΔtDV

(
q0 +

Δt

2
p0

)
.

This implies

Dpq1 = Δt − Δt3

4
D2V

(
q +

Δt

2
p

)
.

Let d denote the maximal Jacobian of DV , i.e., set d = maxΩ | det(D2V )|. Since
d <∞ for periodic potentials, we may use Δt < 1/d and assume (without loss of
generality) that Δt < 1. This implies | detDpq1 −Δt| < Δt2/4 < 1/4. Hence,
a single Verlet step with Δt < 1/d is invertible with respect to p for every
momentum. This implies momentum invertibility of g.

Remark 5.12 In order to understand that g satisfies the mixing assumption,
choose arbitrary q, q1 ∈ Ω. It is sufficient to show that, for every single Verlet
step, we find some momentum p yielding q1 = π1Ψ

Δt(q, p). To see that this is
true, denote p = p0 + δp with p0 = (q1 − q)/Δt, and observe that δp has to
satisfy

δp =
Δt

2
DV

(
q +

Δt

2
(p0 + δ p)

)
= h(δp).

Then, denote Ck = maxΩ |DkV |, k = 1, 2, and B = {δp : |δp| ≤ ΔtC1/2}
so that the function h maps the ball B onto itself. It is easy to see that, if
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Δt2 < 4/C2, we have |Dδph| < 1 so that h is contractive on B. Thus, the
fixed point theorem guarantees that there indeed is some δp∗ ∈ B such that
δp∗ = h(δp∗).

As indicated above, it is also possible to analyze HMC in close analogy to
the general Metropolis Monte-Carlo algorithm. In the last years the problem of
convergence results for Metropolis MC in continuous state space has attracted
much attention, in particular concerning criteria for the geometric ergodicity of
the chain and corresponding central limit theorems.71

We will not longer focus on analyzing HMC, because, for applications to
realistic molecular systems, we cannot use HMC itself but have to introduce a
generalized HMC variant in order to avoid some “trapping problems” (cf. next
paragraph).

5.4.4 HMC with Adaptive Temperature

As is widely known, MC simulations for ensemble averages may suffer from pos-
sible “critical slowing down” [69]. This phenomenon occurs when the iteration
xk → xk+1 gets trapped near a local potential minimum due to high energy
barriers so that a proper sampling of the phase space within reasonable com-
puting times is prevented. Typically, this also happens to HMC applications
[99]. Therefore, a novel approach combining HMC with the reweighting tech-
nique [31, 9] has been developed (see Fischer, Cordes, and Schütte [35]).
This HMC variant generates the distribution of a mixed-canonical ensemble
composed of two canonical ensembles at low and high temperature. Its analysis
shows an efficient sampling of the canonical distribution at the low temperature,
whereas the high temperature component facilitates crossing of the crucial en-
ergy barriers. We will therefore call this variant “adaptive temperature HMC”
(ATHMC) in the following. The update steps using high temperature momenta
have to be reweighted in order to guarantee overall convergence to the canonical
distribution to the low temperature. Apart from this reweighting, the approxi-
mation of the transition probabilities due to (88) and (89) remains unchanged.
In other words:

The necessity of introducing generalizations of HMC is caused by the exis-
tence of almost invariant sets: If there are almost invariant sets, B and C, with
very small transition probability w(B,C, τ), then both the Markov chain (85)
associated with the transition operator and the original HMC Markov chains
need a huge number of iterations in order to produce sufficiently many transi-
tions between B and C.72 This problem is circumvented by introducing Markov

71For the analysis of the rate of convergence of MC Markov chains compare,
e.g., [107, 77] or, for recent results, check the MCMC preprint server under ULR
http://www.stats.bris.ac.uk/MCMC/.

72Compare Thm. A.31: If the variance σ2(A) therein gets too large, the desired conver-
gence of the mean values is “slowed down” by a large constant. Due to the formula (106)
in Thm. A.31, σ2(A) can be large especially if THMC has an eigenvalue very close to one,
i.e., if the HMC chain has an almost invariant set (which, hopefully, approximates an almost
invariant set of the original flow).
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chains that facilitate such transitions but which then have to be reweighted in
order to yield samplings of the original canonical distribution.

For details of the ATHMC construction, the reader is referred to our arti-
cle [35]. In this article a convergence result for ATHMC is presented in close
analogy to (and on the same non-rigorous level as) the already mentioned HMC
convergence result from [76]. Moreover, the convergence has successfully been
checked in cases where analytical expressions for some expectation values are
available (cf. [33]). Sec. 6 presents the performance of ATHMC in comparison
to the original HMC variant.

ATHMC is not the only possibility to enforce barrier crossing. For example,
A. Fischer recently developed another technique based on reweighted HMC,
the so-called Scaled Potential Hybrid Monte-Carlo (SPHMC) variant [34], which
seems to be more flexible and efficient. The reader might also notice, that
other recent developments based on the original Monte-Carlo Markov chain
construction also produced certain “barrier-crossing” variants.73 It should again
be emphasized that we may also apply every of these MC variants in order to
evaluate Tn.

5.5 Algorithmic Considerations

We should not close this section without some final comments:

Consequences of HMC Errors In Secs. 5.1 to 5.3 we assumed that the
exact transition matrix Tn for some given box covering is available. But with
the techniques introduced in Sec. 5.4 we are only able to approximate its entries,
for example in the sense that denominator and numerator of Tn,jl = tjl/ρj, both,
are computed with some accuracy δ, that is,

T HMC

n,jl = t̃jl/ρ̃j, with |t̃jl − tjl| < δ and |ρ̃j − ρj | < δ.

As a consequence, we may rewrite T HMC
n as

T HMC

n = Tn + E with |Ejl| ≤ δ (1 + tjl)/ρj .

Hence, the evaluation of Tn via HMC introduces an error matrix. Fortunately,
this perturbation can be included in the perturbation analysis of Sec. 5.3 as an
additional contribution with

‖D2
ρE‖∞ ≤ δ (1 + ‖Tn‖∞) ≤ 2δ. (92)

Hence, under the assumptions of Sec. 5.3, the identification of the conforma-
tional subsets will not be dramatically perturbed by the HMC errors E: In

73There are many examples which support barrier crossing like, e.g., the multicanonical
algorithm [51], 1/k sampling [55], simulated tempering [74], J-walking [41], the fluctuating
potential methods [71] or other potential smoothing techniques [85, 9]. Since we are herein
interested in methods sampling the canonical ensemble, one needs to check carefully whether
these techniques in fact produce Markov chains which, after reweighting, efficiently sample
the canonical distribution.
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Sec. 5.3, we discussed the “coupling-induced” perturbation of the eigenvectors
used to identify the conformational subsets. Whenever (92) is satisfied, we may
see the perturbations via HMC as additional coupling-induced perturbations.

Sensitivity to Perturbations In real-life applications, it is a tremendous
task to control the accuracy of the HMC sampling. Whenever the invariant
density is very small in some of the discretization boxes, the HMC perturbations
of the corresponding entries of Tn are in danger of being relatively large. We
thus have to ask whether the identification of almost invariant sets will depend
sensitively on such perturbations?

In the process of the derivation of the identification algorithm we already
distinguished between the “cores” of the conformational subsets, which are par-
ticularly stable with respect to the perturbation of the eigenvectors, and all
other states, which have to be assigned to these cores without explicit consid-
eration of the (perhaps heavily perturbed) entries of the eigenvectors at these
states. As long as (92) is satisfied, the identification of these “conformational
cores” is relatively insensitive to the perturbations, while the assignment of the
remaining states and thus the decomposition problem (that is, the full decompo-
sition of the configurational state space into conformational subsets) obviously
is sensitive.

The situation is comparable with the problem of separating domains of posi-
tive and negative entries of some function by finding its zeroes: if the evaluation
of the function is significantly perturbed, the exact decomposition of the domain
of interest may depend extremely sensitive on such perturbations (particularly
if the function itself is small in the neighborhood of its zeroes) while we are still
able to identify the “cores” of positive/negative domains.

Fortunately, the invariant density will in general be large only in the confor-
mational cores which implies that the remaining states are statistically insignif-
icant and we are content with the identification of the conformational cores.
Nevertheless, the question remains whether the transition probabilities might
depend sensitively on the details of the assignment of the remaining states. This
may happen whenever there is a conformational subset with significantly small
probability to be within. However, in all realistic cases analyzed up to now, the
probability w(B,B, τ) to stay within some conformational subset B has been
significantly insensitive to perturbations.

Cluster Analysis and Graph Partitioning We have to distinguish be-
tween our dynamical definition of conformations via almost invariant sets and
the static definition via clusters of geometrically similar configurations. Most
chemical approaches to the identification of conformations use this static def-
inition and determine the conformational subsets by means of cluster analysis
of some time series produced by long-term MD simulations (e.g. via the associ-
ated covariance matrix as in [4]) or by means of spectral graph theory via some
geometric similarity measure and decomposition of the associated Laplacian ma-
trix (cf. [32, 54, 58]). Within such approaches, the dynamical information is
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neglected. However, the determined clusters include crucial information about
significant geometrical differences between certain subsets of configurations and
can thus be used as indicators for the choice of the essential variables and for
optional additional refinements of the box discretization.

We can in fact apply cluster analysis in the context of our identification
algorithm via certain eigenvectors (v1, . . . , vk) of the transition matrix: con-
sider again the vector bj = (v1j , . . . , v

k
j ) of the entries of the eigenvectors for

discretization box Bj ; define some similarity measure for these vectors; and de-
termine the clusters of boxes Bj with similar vectors bj via standard techniques.
The resulting conformational subsets are nearly identical with those evaluated
via the approach presented in Sec. 5.3, cf. [58].
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6 Numerical Experiments

6.1 Conformations of n-Pentane

In this section, the performance of the above derived algorithm in application
to the n-pentane molecule CH3(CH2)3CH3 is presented. It is illustrated that
the algorithmically identified almost invariant sets are in perfect agreement with
the chemically observed conformations (cf. Fig. 15).

Figure 15: Different conformations of n-pentane: From the left to the right: trans-trans,
trans-gauche, gauche-gauche orientations.

For modelling the n-pentane molecule, we use the united atom model (cf.
Fig. 3 in Sec. 2.1.2 above) with the typical bound length and bond angle poten-
tials, and a Lennard-Jones potential modelling the interaction between the first
and the last of the united “atoms”. The dihedral angle potentials are chosen
according to [89], cf. Fig. 3 in Sec. 2.1.2 above. The form of the dihedral angle
potential shows three different minima corresponding to the trans and gauche
orientations of the angles. The vibrational frequencies induced by these po-
tentials are considerably smaller than those induced by the bond interactions.
Consequently, the conformations of the n-pentane molecule are described in
terms of these dihedral angles, i.e., they are the essential variables of n-pentane.

Figures 16 to 20 below illustrate the execution of the algorithm for the
temperature T = 300K. The discretization boxes are constructed via uniform
decomposition of the possible values [0, 2π]× [0, 2π] of the two dihedral angles
ω1 and ω2 in n = 20 × 20 = 400 boxes. The HMC sampling has been realized
using the Verlet time discretization with a subtrajectory length of τ = 160fs.
Fig. 16 shows the resulting sequences of HMC steps in terms of the dihedral
angles.

We observe frequent transitions between the different “trans” and “gauche”
orientations of both angles. This observation nicely illustrates that it is not
sufficient to know the probability to be within a particular orientation of the
angles but that the essential dynamical information is given by the probability
to stay within it until a transition into another orientation occurs.

From such an HMC sampling with M = 200.000 steps we computed the
transition matrix Tn by the procedure explained in Sec. 5.4. Within this sam-
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Figure 16: HMC simulation of n-pentane for T = 300K. From top to bottom: The two
dihedral angles (in radiant) versus the step number and the convergence of the potential
energy expectation 〈V 〉.

pling length, the HMC method produced a more than sufficient sampling of the
canonical density (see the equilibration diagram on bottom of Fig. 16) — the
question of whether M could be smaller for HMC will be discussed below.

When repeating such a simulation for some smaller temperature (e.g., T <
250K), we observe the trapping problem mentioned in Sec. 5.4.4: transitions
between the distinct minima of the dihedral angle potential become rare events
and the HMC simulation length M has to be increased further and further.
Then, ATHMC indeed helps to avoid drastic increases of M : it yields compa-
rably reliable result with much smaller values of M than HMC (cf. [33]).

From Sec. 5.1, Prop. 5.2, we know that the discrete invariant density (ρk),
k = 1, . . . , n is given by the left eigenvector of Tn for the largest eigenvalue
λ1 = 1. The result produced herein is given in Fig. 17. As expected, the
invariant density shows distinct local maxima at the minima of the dihedral
angle potentials.
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Figure 17: Discrete canonical distribution ρ for n-pentane versus the indices of the dis-
cretization boxes of the two dihedral angles ω1 and ω2. T = 300K.
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6.1.1 Conformations

Following Sec. 5.3.2, the chemical conformations are analyzed via the right eigen-
vectors corresponding to an eigenvalue cluster near λ = 1. For this purpose, the
10 eigenvalues of Tn with largest absolute value are arranged:

k 1 2 3 4 5 6 7 8 9 10
λk 1 0.986 0.984 0.982 0.975 0.941 0.938 0.599 0.590 −0.562

The first nine ones are positive. From the 10th one on negative eigenvalues
appear frequently. As can be seen, a first spectral gap arises between λ5 and
λ6, and an even more significant one between λ7 and λ8. We decide to base the
identification process on the first 7 eigenvectors (the results for the case k = 5
are comparable and can be found in [24]).
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Figure 18: Positive and negative parts of the first seven right eigenvectors (right) scaled
with respect to the maximum norm as described in Sec. 5.3.2 above. The zero entries in the
first eigenvector (associated with the eigenvalue λ = 1) correspond to discretization boxes
which were not visited by the hybrid Monte Carlo process, indicating that the probabilities
to be within these boxes may be neglected. T = 300K.

104



These first seven eigenvectors are illustrated in Fig. 18. Of course, the first
eigenvector, associated with λ1 = 1, is just a flat plateau (ignoring zeroes for cut-
off states; that is, the state space of the associated Markov chain is represented
only by the discretization boxes belonging to the plateau). The other six right
eigenvectors contain more information. We can distinguish between different
plateau levels, which seem to indicate different almost invariant aggregates. The
main procedure of the algorithm presented in Sec. 5.3.2 deals with classifying
the entries of each eigenvector as being positive, negative, or almost zero. The
resulting classification is illustrated in Fig. 19.
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Figure 19: Schematic plot of the right eigenvectors corresponding to the seven largest
eigenvalues λ1, . . . , λ7 of Tn versus the indices (1, . . . , 20) × (1, . . . , 20) of the discretization
boxes of the two dihedral angles ω1 and ω2. Positive entries of the eigenvectors are indicated
by black boxes, negative entries by gray boxes and white boxes indicate almost zero entries.
T = 300K.

From this picture one already can guess that the identification of conforma-
tional subsets via sign structures leads to the subsets shown in Fig. 20. As can
be observed the automatic procedure in fact supplies the chemically expected
information. After identifying the conformations, the corresponding probabili-
ties to stay within each conformational subset Cj composed of the discretization
boxes Bk with indices k ∈ Ij can be computed due to

w(Cj , Cj , τ) =
1∑

l∈Ij

ρl

∑
k,l∈Ij

ρk Tn,kl. (93)

The resulting values pj = w(Cj , Cj , τ) are also given in Fig. 20. We ob-
serve that the trans/trans conformation is slightly more stable than the dif-
ferent trans/gauche and gauche/trans conformations. As expected, the two
gauche/gauche conformations are clearly less stable.

As already emphasized above, the probabilities to stay within should not be
confused with the probability to be within a conformation, which is already given
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Figure 20: Almost invariant sets for T = 300K. The numbers p on top of each figure are
the probabilities to stay within the corresponding subsets during the time span τ . From the
left hand side on top to the right hand side below we see the -gauche/trans, trans/+gauche,
-gauche/-gauche, trans/trans, trans/-gauche, +gauche/trans, and +gauche/+gauche confor-
mations (cf. Fig. 15).

by the invariant density (cf. Fig. 17). In the table below, these two different
probabilities are enlisted for each of the conformational subsets shown in Fig. 20
(±g and t denote the ±gauche and trans orientations):

conformation -g/t t/+g -g/-g t/t t/-g +g/t +g/+g
prob. to be within 0.120 0.132 0.012 0.473 0.117 0.132 0.013
prob. to stay within 0.976 0.980 0.910 0.982 0.979 0.970 0.865

The probability to be within the +gauche/-gauche or -gauche/+gauche orien-
tations is less than 0.0005, showing that they are irrelevant in this context.

Indeed, the probabilities w(Cj , Cj , τ) to stay within each conformational
subset Cj are nothing but the diagonal entries of the coupling matrix W ≈ Id
obtained in this procedure. Correspondingly, the associated error indicator
matrix from Sec. 5.3.2 contains only small entries (all entries smaller than 10−2;
for details see [24]) indicating that the identification process is reliable.

6.1.2 Parameter Sensitivity

The presented results surely depend on a number of crucial parameters, some
of them being of physical nature (e.g., the temperature T ), others being in-
troduced by the algorithm (e.g., the number n of discretization boxes or the
length M of the HMC sampling). We want to emphasize that the algorithm as
it stands now is far from being perfectly tuned. We thus can only present some
experiences from numerical experiments for the n-pentane molecule and some
other comparably small systems.

At first, let us consider the dependence of the conformations on the temper-
ature T . Varying the temperature between T = 200K and T = 600K we do not
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observe an influence on the identified conformations. But, as to be expected, the
probabilities to stay within these conformations are decreasing with increasing
T : Fig. 21 shows the corresponding decrease of the nine largest eigenvalues of
the transition matrices Tn = Tn(T ). It also illustrates that in all cases tested
so far there exists some distinct spectral gap between the seven largest eigenval-
ues used to identify the conformational subsets, and the remaining part of the
spectrum.
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Figure 21: Temperature dependence of the nine largest eigenvalues of the transition matrix
Tn.

The present version of the algorithmic realization does not include any au-
tomatic mechanism for controlling the length M of the HMC sampling. If, for
fixed temperature and spatial discretization, the number of steps is decreased
from M = 200.000 down to M = 50.000, we observe that the approximation
quality of the invariant density slowly deteriorates. This corresponds to a slowly
increasing distortion of the approximate “conformational” subsets.
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Figure 22: Sensitivity of the eigenvalues of Tn with largest modulus for different uniform
discretizations of [0, 2π]2 with n = 3 × 3 = 9 boxes (dashed line), n = 9 × 9 = 81 (dashed-
dotted), and n = 20× 20 = 400 boxes (dense line). Note that the seven largest eigenvalues –
only these are used for the identification of the conformations – remain almost unperturbed
if the grid gets coarser.
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6.1.3 Dependence on Discretization

Finally, let us illustrate an extremely important property of the presented algo-
rithm, the stability of the results even when significantly coarser discretizations
are used. For the n-pentane molecule we indeed can reduce the decomposition of
the discretization domain from n = 20×20 boxes to n = 3×3 boxes but the algo-
rithm still identifies approximately the same conformations and nearly the same
probabilities (both to stay and to be within). The reason for this is illustrated
in Fig. 22: since the HMC procedure samples the phase space independent of
the spatial discretization, the seven largest eigenvalues of the transition matrix
Tn are only insignificantly perturbed when the number of discretization boxes
is reduced.

6.2 Conformations of a Trinucleotide

The proposed approach to identify conformations was applied to the triribonu-
cleotide adenylyl(3’-5’)cytidylyl(3’-5’)cytidin (r(ACC)) model system in vacuum
(see Fig. 4 on page 11 and Fig. 23 below). The physical representation of the
molecule (N = 70 atoms) has been based on the GROMOS96 extended atom
force field [109].

Figure 23: Configuration of the trinucleotide from Fig. 4. Left: Full ball-and-stick represen-
tation. Right: Simplified representation using ellipsoids for representing nearly rigid subgroup
of the molecule.

It is beyond the scope of this section to discuss this application in detail
or to judge the chemical relevance of the results. For such additional aspects
the reader is referred to the article [58]. On the contrary, the following con-
siderations should be understood as demonstration of, first, the superiority of
ATHMC over HMC, second, the process of choosing essential variables in some
realistic example, and, third, the illustration of typical results of the algorithmic
procedure.

Sampling of the Canonical Density The simulation data were generated
by means of an ATHMC sampling of the canonical density at T = 300K. The
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subtrajectories of length 80 femtoseconds were computed by means of the Verlet
discretization with a stepsize of 2fs. For these parameters, HMC simulations typ-
ically require thousands of iterations only to leave the neighborhood of the initial
configuration. Application of ATHMC (with adaptive temperatures between
300K and 400K) circumvents the problem: one observes frequent transitions in
the crucial dihedral angles of the molecule (for details see [35]). The simulation
was divided into 4 Markov chains, each starting with a different state chosen
from a high temperature run at 500K, which allowed the molecule to move into
different conformations. The sampling took about 12h on a workstation with
MIPS R10.000 processor. It was terminated by a convergence indicator [43]
associated with the potential energy and all 37 dihedral angles after 320.000
steps, resulting in the sampling sequence q(1), . . . , q(S), S = 32.000 (considering
only every 10th step). Since the temperature can change during the ATHMC
run, each configuration is connected with a reweighting factor with respect to
the canonical ensemble at 300K.
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Figure 24: Top: circular deviation of the transformed dihedral angles ordered by magnitude
(left) and circular deviation of the original dihedral angles (right).

Essential Dihedral Angles Since essential degrees of freedom should only
reflect internal fluctuations of the molecule, we only consider the 37 dihedral
angles of the r(ACC) molecule. The simulation data contains strong statistical
correlations between the dihedral angles caused by the highly correlated motion
of the molecule. In order to identify some minimal set of “independent” essential
variables, we first have to remove the correlations, i.e., we have to introduce a
set of uncorrelated “transformed dihedral angles”. This is done via the following
procedure going back to Amadei et al. [4]:

The correlations between atomic motions within the simulation data are ex-
pressed by the covariance matrix C.74 Since C is symmetric, it can always be

74To analyze the simulation data in terms of the dihedral angles we have to apply statistical
methods for circular data [36, 37]; see [58] for resulting definition of the covariance matrix.

109



diagonalized, i.e., there is an orthonormal matrix U such that C = UTΛU with
Λ being the diagonal matrix whose entries are the eigenvalues of C. The matrix
U defines the transformation of the original dihedral angles into the uncorre-
lated transformed dihedral angles. The matrix Λ is connected to the systems
constraints in the following way [4]: Transformed dihedral angles correspond-
ing to zero or nearly zero eigenvalues behave effectively as constraints; they
have narrow Gaussian distributions with zero mean and do not contribute sig-
nificantly to the fluctuations. In contrast to that, transformed dihedral angles
corresponding to large eigenvalues have large deviations from their mean posi-
tion, i.e., they belong to important fluctuations. Often, only a few coordinates
see such important fluctuations; these are called essential degrees of freedom.
In practice, one has to specify a set of largest eigenvalues of C, which, often,
can only be done heuristically.

The transformation process for the dihedral angles based on the simulation
data for r(ACC) is exemplified in Fig. 24 and Fig. 25. Figure 24 shows the
circular deviations of the original and transformed dihedral angles in decreasing
order of magnitude. Only the first four transformed dihedral angles have rel-
evant circular deviation and are far from being Gaussian shaped (see Fig. 25),
while the remaining transformed dihedral angles are Gaussian like.
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Figure 25: Distribution of the four essential dihedral angles. The distributions at the top
allow to identify three maxima each, while there are two maxima for each distribution at the
bottom.
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Single Configurations Representing Conformations In order to identify
representative configurations, we determine the maxima for each distribution of
the essential dihedral angles. These maxima have been grouped to 3×3×2×2 = 36
combinations, from which we have selected four representative configurations to
visualize characteristic differences (see Fig. 26).

Figure 26: Different configurations representing the four dominant conformations of the
trinucleotide in the simplified representation from Fig. 23.

Transition Matrix The dynamical fluctuations within the canonical ensem-
ble were approximated by integrating four short trajectories of length τ = 80fs
starting from each sampling point q(1), . . . , q(S). To facilitate transitions, anal-
ogous to the ATHMC sampling, the momenta were chosen according to the
momenta distribution P(p) for 4 different temperatures between 300K − 400K
and reweighted afterwards. This resulted in a total of 4×32.000 = 128.000
transitions. This calculation took less than 25 % of the total computing time.

The configurational space was discretized into boxes B1, . . . , Bd, by means
of all four essential degrees of freedom (see Fig. 25) resulting in d = 36 dis-
cretization boxes. Then the 36×36 transition matrix P was computed based on
the 128.000 transitions taking the different weighting factors into account. Since
every box had been hit by sufficiently many transitions, the statistical sampling
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was accepted to be reliable. The computation of the eigenvalues of T near 1
yielded a cluster of eight eigenvalues with a significant gap to the remaining
part of the spectrum:

k 1 2 3 4 5 6 7 8 9 . . .
λk 1.000 0.999 0.989 0.974 0.963 0.946 0.933 0.904 0.805 . . .

D4tD4cD3tD3cD2tD2cD1tD1c

D1c

D1t

D2c

D2t

D3c

D3t

D4c

D4t

Figure 27: Schematical visualization of the transition probabilities wkl(τ) between the
conformationDfrom (row) and Dto (column). The colors are chosen according to the logarithm
of the corresponding entries; black: wkl(τ) ≈ 1, white: wkl(τ) ≈ 0.

Identification of Conformations Finally, the conformational subsets were
computed based on the corresponding eight eigenvectors of T via the identifica-
tion algorithm presented above yielding eight conformations.

The conformational subsets identified turned out to be rather insensitive
to further refinements of the discretization. The weighting factors within the
canonical ensemble and the meta–stability of the eight identified conformations
are given in the following table:

conformations D1c D1t D2c D2t D3c D3t D4c D4t
weighting factor 0.107 0.011 0.116 0.028 0.320 0.038 0.285 0.095
meta–stability 0.986 0.938 0.961 0.888 0.991 0.949 0.981 0.962
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The transition probabilities between the different conformations are visual-
ized schematically in Fig. 27 above (page 112). The matrix allows to define a
hierarchy between the conformations, which is inherent to the algorithm. On
the top level, there are two conformations, D1&D2 and D3&D4 corresponding
to the two 4×4 blocks on the diagonal of T . On the next level, each of these
conformations split up into two subconformations yielding D1, . . . ,D4. On the
bottom level, each conformation is further divided into a core (c) and a transition
(t) part. The evaluation of the transition matrix together with the execution of
the identification algorithm took less than 2% of the computing time required
for evaluation of the simulation data.

We use a multidimensional scaling plot (Fig. 28 below) to visualize the con-
formations [10]. The 2d–plot shows a 2d least squares approximation of the
3N = 210 dimensional position space in the sense that neighboring points cor-
respond in general to structurally similar configurations, while distant points
reflect in general structural differences.
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D1(c,t) D3(c,t)

D2(c,t) D4(c,t)

Figure 28: 2d plot of the four conformations D1, . . . ,D4 (squares). The distinction between
open and filled squares indicates a further splitting into eight conformations resulting from a
partition into a core(c) and a transition(t) conformation.
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List of Symbols

Phase space operations:

Φt flow of Hamiltonian system (2)
π1 projection π1(q, p) = q
π2 projection π2(q, p) = p
R momentum inversion R(q, p) = (q,−p)
ϑ essential variables ϑ : Γ → Θ, cf. Sec. 3.5
ξ periodicity map, cf. page 24
V = V (q) potential function, cf. (1)

Sets:

Γ phase space Γ ⊂ �2d

Ω position space Ω ⊂ �
d, cf. Sec. 2.1.1

Γ(θ) embedded submanifold induce by essential variables, cf. Sec. 3.5
Γ(A) phase space fiber {x = (q, p) ∈ Γ, q ∈ A}
Θ essential phase space, cf. Sec. 3.5
σ(T ) spectrum of linear operator T , for definition see Appendix B
χB characteristic function of a set B
M(q) sets for momentum invertibility, cf. Def. 4.1

Operators:

T spatial transition operator, cf. (20)
Tϑ transition operator w.r.t. essential variables, cf. (28)
Rϑ,Bϑ restriction and prolongation operators, s. Def. 3.13
T1,T2 parts of the decomposition of the spatial transition operator, cf. (37) and Lemma 4.8.
k(q, y) transition kernel of partial transition operator T2, cf. (38)
T1,ϑ,T2,ϑ parts of the decomposition of the transition operator Tϑ, cf. Lemma 4.34.
kϑ(θ, φ) transition kernel of partial transition operator T2,ϑ, cf. (57)

Distributions:

fcan canonical density in phase space, cf. (11)
Q normalized canonical density in position space, cf. (11) and (12)
P normalized canonical density in momentum space, cf. (11) and (12)
F reduced density in position space, cf. (19)
Fϑ reduced density in essential phase space, cf. Sec. 3.5

Spaces:

Lp
F (Ω) F -weighted function space over position space Ω, p = 1, 2, see Sec. 3.1

Lp(Ω) space Lp
F (Ω) with weight F = Q for canonical density

Lp
Fϑ

(Θ) Fϑ-weighted function space over essential phase space Θ, p = 1, 2, see Sec. 3.5

〈·, ·〉F F -weighted scalar product in L2
F (Ω), see Sec. 3.1

〈·, ·〉Fϑ
Fϑ-weighted scalar product in L2

Fϑ
(Θ), see Sec. 3.5

〈·, ·〉Q scalar product 〈·, ·〉F with weight F = Q for canonical density
‖ · ‖p,F F -weighted norm in Lp

F (Ω), see Sec. 3.1
‖ · ‖p,Fϑ

Fϑ-weighted norm in Lp
Fϑ

(Θ), see Sec. 3.5

‖ · ‖p Q-weighted norms ‖ · ‖p,Q in L2(Ω) for canonical density
D(Ω) set of all densities in L1(Ω): D(Ω) = {u ∈ L1(Ω) : u ≥ 0, ‖u‖1 = 1}

Other:

w(B,C, τ) transition probability between sets B and C wrt. time span τ
dσθ(x) intrinsic volume form of submanifold Γ(θ), see Sec. 3.5
ρj = ρ(Bj ) probability to be within box Bj of a disjoint decomposition B1, . . . , Bn
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�ρ diagonal weighting matrix �ρ = diag(
√
ρj), cf. proof of Prop. 5.2

T temperature of canonical ensemble
β inverse temperature β = 1/kBT
NM bound for number of disjoint subsets of the sets M(q), see Def. 4.4
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Appendix A: Markov Operators and Mixing

In the subsequent we always consider a subset Ω ⊂ �d such that the set B of
Borel sets is a σ-algebra on Ω. Moreover, we consider an absolutely continuous
measure μ on Ω and the associated Lp-spaces

Lp = {u : Ω → �,

∫
Ω

|u(q)|p μ(dq) < ∞}, 1 ≤ p <∞,

with corresponding norm ‖u‖p = (
∫
Ω |u(q)|pμ(dq))1/p. The space L∞ consists

of all bounded, almost everywhere measurable functions u : Ω → �. Since L∞

is the dual space of L1, we use the duality to write

〈u, v〉 =
∫
Ω

u∗(q)v(q)μ(dq), for all u ∈ L1, v ∈ L∞.

For u, v ∈ L2 this defines the usual scalar product in L2(Ω).
We always assume that μ is a probability measure, so that μ(Ω) = 1 and

χΩ ∈ Lp, 1 ≤ p ≤ ∞ for the characteristic function of Ω. We then have
(cf. Prop. 2.3.1 of [66])

Proposition A.1 Let 1 ≤ p1 < p2 ≤ ∞. Then

‖u‖p1 ≤ ‖u‖p2, for all u ∈ Lp2 .

Thus, every element of Lp2 belongs to Lp1 .

Definition A.2 A nonnegative function75 u ∈ L1 with ‖u‖1 = 1 is called a
density function in L1; the set of all density functions is denoted D.

Definition A.3 Every linear operator P : L1 → L1 satisfying

Pu ≥ 0, for u ∈ D, and (94)

‖Pu‖1 = ‖u‖1, for u ∈ D, (95)

is called a Markov operator.

A.1 Adjoint Operator and Induced Markov Chain

Let P : L1 → L1 be a Markov operator satisfying PχΩ = χΩ and let P ∗ :
L∞ → L∞ denote the adjoint operator with respect to the product 〈·, ·〉. Thus,
〈Pu, g〉 = 〈u, P ∗g〉 for all u ∈ L1 and g ∈ L∞. P ∗ allows the definition of a
Markov chain associated with P . To see this, we have to introduce

Definition A.4 The function t : Ω× B(Ω) is called a transition function, if it
satisfies the following two conditions:

75The phrase “nonnegative” and the notation u ≥ 0 are always used in the “almost every-
where” sense.
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1. For every B ∈ B, the function t(·, B) is nonnegative and measurable.

2. For every q ∈ Ω, the map t(q, ·) is a probability measure on B(Ω).

t(·, ·) is called a substochastic transition function if it satisfies condition 1, but
condition 2 only insofar that t(q, ·) is a measure but not a probability measure
(that is, t(q,Ω) < 1 for some q).

Lemma A.5 ([39], Chap. 1) Let P ∗ be the adjoint of a Markov operator P
satisfying P ∗χΩ = χΩ. Then, P (q, B) = P ∗χB(q) defines a transition function.

The transition function defines a time-homogeneous Markov chain {Xk, k =
0, 1, 2, . . .} on the state space Ω, insofar that the conditional probability of
finding Xk+1 ∈ B after having been in Xk = q is given by

P (Xk+1 ∈ B|Xk = q) = P (q, B) = P ∗χB(q).

Hence, the conditional probability of finding Xk ∈ B after having started in
X0 = q is

P (Xk ∈ B|X0 = q) = (P ∗)k χB(q) = P k(q, B).

Consequently, the conditional transition probability to move from subsets A ∈ B
to B ∈ B in k steps is

P (Xk ∈ B|X0 ∈ A) =
∫
A
P k(q, B)μ(dq)

= 〈χA, (P
∗)k χB〉 = 〈P kχA, χB〉.

(96)

One says that a probability measure ν is an invariant probability distribution
for some Markov chain with transition function P (·, ·), if

ν(A) =

∫
Ω

P (q, A) ν(dq), for all A ∈ B.

Thus, in our case, the chain has the invariant probability distribution μ, since
we supposed PχΩ = χΩ.

Due to [39], Chap. V, transition functions and associated Markov operators
exhibit the following nice decomposition into absolutely continuous and singular
parts.

Theorem A.6 Let P be a Markov operator satisfying P ∗χΩ(q) = 1 for all q ∈ Ω
so that the associated transition function P (·, ·) is defined everywhere. Then,
there exists a decomposition P ∗ = K∗ + R∗ into two linear operators K∗ and
R∗ on L∞ such that

1. K∗ ≤ P ∗, that is, K∗u ≤ P ∗u almost everywhere in Ω for all positive
u ∈ L∞.
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2. K∗ has a transition kernel k(·, ·),76 such that K∗u(q) =
∫
k(q, y)u(y)μ(dy)

for all u ∈ L∞.

3. K∗ is maximal in the sense that K∗ ≤ K∗ for every other operator K∗

having a transition kernel and satisfying K∗ ≤ P ∗.

4. R∗ = P ∗ − K∗ defines a (substochastic) transition function R(q, A) =
R∗χA(q) such that R(q, ·) is a singular measure with respect to μ for almost
every q ∈ Ω.

A.2 Asymptotic Properties of Markov Operators

Definition A.7 A Markov operator P : L1 → L1 is called constrictive if there
exists δ > 0, γ < 1 and a measurable set B ⊂ Ω, such that for every density
u ∈ D there is an n0(u) ∈ � so that∫

(Ω\B)∪E

Pnu(q)μ(dq) ≤ γ, for n ≥ n0(u), (97)

for all measurable subsets E ⊂ Ω with μ(E) < δ. If we can choose n0(u) = 1
for all densities u ∈ D, the operator P is called directly constrictive.

Remark A.8 In order to prove direct constrictiveness, it is sufficient to show
(97) for n = 1 only, since with u ∈ D it is vn = Pnu ∈ D for all n ∈ �.

Remark A.9 In checking the condition (97), it is not necessary to verify it for
all densities u ∈ D. If a set D0 ⊂ D is dense in D, it is sufficient to check (97)
for all u ∈ D0 (cf. [66], Chap. 5.3).

Constrictiveness is deeply connected with weak precompactness. To see this,
let us first introduce

Definition A.10 Let X be a reflexive Banach space. A set F ⊂ X is called
(strongly) precompact, if every sequence {un} ⊂ F contains a subsequence that
converges strongly to an u∗ ∈ X . The set F ⊂ X is called weakly precompact,
if every sequence contains a subsequence that converges weakly to an u∗ ∈ X .

In our Banach space L1 we have the following criterion for weak precom-
pactness (cf. [66] Chap. 5.1 or [29]):

Lemma A.11 A set of functions F ⊂ L1 is weakly precompact if and only if
both of the following conditions are satisfied:

1. There is a C > 0 such that ‖u‖1 ≤ C for all u ∈ F .

76That is, a nonnegative function k : Ω×Ω → �
+
0 , which is jointly measurable with respect

to its two variables.
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2. For every ε > 0 there is a δ > 0 such that for all measurable subsets E ⊂ Ω
with μ(E) < δ: ∫

E

|u(q)|μ(dq) < ε ∀u ∈ F .

Spectral Decomposition We are interested in the constrictiveness property,
because the following strong spectral decomposition theorem holds (cf. Thm. 5.3.1
and Prop. 5.4.2 in [66]):

Theorem A.12 Let P : L1 → L1 be constrictive with PχΩ = χΩ. Then there
exists an r ∈ �, a partition {Bk, k = 1, . . . , r} of Ω, i.e.,

r⋃
k=1

Bk = Ω and Bk ∩Bl = ∅ for k �= l,

a sequence of functions Kj ∈ L∞(Ω), j = 1, . . . , r, and an operator Q : L1 → L1

such that for every u ∈ L1 we have

Pu(q) =

r∑
j=1

λj(u)1Bj (q) + Qu(q), (98)

with

λj(u) =

∫
Ω

u(q)Kj(q)μ(dq) and 1Bj =
1

μ(Bj)
χBj .

The operator Q and the sets Bj have the following properties:

1. For every u ∈ L1 we have ‖PnQu‖1 → 0 for n→ ∞.

2. For every j ∈ {1, . . . , r} there exists a unique α(j) such that P1Bj =
1Bα(j)

. Furthermore, α(j) �= α(l) for j �= l and thus the operator P just
permutes the functions 1Bj .

Definition A.13 A Markov operator P : L1 → L1 is called asymptotically
stable if there exists a unique density u∗ ∈ D such that Pu∗ = u∗ and

lim
n→∞ ‖Pnu − u∗‖1 = 0, ∀u ∈ D.

Definition A.14 A Markov operator P : L1 → L1 with stationary density
χΩ, i.e., PχΩ = χΩ, is called mixing if for all densities u ∈ D the sequence
{Pnu, n ∈ �} is weakly convergent77 to χΩ.

The connection to the asymptotic properties of P are given by the following

77A sequence {u} ⊂ L1 is called weakly convergent to u ∈ L1, if
∫
Ω uk(q)g(q)μ(dq) →∫

Ω u(q)g(q)μ(dq) with n → ∞ for all g ∈ L∞.
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Theorem A.15 ([66], Thm. 5.5.2 and 5.5.3) If the Markov operator P : L1 →
L1 with stationary density χΩ is constrictive, the following two statements are
equivalent:

1. P is mixing.

2. P is asymptotically stable, which is equivalent to r = 1 in the spectral
decomposition (98) in Thm. A.12.

Thus, for constrictive Markov operators P with PχΩ = χΩ the weak and
strong convergence in Def. A.14 are equivalent.

A.3 Frobenius–Perron and Koopman Operators

In the following g : Ω → Ω is always assumed to be an invertible nonsingular
transformation which, in particular, is measure-preserving with respect to μ,
i.e., μ(B) = μ(g−1(B)) for all B ∈ B. Then, the operator P : L1 → L1 given by

Pf = f ◦ g−1, ∀f ∈ L1, (99)

is called Frobenius–Perron operator to g and is a Markov operator. The associ-
ated operator P ∗ : L∞ → L∞ defined via

P ∗f = f ◦ g, ∀f ∈ L∞, (100)

is called Koopman operator. Koopman’s lemma states, that P ∗ can also be
considered as an operator on L2 (cf. [86] Chap. II.5 or [112]) and that then the
measure preserving property of g implies that P ∗ : L2 → L2 is unitary:

Lemma A.16 (Koopman) P ∗ is a unitary map of L2 onto L2.

A.4 Mixing Systems

Let g : Ω → Ω be as above.

Definition A.17 The dynamical system g is called mixing if for all B,C ∈ B:

lim
n→∞μ

(
B ∩ g−n(C)

)
= μ(B)μ(C). (101)

It is called weakly mixing if for all B,C ∈ B:

lim
n→∞

[
1

n

n−1∑
k=0

μ
(
B ∩ g−n(C)

)
− μ(B)μ(C)

]
= 0. (102)

The question of the connections between these concepts and the proper-
ties of the above defined operators is answered by the following theorem which
summarizes the statements of Thm. VII.14 from [86] and Thm. 4.4.1 from [66].
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Theorem A.18 1. If g is weakly mixing, the associated Koopman operator
P ∗ : L2 → L2 has no eigenvalue other than λ = 1 and λ = 1 is a simple
eigenvalue.

2. If g is mixing, it is also weakly mixing.

3. g is mixing if and only if the Frobenius–Perron operator P associated to
g considered as a Markov operator is mixing.

The same notion can be defined for the Markov chain {Xk} associated with
some Markov operator P .

Definition A.19 The Markov chain {Xk} is called mixing if for all B,C ∈ B:

lim
k→∞

P (Xk ∈ C|X0 ∈ B) = μ(B)μ(C),

where P (Xk ∈ C|X0 ∈ B) denotes the conditional transition probability given
by (96).

Definition A.14 and equation (96) immediately show that

Proposition A.20 The Markov operator P : L1 → L1 is mixing if and only if
the associated Markov chain is mixing.

A.5 Some Aspects of Markov Chain Theory

This paragraph summarizes some aspects of general state space Markov chain
theory as described in Nummelin [83] and Meyn and Tweedie [79]. In order
to remain concentrated on the necessary basics, the presentation follows the line
of Tierney [107, 106].

In the following, let {Xk} be some Markov chain with transition function
P (·, ·). Whenever we assume that {Xk} is associated with someMarkov operator
P satisfying PχΩ = χΩ, we are in the nice situation that we already know that
μ is an invariant distribution of the chain.

We now use the same notation as in Sec. A.1 and start with some definitions:
First of all, the first return time of the chain to a set A ⊂ Ω is denoted

τA = inf{k ∈ � : Xk ∈ A},

with the convention that τA = ∞ if the chain never returns to A.

Definition A.21 AMarkov chain is ϕ-irreducible for a probability distribution
ϕ on Ω, if ϕ(A) > 0 for a set A ∈ B implies

P (τA <∞|X0 = q) > 0, for all q ∈ Ω.

In this case, ϕ is called an irreducibility distribution for the chain. The chain is
called irreducible if there is some irreducibility distribution.
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If the chain is irreducible it may have many different irreducibility distribu-
tions. But one can show that every irreducible chain has a maximal irreducibility
distribution ψ such that all other irreducibility distributions are absolutely con-
tinuous with respect to ψ. Different maximal irreducibility distributions are
equivalent in the sense that they have the same null sets.

The number of hits of a set A ∈ B is denoted by

nA = |{k ∈ � : Xk ∈ A}| ,

where |M | denotes the cardinal number of some set M with |M | = ∞ for an M
containing infinitely many elements.

Definition A.22 An irreducible Markov chain with maximal irreducibility dis-
tribution ψ is called recurrent, if for every set A ∈ B with ψ(A) > 0 the following
two conditions are satisfied:

(R1) P (nA = ∞|X0 = q) > 0, for all q ∈ Ω.

(R2) P (nA = ∞|X0 = q) = 1, for ψ-almost all q ∈ Ω.

If the “almost everywhere” in the condition (R2) can be replaced by an “every-
where”, i.e., if the following stronger condition

(HR) P (nA = ∞|X0 = q) = 1, for all q ∈ Ω

is satisfied, then the chain is called Harris recurrent. An irreducible and recur-
rent chain is called positive recurrent if it has an invariant probability distribu-
tion.

Recurrence is guaranteed for irreducible chains with an invariant probability
distribution:

Theorem A.23 ([107], Thm. 4.1 and Sec. 4.4) Assume that {Xk} is irreducible
and has an invariant distribution π. Then, π is a maximal irreducibility distri-
bution and the unique invariant distribution. In addition, the chain is positive
recurrent. It, moreover, is Harris recurrent, if there is an n ∈ � such that the
transition function Pn(·, ·) has a component that has a density with respect to π,
that is, there is a decomposition Pn = Pn

1 +P
n
2 such that Pn

1 has a representation
as

Pn
1 (q, B) =

∫
B

k(q, y)π(dq), for all q ∈ Ω, B ∈ B.

Irreducibility and the existence of an invariant density suffices to guarantee
convergence of expectation values: A function A : Ω → � is called an π-
observable if its expectation value Eπ(A) =

∫
ΩA(q)π(dq) with respect to the

the probability density π exists.
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Theorem A.24 ([107], Thm. 4.3) Assume that {Xk} is irreducible and has
an invariant distribution π. Let A be a π-observable satisfying Eπ(|A|) < ∞.
Then, its mean value converges to its expectation value Eπ(A) in the sense that,
for n→ ∞,

P

(
1

n+ 1

n∑
k=0

A(Xk) → Eπ(A)

∣∣∣∣∣ X0 = q

)
= 1, for π-almost all q ∈ Ω.

If the chain additionally is Harris-recurrent, the result holds for all q ∈ Ω.

For even stronger results, we need that the chain is aperiodic:

Definition A.25 For an irreducible Markov chain, an m-cycle is a sequence
of disjoint sets E1, . . . , Em such that P (q, El) = 1 for all q ∈ Ej with l = j + 1
mod m. The period M is the largest m for which an m-cycle exists. The chain
is aperiodic if M = 1.

For the next convergence result, we have to introduce a kind of distance
of probability distributions. The total variation distance of two probability
distributions ν1 and ν2 is defined by

‖ν1 − ν2‖D = 2 sup
B∈B

|ν1(B)− ν2(B)|. (103)

Theorem A.26 ([107], Thm. 4.3) Assume that {Xk} is irreducible and aperi-
odic and has an invariant distribution π. Then,

‖Pn(q, ·) − π‖D → 0, for π-almost all q ∈ Ω. (104)

If the chain additionally is Harris-recurrent, the result holds for all q ∈ Ω.

A simple consequence is

Corollary A.27 Whenever the Markov chain, associated with a Markov op-
erator P satisfying PχΩ = χΩ, is irreducible and aperiodic, the operator P is
asymptotically stable.

Proof: Consider arbitrary u ∈ D and ε > 0. We have to show that there is
an N0 ∈ � such that ‖Pnu − χΩ‖1 < ε for all n > n0. To this end, choose a
step-function g =

∑m
k=1 αkχAk

∈ D with sets Ak ∈ B and positive αk such that
‖u− g‖1 < ε/2. Consequently,

‖Pnu − χΩ‖1 ≤ ‖Pn(u− g)‖1 + ‖Png − χΩ‖1 ≤ ε/2 + ‖Png − χΩ‖1,

so that it is sufficient to show that there is an N0 ∈ � such that ‖Png −
χΩ‖1 < ε/2 for all n > n0. But this is an immediate consequence of (104) and
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‖g‖1 = 1 =
∑

k αkμ(Ak):

‖Png − χΩ‖1 ≤
∫
Ω

m∑
k=1

αk |PnχAk
(q) − μ(Ak)| μ(dq)

≤
m∑

k=1

αk

∫
Ω

‖Pn(q, ·) − μ(·)‖D μ(dq),

and the last term converges to zero by dominated convergence.

One is often interested in the rate of convergence in (104):

Definition A.28 An irreducible, aperiodic, and positive Harris recurrent Mar-
kov chain is called ergodic. An ergodic Markov chain with invariant distribution
π is called geometrically ergodic, if there is an function M : Ω → �

+
0 with

Eπ(M) <∞ and an r ∈ (0, 1) such that

‖Pn(q, ·) − π‖D ≤ M(q)rn, for all q ∈ Ω and n ∈ �. (105)

If the function M may be chosen constant, the chain is called uniform ergodic.

Remark A.29 The problem of identifying the constant r in (105) or even of
getting reasonable bounds on r has received much attention in recent years. It
has been mainly discussed in terms of regeneration and return times, see [88].

These versions of ergodicity are of particular interest, because they imply a
central limit theorem for the convergence of the mean value to the expectation
value in Thm. A.24. The following result can be found in [107]:

Theorem A.30 Let the chain {Xk} be geometrically ergodic, and suppose that
the π-observable A satisfies A ∈ L2+ε for some ε > 0. Moreover, let An denote
the mean value

∑n−1
k=0 A(Xk)/n. Then, for every initial distribution,

√
n
(
An − Eπ(A)

)
converges weakly to a random variable which is normally distributed with mean
0 and finite variance σ(A)2. If the chain is uniformly ergodic, the same conver-
gence is valid for all A ∈ L2.

For the discussion of in Sec. 4, another version is useful, which can be found
in the contribution of Chang and Geyer in the discussion part of [106], therein
based on the results of [46]:

Theorem A.31 Let the chain {Xk}, associated with the Markov operator P
with PχΩ = χΩ, be ergodic. Denote by L2

0 the subspace of L2 orthogonal to the
constants, i.e., set

L2
0 = {u ∈ L2 : 〈u, χΩ〉 = 0},
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and suppose that Id−P ∗ is invertible on L2
0. Moreover, consider a π-observable

A ∈ L2
0. Then, for every initial distribution,

√
n
(
An − Eπ(A)

)
converges weakly to a random variable which is normally distributed with mean
0 and variance

σ(A)2 = 〈A,A〉 + 2

∞∑
k=1

〈A, P kA〉. (106)

In the last formula, the terms

〈A, P kA〉 =

∫
Ω

A(q)A(y)P k(q, dy)μ(dq)

are the kth auto-covariances of the observable A. The theorem may be applied
to every A ∈ L2 by using A′ = A− Eπ(A) ∈ L2

0 instead of A.
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Appendix B: The Spectrum of Linear Operators

In this part of the appendix we shortly summarize some aspects of the spectral
theory of linear operators which are important for the arguments in the body of
the manuscript. Many of the results stated herein can be generalized (compare,
e.g., [60, 86, 56]).

Let X be a Banach space with norm ‖ · ‖ and A a closed linear operator on
X with domain D(A) ⊂ X . The kernel ker(A) and the range Ran(A) of this
operator are defined by

ker(A) = {x ∈ D(A), Ax = 0},
Ran(A) = {y ∈ X, Ax = y for some x ∈ D(A)}.

A is called invertible if there is a bounded operator, which is called A−1, such
that A−1 : X → D(A) with AA−1 being the identity on X and A−1A the
identity on D(A).

Definition B.32 The spectrum of A, denoted σ(A), is the set of all points
λ ∈ � for which A− λ is not invertible.

Remark B.33 There are basically three reasons why A−λ fails to be invertible:

1. λ ∈ σ(A) such that ker(A−λ) �= {0}, i.e., there is a u ∈ D(A), u �= 0 such
that Au = λu.

2. ker(A − λ) = {0}, and Ran(A − λ) is dense in X . Then, λ ∈ σ(A) states
that A− λ has a densely defined inverse which is unbounded.

3. ker(A − λ) = {0}, and Ran(A − λ) is not dense in X . Then, λ ∈ σ(A)
states that A − λ has an inverse which may be bounded on Ran(A − λ)
but is not densely defined.

As a first step towards a characterization of the spectrum one defines the
following notions:

Definition B.34 Consider λ ∈ σ(A). Then:

1. If ker(A − λ) �= {0}, λ is called an eigenvalue of A and every 0 �= u ∈
ker(A−λ) is an associated eigenvector. Moreover, dimker(A−λ) is called
the (geometric) multiplicity of λ and ker(A − λ) itself the corresponding
eigenspace. The set of all eigenvalues of A is called the point spectrum of
A and denoted by σp(A).

2. The set of all λ ∈ σ(A) such that λ is not an eigenvalue and Ran(A − λ)
is not dense in X is called the residual spectrum of A.
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3. The set of all eigenvalues λ ∈ σ(A), which are isolated78 and have fi-
nite (algebraic)79 multiplicity, is called the discrete spectrum of A, and is
denoted as σdiscr(A).

4. The essential spectrum σess(A) of A is given by the complement of σdiscr(A)
in σ(A).

For bounded operators, the spectrum is contained in a circle around 0 with
a radius given by the operator norm80 of the operator (cf. [60], Chap. III.6):

Theorem B.35 Let A : X → X be bounded. Then:

sup
λ∈σ(A)

|λ| = lim
n→∞ ‖An‖1/n, that is, sup

λ∈σ(A)

|λ| ≤ ‖A‖.

A class of operators with “discrete” spectrum is the class of compact oper-
ators:

Definition B.36 A linear operator A : X → X is called compact, if A takes
bounded sets in X into (strongly) precompact81 sets in X . We denote the set
of all compact operators on H by Bc(X).

Remark B.37 Another characterization of compact operators is the following:
A : X → X is compact if and only if the image {Aun} of any bounded sequence
{un} ⊂ X contains a Cauchy subsequence.

Remark B.38 For an operator A ∈ Bc(X), any nonzero λ ∈ σ(A) is an isolated
eigenvalue of finite multiplicity (due to the well-known Riesz-Schauder theory,
cf. [60], Chap. III.6). Thus, we have σ(A) ⊂ σdiscr(A) ∪ {0}.

As an example for compact operators on L1-spaces, one may consider certain
integral operators (cf. [60], Example 2.4 and 4.1 in Chap. III):

Theorem B.39 Let (Ω,A, μ) be a probability space with Ω being a compact set
and let L1

μ(Ω) be the associated L1-space. Moreover, assume k : Ω× Ω → � to
be a continuous function. Then

Au(q) =

∫
Ω

k(q, y)u(y)μ(dy)

defines a compact operator A : L1
μ(Ω) → L1

μ(Ω) which is defined on the whole of
L1
μ(Ω).

Before going into more details of the structure of the spectrum we restrict
ourselves to the cases we are interested in:

78That is, for some ε > 0, there is no κ ∈ σ(A), κ 
= λ, such that |κ− λ| < ε
79See [60], Chap. III.5 for a definition. In general, the algebraic multiplicity is larger or

equal to the geometric multiplicity.
80The usual operator norm ‖A‖ denotes the smallest constant C > 0 such that ‖Au‖ < C‖u‖

for all u ∈ X, u 
= 0.
81Compare Def. A.10 in Appendix A.
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B.1 Operators in Hilbert Space

For the remaining part of Appendix A.5, H denotes a separable Hilbert space
with scalar product 〈·, ·〉 and associated norm ‖ · ‖2.

For self-adjoint operators, one has the following well-known properties of the
spectrum:

Theorem B.40 ([86], Thms. VI.6 and VI.8) Let A : D(A) ⊂ H → H be a
self-adjoint linear operator. Then:

1. A has no residual spectrum, i.e., case 3 of Rmk. B.33 does not appear.

2. σ(A) is a subset of �.

3. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

4. If A is bounded with operator norm ‖A‖2, its spectrum is bounded due to
sup

λ∈σ(A)

|λ| = ‖A‖2.

We are mainly interested in a characterization of the spectrum which singles
out its “discrete” part in contrast to a remaining “continuous” part of the spec-
trum. One possible decomposition in “discrete” and “continuous” parts of the
spectrum of our self-adjoint operator A is the following (cf. [60], Chap. X): Since
A has no residual spectrum, we may define the continuous spectrum σc(A) as
consisting of all λ ∈ σ(A) for which case 2 of Rmk. B.33 is valid. Thus, σ(A) can
be decomposed in σc(A) and the point spectrum σp(A) (case 1 of Rmk. B.33).
But σp(A) may contain eigenvalues with infinite multiplicity and may even be
dense in some interval I ⊂ �.

Thus, the disjoint decomposition of the spectrum into its discrete and es-
sential part (cf. Def. B.34) is of more interest herein. Obviously, the essential
spectrum may contain eigenvalues of A, e.g., such with infinite multiplicity.
More precisely, for self-adjoint A (cf. Thm.VII.11 in [86]): λ ∈ σess(A) if and
only if one or more of the following holds:

1. λ ∈ σc(A).

2. λ is a limit point of σp(A).

3. λ is an eigenvalue of infinite multiplicity.

As was already stated above, for compact operators we simply have σess(A) ⊂
{0}, i.e., compact operators have (nearly) purely discrete spectrum. On the
contrary, an example for a class of operators without discrete spectrum are
certain multiplication operators (cf. [86], Chap VII):

Theorem B.41 Let (Ω,A, μ) be a measure space with a smooth measure μ and
H = L2

μ(Ω).
82 Moreover, let F : Ω → � be a smooth bounded function on

(Ω,A, μ) and AF be the multiplication operator on H defined by

AFu(x) = F (x)u(x).
82Compare Appendix A, page 117.
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Then, the spectrum σ(AF ) is given by the closure of the range of F , that is,

σ(AF ) = σess(AF ) = Ran(F ) = {F (x), x ∈ Ω}.

For self-adjoint operators, the essential spectrum can be characterized by
the well-known Weyl-criterion ([56], Thm. 7.2):

Theorem B.42 Let A : D(A) ⊂ H → H be self-adjoint. Then, λ ∈ σ(A) if
and only if there is a sequence {un} ⊂ D(A) with ‖un‖2 = 1 for all n ∈ �, such
that un converges weakly to 0 but (A− λ)un → 0 strongly.

In our Hilbert space, compact operators map any weakly convergent se-
quence into a strongly convergent sequence (cf. [86], Thm. VI.11). Thus, we
expect the Weyl-criterion to imply that a compact perturbation of a self-adjoint
operator A will not have any influence on the essential spectrum. This is true,
even for non-self-adjoint operators, as the following theorem states:

Theorem B.43 Let A : H → H and B : H → H be bounded operators and let
B moreover be compact. Then, σess(A+B) = σess(A).

Remark B.44 This theorem is a corollary to the general theory in Chap. IV of
[60] (cf. Thm. 5.35) for simplicity restricted to bounded operators. Therein we
find, that the statement is valid even on a Banach space X , if only A is bounded
(and defined on the entire space X) and B is compact.

B.2 Hilbert–Schmidt Operators

Consider a bounded linear operator A : H → H together with an arbitrary
complete orthonormal family {un} in H, and define

‖A‖S =

( ∞∑
n=1

‖Aun‖22

)1/2

.

If the series converge, i.e., ‖A‖S <∞, we call ‖A‖S the Schmidt norm of A.83

Definition B.45 The set of all bounded linear operator A : H → H with
‖A‖S < ∞ is called the class of Hilbert–Schmidt operators and is denoted by
BS(H).

Thus, by the definition, for every orthonormal sequence {un} ⊂ H the se-
quence {‖Aun‖2} converges to zero. Together with Rmk. B.37, this yields:

Proposition B.46 Every A ∈ BS(H) is compact, i.e., BS(H) ⊂ Bc(H).84

83It is easy to check, that the Schmidt norm then is independent of the choice of the
orthonormal family {un} employed in the definition.

84BS(H) is a complete vector space. Another notation is quite usual: The class of compact
operators is denoted B0(H), the Hilbert-Schmidt operators B2(H), and the trace class oper-
ators B1(H), yielding a sequence of subspaces B2(H) ⊂ B1(H) ⊂ B0(H). Then, the Schmidt
norm of A ∈ B2(H) usually is denoted ‖A‖2.
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Interestingly, on L2-spaces, any Hilbert–Schmidt operator can be expressed
as an integral operator:

Theorem B.47 ([86], Thm. VI.23) Let (Ω,A, μ) be a measure space and H =
L2
μ(Ω) the associated L2-space. Then, A ∈ BS(H), i.e., A is a Hilbert-Schmidt

operator, if and only if there is a measurable function K : Ω× Ω → � with

‖K‖2 =

∫
Ω

∫
Ω

|K(x, y)|2 μ(dx)μ(dy) < ∞,

such that for every u ∈ H:

Au(x) =

∫
Ω

K(x, y)u(y)μ(dy).

Moreover, ‖A‖S = ‖K‖.

B.3 Approximation of Isolated Eigenvalues

In this section, it is the question whether isolated eigenvalues λ ∈ σdiscr(A)
of a bounded self-adjoint operator in a Hilbert space can be approximated by
projection of the eigenproblem into appropriate finite-dimensional subspaces.
We herein present some aspects of the application of the well-known Rayleigh-
Ritz min-max principle [16] to this question. The reader should be aware that
these aspect are chosen particularly for the needs of the analysis presented in
Sec. 5.2; for more details about the usefulness and long history of the min-max
principle the reader should consult the associated literature, e.g., [105, 15], or
for the non-self-adjoint case [108].

For our purpose, we consider some separable Hilbert space H with scalar
product 〈·, ·〉 and norm associated ‖ · ‖, and a self-adjoint, bounded linear oper-
ator A : H → H. Assume that there are constants γ, C > 0 such that

γ‖u‖2 ≤ 〈u,Au〉 ≤ C‖u‖2, ∀u ∈ H. (107)

Let the smallest l eigenvalues of A be

0 < λ1 ≤ λ2 ≤ . . . ≤ λl

(including repetitions in case of multiplicities) and let the λj belong to the
discrete spectrum of A. Let uj ∈ H, j ∈ {1, . . . , l}, be associated normalized
eigenvectors, chosen pairwise orthogonal in case of multiplicities.

Property (107) of A implies that A defines the scalar product 〈·, A·〉 and the
associated norm ‖ ·‖A which, because of (107) is norm-equivalent to the original
norm ‖ · ‖. The min-max principle states that, for every j ∈ {1, . . . , l}, the jth
eigenvalue of A is given via

λ = min
Sj⊂H

max
0
=v∈Sj

R(v),
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with the Rayleigh quotient R(v) = 〈v,Av〉/〈v, v〉 for v �= 0 and the minimum
being taken over all linear subspaces Sj ⊂ H of dimension j.

We denote our sequence of ansatz spaces by V1 ⊂ V2 ⊂ . . . ⊂ Vn ⊂ Vn+1 ⊂
H, and assume this sequence to be dense in H.85 Moreover, assume An =
ΠnAΠn to denote the Galerkin projection of A onto the ansatz spaces Vn, and

λn1 ≤ λn2 ≤ . . . ≤ λnl

to be the smallest eigenvalues of An with associated eigenvectors unj , j ∈
{1, . . . , l}.

With respect to the scalar product 〈·, A·〉, we define an orthogonal projection
Pn : H → Vn via

〈u− Pnu,Av〉 = 0, ∀v ∈ Vn.

It is easy to show, that for every u ∈ H we have ‖u−Pnu‖A → 0 for n→ ∞.86

Thus, the norm-equivalence (107) suffices to show that

‖u − Pnu‖ → 0, for n→ ∞, ∀u ∈ H. (108)

Under these assumptions, we have the following convergence result for the
approximated eigenvalues:

Lemma B.48 Let Ej denote the subspace spanned by the eigenvectors u1, . . . , uj
and define

βj
n = max

u∈Ej\{0}

(
1

‖u‖2 |2〈u, u− Pnu〉 − 〈u− Pnu, u− Pnu〉|
)
. (109)

Then, for every j ∈ {1, . . . , l} and n large enough, the following estimate holds:

λj ≤ λnj ≤ 1

1− βj
n

λj , (110)

with βj
n ↓ 0 for n→ ∞.

Proof: A justification of the estimate (110) can be found in [105], Lemma 6.1,
in form of a direct consequence of the min-max principle. The asserted conver-
gence βj

n ↓ 0 for n→ ∞ then follows from (108).

85That is, for every u ∈ H and every ε > 0, there is an M ∈ � and a v ∈ VM such that
‖u− v‖ < ε.

86With a v ∈ VM we find for all n > M that

‖u− Pnu‖2A = 〈u− Pnu,Au〉 = 〈u− Pnu,A(u− v)〉 ≤ ‖u− Pnu‖A · ‖u− v‖A.

Thus, ‖u − Pnu‖A ≤ ‖u − v‖A . But since the Vn are dense in H, Eq. (107) shows that, for
M large enough, for every ε > 0 there is a v ∈ VM such that ‖u− v‖A < ε. This implies the
stated convergence.
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In order to establish a corresponding convergence result for the eigenvectors,
we have to introduce a separation constant for the considered cluster of isolated
eigenvalues. The convergence λnj → λj guarantees that, for every j ∈ {1, . . . , l},
for n large enough, there is a constant sj such that

λj
|λj − λnk |

≤ sj , for all k ∈ {1, . . . , l} with λk �= λj .

With these separation constants, we have

Lemma B.49 For n large enough and after an appropriate choice of eigenvec-
tors for repeated eigenvalues, the following is true for all j ∈ {1, . . . , l}:

‖uj − unj ‖ ≤ 2 (1 + sj) ‖uj − Pnuj‖, (111)

which, because of (108), implies the strong convergence unj → uj for n→ ∞.

Proof: The asserted estimate follows in perfect analogy to equation (51) and
the second equation in the proof of Thm. 6.2 in [105].

Remark B.50 The convergence estimates (110) and (111) illustrate that the
rate of convergence with n crucially depends on the rate of the convergence (108)
for the projections Pn. Let the discretization domain Ω be bounded with smooth
boundary and consider H = L2(Ω). If we use finite element ansatz spaces in the
discretization process associated with grids with maximal “grid-width” O(1/n),
one can prove results of the form

‖u− Pnu‖ ≤ C(n) ‖u‖, with C(n) ∼ n−p,

and p depending on the order of the elements used.
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