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Preface

This monograph has been written to illustrate the interlocking of theory, al-
gorithm, and application in developing solution techniques for complex PDE
systems. A deep theoretical understanding is necessary to produce a powerful
idea leading to a successful algorithm. Efficient and robust implementation is
the key to make the algorithm perform satisfactorily. The extra insight obtained
by solving real-life problems brings out the structure of the method more clearly
and often suggests ways to improve the numerical algorithm.

It is my intention to impart the beauty and complexity found in both the theo-
retical investigation of the adaptive algorithm proposed here, i.e., the coupling
of Rosenbrock methods in time and multilevel finite elements in space, and its
realization. I hope that this method will find many more interesting applica-
tions.

Berlin—-Dahlem, Januar 1999 Jens Lang
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Introduction

Diverse physical phenomena in such fields as biology, chemistry, metallurgy,
medicine, and combustion are modelled by systems of nonlinear parabolic par-
tial differential equations (PDEs). Nowadays there is an increasing activity
in mathematics to analyse the properties of such models, including existence,
uniqueness, and regularity of their solutions (e.g. AMANN [6], LUNARDI [97]).
Due to the great complexity of such systems only little is known about true
solutions. Furthermore, the permanent advance in computational capabilities
allows the incorporation of more and more detailed physics into the models.
Apart from a few situations, where mathematical analysis can actually be ap-
plied, the numerical analysis of PDEs is the central tool to assess the modelling
process for large scale physical problems. In fact, a posteriori error estimates
can be used to judge the quality of a numerical approximation and to deter-
mine an adaptive strategy to improve the accuracy where needed. In such a
way numerical and modelling errors can be clearly distinguished with the effect
that the reliability of the modelling process can be assessed. Moreover, success-
ful adaptive methods lead to substantial savings in computational work for a
given tolerance. They are now entering into real-life applications and starting
to become a standard feature of modern software.

In this work, we concentrate on nonlinear parabolic systems which can be writ-
ten as abstract Cauchy problems of the form

Owu =F(t,u), u(0)=wuy, 0<t<T,

where the vector—valued solution is supposed to be unique and temporally
smooth, at least after an initial transitional phase. Our main assumption which
gives a parabolic character to this problem is that for each v and ¢ the Fréchet
derivative A = —0, F(t,u) is a negative infinitesimal generator of an analytic
semigroup (see e.g. AMANN [5]). Because analytic semigroups are generated by
sectorial operators, the eigenvalues of A + kI, where x> 0 is sufficiently large,
belong to a sector {\ : |arg(A\)| < ¢, ¢ < 7/2} in the right complex half plane.

It is well-known that differential operators give rise to infinite stiffness. There-
fore, often an implicit discretization method coupled with a Newton-like itera-
tion is applied to integrate in time. Investigating the convergence of Newton’s
method in function space, DEUFLHARD [47] pointed out that one calculation
of the Jacobian or an approximation of it per time step is sufficient to inte-
grate stiff problems efficiently. In this work, we use linearly implicit methods of
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Rosenbrock type which are constructed by working the exact Jacobian directly
into the formula (ROSENBROCK [118]). These methods offer several advantages.
They completely avoid the solution of nonlinear equations, which means that
no Newton iteration has to be controlled. There is no problem to construct
Rosenbrock methods with optimal linear stability properties for stiff equations.
Because of their one—step nature, they allow a rapid change of step sizes. Last
but not least, they are very easy to program — as simple as explicit methods.
Most of the knowledge about linearly implicit methods can be found in the books
of STREEMEL & WEINER [137], HAIRER & WANNER [72], and DEUFLHARD &
BORNEMANN [48].

Our aim is to analyse and to design an adaptive algorithm for nonlinear parabolic
systems with time— and solution—dependent operators, where linearly implicit
methods in time are coupled with multilevel finite elements in space. The time
steps and the mesh sizes are automatically chosen during the integration in order
to control the discretization error with respect to a prescribed tolerance given
by the user. Apart from a few results for semilinear and quasilinear equations,
it seems that this has not been studied previously. There are, however, a num-
ber of different adaptive techniques which can be classified by the discretization
sequence used. A posteriori error estimates for parabolic equations have been
developed primarily within the classical method of lines approach (MOL). Dis-
cretizing in space first, the time—dependent PDE is transformed into an ODE-
system which can be solved by an appropriate variable step-size time integrator.
The accuracy in space is controlled by a posteriori error estimators constructed
for stationary problems (e.g. BIETERMAN and BABUSKA [27], ADJERID and
FLAHERTY [2], TROMPERT and VERWER [141], MOORE [103], NowAK [106],
VANDE WOUWER, SAUCEZ, and SCHIESSER [143], BERZINS, CAPON, and JI-
MACK [25]). More recently, the reverse discretization sequence, first in time
then in space, known as Rothe’s method has been investigated. Interpreting
the time—dependent PDE as an ODE in a Hilbert (or Banach) space, the tem-
poral error can be estimated by classical ODE—procedures. The spatial dis-
cretization is considered as a perturbation of the time integration and can be
assessed by standard error estimators for stationary problems (e.g. BORNE-
MANN [29, 30, 31], LANG and WALTER [88], LANG [84]). For a comparative
study of the MOL and Rothe’s approach we refer to DEUFLHARD, LANG, and
NowAK [49]. A third possibility is to discretize simultaneously in space and time
employing a discontinuous Galerkin method and to apply coupled space-time
estimators (e.g. ERIKSSON and JOHNSON [55], VERFURTH [146]). The method
of Moving Finite Elements invented by MILLER and MILLER [102] is a further
way of adaptively solving PDEs using mesh points which automatically move in
the space—time domain. The physical PDE is replaced by an extended system
of the PDE and the so-called moving mesh equation (e.g. BAINES [13], HUANG
and RUSSELL [76], ZEGELING [153]).

In this work, we follow Rothe’s approach. In Chapter II the nonlinear parabolic

problem is introduced in a Hilbert space setting. We summarize known conver-
gence results for Rosenbrock methods applied to partial differential equations.
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It is a known fact that Rosenbrock methods suffer from order reduction, i.e.,
the classical order in general cannot be achieved. This phenomenon has also
been seen for implicit Runge-Kutta and extrapolation methods. Sharp error es-
timates showing fractional orders of convergence were established in a sequence
of papers by LUBICH, OSTERMANN, and ROCHE [107, 108, 94, 95]. Fortunately,
there are conditions which imply higher order of convergence for Rosenbrock
methods (LUBICH and OSTERMANN [95]).

In Chapter III, we investigate the approximation properties of finite elements
applied to spatial discretization of Rosenbrock schemes. For this, we use a
perturbation technique proposed by LUBICH and OSTERMANN [94] for Runge—
Kutta approximations of quasilinear parabolic problems. Application of re-
solvent bounds and standard finite element techniques yields full spatial con-
vergence order. Global error estimates are given in large generality, including
discrete versions of the C°([0,7]; L?)-norm, that is, the maximum L?-norm in
space taken over all time levels, or the L2(0,T; H')-norm which measures also
spatial derivatives of the error. The results remain valid for variable step sizes
satisfying the condition of quasiuniformity.

A fundamental property of stable one-step integration methods is that the
global error consists of propagated and accumulated local truncation errors.
Thus, controlling the local errors of each individual time step with respect to a
given tolerance leads to a control of the global error. So our objective is to con-
struct efficient computational estimations of the local numerical errors arising
in the temporal and spatial discretization.

In Chapter IV, we discuss our a posteriori error estimators which are based
on the difference of higher and lower order solutions. The classical embedding
technique for ODE integrators is employed to estimate the error in time. An
automatic step size selection procedure ensures that the step size is as large as
possible to guarantee the desired precision. It turns out that a combination of
the standard controller and the PI-controller proposed by GUSTAFSSON et al.
[70] works very well for a large class of problems with a great diversity in the
dynamic behaviour.

To estimate the error in space we extend the hierarchical bases technique to
Rosenbrock schemes. Hierarchical error estimators have been accepted to pro-
vide efficient and reliable assessment of spatial errors for stationary problems
(DEUFLHARD, LEINEN, and YSERENTANT [50], ZIENKIEWICZ et al. [155], BANK
and SMITH [18], BORNEMANN, ERDMANN, and KORNHUBER [34]). They can be
computed locally by small element—by—element calculations. We study the ro-
bustness of our hierarchical error estimator with respect to a stepsize—dependent
norm. By robustness we mean that the estimator yields upper and lower bounds
on the error uniformly in the time step and in the mesh size. First, exact ro-
bustness is proven for one-stage Rosenbrock methods. For higher stage numbers
the special structure of the Rosenbrock methods gives rise to a nonlinear spatial
error transport which strongly influences the whole estimation process. In this
case, the derived estimates are just nearly optimal. A closer discussion, how-
ever, shows that the occuring perturbation terms in general are negligible for
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practical computations.

In Chapter V, we discuss practical issues which are useful to implement our
adaptive strategies. The spatial error estimator is used to construct an efficient
and reliable adaptive strategy for an automatic mesh control. A sequence of
improved spatial meshes is built up in order to get a mesh with as few degrees
of freedom as possible such that the computed error is less than the prescribed
tolerance. This approach directly corresponds to the multilevel finite element
technique well established for the adaptive solution of stationary problems (e.g.
DEUFLHARD, LEINEN, and YSERENTANT [50], BORNEMANN, ERDMANN, and
KORNHUBER [33]). However, beginning with a time—fixed coarse grid at each
time level and using the multilevel technique would be wasteful. For time—
dependent problems, there is often considerable information which can be used
from the optimum grid at the previous time to construct a first approximation
of the desired grid at the advanced time. Thus, an efficient grid removal based
on the same error estimators as used for refinement is applied to determine
where degrees of freedom are no longer needed. Note, that this requires data
structures that allow both grid refinement and robust coarsening.

In Chapter VI, we present illustrative numerical tests including three Rosen-
brock solvers to demonstrate that the theoretical order predictions are indeed
of interest for the numerical practice. For linear parabolic equations, similar
tests can be found in OSTERMANN and ROCHE [108]. The observed temporal
convergence rates nicely correspond to the theoretical values. Optimum con-
vergence order is obtained for the finite element discretization. Furthermore,
we assess the quality of the hierarchical error estimator in terms of the effectiv-
ity index and present some results for the performance of the whole adaptive
algorithm.

The final Chapter VII is dedicated to a series of real-life applications that arise
in today’s chemical industry, semiconductor—device fabrication, and health care.
Usually, apart from a few exceptions it takes ten or more years before the re-
sults of academic research become available in professional practice (BABUSKA
and SzABO [12]). One way to shorten this transfer is to create one’s own soft-
ware product and to demonstrate that the developed numerical algorithms work
robustly and safely over a wide range of practically relevant problems. The pro-
gram package KARDOS that is based on the stationary solver KASKADE [54]
was coded along the adaptive principles proposed in the theoretical part of this
work.

We have chosen problems that are on one hand of great importance to industry
and on the other hand challenging for numerical solution because information
is highly nonuniformly distributed in space and time. The goal is to impart
the excitement and usefulness of the investigated adaptive approach as a tool
in efficiently solving real-world problems.
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The Continuous Problem and Its Discretization
in Time

In this chapter, the nonlinear problem class of parabolic type which will be
studied is introduced in a Hilbert space setting. The main assumptions are
formulated in terms of sectorial operators which are negative infinitesimal gen-
erators of analytic semigroups. They are general enough to cover a huge class
of important applications. Our setting is taken from LUBICH and OSTERMANN
[95], where a rigorous analysis of linearly implicit time discretizations applied to
nonlinear parabolic equations is given. The assumptions are slightly extended
to a family of operators A(t,w(t)), where w(t) is varying in a neighbourhood of
the solution. This allows later the study of spatial projection errors.

Some fundamental examples which fit into the chosen framework are described.
We discuss the close connection to the theory of sesquilinear forms associated
with elliptic operators. This approach provides sufficient conditions for our
assumptions and therefore allows in general an easy check of them.

Working with resolvent bounds instead of Garding’s inequality yields a theo-
retical explanation of the noninteger temporal convergence orders observed for
linearly implicit one—step methods [95]. We summarize known convergence re-
sults up to order three after reviewing the definition of Rosenbrock methods.

§1. Nonlinear Evolution Problem

We consider the nonlinear initial boundary value problem

Owu(z,t) = F(x,t,u(z,t)) in Q x (0,T],
B(z,t,u(z, t)u(z,t) = g(z,t,u(r,t)) ondQx(0,T], (I1.1)
u(z,0) = wup(x) on Q,

where 0 C R?, d=1,2 or 3, is a bounded open domain with smooth boundary
0N lying locally on one side of 2, and T'>0. The boundary operator B stands
for an appropriate system of boundary conditions and has to be interpreted in
the sense of traces. The unknown u is allowed to be vector—valued.

These equations will be considered in a Hilbert space setting. Let

Vs 3 epds (I1.2)
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be a Gelfand triple of separable Hilbert spaces (see also Appendix A§1), where
the antiduality between V and V' is denoted by (-,-). We introduce norms || - |,
| -|in V and H, induced by the scalar products ((-,-)) and (-,-), respectively.
The dual norm on V' is defined in the usual way by

= s (o). (1.3
veV,||v||=1

We write (II.1) as an abstract Cauchy problem

O = F(t,u(t)), u(0)=up, 0<t<T, (I1.4)

and assume that this equation has a unique, temporally smooth solution u(t)
in V. Here, we suppose that the mapping F : (0,7] x V — V' is sufficiently
differentiable. Setting

A(t,v) = —Fy(t,v(t), Q(t,v(t)) := F(t,v(t)) + A(t,v)v(t), (I1.5)

for all v € V, we derive from (II.4)

Bru + A(t,u)u(t) = Q(t,u(t)), u(0)=wup, 0<t<T. (IL6)

Equation (I1.6) looks like a quasilinear Cauchy problem, but in general the
nonlinear perturbation @ strongly depends on A making both of the same dif-
ferential order, i.e., Q(t,u) is only defined for u € V.

We will study this equation in the framework of analytic semigroups [110, 81].
Assume that we are given, for t>0 and w € W C V, a family of linear uniformly
bounded sectorial operators A(¢,w) : V — V' having uniformly bounded inverses
such that

A, w)l| cvvn + AT E w2y < Ca (IL.7)

with C4 independent of ¢ and w. Since sectorial operators are negative in-
finitesimal generators of analytic semigroups (see Appendix A§4), the Cauchy
problem (II.6) is said to be parabolic. If we assume, in addition, that a whole
neighborhood of zero is contained in p(—A), then there are time-independent
constants M >0 and ¢ < 7/2 such that for all w € W and for all complex A
with |arg(\)| <7—¢

_ M
(AL + A(t, w)) 1||L(V) < T+ (I1.8)

This condition can be interpreted as an abstract ellipticity assumption on the
operator A. It is very general and often satisfied by elliptic partial differential
operators for different function spaces V and W.

To illustrate this, we shall discuss sufficient conditions for (IL.7) and (IL.8) in
terms of sesquilinear forms which are very common in the theory of elliptic
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operators. The operators A(t,w) : ¥V — V' are associated with the sesquilinear
form a(t,w;v1,v2) on V x V defined by the identity

a(t,w; vy, ve) = <A(t,w)v1,v2> , U1,v2 EV. (11.9)

Let us assume the time— and solution—dependent sesquilinear form a to satisfy
uniformly in ¢ € [0,T] and w € W the continuity condition

|a(t,w;v1,vg)| < Mﬂ“UlHHUZ“: V1,02 € V: (II]-O)

and the Garding—type inequality

a(t,w;vy,v1) > ,ua||v1||2 — /<a0|vl|2, vy €V, (IT.11)

with constants M,, u, >0, and kg independent of t>0, w, vy, and vs. Since we
work with finite time intervals, we may consider A+ kol instead of A employing
the classical Garding transformation @(t) := e "°tu(t). Therefore, we can assume
V—ellipticity

a(t,w;vr,v1) > pellvrl]?, v €V, (I1.12)

without any loss of generality, hereafter.

The conditions (I11.10) and (I1.12) are strongly related to our assumptions (I1.7)
and (I1.8). In fact, the continuity property is equivalent to the uniform bound-
edness of the operator 4, ie., ||A(t,w)||zw,y) < M, Lax-Milgram’s theo-
rem reveals further that A is an isomorphism of V onto V', showing A~! is
also uniformly bounded. We have [[A™*(t,w)||zv,v) < 1/pta, and therefore
Ca = M, + 1/p,. Furthermore, the V-ellipticity of the sesquilinear form a
implies the resolvent bound (I1.8) (see [139] §8, [110] §7.2, [90, 41]).

For our analysis including the study of discretization errors, it is suitable to
impose the Lipschitz continuity of ¢ — A(t,w(t)) in the £(V,V')-norm. We
assume that

1A(t2, w(tz)) — Al w(t)) ey S Llta =], #,t2 €[0,7]. (IL13)

It is well-known that (II.13) and (II.8) with u(t) € W guarantees the existence
and uniqueness of the solution of the Cauchy problem (I1.6) in the homogeneous
case [110, 6].

We make the following regularity assumptions on the second derivatives of the
nonlinear function F': (0,7] x ¥V — V"

([ Evu (8, 0)01 ]|«

[ Fwu(t, 0)[v1, va]l«

IN

Cllvn|| forallv, €V, (I1.14)

A

C ||1}1||||U2|| for all v1,v2 €V, (1115)
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with v varying in bounded subsets of V.

Remark 1. In many practical situations, the operator A(¢,w) with domain
D(A(t,w)) is given by a continuous sesquilinear form as unbounded operator in
a Hilbert space H. Supposing that D(AY?)=D(A*'/2)=V < H where V does
not depend on t and w, A(t, w) can be extended to a bounded sesquilinear form
on V x V. Then Lax-Milgram’s theorem [Theorem A.3] shows that A(t,w) is
an isomorphism from V to its conjugate linear dual V'.

Example 1. Linear Scalar Equations. Let Q be a bounded domain in R? with
a sufficiently smooth boundary 0Q=Ip UT'¢, where I'p NT'c=0. We consider
a second—order differential operator A(t) defined by

A === 9i(ai;(- )0u) + > ai(-t)diu + ao(-, t)u
1) i

where 8l:6/8xl, Qjj =aji, Qj, Ao € LOO(Q X (O,T)), and

> ai(z, )& > a gl forall (z,t) € @ x (0,T), £ € R'\ {0}, (IL16)
i,J
with a constant a >0 independent of z and ¢t. We impose homogeneous boundary
conditions, setting

U onI'p,

0= B(t)u := {

Oy +bo(-,t)u  onTle,

where 0y, ,, = Zl n;a;;0; is the outer conormal with respect to the matrix
(aij(-,t)), and by € L>®(Cc x (0,7)). Finally, we assume that either I'p # ()
or ag # 0, if by = 0. The inhomogeneous case can be handled as usual by
transformation (cf. [43], p. 247).

We consider the operator A(t) as unbounded on H =L?(2). We have

D(A(t)) = {v € HX(Q) | B(t)u =0 on 9Q}.

Let V={v € H(Q) | v=0o0nTp}. Then we can associate the operator A(t)
with the sesquilinear form

a(t;v,w) = / (Z a;;0;v0;w + Z a;0;vw + ang> dx + / bovw do

Q b i Te

where v,w € V. Here, we recall that from the trace theorem (cf. [92]) follows
the inequality

v |o ll200) < ellvllm @) + cllvllrz@) , v e H'(Q),
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for each € > 0 with a constant ¢. > 0. The uniform ellipticity (II.16) and
the boundedness of all coefficients imply the continuity of a(t;-,-) on V x V.
Straightforward calculation shows also that for each p, > 0 there exists a kg € R
such that (II.11) is valid. Therefore, the operators A, = A 4+ kI, where k> ko,
satisfy conditions (II.10) and (II.12) showing that they fit into our framework
of analytic semigroups. Including C'-regularity in ¢ of all problem coefficients,
we get (I1.13) and (II.14) without any difficulties.

Now a standard linear parabolic problem can be defined in a weak formulation
as follows: find u € C°([0,T]; H) N L?(0,T; V) such that

<atu7v>+<A(t)u>U> = <f(-,t),’U> V’UEV,
(U(O), QS) = (UO) QS) VQS € H)

where f € L?(0,T;V") and uy € L?().

Example 2. Systems of Quasilinear Equations [4, 5, 51]. For the applications
we have in mind, we discuss shortly a system of second order partial differential
equations of quasilinear form

Ou+ A(,u)u = f(,u)  inQx(0,7],

B(,u)u = g(,u) ondQx (0,1, (I1.17)
u(0) = wg on Q,
where
Al u)v = — Z 0 (aj (-, u)0jv) + Z a; (-, u)0w
irj i
and
B(-,u)v =0 (0y, v+ bo(-,w)v) + (1 —d)v
acting on RV —valued functions v = (uy,...,un)”. The functions f and g are

N-vectors. The (N x N)—coefficient matrices

aij = (@ (0.) oy - = (@ @)y ey 1S 05 < )

are assumed to be measurable in L>®(Q x RV, £L(RV)) such that a uniform
Legendre condition is satisfied, i.e.,

> apwv)€lel >0 forall (n,0) €0 x RV, ¢ € RV

7,850,
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Moreover, we suppose that their dependencies on the solution vector u are
smooth.
To describe the boundary conditions, we let

6 :=diag (61,...,0n) : 90 = L(RY)

such that §, € C°(01, {0,1}),1<r< N. Consequently, &, =0 recovers Dirichlet
boundary conditions, whereas §, =1 leads to mixed boundary conditions.
We have F(t,u) = —A(v)u + f(u), and put

A(u)v = A(uw)v + 0y A(u)v, u] — Oy f (u)v

equipped with the boundary conditions defined by B(u).

The well-posedness of system (II.17) has been investigated by AMANN [5] in
terms of analytic semigroups. Using the so—called theory of extrapolation spaces,
the nonlinearity g(z,¢,u) can be handled separately.

Due to the great complexity of these problems it is not always possible to find
an appropriate set of Hilbert spaces V < H < V' independent of ¢ such that
our assumptions are satisfied. The situation is often more favourable for linear
Dirichlet boundary conditions, for which the operator B is strongly simplified.
Let us consider problem (II.17) with a; =0, g=0, and d,.=0 for all components.
We set H = [L2(Q)]N, V = [HE(Q)]Y, and thus V' = [H~1(Q)]N. The weak
formulation of the operator A(w)v is given by

(Aw)v,¥) = [Xai(@,w)000;% + 3 Ouaij(z, w)vdiwd;y

Q i, 4,3

=0y f(w)vy de.

If d =1, then we have Sobolev’s embedding HJ () < C°(Q). It is a well-
known fact that the solutions of parabolic evolution equations have even better
regularity properties if the data are more regular. For sufficient regularity, we
can suppose u € C} (V) (see e.g. [110], Theorem 3.1). Setting W={w € C} (V) :
[|w —u|| < s,s > 0 fixed}, the operators A(w) make sense as linear operators
from V to V'. Providing suitable hypotheses on the regularity and boundedness
of the coefficients, the nonlinearity f, and their derivatives, we are able to derive
estimates (I1.7), (IL.8), and (I1.13). The constants depend on maxo<:<7 ||u(t)]|,
s, and corresponding bounds of the data. In particular, (II.13) follows from

1A(w(t2)) = A(w(t)ll ey < Crllw(tz) —w(t)]] < Cltz -t

where Lipschitz constants of a;;, 0ya:5, and 9, f with respect to « determine
the value of C;. The second inequality is a direct consequence of w € C} (V).
Clearly, conditions (II.14) and (II.15) can also be satisfied.

The above choice of H and V is no longer possible for higher spatial dimensions.
However, we can consider the operator A(w) as unbounded on H =[H§(Q)]"V,
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with 0<s<1 for d=2, and 1/2<s<1 for d=3. Setting then V=[H*(Q) N
H3 ()N, the embedding V < [C°(Q)]V is still valid. The same comment
applies to operators including first—order terms and the time variable ¢.

The situation is completely changed if Neumann boundary conditions have to
be imposed. Because the conormal derivative may depend on the solution a
variable domain of A(w) may result (cf. Example 3). Thus, it is not always
possible to define an appropriate set of spaces V and H (see [94] for a more
thorough discussion).

If the coefficients a;; do not depend on the solution, we get the famous class
of semilinear equations. These problems have been extensively studied in the
monograph by HENRY [74] (see also [110], Chap. 6), which has been the basis
for numerous investigations of reaction—diffusion equations. There can be found
a rich collection of examples. Surprisingly, the Navier—Stokes equations fit also
in our framework utilizing suitable divergence—free function spaces ([62], [74],
Example 3.8). In LuBiCH and OSTERMANN ([95], Appendix), appropriate spaces
and norms for stiff reaction—diffusion equations are derived to ensure that the
constants in the assumptions are independent of the possibly very large reaction
coefficients.

§2. Rosenbrock Methods and Basic Results

We are interested in approximating the nonlinear Cauchy problem (IL.4) in time.
For this, we use linearly implicit one—step methods proposed by ROSENBROCK
[118] to achieve higher order methods for stiff problems by working the Jacobian
matrix into the integration formula. Applied to the initial-value problem (II.4)
with step size 7 > 0 a so—called s—stage Rosenbrock method has the recursive
form

Upt1 = Up+T7 Y 0K, ,
i=1
i
K;n = F(tp + a7, Kpi) — TA(tn, un) Z ’)/in;Lj (IL.18)
Jj=1

+ T’YiFt(tna ’U/n)a

with the intermediate values

i—1
Kni=u,+7Yy_ a;K,;, 1<i<s, (IL.19)
j=1

and
i—1 i

Oéizz Qij, 'Yi:Z'Yij-

j=1 j=1
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Here, u,, denotes an approximation of u(t,) at t,=n7. The coefficients b;, a;;,
and ;5 are suitable chosen to obtain a desired order of consistency and stability
for stiff problems (see also Appendix B§1). We always assume that v;; =7 >0,
and «; € [0,1] for all i.

It was the fundamental idea of ROSENBROCK that only linear systems with the
operators I+ 7v;;A(t,, u,) have to be solved successively one after the other.
An iterative Newton method as known from implicit Runge-Kutta methods is
no longer required.

For convenience, we set a;; =0 for j >1, ;; =0 for j >4, and use the notation

Bij = aij +vij, ci=a;i+%, B=(Bij)i;=1;

b=(br,...,0)T, o=k, . ...a)T, 1=(,..., )T eR*.

The Rosenbrock method applied to ordinary differential equations (ODEs) with
sufficiently differentiable right—hand side has (classical) order p if the global
error satisfies

€n = Up —u(ty) =0(T?) as7t—0,

uniformly on bounded time intervals. The method is called A(O)-stable, if its
stability function

R(z) =1+ 20" (I —2B)~"1

is bounded in modulus by 1 for |arg(z)| > 7= — ©. If additionally the absolute
limit of the stability function at infinity |R(oo)| is strictly smaller than 1, we
call the method strongly A(©)-stable.

Convergence results for one—step methods of Rosenbrock type applied to partial
differential equations were derived in [108, 95]. It turns out that the classical
order of ODE-integrators can in general not be achieved. This phenomenon
is known as order reduction and has been first investigated for Runge-Kutta
schemes by several authors [124, 123, 107, 137]. Nowadays it is much better
understood than before why (lower) fractional orders occur. This reduction is
not induced by lack of smoothness of the solution u(¢) but rather by the presence
of powers of the operators A(t) in the local truncation error.

For Rosenbrock methods of order p > 3 which are strongly A(©)-stable with
O > ¢, the following result has been established by LuBICH and OSTERMANN
([95], Theorem 4.3). If u(t) € W, then the error bound

N 1/2
(TZ ||6n||2> + max len] < CT*TP (| APB7u(t)l| 12 (I1.20)
n=0 -

holds for N7 < T and 3 € [0,1] such that the range of A(t,u(t))™ : V=V
is independent of ¢. This result shows that the temporal order of convergence
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is influenced by spatial regularity. The attainable value of 5 depends on the
domains of the fractional powers of A(¢). Note there is no order reduction for
p<2.

Example 3. For second—order strongly elliptic differential operators taken as
unbounded in H = L?(Q2) corresponding values of 3 can be found in [63, 68],
see also the discussion in [94]. We recall some results for V= D(A/?(t)), taking
up A(t) from Example 1. For homogeneous Dirichlet boundary conditions, we
have D(A%(t)) = H?*(2) N H}(Q), 1/2 < a < 5/4. Considering the condition
ABd?u(t) € V or equivalently 82u(t) € D(A'Y/?18(t)), we get 3 =3/4—e with ar-
bitrary small € >0. In the case of homogeneous Neumann boundary conditions,
D(A%(t)) = H?*(Q) for a < 3/4. Thus, f=1/4 — e can be used. The better
value #=5/4 — ¢ is obtained if the boundary conditions are time—independent.
Otherwise, 3 =1/4 — € in general for inhomogeneous Neumann boundary con-
ditions. Finally, order reduction is more severe for nonhomogeneous Dirichlet
boundary conditions due to d7u(t) € D(A%(t)) with a< 1/4.

Fortunately, there are conditions which imply also a higher order of convergence.
To obtain full order 3 independent of the spatial regularity we have to fulfill in
the above situation

VI'BI(2B%1-a?) =0 forp—2<j<s—1. (I1.21)

These conditions were found to be necessary to improve the order for the linear
time—invariant case in [108], and yield also improved order for the nonlinear
case [95]. Analogous conditions for the stiff ODE case related to B—convergence
properties were announced previously in [136, 127].

Remark 2. At a first glance, it should be attractive to use an approximate
Jacobian to reduce computational costs and to be more robust with respect to
perturbations caused by spatial discretization errors. Unfortunately, there are
some well-known disadvantages: significant increase of order conditions (see
W-methods [134]), lack of conservation properties in general, loss of accuracy
long before stability is affected, and more severe order reduction compared with
Rosenbrock methods [95]. Nevertheless, it seems to be sometimes worthwhile
to apply lower—order Rosenbrock methods that also satisfy the conditions of
W-methods [148].
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II1

Convergence of the Discretization in Time and
Space

We study spatial approximations of Rosenbrock schemes by means of finite
elements coupled with a Galerkin method. The error is evaluated in a discrete
L2(V)NCP (H)—norm under the usual assumption that the solution is temporally
smooth. Since we are mainly interested in studying Rosenbrock methods of
order p > 2, we need H/(V)-regularity with ¢ > 3. The parabolic nature of
our equations often yields smooth solutions, at least after an initial transitional
phase. The obtained convergence results show a natural separation of temporal
and spatial error terms, which simplifies their control in an adaptive solution
process. Keeping the spatial discretization error below a prescribed tolerance
would nearly result in a time integration procedure similar to the unperturbed
case. Variable step sizes are also allowed, but the relation between them must
remain bounded (quasiuniform meshes).

In a first step we put our parabolic Cauchy problem into a discrete framework,
introducing a new Gelfand triple (Vy,Hs, V). An analogous approach was
used by SAVARE [125] who investigated fully discretized A(©)-stable multistep
methods for linear problems. Unlike higher regularity assumptions in time,
we are working with minimal spatial regularity conditions. The finite element
subspaces are supposed to possess only the approximation property without
fixing the order. The technique of quasi-interpolation can be used to construct
quasi—optimal projection operators I, : V — V), that are bounded uniformly in
the meshwidth h.

To derive error estimates of our fully discretized scheme, we make use of the
splitting

u—up,n = (uv—TIpu) + My — upy),
where up,, € V}, is an approximation of the solution u(t) at t =+t,. The first

term represents the spatial projection error, while the second can be treated in
terms of spatial truncation errors dj(t) € V;, defined by the perturbed PDE

Phatl'[hu = PhF(t,Hhu) + dh(t) y

where P, : V' — V} denotes a restriction operator. This technique was car-
ried out in LUBICH and OSTERMANN [94] for Runge—Kutta approximations of

15
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quasilinear parabolic equations. We extend their result to Rosenbrock schemes
in Lemma IIL.2. It remains to estimate the spatial truncation error and its
temporal derivative at certain time points. The corresponding result is given
in Lemma II1.3. We use a specially defined interpolation operator in time to
handle summation over all intermediate integration points. Here, Lemma III.1
which is based on a related result by SAVARE [125] comes into the play.

§1. Finite Element Discretization in Space

To get a fully discretized scheme we introduce a family of finite element sub-
spaces {Vh}ne(o,1) of V with the approximation property

inf — — 0 for h — 0, I1.1
Jnf o =] or (1L.1)

for all v € V. In general there is no difficulty in constructing such approxima-
tion spaces [39, 35]. If 2 has a curved boundary special techniques have been
developed, as the use of isoparametric finite elements [91].

We construct a new Gelfand triple denoting by V} the antidual of Vj, and
introducing Hj, as closure of V}, in the H-norm. Thus, we take the V- and H-
norm to measure functions in V, and Hp, respectively. The duality pairing is
denoted by (-,-),. Let P, € L(V',V}) be a restriction operator defined by

(Pow,¥), = (w,y) forally € Vy,we), (I11.2)

which directly implies the contraction property

| Prwllyr < |lw]l«  for all w e V'. (IIL.3)

It can be established easily that 0;P, = P,0;, using (IIL.2) and properties of
sesquilinear forms.

Let Iy : V=V be a projection operator such that for all v € V

Mpof] < Cloll, (IIL.4)

~ M| < inf |lv— IIL.
[[v = Tpol| ¢ jof o=l (IIL.5)

with constants C independent of v and h. That means, II,v is quasi-optimal
with respect to the best approximation. Assuming the usual property Il;0; =
911}, this implies that for a function u € H} (V) — C?(V)

lu — Mpullgz(yy — 0 for h = 0. (IIIL.6)

It should be useful to consider an example demonstrating that our assumptions
can be satisfied in general situations.
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Example 1. Let  be a bounded, open, connected domain in R?, d > 2, with
polyhedral Lipschitz continuous boundary 0f2, for simplicity. We consider a
simplicial subdivision 7T, of € such that any two simplicies share a complete
smooth submanifold of their boundaries if they are not disjoint. For each d-
simplex K € Ty, let hx be the diameter of K, px be the radius of the largest
closed ball contained in K, and set h := maxgeT, hie. Clearly, the spatial
variables can be normalized such that h € (0,1). We assume maxge7, hx/pK
to be bounded from above independently of h. This guarantees shape regularity
of the subdivision and allows locally refined meshes.

Let H}(Q) C V C H(Q), H=L*(Q), which represents our standard case. We
set

Vi == {v € C%(Q) |v|x€ Py, for all K € Tp, ,m > 1}

consisting of all continuous piecewise polynomials of degree m or less. It is
well-known that V), fulfills the approximation property (III.1) whenever v €
H'(Q),1>1.

An appropriate way to define a projection operator II; : V — V} under min-
imal regularity conditions (note V & C°(2) for d > 2) is the use of quasi—
interpolation operators [128, 40]. We follow an idea by SCOTT and ZHANG [128]
and define

dim(Vn,

)
o) = Y @@)/¢wawada

where {¢;} denotes the nodal basis in V4, o; is either a d- or (d—1)-simplex
according to the type of the node i, and {t;} is a dual basis satisfying

/%@%@%Z%szthMWL

where d;; denotes the Kronecker symbol. One simply proves IIv = v for all
v € Vy showing that IIj, is a projection. Now our assumptions (III.4) and
(ITIL.5) follow directly from Theorem 4.1 and Corollary 4.1 of [128], where more
details can be found too. The operator II; can be extended to the interval
(0,77, replacing v(-) by v(-,¢). Obviously, 0; and II;, commute.

For ¢t € [0,7] and v € V, we define operators A;, and Fj, mapping from V to Vj,
by

Ah(t,’U) = PhA(t,U) , Fh(t,U) = PhF(t,U). (III?)

It is a direct consequence of the contraction property (IIL.3) that the family of
linear operators Ay (t,w) : V = V} remains uniformly bounded
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14t ol < 1A w)oll < Calloll, v eV, weW. (IIL8)

In order to guarantee the solvability of the discrete equations, we will assume
that there exist uniformly bounded inverses of Ay (¢, w) such that altogether

1At W)l vy + 1A, G w)ll oo vy <O (I1L.9)

with a constant C' independent of ¢, w, and h. We further suppose the discrete
version of (IL.8), i.e., there are time— and mesh—independent constants M’ >0
and ¢' <7/2 such that for all complex A with |arg()\)|<m—¢' and for all w € W

!

_ M
[[(AT 4+ Ap(t,w)) 1||L(vh) < T+ (ITL.10)

The classical way to derive such resolvent bounds for finite element applications
is to start from the Vj,—ellipticity of the operator Aj which directly follows from
the V-ellipticity of A whenever V;, CV ([139],88, see also [90, 41]). In this case
the constants remain the same, M’'= M and ¢' =¢.

Using once again (ITI1.3), we get directly

14 (t2, w(t2)) = An(tr, w(t) ey < Llta — 1| (IIL11)

for all w € W and t;,t € [0,T], and

||Pthu(t)U)v1> ||V,’L
||PhFuu(t)U)[U1>U2]||V,’I

IN

Clloll, vi €V, (I11.12)

IN

Cllvallllvalls v1,v2 €V, (I11.13)

with v varying in bounded subsets of V. That means, for every r >0 there exist
constants C'=C(r) such that

||Pth(t,’U1) - Pth(ta’UZ)”V;L S C ||'U1 - ’U2|| , (11114)

|1 PnFu(t,vr) = PoFu(t,v2)llcvvy) <0 Cllon — ool (IIL.15)

AN

for all vy,v2 € V with [|v1]| + ||v2|| <.

Now we turn to the finite element approximation of our Rosenbrock scheme.
Employing the standard Galerkin principle, the fully discretized problem to
(I1.18)-(I1.19) consists in the sequence of linear equations in the unknowns
K! € Vi, Unn € Vi

h,ni
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i
<K;’L,mﬂ/}> = <F(tn+aiT> Khni) = TA(tn, un,n) Zl%'jK;mj
‘]:
(IIL.16)

+ T’)/iFt(tn,’U,h’n),’l/J> for all ¥ € Vp,,

or equivalently

i
PrK} i = Fu(tn+aim, Kpni) — TAR(tn, Unn) Z Yij Kp pj + TViPuFe(tn, nn) 5
i=1

taken as an equation in V}, with the intermediate values

i—1
Khpi =unm+7Y_ K}, 1<i<s. (IT1.17)
=1

Choosing an initial value upo = Hpug € V, we construct an approximation
Up,n+1 Of the solution u(t,+1) by the summation

e
Uhit = Unn +T D biFKG ;. (I11.18)
i=1

Let us define the spatial projection error on the initial values by

eno[u] = VT [|Ju(0) — TLu(0)]] + |u(0) — yu(0)] . (I11.19)
Then we have the following convergence results.

Theorem 1. Let the assumptions (II1.9)—(II1.15) be satisfied with ou + (1 —
o)llyu € W for all o € [0,1]. The Rosenbrock method used has order p > 2
and is strongly A(©)-stable with © > ¢'. Let u € H}(V). Then the error of
the fully discretized equations (II11.16)-(111.18) is bounded for sufficiently small
7 and NT<T by

0<n<N

N 1/2
(TZ llu(tn) — uhng) + max |ults) — unn
n=0

<enolu] + C (77 + [ju— Mhullg2(v)) -

The constant C' depends on the constants in (I11.9)—(III.15), on the H?(V)-norm
of the solution, on the coefficients of the Rosenbrock method, and on T
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Theorem 2. Let the assumptions (II1.9)-(III.15) be satisfied with ou + (1 —
o)llyu € W for all o € [0,1]. The Rosenbrock method used has order p > 3,
is strongly A(©)-stable with © > ¢', and satisfies the condition (II.21). Let
u € H}(V). Then the error of the fully discretized equations (II11.16)-(II1.18) is
bounded for sufficiently small T and NT<T by

0<n<N

N 1/2
(TZ lluts) - uhng) + max_|u(t,) — unn
n=0

< €polu] +C (73 + [Ju — HhUHHf(V)) .

The constant C' depends on the constants in (II1.9)—(IIL.15), on the H}(V)-norm
of the solution, on the coeflicients of the Rosenbrock method, and on T'.

Let us mention that there is a natural way to extend the above results to variable
step sizes in time ([94], Theorem 5.1). The theorems remain valid for sequences
{7} satisfying

N
n=1

with a fixed 7 >0 and Cy,C3 > 0. In [94] the authors argue that the whole
interval [0,T] can be subdivided into appropriate subintervals on which step
sizes of different scales can be used. Therefore, (II1.20) is no severe restriction in
practice. The recent papers [14, 109] which are concerned to the approximation
of holomorphic semigroups by variable stepsize rational functions are also of
interest.

ﬁ—1‘gcl, Cor < T <7, 1<n<N, (I11.20)
Tn

Remark 1. Theorem 2 has a straightforward extension to the case of Rosen-
brock methods of order p > 3 which do not satisfy condition (I1.21). In this
situation, the attainable order of convergence in general is fractional and corre-
sponds to the value stated in (II.20).

§2. Proof of the Convergence Results

We first introduce a preliminary definition to handle summation in time. Let
1% (V) the space of V-valued vectors v = {v,, }n—o,..,n—1 equipped with the norm

N-1 1/2
lellg = (7 X loal)
n=0

We define an interpolation operator in time

¢ : HY(V) = 15 (V), a€[0,1],¢>1,
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by
H?U = {U(t]’ + OéT)}j:()’m’N,1 . (11121)

IIy" interpolates at one fixed intermediate integration point in time. The follow-

ing result is a modification of [125], Lemma 3.1 and Corollary 3.2. The proof of
our result is based on ideas given in [126].

Lemma 1. There exists a constant C >0 such that for all v € H{(V), ¢>1,

[T (v = Tho) Iz vy < O (T10F (v = TR0 |2 (v) + [Jo = TRl L2(y)) - (T11.22)
Proof. First let v € H?(0,1;V) with ¢ > 1. Then v can be identified with

a continuous function lying in C°([0,T]; V) (see Appendix A§5). That means,
there is a constant C' for which the inequality

lo(@)I < C [[ollaa(0,1v)
is satisfied for arbitrary a € [0,1]. For the well-known equivalence result for

Sobolev spaces of EHRLING, NIRENBERG, and GAGLIARDO ([1], Theorem 4.14,
see also Corollary 4.10), we get further

(@Il € € (198ll200m + IWllzzoany ), 0<asl.  (IL23)

We consider now v € H4(0,7;V) and define a function v, € H?(0,1;V) by
vr(t) :=v(rt), te[0,1].

Using (I11.23) and the transformation t* =7t, we deduce

7 lw(an)|* = 7 flo-(a)|I*
< C’T/(Ilf‘?fvr(t)ll2 + - (@)]17) dt = C /(T2q||atqv(t*)||2 + o)) dt*
0 0
<

¢ (7 10010, + Iol0, )

If v € H{(V), then the summation over all intervalls [t,,t,4+1],m =0,...,N—1,
leads to

N-1
T Y (e +an)|® < C (P07 vl gz ) + I0liZ2 ) -

n=0
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Setting v:=v — IIv € H{(V), we get the desired result. 0

We next derive some preliminary equations to be used in our further analysis.
Applying the restriction operator P}, to (I1.4) yields

Prowu(t) = Fy(t,u(t)) inVy, . (I11.24)

The projected solution II;u satisfies the perturbed equation

PO u(t) = Fr(t, Mau(t)) + dy(t) inV, (II1.25)

where dj(t) € V} is the spatial truncation error. We equip this equation with
the approximate initial value

HhU(O) =1Ilpug € V. (111.26)

Differentiating (II.4) and restricting afterwards gives

Puduu(t) = Py Fy(t,u(t)) — Ap(t,u(t)u(t) i V. (II1.27)

We insert IIu(t) and define a spatial defect dj},(t) by

PpOyullpu(t) = PoFy(t, Mpu(t)) — Ap(t, pu(t) Hpu(t) + dy,(t) in Vy, . (111.28)

Since 0, P, = P, 0y, we can also differentiate (II1.25) to get this equation. Hence,
d}, (t) =0¢dp (t).

We shall now compare the finite element solutions wy, ,, defined in (III.18) with
the projections IT,u(t,). We follow the theory of perturbed Rosenbrock methods
established in [95] and extend the results to our full discretization scheme.

We have the following convergence estimate.

Lemma 2. Let dy(t) be as defined in (II1.25). Then for sufficiently small T and
Nt<T

N 1/2
(T Z | Mpu(tn) — uh,n||2> + max | Hpu(tn) — wnnl
n=1 - -

(I11.29)
N—1 s 1/2
< Cr+C <r > 2 llda(tn+oir) +T%d%(tn)“%,;> :

n=0 i=1

with
2 if the assumptions of Theorem III.1 are satisfied, and
=3 if the assumptions of Theorem III.2 are satisfied.
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The constants C' depend on the constants in (II1.9)~(IIL.15), on the H ™' (V)-
norm of the solution, on the coefficients of the Rosenbrock method, and on
T.

Proof. We consider the perturbed Rosenbrock scheme

- - i -
PhK;”» = Fp(tn+a;m, Kpi) — TAp(tn, Gn) Y, ’Yin;’lj
j=1
+ 7Y PLFy(tn, Gn) + R,

s ~
~ ~ /
Uptl = Up +T E : blan + Tnt+l
i=1

with perturbations R); € V; and rp41 € Vj.
a) Let p>2. Setting

K;” = 6t(Hhu)(tn+ciT),

Kn = Mu(tatair), i =Thu(ts),

and taking into account the consistency conditions for Rosenbrock methods with
order p>2 [Appendix B, (B.1)], we derive by Taylor expansion

n+1

Ry = 7 [ wi(5) Aplte, Mau(tn))0f (Hpu)(t) dt

ni
tn

tny1
+ 7 f Ki (t__l_t" ) Ph6t3 (Hhu) (t) dt

0 (I11.30)
+ dp(tn+ouT) + Tyd) (t)

tnt1

rnpr = 70 [ & (EE2)0F(hu)(t)dt .
tn

Here, k;, K;, and k denote bounded Peano kernels.
b) Let p>3. Setting now

K’;“ = O(pu)(tn+a;ir) +7'7i6t2(1'[hu)(tn) ,

Kn = Mpu(tatair), i, = Myu(ts),

and using the corresponding consistency conditions, we get once again by Taylor
expansion
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R, = 7% 7ijciAn(tn, Tpu(tn)) 07 (Myu) ()
j=1

tn+1
+ 72 [ ki (E) Ap(tn, Mau(t,))0F (I4u)(t) dt

fn (II1.31)
+ dp(tp + o) + Ty:d) ()

tnt1
e = 7] k() (W) (1) dt
tn

where k; and k are bounded Peano kernels.

c) From (I11.30) and (II1.31) it is clear that the difference to the approach in
[95] consists in the terms related to the spatial truncation error only. By the
way we note that ep =0 due to (II1.26) and wup0 =Ipue. Repeating literally
the proofs of Theorem 5.1 and Theorem 5.3 of [95], respectively, we obtain the
desired result. O

Next we estimate the spatial truncation error.

Lemma 3. Let u € H}(V) with [ >2. Then for sufficiently small 7 and NT<T

N-1 s

7Y > lldn(tn+air) + Tyidy ()13 (111.32)

n=0 i=1
<C(~V)0ku - HhU)HQLg(V) + [Ju— Hh“”?qtl(v) + 77 lu— Hh“”i[g(v)) .

The constant C' depends on the constants in (II1.9), (III1.12)—(III.15), on the
coefficients of the Rosenbrock method, and on the H?(V)-norm of the solution.

Proof. Since H}(V) < C}(V) for | > 2 there exists a constant Cp such that
llullez vy <Co llullgz(vy- Thus, in the following the constants C' can be allowed to
depend on the C}(V)-norm of the solution. For brevity we shall use sometimes
u instead of O;u in the notation above, and often omit the variable ¢ and simply
write u for u(t), us for u.(t), ete.

a) First we estimate the residual error d(t) for arbitrary but fixed t € (0, 7.
From equation (II1.25) we subtract (II1.24) to get

dp(t) = Ppollpug — Prug + Fr(t,u) — Fp (¢, Tpu)

Using Ap =— P F,, the mean—value theorem shows

1
|Fh(t,u) — Fu(t, Mpu)lly, = H / Ap(t,ou+ (1 — o)lIpu)(u — Mpu) do
0

Vi
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Since wy:=ou + (1 — o)lIu € W for all o € [0, 1], the operators Ap(t, w,) are
uniformly bounded from V to Vj,. Thus, we finally estimate

1En(t,u) = Fu(t, Mpw)lly;, < Cllu =gl
Applying (IT1.3) and ||v||« < C|jv|| for all v € V, we conclude that

lan@®llv; < € (lhue(t) = eIl + () ~ Dpu)]) - (I11.33)

b) Now we estimate the first derivative dj}, () of the spatial truncation error for
arbitrary but fixed ¢t € (0,7]. We combine equations (II1.27) and (III.28) to
obtain the estimate

ld,(Ollv, < I1Pallauee — Prugellvy + [|An (¢, TTau)Mpue — An(t, w)uellyvy

+ || PuFy(t,u) — PpFy(t, Mpu)|lyy = T+ 11+ I11.
It follows from (IIL.3) that
I < ||ugt — puge]]s -

To estimate I, we use the uniform boundedness of Ay (t,II,u) as an operator
from V to Vj;, and inequality (III.15):

IT < [|An(t, Mpu)Mpue — Ap(t, Hpu)ue + Ap(t, Wpu)ue — Ap(t, w)uelly;
< [[An(t Mpu)puy — Ap (8, Tpw)wellyy + [|An(t, Taw)ue — An(t, w)welyy,
< Clug — Tpue]] + [[An (2, pw) — Ap(t, w)| oo, [Juell
< C (Jlug = Mpue|| + [lu — Mpull) -

Next we use (II1.14) to get directly
IIT < C|ju — Myul|.

Putting together the different contributions and using ||v||. < C||v|| for allv € V,
we conclude that

ldh Oy < C (lluer — Mnrwgel] + [Jue = Tawe]| + [lu — Mpul]) - (ITL.34)

c¢) In order to show (I111.32), we observe
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N—1 s
T Z Z ||dh(tn+ai7_) +T’Vid;‘z(tn)H%};L

n=0 i=1

(I11.35)
N—-1 s
< 01 % 3 (Idnltataim)ly, + 2l )13, )

n=0 i=1

We begin with the first term related to dj. Using (II1.33) and recalling the
definition of the interpolation operator II¥, a € [0, 1], in (II1.21), we find

N-1 s
I; = TZZIIdh(tn+OéiT)||$;;L
n=0 i=1
s N—-1
< 7Y (ue = pue)(tn + aim) P + [1(u = Tyu) (b + air)]|? )
i=1 n=0

C > (I (e = ) I ) + 1T (0 = )l ) ) -
i=1

To estimate the expressions on the right—hand side, we apply Lemma 1 for
v=us, g=1—1, and v=u, ¢=I[. Hence, with a=a;

Iy < CZ( DO (e — Taue) 720y + llue — Maawg] 72y

+ 2|8} (u — Hhu)“ig(v) + [Ju — HhUHng(v) ) .

Since the terms are now independent of the stage counter ¢, we deduce for
sufficiently small 7

I < C (P 10k = ) 3, + e — Tl ) -

In a similar way, we estimate the second term in (I11.35). Using now (II1.34)
and II}" with a; =0, we get

N—-1 s

IT; = TZZT 2\\d), (¢ ||Vr

n=0 i=1

IN

s N—-1 2
O T Y D> 0 u—T148]u)(tn)I?
i=1

n=0 j=0
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s 2
< O Y M@ - Wdjw)y v -
= i=0

Successive use of Lemma 1 with a =0, v = w,ut, ug, and ¢ =1,1—1,1—2
respectively, yields

)

S
I < ¢y %7 (T2l||3§(U—HhU)||2L§(v)
i=1

+ 7207010 (g — T[22y + 721082 (wee — s 320
+ ||u—Hhu||i,;<v>) :

Taking into account that the terms are now independent of i, we conclude for
sufficiently small 7

HdSC( 20-1) ||5l(U—HhU)||L2 + 72 Ju - HhUH%I;(v)) :

The desired estimate (II1.32) follows by combining the inequalities for I; and
11,. O

Lemma 4. Let dy(t) be as defined in (II1.25). Then for sufficiently small T and
Nt<T

N 1/2
( Z [| TThu(ts —uh7n||2> +1£nax [ TLhu(ty) — wh |
(II1.36)

< C (T” + |Ju— HhU“Hf(V))

with
v=2 if the assumptions of Theorem III.1 are satisfied, and
v=3 if the assumptions of Theorem III.2 are satisfied.

The constant C' depends on the same quantities as in Lemma 2 and Lemma 3.
Proof. Apply Lemma 2 and Lemma 3 with /=3 and [ =4. O

Now we are ready to prove our main convergence theorems.

Proof of Theorem III.1.
In the following we make permanent use of the splitting

u—upp = (u—Hpu) + (Tpu — upp) -

Since |v| < C||v|| for all v € V (Appendix A§1), we have the embedding H} (V) <
C?(H) for I>1, i.e., there exists in particular a constant C' >0 such that
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lolleozy < Cllvllgzyy  for all v € HE (V). (I11.37)

By the definition of II} we get

N

N
7Y lultn) —unnll® < CTY (I =Tau)(E)lI” + [Tpu(tn) = unnl*)
n=1 n=1
N
< c (uniw ~ ) ) + 7 O Mhu(tn) - uh,nn?) .

n=1

Applying Lemma 1 for v=u, ¢=2, =1, and Lemma 4, we obtain

N
7Y lultn) = unnl?
n=1

IN

C (P07 (w = )3 + lu = Tl agyy + 7 + llu = T3z ) )

IN

o (T4+||U_HWI|§13(V)) '

Using Lemma 4 and the embedding (II1.37), we deduce for the discrete maximum
error in the H{—norm

max_|u(ty) — un,n

1<n<N
< 1glnang |u(tn) — Tpu(t,)| + 12%XN [Tpu(ty,) — wh nl
< = Taullegg +C (7 + lu = Taull gz )

< C (72 + [Ju — HhUHH?(V)) :

Putting all contributions together and taking into account the definition of the
initial error (II1.19), we conclude that

0<n<N

N 1/2
(TZ ultn) — uh,nnZ) + max  |ulty) = unn
n=0

< enolu] + C (77 + |lu = Tpullgz(yy)
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which proves the theorem. d

Proof of Theorem IIIL.2.
We proceed as in the proof of Theorem III.1. Using Lemma 1 for ¢ =3 and
Lemma 4, we obtain order 3 in time. d



30

CONVERGENCE OF THE DISCRETIZATION IN TIME AND SPACE

[CHAP. IIT



IV

Computational Error Estimation

The strategy for choosing time steps and mesh sizes is dictated by the a pos-
teriori nature of the global bounds given in Theorem III.1 and Theorem III.2
above. Ideally, an adaptive method should keep the global error below a pre-
scribed tolerance. But global errors are difficult to estimate. Thus, a standard
approach is to adjust the discretization parameters during the integration in
order to restrict the local truncation error. One would hope that smaller local
errors lead also to a decrease of the global error - a property which is known as
tolerance proportionality in the pure ODE case [138].

In the following a posteriori theory is used to estimate the local error of com-
putations that are sufficiently accurate.

§1. Control of Time Steps

Step size control is an important and necessary means to increase the efficiency
of a time integration method. In fact, a constant time step is often not adequate
to reach a given accuracy, since it would require a huge number of small steps.

The discretization sequence, first time then space, permits us to consider natu-
rally the spatial discretization as a perturbation of the time integration process.
We assume for the moment that the spatial perturbation is always kept below a
certain level and does not affect mainly the step size selection procedure. Thus,
the generated time step sequence {7;};=01,... is supposed to be nearly the same
as in the case of no perturbation.

The local truncation error 0, (¢) is defined as the error after a single step of
length 7 starting with the exact local solution wu(¢). Using the short notation
Un+1=P(uy) for the Rosenbrock method (11.18)-(11.19), we have at t=t,, with
time step T, =tp4+1—1n
Or, (tn) = ®(u(tyn)) — ulty + ) - (IV.1)
The asymptotic behaviour of the local error for an order p method can be
described by
6r, (tn) = @(tn) TR+ 0(TE12) ) 7, = 0. (IV.2)
Assuming appropriate temporal regularity of the mapping F'(¢,u(t)) in (IL.4),

the coefficient vector ¢(t) is a smooth function of ¢.

31
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The global error e,+1 :=tup4+1 — u(tnt+1) at the forward time level t =¢,,11 can
be seen to satisfy

€nt+1 = (I)(en + u(tn)) - ‘I)(u(tn)) +9r, (tn) . (IV'3)

Consequently, this error is the sum of the local error and the difference of the
actual Rosenbrock step ®(uy,) and the hypothetical step ®(u(t,)) taken from the
exact solution u(t,). To measure the errors we introduce an appropriate norm
[I| - ||| which is often a mixed absolute-relative norm in practical computations
for reason of robustness (see Chapter V.§3). It is now a fundamental property
of a stable one—step integration method that

Il ensn 11 < M en 111+ 111 0r, () 1< o 114+ M1 0n(5) 11 (IV-4)
j=0

showing that the global error consists of propagated and accumulated local
truncation errors. Estimating and controlling the latter within an automatic
step size selection procedure ensure that the step sizes 7; are chosen sufficiently
small to have the desired precision, but they have to be also sufficiently large
to avoid unnecessary computational work.

Unfortunately, the local error (IV.1) is not computable directly, but there are dif-
ferent ways to estimate it. Two classical devices are usually applied: Richardson
extrapolation and embedding (see, e.g., [71], §11.4). For stiff ODEs a comparison
of these techniques involving various Rosenbrock methods was published in [79].
It turned out that for low tolerances embedding yields satisfactory results while
Richardson extrapolation becomes superior at more stringent tolerances. In the
context of PDEs desired tolerances ranging approximately from 5% to 0.1% are
usually required. Thus, an error estimation based on embedding should be a
good choice here.

A pair of embedded Rosenbrock methods consists of two different methods.
Replacing the coefficients b; in (I1.18) by different coefficients b; a second solution
Upy1 of inferior order, say p—1, can be obtained. For this, an enlarged set
of consistency conditions has to be fulfilled. The difference of both solutions
satisfactorily estimates the local truncation error of t,41, and we define the
scalar estimate

Paes = Il taes — s |11 (1V.5)

The asymptotic behaviour of 7,1 is given by

Tt = On T 5 O = ||| d(tn) + o(m) | - (IV.6)

Assuming ¢, 11 & ¢y, i.e., the coefficient vector is varying a little only or con-
stant, and setting ry+2 =T 0L, the next time step can be chosen by
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TOL, \''”
Tnil =P ( OL; ) Tn (IV.7)

Tn+1

where p denotes a safety factor. Typically, one sets p=0.95 to reduce the risk for
a rejected step. If TOLy <1, the step is rejected, and a new try is performed
with 7, :=74+1. Otherwise, if the computation was successful we step forward
with Tn+1-

Although the rule (IV.7) is standard and commonly used for ODE integrators,
the traditional asymptotic model (IV.2) fails sometimes to describe correctly the
relation between step size and local error. Often a nonsmooth behaviour of the
time integration process can be observed. For instance, after a drastic step size
reduction the corresponding error r,4+1 becomes very small. The proposed new
time step will be too optimistic leading to repeated rejections. Such oscillations
yield unacceptable performance of any integration method. There is also a limit
on how much the step size may decrease after an accepted step. According to
TOLy>rpy1 we get i1 > pTy. Consequently, the standard controller is unable
to reduce drastically the time step without rejections.

Example 1. The nonlinear one-dimensional flame propagation problem [113,
60]

O — Ogeuy = f(uh U2) )
1
Orus — L_e Oratz = —f(ul,uz) )
_p? —B(1 —uy)
flur,ug) = mw exp < 71—a(1—u1)

is solved for « =0.8, 3 =20, and Le=2. The boundary and initial conditions
are

uy(—o0,t) =0, [ exp(z) for <0
Opui(00,t) =0, w(@,0) = { 1 for >0,
uz(—00,t) =1, _f 1—exp(Le-z) for <0
Orua(00,t) =0, uz(,0) = { 0 for ©>0.

For the chosen Lewis number Le the system describes an unregularly oscillating
propagation of a flame changing its shape and velocity in time. We take a suffi-
ciently large computational domain to ensure that the flame propagation is not
affected by the boundary conditions. Spatial errors are kept always below an
appropriate level. The standard controller applied for a fixed tolerance TOL;
reduces and increases the time step with respect to the varying flame speed. In
Fig. IV.1 the employed values over a long time interval are plotted. The time
step varies over more than two orders of magnitude. A special zoom shows that
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many computed solutions have to be rejected for reason of precision. In this
phase of quickly changing dynamics the controller fails to reduce the time step
in a smooth way. Computational effort is wasted and the integration perfor-
mance becomes unacceptable.

T T T T
0.16 accepted steps —/— |
0.2 0.14 rejected steps W |
w 015 N
N N
) f )
o o
w w
[~ [~
0 0.1 %)
0.05 |
0 . b . .
0 200 400 600 800 1000 1200 1400 1600 50 55 60 65 70 75 80

NUMBER OF TIME STEPS NUMBER OF TIME STEPS

Figure IV.1: Standard controller for one-dimensional oscillating flame:
Selected time steps 7; versus j for ¢ € [0,100] (left) and for a critical
phase of acceleration ¢ € [8.10,9.02] (right). The black triangles indi-
cate time steps that had to be rejected, the white triangles correspond
to accepted steps. The standard controller is unable to reduce drasti-
cally the time step without rejections.

A good step size control algorithm must work well for a large class of problems
with a great diversity in the dynamic behaviour. The standard controller works
normally quite well, but it does not have an entirely satisfactory performance.
The basic assumptions that ¢ varies slowly and higher order error terms are
negligible seem to be questionable in some cases.

In the pioneering work of GUSTAFSSON et al. [70] the step size control has been
viewed as an automatic control problem. They proposed a new control algo-
rithm employing a discrete PI (proportional integral) controller. The standard
controller (IV.7) is based on the key equations

Tn42 = anJrl T£+1 ) ¢n+1 = an ’ (IVS)
where a constant model for ¢ is used. To include significant changes of ¢ an

improved approximation is necessary. Several models have been compared in
[69]. One beneficial choice is to consider multiplicative changes by

log ¢ny1 = log ¢, + (log ¢p —log ¢pr_1 ). (IV.9)
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The difference on the right-hand side measures the last change of log¢. A
straightforward calculation yields the new step size selection rule

TOL L/p
Tn+1l = Tn < tn ) Tn , (IVIO)

Th—1 rn+1 TnJrl

showing that now more data from previous steps are used to decide on the new
step size. Optionally, one can involve once again a safety factor p.
Additionally, we have experienced that the following two modifications are use-
ful. After successive rejections the standard controller with an approximate
exponent

log 7,41 — log 1,
log 7, — log T —1

P~ Pnt1 =

should be applied. Since the step proposed by the new PI controller is often too
optimistic when steps have to be increased, we suggest to take in this case the
standard proposal if it is smaller.

Remark 1. Applying the new strategy to the above flame problem with the
same tolerance, we get a smooth integration behaviour where no computed
solutions have been rejected. The resulting reduction in CPU time is about
20% for the entire run. Although the observed saving is not extremely large
it should be recalled that it can be obtained with merely no additional cost.
Moreover, the PI controller makes the computation more robust in situations
with sudden changes in time.

Remark 2. Although the estimate of the local truncation error is only correct
for the lower order solution 41, usually the higher order approximation w1
is used to proceed in time. For this, DEUFLHARD and BORNEMANN [48] give
a theoretical justification based on arguments from control theory and from
simple error relations. The authors present also a PID controller which includes
further information.

§2. Estimation of Spatial Errors

Since the pioneering works of BABUSKA and RHEINBOLDT [10, 11] quite a lot
of a posteriori error estimates have been developed for mastering finite element
calculations. Now they are widely used in the mesh—controlled solution of partial
differential equations. A good survey is given in [9] and more recently in [144],
where also a substantial bibliography on the subject can be found.

We deal with a posteriori error estimators based on the use of hierarchical basis
functions. Such estimators have been accepted to provide efficient and reliable
assessment of spatial errors and to form a basis of adaptive local mesh refinement
[155, 50, 18, 34]. Our aim is the extension of the hierarchical bases technique to
time—dependent nonlinear problems within the setting of linearly implicit time
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integrators. The crucial point herein is the construction of robust estimators
for the fully discretized equations (III.16) which are singularly perturbed by
the presence of the (variable) time step. A robust estimator has to yield upper
and lower bounds on the error uniformly in the time step 7 > 0. In general,
a straightforward application of standard adaptive finite element solvers runs
into troubles in the limit case 7 — 0. For selfadjoint scalar problems robust
estimators were constructed in [31, 145]. Our analysis takes into account the
abstract framework of [18].

Analogously to Chapter IV.§1 we are interested in analyzing the local error
behaviour. The spatial discretization is considered as a perturbation of the
time integration process. Starting with the Rosenbrock solution u,, at t =t,,
we will estimate the error w1 —up,n+1 caused by the spatial approximation of
all stage values K ,,; € Vj,. Although system (IIL.16) is linear the nonlinearity
on the right-hand side gives rise to a nonlinear spatial error transport.

Let us consider a hierarchical decomposition

V=V ® 2, (IV.11)

where Zj, is the subspace that corresponds to the span of all additional basis
functions needed to enrich the space V) to higher order. Consequently, any
function ¥ € V, has the unique decomposition © = v+ z, where v € V, and
z € Zp. The hierarchical basis error estimator tries to bound the spatial error
by evaluating its components in the space Z, i.e.,

CilllBnptlll < Nunsr = wn ||l < Col[[Bnnialll (IV.12)

where Ej, ,,+1 € Zj, is the computed a posteriori error estimate. This is justified
by the fact that applying V, to approximate the solution, the component lying
in V}, will change generally very little from the previous computation based on
Vh. One key point of our analysis is to choose the norm ||| - ||| in such a way
that the constants C'; and Cy are independent of the mesh size and the time
step, ensuring the robustness of the estimator.

In accordance with our main convergence Theorems III.1 and III.2 we introduce
a 7—dependent error norm

oll2 == rloll* + >, veV, (IV.13)

and its associated sesquilinear form

a-(v,w) = 7((v,w)) + (v,w), v,wel. (IV.14)

To study the solution process of the Rosenbrock method at ¢t = ¢, we define
another sesquilinear form

b (v1,v2) := (vl,v2> + 7 atn, un; v1,v2) (IV.15)
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on ¥V x V and use the weak formulation of (II.18) for all K/, € V

b (K iy ) = (rni(Ky), 0), ¢ €V, (IV.16)
where
K’;L = (K’;Ll?""K’;LS)T )
i—1 i—1
mi(w) = Ftn +aiTup +7 30 agjw;) — TA(tn, un) 32 Yijw;  (IV.17)
Jj=1 j=1

+ i Fi(tn,un), w= (wl,...,ws)T e V.

The new solution at t=t,41 is calculated by

8
Unp1 = Un +T Y biK},;. (IV.18)

i=1
In the following we assume that the sesquilinear form a(t,,u,; -, ) satisfies the

stronger conditions (II.10) and (II.12), i.e.,

(A1) |a(ty, un;v1,v2)| < Mgllva]|||ve]l, wvi,v2 €V, (IV.19)

(A2) a(tn, Un;v1,v1) > pallvr]]?, vi €V, (IV.20)

with constants M,, u, >0 independent of t,,, u,, vy, and vs.

Now we can prove the following estimate.

Lemma 1. Let b, be defined as above and assume that (A1) and (A2) hold.
Then there exist positive constants My and u, independent of T such that

(B1) |bn(v1,02)] < My [lor|l||v2]l, (Iv.21)

(B2) ba(vi,v1) > lludll?, (IV.22)

for all functions vy,vs € V.

Proof. Taking into account the embedding identity (v',v) = (v',v), v' € H,
v € V, and applying the Cauchy—Schwarz—Bunyakovskii inequality, we deduce

[bn(v1,02)] < Jor|fvz] + 7y Ma ||v[|[]v]]
< (myMalod? + or )2 (ry M floo® + o)
< max (1,7Ma) ||vs]l7[[oz]l-
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and
bu(vi,v1) > [01]* + Typallon||* > min (1, ypa)||vr|7 .

With M} :=max (1,yM,) and pp:=min (1,vu,) we obtain the desired result.
a

Because of (B1) and (B2) the linear systems (IV.16) are uniquely solvable. Thus,
the 7—dependent norm (IV.13) is appropriate to describe properties of (IV.16).
The same is true when V is replaced by V. Let K}, = (K}, .1,..., K}, ,.,)7 be

h,ns
the vector of finite element solutions Kj, ,,; € Vi, C V satisfying

b (K, pis @) = (rni(K} ), 8), 6 € Vh, (IV.23)
and set s
Uhnt1l = Uh,n + T Z bilC}, i (IV.24)
i=1

with up », € Vp, chosen such that

bp(Un — Unp, @) =0, ¢E V. (IV.25)

Remark 3. We note that (IV.23) differs slightly from (III.16), where the ap-
proximate solution up . is also used to calculate the terms on the right-hand
side. Here, the Rosenbrock solution u,, is projected onto V}, to ensure up, 41 €

V.

Let us recall V, =V), @ Z, as defined in (IV.11). For the theoretical analysis of
an a posteriori error esti{nate for Up41 — Uh,nt1, WE need aﬁlso the finite element
solution vector K}, ,, = (K} -+, K;ms)T, with K}, ,,; € Vi, CV defined by

bn (K}, pis ®) = (rni(K} ), ¢), ¢ € Vn. (IV.26)

With these stage values, we have an approximate solution @y ,+1 € V by the
summation

Uhir = Upn +7 D UK} i, (IV.27)
i=1
with %y, chosen such that
bo(tp — Upny®) =0, G E V. (IV.28)

Obviously, one expects that up n4+1 € V), is a better approximation to the solu-
tion up41 than wp 41 € Vi. This is a very natural property of a higher order
scheme expressed in terms of the saturation assumption

(A3) luns1 — Uhptillr < B |uns1r — whngtllr, (IV.29)
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where § < 1 independent of h and 7. In general, one can anticipate § — 0 as
h — 0.

We add also a strengthened Cauchy—Schwarz—Bunyakovskii inequality for the

decomposition (IV.11) to the list of our assumptions, i.e., there exists a constant
0 € [0,1) independent of h and 7 such that

(A4) lar (v,2)] <8 |vll-llzll; v EVh, z€ 2. (IV.30)

Remark 4. Typically, inequality (A4) is a direct consequence of V, N Z;, = {0}
([53], Theorem 1). The calculation of ¢ is usually straightforward, employing
standard transformations to reference elements (cf. [36, 98, 16]). There is also an
interesting equivalence result concerning certain interpolation operators widely
used in the analysis of multilevel iterative methods ([16], Lemma 3).

A direct consequence of the saturation assumption and the triangle inequality
is the estimate

1 1
m”uh,n+l —Unntillr <||Unt1 — Unntillr < m||uh,n+1 — Uh,nt1llr

(IV.31)
showing that ||Gp,n+1 — Unnt1ll- is a robust estimator of the local spatial er-
ror. Clearly, an exact solution of (IV.26) to calculate @, nt+1 would be far too
expensive.

We define our a posteriori error estimator Ej, ,,+1 € 25, by

s
Ennir = Enno +7 Y biEp i, (IV.32)

i=1

where Fj, 0 approximates the projection error of the initial value in Zp, i.e,

bn(Ehm()a d)) = bn(un — Uh,n, d)) , OEZy, (IV33)

and the vector of all stage error estimators Ep , = (Ep 1, .- - ,Ehms)T € Z;
satisfies

bn(Eh,nia d)) = <rnl(K;L7n + Ehm); ¢> - bn(K;L7nm d)) 9 d) € Zh . (IV34)

According to the definition (IV.17), the computation of the error estimator
Ep n+1 requires the solution of a linear system. The stage error estimates Ej, p;
are used successively to improve the approximation of the nonlinear terms ;.
Our goal is to prove that the function Ej 41 which can be computed more

easily than the difference @ p41 — up,ny1 yields a good approximation of the
local spatial error. This is shown in the following theorems.
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Theorem 1. Assume s =1, (Al1)-(A4) hold, and E}, n41 Is as defined above.
Then

b My
Bl < Nunes = wn gl < | Epnill- - (IV.35)

M, (1= B)mv1—6

Theorem 2. Assume s > 1, (A1)-(A4) hold, and E}, n41 Is as defined above.
Let tp pi1 :’LAL}LJH_l + Epnt1, where lAl,h7n+1 € Vy and Epnt1 € Zp. Then

%HEh,nHIIT < lun+1 = unptall- + Do, (IV.36)
b
|| I < Byl + Dy (V30)
u —Uu T T ’ .
n+1 h,n+1 = (1 _ B)I«me h,n+1 n
where
T s
Do = VS nu o+ ) i)
i=1 *
_ My
D = — ||la —Uu T
N T inn1 — vnnttll

\/7__

MR

8
Z bi(rni(K;L,n + Epn) — Tm(l_(;t,n))
i=1

*

We will shortly discuss the above results. In the case s=1, Theorem IV.1 shows
that the estimator Ej 41 is robust in the sense (IV.12). With increasing s,
the situation becomes less favourable since the optimal estimate is disturbed by
the terms D,, and D,,. However, we will see in a moment that in general these
perturbations are negligible for practical computations making some natural
assumptions.

If we resolve our elliptic problems in V;, to compute Uhnt1 =Uh,nt1 + Ehmﬂ,
where Up, pt1 € Vi and Ep p41 € 25, we intuitively expect that

lihne1 — whntillr << [[Enntllr -

In fact, this is the reason why hierarchical error estimators work well in practice.
Applying Lemma IV.2 given in Chapter IV.§3 with v = 4, p+1 and using the
left—hand inequality of (IV.31), we get

lan,nr1 — vhntills << [Un+1 — wnntallr (IV.38)

demonstrating that the first term of D,, is small with respect to the local spatial
error.
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Next we study the influence of the nonlinear error transport caused by the
sources T,;. Taking into account the uniform boundedness of A as operator
from V to V' and (II.15), we derive by Taylor expansion for sufficiently small T

s s—1
VT2 birni(KG + Enn) = rai(K0))|| < Cor D K i + Enni = Kpill-
i=1 * i=1
and
s s—1
VT D bilrns (K + Brn) = rni (K ) || < Cor Y 1K, i + Enoni = Ky il
i=1 * i=1

with C1,C2 > 0 independent of 7. Neglecting for a moment the initial error
Up, — Up,n, Which is assumed to be sufficiently small, the combination of (IV.18)
and (IV.24) yields

Unt1 = Unni1 2T Y (K — K} ). (IV.39)

i=1

Thus, the local spatial error is mainly a sum of weighted stage errors multiplied
by 7. Utilizing errors already computed in (IV.34) to calculate following stage
errors, we have the hope to improve the whole estimation process such that

s—1 s—1
D MG i+ Brgni = Killr < e Y 1K i = Kl (IV.40)
i=1 i=1
s—1 s—1
D MG i + Enni = K ille <2 Y 1K i = Kl (IV.41)
i=1 i=1

with sufficiently small ¢1, ¢ >0. In this case, the corresponding terms of D,, and
D,, have moderate size compared to the local spatial error ||un+1 — up ny1llr-
Although we could not prove exactly the robustness of our hierarchical error
estimator for s > 1, the above discussion provides some intuitive insight justifying
its use also for the considered general nonlinear problem class.

The expense of the error estimation can be further decreased if the sesquilinear
form b,, on the left-hand sides of (IV.33) and (IV.34) is replaced by an approx-
imation b,, that allows a more efficient solution of the arising linear systems. In
this case, we compute approximations Fj, o and Ej, »; in 2, satisfying

I;n(EN‘hmO; d)) = bn(un — Uh,n, QS) ) (IV42)

bu(Ennir®) = (rnilKphp+ Enn) 8)—bn(Kppi®), ¢ € Zn, (IV.43)
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where Ej, .= (Epn1,- -, Enns)? . From these relations, we derive for

S
Epni1=FEppo+T1 Z biEp ni

i=1
the equality for all ¢ € Z,
i)n(E’h,n-i-l:Qb) = bn(Eh,n-Ha ¢)
s ~
+ 7 Z bz<rnz(K;L7n + Ehm) - Tni(K;L’n + Eh,’ﬂ)) ¢> .
i=1

(IV.44)
We have the following estimate to assess the quality of Eh7n+1.

Theorem 3. Let b,, be a sesquilinear form satisfying for all z1, zo € 2},

(B1) bu(21,22)| < My ||zl |22l (IV.45)
(B2) bazr,z1) > o [l (1V.46)
with positive constants ]\;Ib and fip. Then
,ab - Dn

— | Ehn+illr < N Erntillsr + — V.47
o Bnalle < 1Bnsiall: + 37 (IV.47)

M, . - D
1Enniills < = (1 Bansall- + =2, (IV.48)

b Mo

where

> bi(rni(K,, + Enn) = ri(K, , + Enn))

i=1

Dn:\/F

*

Proof. The inequalities follow immediately from (IV.44) and the conditions
(B1), (B2), (B1), and (B2) (see also [18], Theorem 3.2). O

Once again Taylor expansion shows that for sufficiently small 7

s—1

D, <Crt Z | Enni = Ennill- -

i=1

Thus, the perturbation term D, is negligible providing appropriate approxima-
tions b, to the sesquilinear form b,.

Remark 5. One usual choice of an approximate sesquilinear form b,, is based
on the diagonalization of b, over Zj,. Let {¢;} are the basis functions of Zj,
and 21,29 € Z5, with the representations

z] = Z]- z150; and 2o = Z]- 22 0; -
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Then we define R
bn(21,22) = Zj 215225 bu (95, 05) -

In the context of hierarchical basis functions, this leads to a very efficient algo-
rithm for computing an a posteriori error estimate (see for instance [155],[50]).
The global calculation of Ej, 41 is reduced to small element—by—element calcu-
lations to compute Eh7n+1. An analogous approach for the solution of reaction—
diffusion equations was proposed in [84]. A second possibility is to use non-
conforming approximation spaces. The arising stiffness matrix is then block—
diagonal. For more details we refer to [16, 3].

§3. Proof of the Error Estimates

In this section, we use the strengthened Cauchy—Schwarz—Bunyakowskii inequal-
ity to have the following estimate.

Lemma 2. Let V, =V, ® Z), and =0 + 2, where © € V), and 3 € Z;,. Then
(IV.30) implies

1
V1—42

Proof. We use (IV.30) to obtain directly for all v € V),

121l < | =vll;, forallveVy. (IV.49)

lo—v|? = a(0—v+0—0,0—v+0—10)
> lo—oll? + 1121 = 2016 — oll-l|2]l-
= (I =l =8 l12ll)" + (1 = 62) |22
> (1= 217,
showing that the statement is valid. O

Proof of Theorem IV.1
First we mention that r,; is only a function of u,. It does not depend on
any stage value. From the definitions of Ej ,,11 and u,41, we derive after
straightforward calculation

bn(Ehyn+1) QS) = bn(unJrl — Uh,n+1, QS) ) QS € Zp. (IV50)

Let ¢=E}, p41- Then, using (IV.21) and (IV.22), we estimate

IN

Mo ||Eh,n+1||3 bn(un-i-l — Uh,n+1, Eh,n+1)

IN

My |luntr = unnt |l | Ennta |l -

Thus, we have the first inequality in (IV.35).
Analogously to (IV.50), we get with the definition of @p, 541

br(Uhnt1 — Uhng1,9) = bn(Ehpnt1,0), ¢ € Zp. (IV.51)
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Let @p,pt1 =0nnt+1 +Eh7n+1, where @y, pn+1 € Vi, and EA'h,nH € Zy. Then, using
(IV.51) with ¢ =E}, p4+1 and taking into account by (@p,nt1 — Up,nt1, @) =0 for
all ¢ € V},, we obtain with (IV.21) and (IV.22)

IN

o |@h 1 — wnon])? b (Th,nt1 — Uhynt 1) Bhynt1 — Uh,ntl)
— bn(ﬂh7n+l - uh,n+1; 'ah,n+1 - uh7n+1 + Eh7n+1)

= bu(Bnntt, Enns1) < My | Epnitlle | Bl -

To complete our proof, we must estimate ||Eh7n+1||r. Applying Lemma IV.2
with v =1up_ n+1, we have

- 1
1Ennt1ll- < Niers [@h,nt1 = sl -

Hence altogether

- My
W [|Gh,nt1 — Upptllr < Niers | Ennt1llr -

Finally, we apply the right—-hand inequality in (IV.31) to get the second bound
in (IV.35). O

Proof of Theorem IV.2
a) We first prove the lower bound. The definitions (IV.32) in conjunction with
(IV.33), (IV.34), and (IV.24) yield for all ¢ € 2},

bn(Ehnt1,9) = bu(Ehpo+7 Y biEh ni, @)
i=1
= bn(un — Uh,n+1, d)) + 7 Z bl<rnz(K;L7n + Eh,n); ¢> .

i=1

(IV.52)
From (IV.16) and (IV.18) we get
Tsz<7‘nz(K;L)7¢)> _bn(un+1 _Unyqs) =0, ¢€Z,CV. (IV53)
i=1

Add both equalities to obtain for all ¢ € Zj,

bn(Eh,n-‘rla ¢) = by (Un+1 — Uh,n+1, ¢) +7 Z bi<7"m' (K;L,’n, + Eh,n) - rni(K;L): ¢> .

i=1
Now let ¢=FE} p4+1. Then, using (IV.21) and (IV.22), we estimate

My ||Eh,n+1||3 < bn(Eh,rH—l:Eh,rH-l)
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— bn(un+1 - uh7n+1;Eh,n+1)

+ 7 Z bz<7'nz(KiIL,n + Eh,n) - rnz(K;L); Eh,n+1>

i=1

IN

My |lunt1 = wn ot - | Enesa |l

S bi(ri( K + Enn) — i (K)

i=1

+VT

1En,ntllr -

*

This inequality yields the first statement of Theorem IV.2.

b) To show the upper bound, we take (IV.52) and (IV.26)—(IV.28) to obtain for
all p € 2,

bn(ﬂh7n+l — Uh,n+1 — Eh,n+1> (ZS) =T Z bz<rnl(K;L,n) - Tni(K;L7n + Ehm): ¢> .
i=1

(IV.54)
Recalling @y, nt1 =h,nt1 + EA'h,nH, where tp 41 € Vi, and Ehm“ € Zy, and
setting ¢=FE}, 41 in (IV.54), we estimate

14 ||'ah,n+1 - Uh,n+1||-2r < bn(ah,n+1 — Uh,n+1, Uh,ntl — uh,n—i—l)

= bn(ah,n—i-l — Uh,n+1, lA/fh,n—i-l — Uhnt+1 + Eh,n—i—l)

— bn(ﬂh7n+l — Uh,n+1, ﬂh7n+1 - uh,n+1) + bn(Eherl; Eh7n+1)

+7 Z bi<rni(klla7n) - T'ni(Kilz,n + Eh,n): Eh,n+1>
i=1

IN

My (|1 Bt 1| Bt + langnr = wn |l l[annen = wnnll7)

1B n1llz -

*

+ VT

> bi(rni(KG ) = il K, + Enn))
i=1

Applying Lemma IV.2 with v =4y, p+1, we have

1 _
\/ﬁ ||Uh,n+1 - Uh,n+1||r -

1Bl <
Hence

_ M, N
o |@n,nt1 — unnyr|lr < T 1Ennt1llr + My ||[Gnn+1 — vhntillr +

VT
Vi

S
> bi(rni(K} ) = i K} + Bnon))
i=1

*
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Finally, we apply the right—hand inequality in (IV.31) to verify the upper bound.
0



A\

Towards an Effective Code: Practical Issues

In this chapter, we discuss some practical issues which are useful for the imple-
mentation of our adaptive strategies. Efficient coding of Rosenbrock methods
and dynamic multilevel techniques in two and three dimensions are addressed.
A code KARDOS has been developed which allows one to accurately solve time—
dependent systems of partial differential equations.

§1. Implementation of Rosenbrock Methods

Usually, Rosenbrock methods are not implemented in the form (II.18). The

matrix—vector multiplication A(ty,up) > ; 7i;K,,; can be avoided by a simple

transformation as suggested by several authors [152, 80, 130]. Introducing new
variables

i
Um':TZ’)/Z’jK;Lj, i:l,...,s,
j=1
and defining the matrix I'=(v;;); ;—; we derive

1 i—1 i—1 B
(EI—FA(tn,un)) U, = F(tn+aiT,un+Zaij Unj)"‘Z%Unj
j=1 j=1

+ 77 Fy(tn, un),

s
Unty1 = U+ >, m;Up;,
=1

i=
where
(aij)] jm1 =(ij)i =i T, (cij)fjoy =diag(y™", ...,y =T,
(my,...,mg)=(by,...,by) T .
Remember our assumption 7;; =« >0 which guarantees that I' is invertible.

47
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Remark 1. Rosenbrock methods can also be applied to implicit PDEs of the
form
H(t,u)0ru = F(t,u),

where the matrix H(¢,u) may be singular. Rewriting this system as
Ou==z2, 0=F(t,u)—H(tu)z,

we formally get a differential-algebraic system which can be attacked by Rosen-
brock schemes satisfying additional algebraic order conditions [116, 96, 72]. One
of the most popular solvers within this class is RODAS [72] being also ”stiffly
accurate” (see Appendix B§3).

§2. Implementation of Multilevel Finite Element
Methods

The Rosenbrock time integration scheme (V.1) generates a sequence of linear
elliptic problems. In the spirit of full adaptivity these stationary problems are
solved by a multilevel finite element method (MFEM) as implemented in the
KASKADE-toolbox developed at the Konrad-Zuse—Centre in Berlin [54]. The
general principle of the multilevel technique consists of replacing the solution
space by a sequence of discrete spaces with successively increasing dimensions
to improve the approximation property. Starting with an approximation u%ozl 11
of the solution at t=t,41, we construct a sequence of improved spatial meshes

1 n
Tt C Ty Coo C T
and of corresponding nested FE—spaces

VO cyM o cplme)

until a prescribed tolerance, say TOL,, is reached. More precisely, the multilevel
process comes to an end if for a certain number m, 1 the approximate error

E;"+% of the finite element solution w7 fulfills

B4l < TOL,,
where ||| - ||| denotes a specially weighted norm which will be defined later.
Such an MFEM requires the specification of four modules: the finite element
assembly, the estimation technique for the error in space, the mesh refinement
strategy, and last but not least the solver of the resulting linear equations.

In KASKADE conforming FE—discretizations without slave nodes on intervals
(1D), triangular grids (2D), and tetrahedral grids (3D) are provided. Allowing
the use of highly unstructured grids, it is a flexible tool to handle complex
geometries in higher spatial dimensions.
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Once the approximate stage values K;Lm € V,(Ll),i =1,...,s, have been com-

puted on 7;f+1 for some [, the a posteriori error estimator Efm_,_l developed in
Chapter IV.§2 can be used to give specific assessment of the error distribution.
Clearly, new grid points should be placed in those regions only where the cur-
rent precision is insufficient. For this procedure it is required that the spatial
discretization error can be estimated locally. We define for any finite element
K € T!,, the local quantity

!
g = 1B sl -

These quantities are then used to judge the quality of the underlying discretiza-
tion in the element K. In a next step a set R; of elements which have to be
refined are selected. There are several selection rules available [144, 77], e.g., R;
consists of all elements having an error estimator 7 larger than a local error
barrier 9pq, usually defined by npe,- :=7 maxg ni,0 <y < 1. After choosing R;
we are led to a robust and stable refinement strategy. There are no specific
problems in 1D, an interval is divided into two subintervals. Sometimes fur-
ther refinement known as mass balancing is necessary to avoid large ratios of
neighbouring element sizes.

In 2D all triangles of R; are usually refined into four congruent triangles (regular
or "red” refinement). Applied in several iterations for [ =0, ..., m,+1 — 1, this
technique equilibrates the local error over the whole mesh and improves the
finite element solution. It is standard and used in the PrT™MG—package [17]
and in KASKADE as well. To ensure that the new triangulation 7;{1% does
not possess slave nodes, triangles with one refined edge are subdivided into
two triangles (irregular or ”green” refinement), and those with two or three
refined edges are refined "red” (see Fig. V.1). Recall that the finite element
discretization error grows when the maximum angle tends to = [8]. Moreover,
since the condition number of the stiffness matrix increases like 1/sina [58],
where a is the minimum angle, it is important to bound the angles away from
0 and 7. Pure ”red” refinement guarantees this immediately as the angles in
each 7!,, are congruent to those in the initial grid 7,%,,. In order to avoid
degeneration due to repeated ”green” refinement, the ”green” closure of each
triangulation is removed before refining. Consequently, the refinement process
is stable in the sense that the ratio of the diameter diam(K) and the radius of
the largest interior ball p(K) remains uniformly bounded, i.e.,

diam(K)/p(K) < C  foral K € T 1,1 =0,...,mp41, (V.2)

where the positive constant C' is independent of [.

The regular refinement has been successfully extended to 3D by various au-
thors (cf. [154, 26, 67, 15]). Connecting the midpoints of the edges of a given
tetrahedron, we get four new tetrahedra corresponding to the vertices and one
octahedron which has to be further refined (Fig. V.1). Each choice of the interior
diagonal of the remaining octahedron yields a regular refinement into four ad-
ditional tetrahedra. Altogether we obtain eight new tetrahedra. Unfortunately,
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stability in the sense of (V.2) cannot always be guaranteed if the interior diago-
nal is not properly selected. For instance, the permanent choice of the shortest
diagonal can fail if the triangular faces of the initial grid have obtuse angles
[154]. More robust strategies based on the history of the refinement process
have been proposed in [26, 67]. Different ”green” closures are used to obtain
grids without slave nodes. Analogously to the 2D case, they are skipped at the
beginning of further refinement. The refinement strategies by ZHANG [154] and
BEY [26] are used in KASKADE and have been proven to be robust in many
applications [33, 85].

Local 2D—Refinement Local 3D—Refinement

Regular (RED) Refinement

Regular (RED) Refinement

Directed (BLUE) Refinement

Irregular (GREEN) Closure Irregular (GREEN) Closures

Figure V.1: Refinement in 2D and 3D.

An important question for the time integration process is how to choose 7;0“,
the starting grid for the computation of the new solution up, n+1. In the spirit of
classical elliptic solvers often a time-fixed coarse grid 7° is taken. This approach
avoids special coarsening algorithms which are in general more complicated to
program than refinement strategies. However, in situations where the solution
changes very slowly in time, the permanent start with a fixed mesh would be
wasteful. But not only in this case one has the intuitive feeling that the new
first mesh should be an approximation of the final mesh from the last time, i.e.,
T2 ~Tm (see Fig. V.2). Therefore, a considerably more efficient alternative
is to remove degrees of freedom by analyzing the current solution to find regions
where the errors are small. Of course, this requires data structures that allow
grid enhancement and robust coarsening as well. Such a grid management is
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supported by the KASKADE-toolbox.

T To1
1 1
7;1 7;L+1 g
=
<]
=
My, Mp 41
Ta Tat

Figure V.2: Refinement and coarsening during time integration.

We first select candidates for coarsening employing the tree structure of the
old mesh 7,"". An element is marked if it has a father which does not have a
refined son. As usual a refined element is said to be the father of its subelements
called sons. Fig. V.3 shows the result for a given simple one—dimensional tree
structure. The extension of this strategy to more sophisticated tree structures in
higher dimensions is straightforward. In a second step we take into account the
local error behaviour of all marked elements. We identify regions of small errors
by their n—values. Supposing an asymptotic behaviour of the form n ~ ch? as
the characteristic mesh size h of the element K tends to zero, a simple prediction
of the n—values after coarsening will be approximately

Npred ~ ¢ (ah)? ~ aPn.

Here, the value ah describes the characteristic mesh size after coarsening. For
our refinement strategies we can use a=2. We remove the element K if 1,,¢q
does not exceed the local error barrier 7,4, computed for the grid 7,*~. Practi-
cal experiences have shown that the above described ”trimming—tree” strategy
works quite satisfactorily [84].

The linear systems arising from each of the grids 7;! 41 can be solved by direct
or iterative methods (see [66] for a general overview). In 1D direct solvers are
the method of choice. Band solvers such as DGBTRF/DGBTRS from LAPACK
[7] and sparse solvers such as MA28 from HARWELL [52] benefit from the very
regular sparse pattern of the system matrix. Since we have one and the same
matrix for all stage problems (V.1), the matrix factorization has to be done
only once. We have experienced that even in large one—dimensional applica-
tions the consumed CpPU—time of a direct system solver amounts to only a very
small part of the whole solution process. In higher dimensions the situation is
completely different. Then iterative solvers perform considerably better with re-
spect to CPU—time and memory requirements. Krylov subspace methods such
as GMREs [121], Cas [133], and B1cGSTAB [142], to name a few, are widely
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i
= B3

E Base elements |:| Father

Elements marked for remaving ﬁﬁ Sons

Figure V.3: One-dimensional tree structure used when removing ele-
ments.

used to solve the large linear systems which are in general non-symmetric and
not positive definite. It is a well-known fact that differential operators and
their discretizations give rise to “infinite* stiffness causing very ill-conditioned
linear equations as pointed out by SHAMPINE ([130], p. 97). Thus, efficient
preconditioning is often necessary to accelerate the convergence of the iterative
solvers used. Since the best preconditioner is the matrix itself, various sorts
of incomplete factorizations, e.g. ILU, are usually employed. It results in very
few iterations, but on the other hand needs a large amount of memory to store
the factors. When memory becomes more restrictive, one can use precondition-
ers working directly with the matrix, e.g., SSOR—preconditioning. Last but not
least, the multilevel structure of the grid improvement provides good starting
values for any refined grid. Thus, it speeds up the iterative process in a natural
way. One can also look at the MFEM as a one—way multigrid method giving
optimal convergence rates as demonstrated by BORNEMANN and DEUFLHARD
[32]. Some practical observations can be found in Chapter VI.§3. Worthwhile
to mention is that the door is also open to apply more sophisticated multigrid
methods.

§3. KARDOS — an Accurate Adaptive PDE—Solver

As we started with coding our adaptive algorithm we have chosen the name
KARDOS mnemotechnically for: KAskade Reaction—DiffusiOn System. Although
nowadays KARDOS is used for a much larger problem class, we have decided not
to change the name.

From the previous chapters one gets a first insight in the huge complexity re-
quired to code an adaptive method to solve PDEs efficiently. Working in the
field of programming over a long period, it turns out that designing a code
is sometimes not easier than developing an algorithm. Thus, it is proper for
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numerical analysis to address not only problems in approximation of functions
and quality assessment of solutions, but also the ways in which numerical algo-
rithms are implemented into a flexible and portable software structure on real
hardware.

The idea of KARDOS is to combine the multilevel strategy of KASKADE with
linearly implicit discretization methods in time. The modularization concept of
KASKADE has proven to be flexible enough to allow the implementation of an
outer time shell. Flexibility is always connected with a specification of interfaces.
In [117] the need for low—level and high-level interface elements is discussed
for the assembling procedure of KARDOS. There, a notification system and
special dynamic construction of records are described to implement efficient
mesh transfer operations between two different integration points in time.

A code is as flexible as it is possible to change one modul with an implementation
of another technique. For example, it may be desirable to have more than
one time integrator and one preconditioned iterative solver available. KARDOS
consists of several exchangeable moduls: Rosenbrock solvers, direct and iterative
methods, preconditioners, a posteriori error estimators, refinement strategies
etc. We do not want to describe too many details of the implementation. For
later use we shall focus on just two design aspects.

A problem that often turns up in practical computations is the different scales
of the solution components in the PDE. Using a weighted root mean square

norm,
1/2
el = (230 Ml
Yl lw n 4 wz

=1 ¢

for vector-valued functions v=(vy,...,v,)T and with weights

w; = ATOL; + |||Us]|| - RTOL;,

the components can be treated in an equally scaled way. Here, U = (Uy,...,U,)"
should be a good approximation to the actual solution. The tolerances ATOL;
and RTOL; have to be selected carefully to reflect accurately the scale of the
problem (cf. [37], p. 131).

A second point is to balance the temporal and spatial discretization errors in
order to keep the entire local error below a prescribed tolerance TOL. In [88] an
adaptive strategy based on spectral information about the Jacobian is developed
for 2nd order time integrators. In the general case, we set

TOL; =TOL/2 and TOL,=TOL/3.

This heuristic of balancing the errors worked quite well for the problems we
have solved with KARDOS.
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VI

Illustrative Numerical Tests

We present some computational results to demonstrate that the theoretical order
predictions given by Theorems III.1 and II[.2 are indeed of interest for the
numerical practice. The sharpness of the above convergence rates for the fully
discretized schemes can be observed for two different nonlinear equations. The
quality of the hierarchical error estimator in space is assessed in terms of the
effectivity index. Our discussions in §1 and §2 are limited to the one-dimensional
case where the separate study of temporal and spatial discretization errors is
much easier than in higher dimensions. It allows also a direct comparison with
similar studies given in [147, 103]. Finally, we look at the performance of our
multilevel strategy which is applied to solve a combustion problem in different
spatial dimensions. For this problem we observed multigrid complexity.

§1. Practical Convergence Observations

In this section we consider two nonlinear scalar parabolic equations in 1D which
fit into our framework of Chapter III. For both equations smooth solutions
are available for studying the error behaviour. The discussion includes three
Rosenbrock methods listed in Table VI.1.

function A(©)- stiffly

Method stages calls order stable [R(o0)| | (IL21) accurate
Ros2

us _ —
Dekker, Verwer [44] 2 2 2 2 ’
Rowbpa3

us — —
Roche [116] K 2 i ? ’
Ropasp

o
Steinebach [135] 6 6 ! ? ‘ * "

Figure VI.1: List of Rosenbrock solvers.
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All solvers are L—stable, a property which is strongly recommended for solving
stiff problems. RODASP, a modification of the well-known RODAs [72], is the
only one which satisfies condition (II.21). We note also that R0s2 may be used
with an inexact Jacobian. Helpful information concerning the consistency and
stability of Rosenbrock methods is summarized in Appendix B.

Example 1. Consider Burger’s equation

O — vd2u+udyu=0,0<t<T=1,Q=][0,1], (VL.1)

where initial and Dirichlet boundary conditions are chosen from the exact solu-
tion given by WHITHAM ([151], Chap. 4)

(2,1) 0.1ry + 0.573 + 73
ulx =
’ rtre g

with
z—0.5 _ 99t z—0.5__ 3t _ ®-0.375

rp = e 20v  400v , T =¢€ 4v 6, r3 =¢€ 2v

This equation has also been used by VERWER [147] to study order reductions
of diagonally implicit Runge-Kutta schemes. We choose the same value v=0.1
to allow an additional comparison with results presented there.

Let us first focus on the temporal convergence behaviour of the chosen Rosen-
brock solvers. To keep the spatial discretization error to an insignificant level
we have used standard 4th order Lagrange finite elements and a uniform grid
consisting of 8192 elements.

We get from (VI.1) by differentiation

A(u)v = —v02v 4+ ud,v + d,uv

equipped with time—dependent Dirichlet boundary conditions. Hence, the do-
main D(A%(t)) =D(A%(u(t))) is independent of ¢ only for a < 1/4 (see Exam-
ple I1.3). Therefore, the standard setting for second—order parabolic equations
H=L?*(Q) and V=H"'(Q) is not suitable in this situation. Considering A(¢) with
D(A(t))=H"'(2) as unbounded on H=H (), we get V=L?(Q). Let Ag(t) the
same operator taken as unbounded on L?(Q). Then, D(AY/2+e(t)) = D(A§(t))
shows that we can use f=1/4 — ¢ to obtain from (I[.20) an error estimate of
the form

N 1/2
(T Z:O I €n||%2(9)> + Og}%XN llenll 1) < o(r**77),
neglecting the spatial discretization error. In Table VI.2 we have listed the global
error ||g||l%v+1(L2(Q)), € ={en}n=0,.. N, NT=T, and the numerically observed
temporal order of convergence
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lells,..
Gnum = 10g2 ||€||
£l

2 a (L2(9))

(L2(2))

The predicted order reduction of the 3rd order ROWDA3 to p=2.25 can be seen
clearly. Recall that this method does not satisfy condition (II.21). By the way
we mention that the additional algebraic order of ROWDA3 does not pay off here
as one could expect for Dirichlet boundary conditions. The same convergence
rate was observed for the implicit Runge-Kutta schemes SDIRK2 and SDIRK3
in [147] where ||ex||z2(0) Was measured. In contrast, RODASP satisfies (I1.21)
and reaches gnum ~3.75. The last values in Table VI.2 and also in Table VI.3
were omitted for reason of insufficient accuracy even using double precision.
Full order p=4 as observed in [108] is not attainable because the conditions for
linear parabolic equations are not sufficient to raise the order further [95]. The
values for Ros2 reveal ¢,um — 2 for 7 = 0 which corresponds to the theoretical
value given in Theorem III.1.

Unless our theory is not applicable to obtain global H'-errors it should be
worthwhile to have a look at what happens for the error in this norm from the
numerical point of view. The corresponding results are given in Table VI.3. The
observed temporal orders are further decreased. The new order ¢,um =1.75 of
RowbpA3 clearly shows up and seems to be also true for R0s2. An interesting
fact is that this value can be obtained by a formal application of (I1.20) with
H = L*(Q) and V = H'(Q). In fact, the discussion in Example I1.3 shows
f=—1/4 — ¢ with arbitrary small ¢ >0 which yields directly the observed order
p=1.75.

Let us now turn to the spatial discretization error. To measure the conver-
gence rates in space we have solved problem (VI.1) with standard linear (¢=1)
and quadratic (¢ = 2) Lagrange finite elements on different meshes providing
a small time step 7 =10"%. Table VL4 nicely shows that the observed orders
of convergence correspond to the theoretical values well-known for the approx-
imation property (III.1) of the finite element spaces. Due to the high spatial
regularity of the solution, we get order g + 1 for the L>-norm and order ¢ for
the H'-norm. The results are nearly identical for all time integrators under
consideration where, of course, we need a smaller time step for R0S2 to avoid
dominating temporal errors.

Remark 1. The order reduction in the case of inhomogeneous Dirichlet bound-
ary conditions becomes less severe if we reformulate (VI.1) in terms of

v(z,t) =u(z,t) —zu(l,t) — (1 — 2)u(0,t).

The resulting equations for v are then solved with homogeneous Dirichlet bound-
ary conditions. Since Rosenbrock methods are not invariant with respect to
this transformation, we can use 3 = 3/4 — € in (I1.20) employing H = L?(f2)
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ROS2 ROWDA3 RODASP
T lellizzzy  gnum | llellizz2y  gnum | llellizzzy  gnum
= 8.675" 2.710 2.074
= 3.555 1.31 5.275 2.38 L4 3.79
5 r2g 1.58 1.03¢ 2.33 117y 3.72
= 3457 1.76 2.1 2.30
i 9.4;5 1.86 4.3;8 2.27
o5 2.57, 1.92 9.07 2.26

Figure VI.2: Burger’s equation with time—dependent Dirichlet bound-
ary conditions. The observed temporal orders of convergence measured
in the global L?-norm correspond to the predicted values: p =2 for
Ros2, p=2.25 for Rowpa3, and p >3 for RODASP.

ROS2 ROWDA3 RODASP
T lellizczy — gnum | llellizary  gnum | llellizary  gnum
= 8.3, 4.1 18,7
= 3158 1.44 1.2 1.78 187 3.32
5 1078 1.61 3.5.5 1.76 2.0;8 3.16
= 3.7 1.71 1.077 1.75
=5 9.177 1.75 3157 1.75
=5 2.7,¢ 1.76 9.3, 1.75

Figure VI.3: Burger’s equation with time—dependent Dirichlet bound-
ary conditions. The observed temporal orders of convergence measured
in the global H'-norm reveal p=1.75 for Ros2 and RowDA3, and p>3
for RopAsp.

and V= H'(Q). This results in a convergence rate improved by one. Unfortu-
nately, the above transformation is not always practicable for more complicated
problems.
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ROWDA3 RODASP
h llellizz2y  Gnum  lelizgry  dnum | llellizzzy  num 21y dnum
q=1
= 147y 2.875 147y 2.875
55 3.57 2.00 L4 1.00 3.57 2.00 1477 1.00
s 8.97, 2.00 7.075 1.00 8.97, 2.00 7.07¢ 1.00
q=2
& 4.675 1977 4.675 197
i 5.875 3.00 4.877 2.00 5.875 3.00 4.878° 2.00
e | 730 2.98 1278 199 | 7.3° 2.98 1277 2.00

Figure VI.4: Burger’s equation with time—-dependent Dirichlet boundary con-
ditions. The observed spatial orders of convergence for linear elements (¢g=1)
and quadratic elements (q=2) correspond to the theoretical values ¢ + 1 for
the global L>-norm and ¢ for the global H'-norm.

Ezample 2. Consider the reaction—diffusion equation

Opu — 02u = p3(1 —u?) +2p3(u —u®), 0 < t, Q =[-3,3], (V1.2)

where initial conditions are chosen from the exact solution
u(z,t) = tanh (p2(x — p1) + pst) .

This travelling wave problem was considered by Nowak [106] to study moving—
mesh strategies. Here, we want to investigate the case of homogeneous Neumann
boundary conditions. Setting p; = 0.05, p2 = p3 = 6.0, the analytical solution
satisfies

Opu(—3,t) =0 and Jyu(3,t) =0

for sufficiently small ¢. We have integrated problem (VI.2) with T'=0.1 resolving
the travelling solution front by a highly adaptive spatial mesh. Once again 4-th
order Lagrange finite elements were applied.

The discussion in Example II.3 shows that, in the case of time-independent

homogeneous Neumann boundary conditions, §=5/4 — e with arbitrarily small
€ > 0 can be used in (I1.20) for the standard setting H = L?(Q) and V =
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ROS2 ROWDA3 RODASP
T llelliso (z2y  gnum | llellio(z2y  gnum | llelliso 2y  gnum
1 —4 -6 -7
a5 L4, 6.274 3.770
1 -5 —7 -8
= 6.674 1.48 8.47, 2.87 L754 4.46
1 -5 -7 —10
s 2475 1.70 L2, 2.86 | 857, 4.32
1 -6 -8
s | 730 1.83 167 2.90
1 -6 -9
T 2.0, 1.91 2.01 2.96
1 —7 —10
a0 545, 1.95 | 245, 3.08
Figure VL.5: Travelling wave equation with homogeneous Neumann
boundary conditions. The observed temporal orders of convergence in
the C?(L?)-norm correspond to the classical orders.
ROS2 ROWDA3 RODASP
o HEH:Z(HI) num HEH:Z(HI) num HEH:Z(HI) num
1 —4 -5 -6
200 2.91¢ 1919 1.6,
1 —4 -6 -7
= 155, 0.93 3.174 2.61 L1y, 3.98
1 -5 -7 -9
s 5.970 1.38 4.67, 2.73 7378 3.91
1 -5 -8
s 1970 1.63 6.57 2.83
1 -6 -9
T X 179 | 8.7 2.90
1 -6 -9
sa 1.5, 1.88 11, 2.97
Figure VI.6: Travelling wave equation with homogeneous Neumann
boundary conditions. The observed temporal orders of convergence in
the global H'-norm correspond to the classical orders.
HY(Q). Indeed, the classical order is obtained by all methods. The errors

and the observed order of convergence are displayed in Table VI.5 and Table
VI.6. We observe that the L?-convergence is slightly better than the global
H'-convergence.

Remark 2. We get the same results considering Dirichlet boundary conditions
which are taken from the exact solution. At a first glance this could be sur-
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prising, but the solution is nearly constant in a neighbourhood of the boundary.
Thus, the boundary conditions do not affect the solution process. This situation
often occurs in practical computations when boundary conditions dominate the
solution only at the very beginning.

Remark 3. We have also tested the 3rd order Ros3 and RoDAsS3 proposed
by SANDU, VERWER et al. [122]. Both methods do not satisfy condition
(I1.21). Generally, we can state that their performance was very close to that
of ROWDA3.

§2. Accuracy of the Spatial A Posteriori Error Estimate

In order to illustrate the accuracy of the spatial error estimate investigated in
Chapter IV.§2, we consider once again problem (VI.2). This problem is solved
for one appropriate time step with different meshes. We limit our discussion
to linear finite elements. The subspace Zj consists of all quadratic bump func-
tions having support in one element only. Thus the proposed error estimator
(IV.32) can be computed element—by—element by solving one linear equation.
Let us consider the third—order ROWDA3. To ensure that the temporal error
is dominated by the spatial error, we first perform one time step with R0s2
in a fully adaptive manner such that both errors are approximately balanced
with respect to the L?-norm. Employing different tolerances we get a sequence
of time steps and the corresponding number of points shown in the first two
columns of Table VI.7. Using then ROWDA3 which has higher order in time, we
are able to compare estimated and exact spatial errors. If the time steps were
too small, one would assess the projection error of the initial solution only.

The quality of estimators is usually measured by the effectivity index © defined
by

o— Estimated Error

Exact Error

Table VI.7 shows the exact L?— and H'-errors together with the effectivity
indices computed at t=7.

The results indicate that the hierarchical basis error estimator produces excel-
lent estimates of the local error as long as the temporal error is dominated by
the spatial error. Similar results are valid for the other Rosenbrock solvers.

§3. Performance of the Multilevel Strategy

We conclude this chapter by presenting some results for the performance of
KARDOS measured on a SUN-SPARC ULTRA2. Let us consider the combustion
problem

8,C —V2C = —DCe /T,
LedT —V2T = aDCe /T >0,
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T N llell 2 Op2 llell g1 O

1677 | 81 | 2138 105 | 16  1.01
4172 | 89 | 3.1t 098 | 5277  1.00
1372 | 238 | 2977 1.00 | 1.877  1.00
5.6, | 789 | 3.37% 1.00 | 547  1.00

167, | 3042 | 197 1.00 | 1377  1.00

Figure VI.7: L?>- and H'-errors and effectivity indices for Example 2
with time step 7 and N —1 adaptively chosen linear elements.

where T is the dimensionless temperature and C' the concentration of a reactant.
We solve the system for different spatial dimensions on the domains

Qu={z=(x,...,25) ERY, 0< 21,...,2g< 1}, d=1,2,3,

taking the special combustion numbers Le = 0.9, § = 20, @« = 1, and D =
5-e%/(ad). The initial and boundary conditions are

C(z,0) =T(z,0)=1, x € Qq,
VC(z,t)-n=VT(z,t)-n=0, onx; =0,i=1,...,d,
Cz,t) =T (z,t) =1, onz;=1,1=1,...,d.

This system describes a one—step reaction in the presence of Arrhenius chem-
istry. The one—dimensional version of this problem was investigated via activation—
energy asymptotics by KAPILA [78]. Initially, the temperature increases slowly
during an induction period with relatively weak reaction. Induction is followed
by an extremely rapid development and growth of a localized hot spot at 0 € R?.
A sharply focused temperature region appears in which the concentration of the
reactant is rapidly depleted. Then the reaction front propagates through the
domain. The problem is complicated enough to study the performance of our
adaptive multilevel solver KARDOS. We have chosen RowDA3 and standard
linear finite elements. The linear equations were solved by BICGSTAB precondi-
tioned by ILU. Several runs with different tolerances were performed.

In Tables VI.8-VI.10 we can see the number of time steps, the total number
of spatial discretization points over all time, N, the corresponding averaged
number of points, the computing time in seconds, and two different ratios which
measure the complexity index of the algorithm. In the one—dimensional case an
O(N)—complexity is visible. This corresponds to the observation that the main
part of the computing time is consumed by the assembling routines. In two and
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three spatial dimension the algorithm tends to O(N log N)—complexity. Thus,
we get multigrid complexity of KARDOS. Considering the absolute values of
CPU/Nyy for each dimension, we derive approximately a ratio 1 : 3 : 27, show-
ing that the effort per degree of freedom grows rapidly when the dimension is
increased.

. Nio \ 10%.CPU 10*.CPU
RUN  { Timesteps Niot m Cpru(sec] N Nror 108 Niot
1 224 50314 225 43 8.55 1.82
2 300 110404 368 98 8.88 1.76
3 380 197672 521 169 8.55 1.61
4 670 769810 1149 613 7.96 1.35

Figure VI.8: Performance of KARDOS for 1D—combustion with ¢ € [0,0.227].

. Nio | 10%.CPU 104.CPU
RUN  { Timesteps  Niot ety CPUlsec] o5~ Mot 108 Neot
1 76 94302 1241 238 2.52 5.07
2 82 148 608 1812 379 2.55 4.93
3 95 281 582 2964 763 2.71 4.97
4 124 843304 6801 2442 2.90 4.89

Figure VI.9: Performance of KARDOS for 2D—combustion with ¢ € [0,0.278].

. Nio . 102.CPU 103.CPU
RUN  { Timesteps Niot m Cpu|sec] Nih Nror 108 Niot
1 21 176 442 8402 3775 2.14 4.08
2 28 747516 26 697 16 736 2.24 3.81
3 33 1486551 45047 34319 2.31 3.74
4 40 2404 560 60114 58010 2.41 3.78

Figure VI.10: Performance of KARDOS for 3D—combustion with ¢ € [0, 0.297].
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VII

Applications from Computational Sciences

Having developed a rather complete theory for the efficient solution of nonlin-
ear parabolic problems, we present a series of real-life applications in different
spatial dimensions. Clearly, the acceptance of numerical algorithms can benefit
from demonstrating that they work robustly and safely over a wide range of
practically relevant problems. Starting with practical computations one will be
quickly forced to realize that the understanding and creation of good models is
just as challenging as proving a deep theorem. Therefore, it is not surprising
that all of the following simulations were done in joint works with specialists of
the considered areas over a period of a couple of years.

All models are explained and parameters are completely described, except for
the bubble reactor where the data are protected by the BASF company. This
should enable interested readers to make their own experiences. We mention
that not all considered problems fit directly into our theoretical framework.
Nevertheless, the proposed adaptive approach allows straightforward extensions
for algebraic equations, pure ODEs, and equations without diffusion too.

The first problem is the synthesis process of two different chemicals in a bubble
reactor. The investigations were done within the joint project “Development
of simulation algorithms for reaction processes” of the BASF Research Insti-
tute and the Konrad-Zuse Centre. The two—film model used was developed by
W. RupPEL [120].

The two—dimensional combustion problems which follow were jointly investi-
gated with J. FROHLICH [59]. Propagating thin flame fronts demand dynamic
spatial adaptivity when they have to be resolved numerically. Two reaction—
diffusion systems are considered: laminar flames travelling through an obstacle
and a solid—solid alloying reaction in a uniformly packed reactor. It should
be noted that a large number of phenomena in biology, ecology, physics, and
engineering are governed by equations of reaction—diffusion type.

The third problem modelling the diffusion step of semiconductor device fabri-
cation was studied in a joint work with W. MERZ [86, 87]. The simulation was
based on an extensive model involving an enormous list of empirical parame-
ters. Nevertheless, we succeeded in resolving the main effects of the anomalous
diffusion of phosphorus known from the literature. More detailed information
about the fundamentals behind the pair—diffusion model used and an analytical
treatment can be found in [101].

65
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In the fourth application the proposed adaptive method is incorporated in an
optimization process specially designed for regional hyperthermia of deep seated
tumors in order to achieve a desired steady—state temperature distribution. A
nonlinear three—dimensional heat—transfer model based on temperature—depen-
dent perfusion is applied to predict the temperature. This study was jointly
done with B. ERDMANN and M. SEEBASS [85]. It is part of the substantial
activities at the Konrad—Zuse Centre and the Klinikum Rudolf Virchow in Berlin
to improve this cancer therapy (cf. [21]). The necessary electric field data were
provided by R. BECK.

Last but not least we mention that all simulations were performed with the
programming package KARDOS explained in Chapter V.§3. We used mainly the
Rosenbrock solver ROWDA3 and solved the linear equations by the BicGsTAB—
algorithm preconditioned by ILU or SSOR. Applying linear finite elements we
measured the spatial errors in the space of quadratic functions. These ingredi-
ents worked quite well and gave satisfactory results.

§1. 1D: Two—Phase Bubble Reactor

Gas—fluid systems give rise to propagating phase boundaries changing their
shape and size in time. In the following we consider a synthesis process of
two gaseous chemicals A and B in a cylindrical bubble reactor filled with a
catalytic fluid (see Fig. VIL.1).

The bubbles stream in at the lower end of the reactor and rise to the top while
dissolving and reacting with each other. The right proportions of such reactors
depend, among other things, on the rising behaviour of the bubbles and specific
reaction velocities. Therefore, modelling and simulation of the underlying two—
phase system can provide engineers with useful knowledge necessary to construct
economical plants.

A fully three—dimensional description of the synthesis process would become
too complicated. We have used a one—dimensional two—film model developed
by RUPPEL [120]. It is based mainly on the assumption that the interaction
between the gas and the reactor fluid (bulk) takes place in very thin layers
(films) with time—independent thickness (see Fig. VII.2). In the first film F}
the chemical A dissolves into the bulk. From there it is transported very fast
to the second film F5 where reaction with chemical B takes place. As a result
new chemicals C' and D are produced causing further reactions.

Defining the assignment (A, B,C,D,E,F,G) — (uy,...,u7) the model can be
expressed by the following equations.

Diffusive process in F} only for the chemical A:

2
_Dl%zo, z € (&1,62),
(VIL1)
abr ()~ GrE =epn () = u(E).



§1] 1D: TwWo-PHASE BUBBLE REACTOR 67

A+B — C+D
C+D — E

C — F+@G

o O

Figure VII.1: Bubble reactor in section and reaction mechanism.

Transport of all the chemicals through the bulk:

Ou; ou; ,, Ou;
a5y = SiODIF &)+ SH(ODiF(07), 7 € (6,0),6 >0,
(VIL2)
_ 8ui . —
w1 (&) = wi (&), %(G) =0,i#1, u(07) =u;(07).
Reaction and diffusion in F5:
2.,
—Dl% = Zki,jujui, S (0,63),15 > 0.
J
_ ; ou
W) =0, )+ G2 = ek, (VILY

Bui

oy () = 0,1 #2, ui(e,0) = uj.

Here, D; and §; denote the diffusion and the coupling coefficient of the i—th
component, and «; represents the Henry coefficient. The specific exchange ar-
eas S; and Sy depend nonlinearly on the decreasing bubble radii 7 (t) and r2(t).
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Figure VII.2: Two—film model based on interaction zones with con-
stant thickness (top). Behaviour of the chemicals A and B on the
computational domain (bottom).

As a consequence of the applied two—film model the dynamical synthesis process
can be simulated with a fixed spatial domain involving the bulk and the film F5.
Equation (VIL.1) is solved analytically. Clearly, the spatial discretization needs
some adaptation due to the presence of internal boundary conditions between
bulk and film. We refer to [83] for a more thorough discussion. Here we will
report only on the temporal evolution of the grid used to resolve the reaction
front in the film F» = [0,15]um. Fig. VIL.3 shows that at the beginning the
reaction front is travelling very fast from the outer to the inner boundary of
the film where the chemical B enters permanently. During the time period
[0.1,0.5] the reaction zone does not change its position which allows larger time
steps. After that with decreasing concentration of the chemical A at the outer
boundary the front travels back, but now with moderate speed. Obviously, the
adaptively controlled discretization is able to follow automatically the dynamics
of the problem.
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Figure VIL.3: Evolution of the chemical component A (left) and of the
grid (right) where the reactor height is taken as time axis.

§2. 2D: Propagation of Laminar Flames

Combustion problems are known to range among the most demanding for spatial
adaptivity when the thin flame front is to be resolved numerically. This is often
required as the inner structure of the flame determines global properties such
as the flame speed, the formation of cellular patterns or even more important
the mass fraction of reaction products (e.g. NO, formation). A large part of
numerical studies in this field is devoted to the different instabilities of such
flames. The observed phenomena include cellular patterns, spiral waves, and
transition to chaotic behaviour [113, 46, 61, 45, 24].

Apart from spatial adaptivity these problems can be solved generally with a con-
stant time step. A reliable error control as available with the present method,
however, is of great advantage. When dealing with ignition and extinction pro-
cesses or complicated geometries and non—uniform material the relevant time
scales can change by orders of magnitude. The proposed method then automat-
ically adjusts the time step in accordance with the spatial tolerance so that the
invested computational effort results in an optimal advancement of the calcula-
tion in time.

§2.1. Laminar Flames Through an Obstacle

The major part of gaseous combustion processes can adequately be described
under the low Mach number hypothesis. This essentially amounts to eliminating
the pressure dependence of the fluid density while retaining its temperature
dependence. When the latter is not accounted for either, the motion of the fluid
becomes independent from temperature and species concentration. Then the
velocity field influences these quantities only via a convection term. Hence, one
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can solve the temperature and species equations alone specifying any solenoidal
velocity field u(z, y,t). In particular, u = 0, u = up = const., and u = —uy with
us(t) being the velocity of the flame front are important cases. Introducing the
dimensionless temperature 8 = (T — Tunburnt)/ (Tournt — Tunburnt), denoting by
Y the species concentration, and assuming constant diffusion coefficients yields
[112]

K- VO = w, (VIL4)
1

Yy - —V%Y = — IL.

Y — =V w, (VIL5)

where the Lewis number Le is the ratio of diffusivity of heat and diffusivity of
mass. The time has been nondimensionalized with the heat conduction time
scale, and the heat release parameter has entered in the reaction term through
the definition of #. We use a simple one-species reaction mechanism governed
by an Arrhenius law

(1-0)
w = —Y el-a-9) | (VILG6)

in which an approximation for large activation energy has been employed [38].
The temperature ratio @ = (Thurnt — Tunburnt)/Tburnt is the quantity that de-
termines the gas expansion in non-constant density flows so that the above
thermo-diffusive model is exact for « = 0. The extension of (VIL.4), (VIL5) to
a complex reaction scheme is straightforward by adding similar equations for
additional species and modifying the reaction terms. We have also performed
computations with an additional convection term. This can either describe the
response of a thermodiffusive flame to a given velocity field under fixed bound-
ary conditions or it can be used to furnish a moving reference frame (equivalent
to dynamic regridding) in which a propagating flame front may become station-
ary. In the latter case the spatially uniform velocity is chosen proportional to
the instantaneous integral of the reaction rate.

Here we consider a freely propagating laminar flame described by eqs. (VIL.4),
(VIL5) and its response to a heat absorbing obstacle, a set of cooled parallel rods
with rectangular cross section. The computational domain has width H = 16
and length L = 60. The obstacle covers half of the width and has length L/4.
The absorption of heat is modelled by the boundary condition

O = — k(6 — bOres), (VILT)

where k is a heat loss parameter and where the reference temperature is chosen
as Ores = Ounpurnt = 0. On the left boundary of the domain (cf. Fig. VIL.4)
Dirichlet conditions corresponding to the burnt state are prescribed while the
remaining boundary conditions are of homogeneous Neuman type. The initial
condition is the analytical solution of a one—dimensional right—travelling flame
in the limit 8 — oo located left of the obstacle:
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1 for = <z,
0(z,y,0) = { €% for x>z,

0 for <=,
V(z,y,0) = { 1—ele@=2) for x>z,

where we have used z¢p =9 in our computations. Two different situations may
occur in this experiment according to the value of k. For small k£ the flame
becomes curved and is slowed down in the interior of the channel but manages
to pass through. For stronger heat loss the flame is extinguished. Computa-
tions of this phenomenon in a simple channel geometry have been done in [23].
In the present setting the extinction limit is a function of many parameters:
length and width of the obstacle, its geometry, the Lewis number, the type of
boundary condition and the amount of heat loss. We therefore do not aim here
at determining precise thresholds but rather show a sample computation for
k =0.1 choosing Le =1, f =10, a = 0.8. In this case the heat loss is below
the critical value. We mention that the flame is extinguished in the obstacle for
k=0.2 [59].

Fig. VII.4 shows the propagation of the reaction front with the help of the
reaction rate w. In our experience the reaction rate is by far the best quantity
to judge for adequate spatial resolution of such a computation, as it is related to
the smallest spatial scales of the problem. The present results show (backed by
additional verifications) that w is indeed well-resolved although being controlled
only indirectly through the adaptation process based on 6 and Y. Fig. VIL5
displays the corresponding grids to give an impression of these as well.

Fig. VIIL.6 depicts total reaction rate, time step, and degrees of freedom during
the propagation. When the flame passes through the channel the total reaction
rate diminishes not only due to the smaller width of the front but also due to heat
loss. The peak near the end of the graph results from the increased flame area
after the front leaves the obstacle. According to the temporally reduced flame
velocity the time step automatically increases about one order of magnitude.
This results in essential savings of computation time compared to a constant
time step. The latter would furthermore have to be adjusted by hand safely
below the limit for stability and precision. The peaks in this diagram pointing
to small values are related to the fact that a plot at a prescribed time ¢ has been
requested. This generally imposes one very small time step to exactly reach this
point. Handling this is not straightforward with the estimation procedure for
the timestep described in section IV.1. We therefore restarted with a given time
step safely below the required one (a modified estimation scheme might be used
as well). The figure thus permits one to appreciate the rapidity and robustness
of the temporal adaptation which returns to the optimal value in about three
steps.
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LI

Figure VII.4: Flame through cooled grid, Le = 1, k = 0.1. Reaction rate w
at ¢t =1, 20, 40, 60.
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§2.2. Reaction Front in a Solid

The second class of problems that we will deal with refers to solid-solid com-
bustion. The particularity of such a process is that convection is impossible
and that the macroscopic diffusion for the species in solids is in general negli-
gible with respect to heat conductivity. With the heat diffusion time scale as
reference, the equations for a one step chemical alloying reaction read

0T — kV?T = Qu, (VILS)
Y = -w, (VIL9)

where T is the temperature divided by a reference temperature, Y the concen-
tration of the deficient reactant and Q a heat release parameter. Concerning the
reaction term quite a number of different models are employed in the literature.
They generally contain an Arrhenius term for the temperature dependence and
use a first order reaction, i.e.,

w=KYeT, (VIL10)

where FE is a dimensionless activation energy. Since this expression is difficult to
treat with analytical approaches it is often replaced by a zero—order mechanism
substituting Y in (VIL.10) by x(Y) = H(Y), the Heaviside function [100]. Al-
though simpler, this expression involves additional modelling, and furthermore
it might generate difficulties in the numerical solution due to the discontinuity
of x.

Apart from the reaction realistic processes involve other physical mechanisms
such as melting which leads to additional heat release (e.g. [20]) or microscopic
diffusion of the reactant into the fine grains constituting the material. SMOOKE
and KoszykKowsKI [131] employ

D
R?

y1/3
1Y/

St

w(T,)Y) = F(Y)e~ , F(Y)= (VIL.11)
which has been developed by BOOTH [28] considering a material made up of
densely packed spheres subject to melting and microscopic diffusion of the re-
actant. Here, R is the radius of the spheres and D a microscopic diffusion
coefficient. Due to the absence of macroscopic species diffusion and the related
smoothing property the system (VIL.8), (VIL9) is more difficult to treat nu-
merically than the thermodiffusive equations. Nevertheless the same algorithm
could be employed.

In our computations we experienced the need to adjust the term F in (VII.11)
for Y near one. This is justified, since, after all, (VIL.11) can just be a model
of limited validity. First, the maximum range of Y is by definition the interval
[0,1]. However, F'(1) cannot be evaluated. For global conservation the physical
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range in fact is [0, Y7] where Y7 is the maximum value of the initial condition.
Hence, choosing Y (x,0) = 0.999 instead of 1 [131] removes this difficulty. Sec-
ond, the employed spatial approximation does not guarantee that ¥ remains
within a certain interval. Therefore F'(Y) has been replaced by the tangent
at Y = 0.999 and Y = 0.001 to the right and to the left of these values, re-
spectively. This prolongation of w(7T,Y) to arguments Y outside the original
range of definition [0, 1] results in a value of w which brings the solution back to
the physically meaningful range in case of overshooting due to finite precision.
Such minor adjustments although much smaller than the accuracy of the model
may decide on the failure or the success of a computation. In different prac-
tical computations we have experienced this strategy to be much more robust
than e.g. replacing overshoots by the physically limiting values. This is partic-
ularly important when adaptive discretization is used which has less tendency
to attenuate fine scale oscillations.

In the following we report on the solution of (VIL.8), (VIL9), (VIIL.11) for a non—
uniformly packed solid in cylindrical geometry. We consider the value of D/R?
being equal to 5800 within a circle of radius r; = 0.0018 and to increase linearly
up to 16 times this value at o = 0.0024. This yields a strongly increased flame
velocity close to this radius which constitutes the outer border. The reactor
is ignited by a Dirichlet condition T, = 300 + 24000¢, ¢t < 0.05, for the wall
temperature on a 45 degrees section of the boundary on the left hand side.
For t > 0.05 and all other locations the boundary conditions are homogeneous
Neuman conditions. Further parameters are £ = 11000, x = 0.0001, @ = 2700.
Fig. VIL.7 nicely illustrates how the reaction front first propagates along the
outer wall before entering the core. The graphs should be related to those of Fig.
VII.8 revealing that the reaction phase is rather short compared to the ignition.
The small time steps at ¢ = 0.05 result from the requirement of exactly attaining
this instant where the boundary conditions are modified. Even in this simple
geometry the interaction of different fronts can generate a rather complicated
pattern in space and time. The reaction rate for example exhibits a peak where
both peripherical fronts have merged and propagate into the interior whereas
the maximum of the temperature appears at a later time.

§3. 2D: Dopant Diffusion in Silicon

The quality of electronical materials based on silicon substrates is strongly in-
fluenced by the quality of doping processes. Impurity atoms of higher or lower
chemical valence, such as arsenic, phosphorus, and boron, are introduced under
high temperatures (900°C—1100°C') into a silicon crystal to change its electrical
properties. This is the central process of modern silicon technology. The dif-
fusion mechanism of dopants is a topic of continuing investigations. It cannot
be described involving only direct interchange with neighbouring silicon atoms.
In order to explain this anomalous behaviour various pair diffusion models have
been proposed [56, 64, 75].

We consider a general model for phosphorus diffusion in silicon under extrinsic



§3] 2D: DOPANT DIFFUSION IN SILICON 79

doping conditions described by GHADERI and HOBLER [64]. At such high con-
centrations we have to include the charged species and the internal electric field
of the crystal, both of which can have profound effects on diffusion. In princi-
ple, this leads to a very large number of drift—diffusion-reaction equations: one
for each charge state of every species, plus one Poisson equation to describe
the internal electrostatic potential. The number of equations can be reduced
substantially by making additional equilibrium assumptions concerning the re-
action terms. The resulting model turns out to be very interesting for numerical
investigation.

§3.1. Diffusion Model under Extrinsic Conditions

Dopant atoms occupy substitutional sites in the silicon crystal lattice, losing
(donors such as arsenic and phosphorus) or gaining (acceptors such as boron)
at the same time an electron. We denote such substitutional defects by A. Since
a diffusion mechanism based only on the direct interchange with neighbouring
silicon atoms turns out to be energetically unfavourable [56], native point defects
called interstitials (I) and vacancies (V') are taken into account. Interstitials are
silicon atoms which are not placed on a lattice site and move through the crystal
unconstrained. Vacancies are empty lattice sites. Both can form mobile pairs
with dopant atoms, designated by Al and AV. There is no general consensus
on the exact nature of the pair mobility mechanism. One way to visualize it
is as follows: in the case of Al-pairs, an interstitial and a dopant atom share
a lattice site called an interstitialcy. The dopant can now change partners by
moving through an intermediate interstitial stage (denoted by A; in Fig. VIL.9).
On the other hand, dopants and vacancies exhibit a certain affinity. So, a
vacancy near a dopant moves around this dopant quickly, and an occasional
interchange between dopant and vacancy leads to a random walk effect (see
Fig. VIL.9).

Figure VII.9: Visualization of pair diffusion in a silicon crystal lattice.

In the case of extrinsic doping conditions we consider silicon crystals where
the concentration C'4 of the dopant is much higher than the intrinsic carrier
concentration n;, i.e., Cy > n;. It is well-known that this assumption forbids
neglecting the charge states of the species. For the interstitials we consider the
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charge states .
I i=-1,0,+1, (VIL12)

for the vacancies '
174528 j=-2,-1,0,+1,+2. (VIL.13)

The unpaired dopant on a lattice site has always the fixed charge state A9, for
instance ¢ = +1 for phosphorus. Thus, the pairs under consideration are

(AD@+)  and  (AV)0H) (VIL.14)
Next, we state the set of reactions between the species and formulate the reaction

rates in terms of concentrations C'%, where X =1,V, AI, AV, A, and z denoting
the charge state. We consider

e Dopant—defect pairing:
AD 410 = Anlt)  RY =k C4C - Ky C4 L (VIL1G)
AW v = AV R =k, 040 — k), C%Y | (VIL16)
e Defect recombination:

(AN L v = AD _ (i 4 j)n

(3

.. —i—j
Rf‘{LV = kAqIJr"/)JCtIJrZCJ _ kAq[Jer/)] Cq <_> : (VH.17)
(AV)(q+j) + 70 = 4l _ (i + j)n
i
Riy,, = KEogio kg el <n ) , (VIL18)
i
o Frenkel pairs:
I(l) + V(J) = —(i +])TL
iy L\
Riy = kiyCiCy —kpy (n—> , (VIL19)
13

e Jonization of the defects:

10 = 1O _in R =kCE - ECY <£> , (VIL.20)

T

] o . —J
v = vO _jn, Rl =k.Cl - FCY <nﬁ> . (VIL21)
(3
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e Ionization of the pairs:

(AD+) = (A —in,

—i
o= O -Euch () . i

(3

(AV)(‘JH) = (Av)(tI) —jn,

—J
J _ g +j _ i n
Ry = KoC-BnCle(Z) . i
where the k supplied with the respective indices denote the forward reaction—
rate constants, and the k the reverse ones.

We assume that the electrons n and the holes p obey the Boltzmann statistics

o ey o e
n=nmn; exp(—kB T> , p=n; exp( T T) , (VIL.24)

where v denotes the electrostatic potential, kg is the Boltzmann constant, T'
the absolute temperature, and e is the elementary charge. Using the thermal
voltage defined by Ur=kpT /e, we have the relations

ni = mp)t/2, Y ="Ur ln<nﬁ> . (VIL25)
i
For each of the charged species we can establish the corresponding balance
equation taking into account the reaction terms (VII.15)—(VII.23) and drift—
diffusion terms. This yields seventeen coupled partial differential equations of
the form

atcgz(+z +V- J;JFZ _ _R?{Jrz , X=IV AI AV, A, (VII.26)
JETE = —D§t* (vc;*z + (a+2)05V ln<%>>(VH-27)

where z represents the possible charge states for the component X, a =0 for
X=1,V,and a=q for X =AI, AV, A. The highly nonlinear term R?‘(“ is the
sum of recombination and generation terms. Note that according to J§ = 0
no diffusion term occurs in the equation for C'%. The electrostatic potential is
computed by an additional Poisson equation

vy =C (—n +p+ Z(a + Z)C'}’(+Z> ; (VIL.28)

€
X,z

where € denotes the dielectric constant.
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In order to reduce the equations we assume equilibrium concerning the ioniza-
tion, i.e., we state that

Ry =0 for X =1,V,AI AV . (VIL.29)

As direct consequence we have

Cots = Kot (ﬁ> o2, (VIL30)

T

where the equilibrium constants K}"(ﬂ are the quotient of reverse and forward
reaction—rate constants. Defining total concentrations

Cx =) Cy™ =) K (%) C%. (VIL31)

z z

we can substitute C§ in (VIL.30) to get

Coz+z _ K}X(+Z(n£i)7z

YN

showing that each charged state C;‘(“ can directly be computed from the total
concentration C'x. Summing up over all charged species in (VII.26), using
(VIL32) and (VIIL.25) yields after some calculation

X (VIL32)

0.Cx+V-Jx = —Rx s (VII.33)

Jx = —Dx(n) <VCX + Qx(n)CXVIIl(nE)) R (VII.34)

—UpV? ln(n%) = g (—n +p+ ; Ox (n)CX> , (VIL.35)
where

ni

S DYTKET (&) Ox(n) = E;(a+z)K§§+z(n%)iz _

Dy (n) = X AT
¥ > KE () SLKG ()

(VIL.36)

The total reaction rates Ry = Y. R * are

Ry =Rar+ Ravi+Rryv, Rar=—Rar+ Raryv,
Ry = Rayv +Rarv+Rryv, Rav = —-Rav + Ravr,
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with

KK () c
Rar = 3 AL i l_)i (CACI_CI ACAI)
i K7 (ni) Car

k: - C
Ray = 2 r n(n_j) <CAC'v—C'vCA CAV)
> KV (n—) AV

plati)i q+z KJ n —i—j C
Riry = = Eﬁj”j j(”@n = (cAIOV—OV “cA)
SN (&) S K (&)

gla+a)i q+JK i—j X
Ravs = Z > +AVI I( ) _ (CAV C’I—C*CA*VCA>,
G () K ()

_ SV E R ) e
Ry = EK’(”) ZKJ (i)j<CICV C’IC'V>.

Here, we have substituted the backward reaction-rate coefficients by the for-
ward ones, the equilibrium concentrations C7, Cy,, and the equilibrium ratios
C%;/C%, and C%y,/C%. These expressions are obtained by setting the reaction
rates Rx,y equal to zero. All equilibrium concentrations, except C', depend
on n/n;. This dependence can be determined from (VIL.31). Using values for
the intrinsic case n=n; we derive

Ka—i—z n\—*
Cx = CX ln=n; Xi(r,l;l”
Z; KX -
and further for the equilibrium ratios
cyL oy K (&)™
*A = *A (’;Zk , X = Al AV .
AX AX In=n; E; KX

Hence, we can replace the general equilibrium values by their intrinsic versions.

The whole model requests the knowledge of an enormous list of parameters.
Most of them are essentially unknown or at least controversial. The set of pa-
rameters we have used in our simulations was taken from [99]. Table VII.10
summarizes some of them. For the point defects we use for all charge states
the intrinsic diffusivities Dy|,,—p, and Dy |,,—y, which were obtained from exper-
iments via gold diffusion. The remaining forward reaction-rate constants k'
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and k% y (X,Y € {I,V,AI, AV}, and r,s denote the charge states) may be
expressed as

rs o _ r s _—Egg’y
k% y = 4nr.(D% + D) exp
’ kT

and

s — s Ejl,Y
ki y = 47mr.(DAjp=n; + DY) exp| ———= | .
? ¢ kT

Therein, r. denotes the capture radius set equal to 5A. All the barrier energies
E¥y and EY% y are taken to be zero, except for the Frenkel pair reaction,
where we take the value 0.3¢V. The effective intrinsic diffusion coefficient of
phosphorus is well-known [57]

D pjp=n; = 3.850 exp (——) .
In order to complete the discussion concerning the physical parameters, we set

1.680
=3.129-10' -
3.129-10 exp< kBT>

Ch
Chr

n=n;
and compute (C% /C%y ) jn=n; from the relationship

*

_ YAI
DA\n:ni - C*
A

*

AV
DAI|n=n,- + c*
A

DAV|n=n,- 5

n=n;

n=n;

the derivation of which can be found in [64]. Here, we set Dax|p—pn, = DYy,
X =1,V. The given quantities are valid in our case over a temperature range
of 900°C'—1200°C.

We also have to supply initial and boundary conditions for the system (VII.33)—
(VIL.35). The diffusion process is only one part of the whole semiconductor
device fabrication. Thus, these conditions depend strongly on the interaction
with other processes. A detailed description elaborated for different situations
can be found in [75].

Here we consider the case of an implanted dopant profile which is initially set
to a Gaussian curve. Desirable experimentally measured initial distributions
are hardly available. Since Gaussian profiles are sometimes not well-fitted to
high channeling effects in the lower concentration area [56], Pearson-IV distribu-
tions with exponential channeling tail are frequently used. Appropriate initial
conditions for the defects are given by

Ox(0) = C%(0), X=1I,V.
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K A B E [eV]
Dijp=n; [cm?s™1] 2.629 - 1011 0.000 4.436
Dy |p=n; [cm?s™1] 2.639 - 1006 0.000 4.002

0 lem?s71] 8.570- 1071 0.000 1.720
DY, lem?s™1] 1.780 - 1096 0.000 3.340
D? ; [em?s™1] 4.128 -1073 0.000 1.330

v lem?s™1] 6.123 - 1093 0.000 2.550

Oy [emZs1] 5.466 - 109° 0.000 3.040
DLy [em?s™1] 7.094 - 1099 0.000 4.090
D%y [em?s™1] 1.509 - 1090 0.000 1.840
D3y, [em?s™1] 1.509 - 1090 0.000 1.840

K;! 0.754 - 1000 0.868 0.185

K? 1.000 - 1090 0.000 0.000

K} 1.326 - 1090 0.868 0.185
K’ 0.569 - 10°° 2.252 0.480
Kt 0.754 - 10%0 0.070 0.015
K9 1.000 - 1090 0.000 0.000
K 1.326 - 1090 2.557 0.545
K} 1.758 - 1099 4.702 1.002
KY; 1.000 - 1090 0.000 0.000
K%, 1.995 - 1096 0.000 1.880
K%, 4.422 - 1012 0.000 3.020
Ky 8.601-10'3 0.000 3.260
K% 1.000 - 1090 0.000 0.000
KL, 9.501 - 1013 0.000 3.780
K%, 7.068 - 1093 0.000 0.920
K%y 1.317 - 1020 0.000 4.760
Tin=n, lcm™?] 1.132 - 10'8 0.000 1.377
Vinen, lcm 7] 1.642 - 1024 0.000 2.226

Figure VII.10: Parameters of phosphorus diffusion in silicon.

K=A exp(%) ezp(—kBiT).
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For the pairs AI and AV we take constant background dopings of order O(10%),
whereas for the initial electrostatic potential the Poisson equation has to be
approximated.

In order to define boundary conditions we allow the wafer surface to absorb or
supply an arbitrary number of point defects which is usually modelled by flux
conditions of the form

JX -n = hx(CX —C;()

where X =1 or V, and hx denotes a specific transmission coefficient. Assuming
the reaction rate of the neutral point defects to be infinitely fast at the interface,
we can use Dirichlet boundary conditions at the wafer surface

Cx =C%. (VIL37)

Note that C'y depends strongly on the electrostatic potential, making this condi-
tion highly nonlinear. At all other boundaries homogeneous flux conditions are
used. For the pairs we simply have homogeneous flux conditions at all bound-
aries. The Poisson equation is equipped with homogeneous Dirichlet conditions
at the bottom of the wafer and with zero flux conditions otherwise.

§3.2. Some Simulation Results for Phosphorus Diffusion

We have performed a series of two—dimensional simulations to test our adaptive
strategies for the above pair diffusion model. The computational domain is
defined by the rectangle

Q={r=(z1,2) ER*,0< 2, <107%, 0 <22 < 107"}

where the unit spatial measurement is given in cm. The wafer surface is located
at 1 = 0 and the bottom of the wafer is at ;1 = 1073. The initial coarse
grid used throughout our simulations is shown in Fig. VII.11. The relatively
large expansion of the computational domain guarantees that the solution is not
affected by the boundary condition at the bottom.

Figure VII.11: Phosphorus diffusion. Coarse grid consisting of 160
triangular elements.

The implanted phosphorus concentration has been set initially to the Gaussian
profile
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CA(I’,O) = Eax exp <—§ -5

where C'}®* > n; is the maximal value of the function, a = (a1, a2) determines
the position of the profile, o is the standard deviation and

1
flx—a)=(z; —ar1)* + Z(||x2 — az] —b| + |22 — as] —b)2.

If b = 0, then we have the usual Gaussian profile; for b > 0 the maximum
extends to a whole line of length b in the zs—direction. We choose

0 =0.027-10"%a; =0.02-10 %4, =0.5-104,b=1.0-10"°.

For the boundary conditions of the point defects Dirichlet conditions (VII.37)
are employed (see [101] for a discussion of flux conditions). In the following our
standard setting is C}#*=6-10?° cm™2 and 7'=900°C. All concentrations will
be plotted using a logarithmic scale.

In Fig. VIL.12 we see some phosphorus profiles and the corresponding dynamic
meshes near the wafer surface at different time points. The phosphorus concen-
tration at ¢ =30 min shows its typical "kink and tail“ behaviour caused by the
anomalous diffusion mechanism. A detailed discussion of this phenomenon can
be found in [115]. Steep gradients are well resolved by the dynamic meshes not
wasting degrees of freedom.

Fig. VII.13 shows how the phosphorus goes into the silicon. Cuts along the
middle axis z» =5 - 107° are plotted for the concentration C4 and for the total
sum Cs=C7 + Car + Cay. We observe that the concentration of the pairs is
negligible compared with the extrinsic dopant concentration. Both profiles are
nearly identical.

The evolution of the defects is illustrated in Fig. VII.14. At the beginning the
total concentration of interstitials increases very fast forced by the decay of AI—-
pairs which dominate the phosphorus diffusion. Due to the Dirichlet bound-
ary condition a profile change from “concave to convex” takes place around
t = 10~®sec. During this period of high activities our adaptive algorithm in-
creases drastically the number of grid points in order to achieve the prescribed
accuracy (see Fig. VIL.16). Analogous effects can be observed for the concen-
tration of neutral point defects, whereas the total concentration of vacancies
simply decreases during the process. Note that C’}O) and C"(/Q ) are always equal
to the intrinsic equlibrium values at the wafer surface.

Fig. VIL15 shows profiles for various initial peak concentrations C'}** (includ-

ing the intrinsic case where C'7* = 10'® ¢cm~—3) at different temperatures. It
can be seen clearly that the phosphorus diffusion proceeds faster with higher
temperatures and the typical “kink and tail” behaviour vanishes.
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Figure VIL.12: Phosphorus diffusion. Evolution of the dynamic
meshes and the phosphorus concentration near the wafer surface at

t=0, t=3, and { =30 min.
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Figure VII.13: Phosphorus diffusion. Cuts through the phosphorus
concentration C'a (left) and the total concentration Cs =Ca + Car +
Cav (right) at t=0, t=3, and t=30min.
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Figure VII.14: Phosphorus diffusion. Cuts through the total and
neutral concentration of interstitials (left) and vacancies (right) at t =0,
t=3, and t =30 min.
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Figure VII.16: Phosphorus diffusion. Evolution of time steps and
number of spatial discretization points for TOL=0.02.
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In Fig. VIL.16 we have plotted the evolution of time steps and number of grid
points used by the adaptive algorithm. The chosen time steps range from 1020
up to 300 and increase monotonically in time. The spatial dynamics of the
whole system show an irregular behaviour. While approximately 2,000 points
are sufficient to represent the steep initial contributions, about 10,000 nodes
around t=10"" are necessary to guarantee a relative tolerance TOL=0.02. As
explained above this large number of grid points is caused by the sudden shape
change of the interstitials concentration.

§4. 3D: Bio—Heat Transfer in Regional Hyperthermia

Hyperthermia, i.e., heating tissue to 42-43°C), is a method of cancer therapy. It
is normally applied as an additive therapy to enhance the effect of conventional
radio- or chemotherapy. The standard way to produce local heating in the
human body is the use of electromagnetic waves. We are mainly interested in
regional hyperthermia of deep seated tumors. For this type of treatment usually
a phased array of antennas surrounding the patient is used (see Fig. VIL17).
The distribution of absorbed power within the patient’s body can be steered
by selecting the amplitudes and phases of the antennas’ driving voltages. The
space between the body and the antennas is filled by a so-called water bolus to
avoid excessive heating of the skin.

From the viewpoint of computational medicine there are different challenges:
(i) modelling and calculation of the electromagnetic field and the forced tem-
perature, (ii) optimization of the channel adjustments to achieve favourable
interference patterns for a successful cancer therapy, and (iii) visualization of
vector fields and temperature distributions on a very complicated geometry. It
should be possible to perform all steps of a simulation for each individual patient
within a medical planning system [21].

In the following we use the fully adaptive code KARDOS to solve a three—
dimensional nonlinear heat transfer model within an optimization process to
adjust the antennas. The simulation requires the numerical solution in a com-
plex geometry involving a nonlinearity due to the perfusion term and different
material properties of the tissues. As a prerequisite we need a three—dimensional
geometric model in which the different tissue compartments are represented (see
Fig. VII.18). Prior to grid generation, a segmentation of the CT data is per-
formed, i.e., the relevant tissue compartments are defined on each scan. Then,
the generation of a patient model consists of three steps: First, the compart-
ment surfaces are extracted from the segmented CT data. For this purpose,
HEGE ET AL. have generalized the well-known marching cubes algorithm [93]
for non-binary classifications [73]. This method creates a consistent description
of the compartment interfaces. They are composed of so-called patches each
separating two different compartments. Second, the surfaces are simplified to
make them suitable for tetrahedron generation. An algorithm from computer
graphics [65] has been extended to avoid intersections and ensure a high quality
(i.e. aspect ratio) of the surface triangles. Third, each tissue compartment is
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Figure VII.17: Patient lying in a Sigma 60 Applicator of the BSD
2000 Hyperthermia System. The patient is surrounded by 8 antennas
emitting radiowaves. A water—filled bolus is placed between patient
and antennas.

filled with tetrahedra using an advancing front algorithm. The compartment’s
surface is composed from the corresponding patches. At the beginning one starts
with this surface. Then repeatedly a triangle of the advancing front is selected
and a fourth point is searched such that the resulting tetrahedron resembles an
equilateral one as much as possible. This procedure is continued until the whole
compartment is filled with tetrahedra (see SEEBASS ET AL. [129]).

It is a rather difficult task to establish an appropriate physical model for the heat
transport in the human body. Several approaches can be found in the literature
(see eg. [150, 82]). The basis for our modelling is Pennes’ bio—heat—transfer
equation which employs a temperature-dependent blood perfusion model. A
similar two-dimensional model was studied in [140] for ferromagnetic ther-
moseed hyperthermia. Finite element solutions for the electromagnetic fields
[22] are taken as input data.

The optimization process is based on a specially designed objective function.
The aim is to achieve a stationary temperature distribution which avoids ”hot
spots“ (temperature greater than 44°C') in healthy tissue and ” cold spots“ (tem-
perature less than 42°C) in the tumor region.
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Figure VII.18: Three—dimensional finite element model of the patient’s
abdomen.

§4.1. Mathematical Modelling and Optimization

The basic model used in our simulation is the instationary bio—heat—transfer
equation proposed by PENNES [111]

oT
peor = div(kgradT) — ;W (T — T) + Q. , (VIL.38)
where p is the density, ¢ and ¢, are specific heat of tissue and blood, k is the
thermal conductivity; T} is the blood temperature; and W is the mass flow rate
of blood per unit volume of tissue. The power (). deposited by an electric field
E in a tissue with electric conductivity o is given by

1
Qe = 5a|E|2 . (VIL39)

In hyperthermia applicators utilizing electromagnetic waves the antennas nor-
mally are grouped into channels that can be controlled independently. For such
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an applicator the total electric field E can be computed by superposition

Necnan
E= Y ajexp(—ib;) Ej, (VIL40)
j=1

where the channel j has amplitude a; and phase delay 8;. E; is the electric field
generated by the antennas of channel j. If complex values z; are defined as

zj = aj exp(—ib;) (VIL41)

the absorbed power (). can be expressed as a quadratic function of z;

Nechan
1
Q=150 ) % E Bz . (VIL42)
Jk=1

Besides the differential equation boundary conditions determine the tempera-
ture distribution. The heat exchange between body and water bolus can be
described by the flux condition

gy = B(Toor — T) (VIL.43)

where Tj,; is the bolus temperature and [ is the heat transfer coefficient. No
heat loss is assumed in remaining regions. We use for our simulations g =
45W/m?2/°C and Ty =25°C.
Studies that predict temperatures in tissue models usually assume a constant—
rate blood perfusion within each tissue. However, several experiments have
shown that the response of vasculature in tissues to heat stress is strongly
temperature—dependent [132]. When heated up to 41—43°C', temperatures that
are commonly used in clinical hyperthermia, the blood flow in normal tissues,
e.g., skin and muscle, increases significantly. In contrast, the tumor zone often
appears to be so vulnerable to heat that the blood flow decreases on heating.

For the temperature dependence of blood perfusion we slightly simplified the
curves presented in [140]. For healthy tissue (muscle and fat) we assume sig-
moidal curves consisting of a Gaussian profile describing the perfusion increase
between 37°C and 45°C and a plateau for temperatures above 45°C' (see Fig.
VIIL.19). In the raising part our curve differs from the one used in [140] only
slightly. The differences are small compared to the uncertainties of the under-
lying experimental data [132]. In [140] a decrease of perfusion above 45°C is
assumed. This is motivated by the observation that vasculature is destroyed if
tissue is heated to such temperatures for about 30 minutes. We do not assume
such a decrease of perfusion. With our objective function for optimization, this
should not matter, because the objective function guarantees that temperatures
in healthy tissue are always below 45°C. The curve assumed for fat tissue takes
into account that fat tissue has a smaller capability to increase perfusion than
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muscle tissue. For tumor tissue a curve is used with the same shape as the curve
for tumor core in [140]. We choose slightly different absolute values to make the
results comparable with prior studies assuming constant—rate perfusion. The
absolute values for blood perfusion are open for discussion, and the capability
to increase perfusion also strongly depends on the cardiac state of the individ-
ual patient. But in this study we are mainly interested in qualitative effects of
temperature—dependent blood flow.

In detail we use the following temperature-dependent blood perfusions:

Temperature—dependent blood perfusion in muscle:

T — 45.0)2
0.45 + 3.55 exp (—g> , T <45.0
Winuscte = 12.0 (VII44)
4.00, T > 45.0
Temperature—dependent blood perfusion in fat:
T — 45.0)2
0.36 + 0.36 exp (—g> , T<45.0
Wrat = 12.0 (VIL45)
0.72, T > 45.0
Temperature—dependent blood perfusion in tumor:
0.833, T <370
Wiumor = 4 0833 — (I = 37.0)*%/5.438E+3, 37.0<T <420  (vy4)
0.416, T > 42.0
Perfusion in Muscle Perfusion in Fat Perfusion in Tumor
45 ————— 0.75 ———— 0.85 —————
4 07 | 0.8
P 35 P o065 | [
£ £ £ 0.7
g 3 2 o6 z
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Figure VII.19: Nonlinear models of temperature-dependent blood
perfusion for muscle tissue, fat tissue, and tumor.
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Tissue Thermal Electric Density Specific Mass
conductivity | conductivity heat flow rate
K o p c w
W/m/°C] [1/m/Q) | [kg/m?] | [Ws/kg/°C] kg/s/m?]
Fat 0.210 0.04 900 3,500 Wiat  (VII1.45)
Tumor 0.642 0.80 1,000 3,500 Wiumor (VII.46)
Bladder 0.600 0.60 1,000 3,500 5.000
Kidney 0.577 1.00 1,000 3,500 66.670
Liver 0.640 0.60 1,000 3,500 16.670
Muscle 0.642 0.80 1,000 3,500 Winuscle (VI1.44)
Bone 0.436 0.02 1,600 1,000 0.540
Aorta 0.506 0.86 1,000 3,500 83.330
Intestine 0.550 0.60 1,000 3,500 3.333

Table VII.1: Material properties of tissues.

The material properties of the involved tissues are summarized in Tab. VIIL.1.
For blood we take T, =37°C and ¢, =3500Ws/kg/°C. If a constant-rate perfu-
sion model is applied, we assume mean perfusion values for muscle, Wiuscte =
2.3kg/s/m3, and fat, Wy, = 0.54kg/s/m>. The maximum value Wiymor =
0.833kg/s/m? is taken for tumor tissue.

The goal is to control the amplitudes z;, j =1,..., Nehan, of the independent
channels in order to achieve an effective hyperthermia therapy. A favourable
temperature distribution is characterized as follows:

e Within the tumor a therapeutic temperature level of 42 —43°C is reached.
e No larger regions of healthy tissue are heated to above 42 — 43°C.

e Temperature in healthy tissue does not exceed certain temperature limits
depending on the tissue type.

Taking into account these requirements an objective function is defined for op-
timization by

0= / (Tiner —T)?dV + / (T = Thoattn)*dV + p / (T = Tym)? AV,

* € tumor
T < Tiher

2 & tumor
T > Thealth

2 @ tumor
T>Tiim

(VIL47)
where a therapeutic level Tip., =43°C' is used, and a temperature Theqren =42°C
that should not be exceeded in healthy tissue. The limits 7};,, are chosen tissue—
dependent: T}, =42°C for more sensible tissue compartments (bladder, intes-
tine) and T}, =44°C otherwise. To ensure high penalization for temperatures
exceeding the limits p=1000 is set. Optimization of the temperature distribu-
tion means now to choose the amplitudes z; for each channel in such a way that
the resulting temperature field minimizes the objective function q.
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The definition of the objective function as an integral of squares guarantees that
regions with large deviations from the desired temperatures, i.e., ”hot spots“ in
healthy tissue and ”cold spots® in the tumor, contribute large amounts to the
objective function. A similar optimization strategy for a phased array hyper-
thermia system based on a simpler objective function is described in [104]. In
contrast to the objective function proposed there, we add the second term which
attempts to control excessive heating of healthy tissue. Moreover, the objective
function is evaluated not only in a small number of selected points, but for the
entire three—dimensional temperature distribution.

Using a piecewise linear finite element solution 7} which represents an approx-
imation of the stationary temperature distribution on an adaptive spatial mesh
M}, and applying an integration formula based only on the vertices z; (mass
lumping), we get an approximation of the objective function (VI1.47)

w;
qn = Z 4 (Tther - Th xz + Z Z Th Jfl Thealth)2
i€ Mp1 ZEMhz
+p Z L(Th (i) — Tyim)? (VIL48)
ZEMha
with
My, = {Z T; € tumor, Th(xl) < Tther}a
Mpy = {it @; € tumor, Th(x:) > Theattn }»
Mys = {i: z; & tumor, Th(z;) > Tiim },

and w; stands for the volume of all tetrahedra of which z; is a vertex.

It is now useful to split the temperature. The stationary temperature field T’
can be computed as sum of the basal temperature Tj,s determined by Q. =0
and the temperature increment 7Tj,. caused by the hyperthermic application.
We easily derive the stationary equations for Tpqs and Tj,.

div (Ii grad Tbas) - cbW[Tbas](Tbas - Tb) = 0 ;
oT (VIL49)
Klﬁ = B(Tyor = Thas) = 0,

and

div (k grad Tine) — e (W[Tine + Tras|Tine

+(W[Tine + Toas] = WlThas]) (Toas = 1)) + Qe = 0, (VIL50)

aTZ’I’LC
on

+/8Tznc = 0.
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This splitting allows one to distinguish clearly between local effects forced by
the permanent cooling of the human body at the surface and the heating by the
electromagnetic field.

In a next step we derive formulas for the quick calculation of the temperature
field for arbitrary amplitudes z;. Let us first consider the linear model with
a constant-rate perfusion in each tissue. Then from (VIL.50) it can be seen
directly that Tj,. depends linearly on the distribution of the absorbed power
Q.. Hence, a superposition principle is valid:

Tine(1QM + Q) = a1 Tine(QLY) + 02 T1ne(Q) . (VIL51)
According to the representation (VIL.42) we get

Nchan

Tine(Qe) = Y 2} Tine(E} ) 21, (VIL52)
Gk=1

and finally for the whole stationary temperature distribution

Nchan
T(Z) =Tyas + > 2} Tine(E}Ex) 2k (VIL53)
jk=1

where Z is the vector of all z;. The temperature increments Tmc(E; E}) can be
derived from N2, . basic calculations combining two channels. Consequently,
for an arbitrary set of parameters z; the objective function can be computed
very fast. The same holds for the first and second derivatives of the finite

element solution T}, with respect to the parameters z;.

In the nonlinear case, relation (VIL.51) is no longer valid. Nevertheless, we can
fix the nonlinear perfusion terms with respect to a given intermediate state Z,
of all amplitudes. Then we utilize representation (VIL.52) as an approximation
in a neighborhood of Z,, to perform the minimization process. Doing so we get
a better Z,,+1 for which we solve the nonlinear heat equation. The arising per-
fusion W (T'(Z,+1)) is once again fixed and the optimization is done. Improving
successively the constant—rate model of the perfusion in such a way, we end up
with a nearly optimal adjustment of the parameters z; for the nonlinear model.

To start the optimization we calculate an initial optimized Z(()O) employing our
constant—rate perfusion model. Next we adjust the total power, i.e., we scale the
amplitudes of Z(()O) such that for the nonlinear model the maximum temperature
in healthy tissue does not exceed 44°C. Employing a damped Newton method
for the optimization, the whole iteration process reads as in Fig. VII.20. The
inner iteration is terminated if the objective function has changed by less than

0.02 within the last 10 iterations. To control the outer iteration we always
compute the new stationary temperature T(Zfﬂl) and compare it with the old
one. If the difference becomes small enough (less than 0.05°C), we stop the
optimization process.



§4] 3D: BIO—HEAT TRANSFER IN REGIONAL HYPERTHERMIA 99

Choose initial value Z(()O)

forn=0,1,...
Calculate stationary temperature T(Zr(LO))
Calculate W, := W(T'(Z"))
Calculate Tinc(EjEy), j,k = 1,..., Nchan, employing W),

for k=0,1,...
Digy
dzi Z:ZSC)’

Calculate Digy, := 1=1,2

Calculate AZ := —(D?q,)"'D'qp,
Find a9 € {1, %, %, ...} such that
an(Z) + 202 Z) < qu(Z87) + Sao D quAZ
Define Z\"t" .= ZM + apAZ
Finished?

0 k+1
Define Z\°), .=z
Finished?

Figure VII.20: Flow diagram of the whole optimization process.

§4.2. Simulation for Two Individual Patients

We report some data concerning optimization processes for two individual pa-
tients. The simulations were done for the Sigma 60 Applicator of the BSD 2000
Hyperthermia System which consists of eight radio frequency antennas grouped
in four antenna pairs. Each group can have its own amplitude and phase. Our
aim is to control four different complex values z;.

The patients have different tumor locations. Fig. VII.21 shows specific sagittal
and transversal sections of both patients where the contours of bone and tumor
are colored black and grey, respectively. It can be seen clearly that the tumor
of the second patient is strongly shielded by bones whereas the first tumor is
located in a more central position.

For both patients the optimization is completed after five outer iteration steps.
The corresponding values of the objective function g, and the maximum tem-
perature difference are shown in Tab. VIL.2. We state that the values of the
objective function are reduced by nearly the same factor 2/3.
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n 0 1 2 3 4 5
Patient 1 | ¢ | 1,732 1458 1,327 1263 1,229 1,214
16T |0 | - 35 07 0.8 0085 0.043
Patient 2 | g, | 4,264 2,743 2,796 2813 2819 2,823
16T |0 | - 32 03 015 0077 0.044

Table VII.2: History of objective function g, and maximal tempera-
ture difference during the optimization process.

In Fig. VIL.22 the convergence history of the vector z is presented. For
each outer iteration step all complex amplitudes z; are plotted as vertices of
a quadrilateral. We observe that the use of the nonlinear heat transfer model
leads to a more uniform adjustment of |z;| and to a slight reduction of the phase
differences. Moreover, the phases of the antenna pairs at the left and right of
the patient come successively closer. They can be identified in the diagrams as
neighbors of the channel with fixed phase zero. We observe a more symmetric
adjustment of the phases.

Let us now compare the optimized temperature distribution based on an adap-
tively improved spatial grid with the temperature field computed on the coarse
grid. Fig. VII.24 shows two cuts through the computational domain of the sec-
ond patient involving the tumor boundary to give an impression of the local
refinement process. The coarse grid contains 7,140 vertices (degrees of freedom
for the finite element solution), while the refined grid has 35,936 vertices. Start-
ing with the coarse grid two refinement steps are necessary to reach an accuracy
of 2%. The corresponding uniform grid would have about 420,000 degrees of
freedom which demonstrates the power of the proposed adaptive method.

Fig. VII.23 illustrates the influence of the adaptive mesh control on the adjust-
ment of the antenna pairs and the objective function. The optimization process
based on the coarse grid requests five outer iteration loops and reaches a max-
imum temperature difference ||07'||c = 0.03°C at g = 2,505. Comparing the
final value of the objective function with the value given in Tab. VIL.2 for the
fine mesh, ¢, = 2,823, the attained change ranges in the order of 10%. This
is also reflected by the adjustment of the applicator. The same difference can
be observed for the temperature increment 7T;,. with respect to coarse and fine
meshes. The local refinement controlled by a posteriori error estimates leads to
a better resolution of the solution in regions with high temperature gradients
and material transitions.
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Figure VII.21: Contours of tissue compartments in specific sagittal
(top) and transversal (bottom) sections. The location of tumors (grey)
with respect to bone (black) is shown for the first patient (left) and the
second patient (right).
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Appendix A:
Advanced Tools from Functional Analysis

§1. Gelfand Triple

Let X’ be a reflexive Banach space, densely and continuously embedded in a
Hilbert space H,

X—=>H.
The corresponding inner product will be denoted by (-, -) ;. The Hahn-Banach

separation theorem ([119], Theorem 3.4) shows that A can be densely embedded
into the conjugate dual space X’ of X,

Ho X =X".
Any such scale
X o Ho X

is called a Gelfand triple, or sometimes, a rigging of H. Defining the norm in
X' by

!
||ml||X’ = sup <x ,x>> ' € X' )
vex ||7llx

giving the dual conjugate pairing of the two spaces X' and X by (-,-) which is
conjugate linear in the second argument, we have

CHlellar < lzlln < Cllallx,  zeX
for some positive and moderate constant C'. Using density and uniform conti-

nuity arguments, the inner product (-, -) of H extends uniquely to a sesquilinear
form on X' x X,

(z',x) = lim (h,z)y, =€ X.

h—a'

105
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The extension can be considered as new representation of all ' € X”.

If X is additionally a separable Hilbert space then X’ is a separable Hilbert
space as well. In that case the Riesz representation theorem ([42], Chap. VI.1,
Theorem 10) shows that there is an unitary operator

R:X =X,
defined by
(z,Rz'y, = (2',z), 2'eX' zeX.
The inverse of R is given by the adjoint operator
R*: X = X',
which satisfies
(R*z,y) =(y,x)y, xE€X,yeX.

The map R will be called the Riesz representation map of the Gelfand triple
in the case of Hilbert spaces. If we wish, we can therefore identify the Hilbert
space X' with its anti—dual X",

§2. Sesquilinear Forms and Bounded Operators in
Hilbert Spaces

Let X and Y be two complex Hilbert spaces. A sesquilinear form on X' x ) is
defined as a mapping

(z,y) = a(z,y) € C

satisfying for A1, A2 € C the conditions

(1) a(hm+Xew2,y) = Ava(zy,y) + A a(zs,y),
(17) a(@, My + A2y2) = Avalz,y1) + A2 a(z, y2).
Thus the mapping is a linear form for y fixed and antilinear (or semi-linear)

form for z fixed. A sesquilinear form is continuous or bounded on X x Y if there
exists a constant C' > 0 such that

la(z,y)| < C llzllxllylly, zeX,yel. (A1)

Denoting by S(X x V), S(X) if Y = X, the set of all continuous sesquilinear
forms on A’ x ), this inequality allows us to define the norm |[|a||sxxy) of a by
the smallest constant C' in (A.1). We have the following
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Theorem A.1. There exists an isomorphism of S(X x Y) onto L(X,)) which
associates with a sesquilinear form a(z,y) the operator A € L(X,Y) defined by

(A:U,y>y=a(x,y), xeX:yey
and we have
Al zx,p) = llallsx xy)-

Proof. Applying Riesz’ theorem for z fixed, the mapping y — a(z,y) defines
Az € Y such that a(z,y) = (Rz,y)y,,y € Y. The mapping A is linear and
continuous. The converse follows immediately. d

Defining the adjoint sesquilinear form a* € S(Y x X) by

a*(y,r) = a(z,y), yeY,r X,

from Riesz’ theorem follows that there exists A* € £(), X) called the adjoint
of A such that

a*(y,l’):<A*y,Z’>X, yey,xEX.

Now let Y = X and X’ be the anti-dual of X', which we do not identify here with
X. We consider continuous sesquilinear forms on X x X’ and get the analogue
of Theorem A.1.

Theorem A.2. There exists an isomorphism of S(X') onto L(X,X') which
associates with a sesquilinear form a(x,y) the operator A € L(X,X') defined

by
(Az,y) = a(z,y), z,y€ X,
and we have

Al 2,2y = llallscx)-

To assume that A is an isomorphism of X onto X' we have to define an additional
property: The sesquilinear form a(z,y) € S(X) is said to be X-elliptic if it
satisfies

Re a(z,r) > al|z|/%, reX

with a real constant C' > 0.
We then have the well-known

Theorem A.3. (Lax—Milgram Theorem). Let a(z,y) € S(X) X—elliptic
and let A € L(X,X'") be the associated operator. Then A is an isomorphism of
X onto X’

Proof. See [42], Chap. V1.3, Theorem 7. 0
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§3. Unbounded Operators in Hilbert Spaces

In many situations, e.g., concerning evolution equations X —ellipticity of the
underlying sesquilinear form cannot be achieved. Here, the construction of a
Gelfand triple (see also §A.1)

X s Hoa X

with a second Hilbert space H is very useful. The sesquilinear form a(z,y) €
S(X) is said to be X —coercitive (with respect to #H) if there exist k9 € R and
a > 0 such that

Re a(z,z) + /io||a:||§{ > a||a;||3g, reX.

As a direct consequence we observe that the sesquilinear forms a(z,y) + &(z, y)
are X—elliptic for all K > k. The theorem of Lax—Milgram shows the existence
of associated operators A, € L(X,X") which are isomorphisms of X onto X'.
That means, if we take z € H, there is a unique y € X such that A,y =z € H.
Defining the domain of A, by

D(Ag) =AM (H)={z eH : Az eH}

we can consider A, restricted to D(A,) as an unbounded operator in H. The
Lax—Milgram theorem states that this restriction is an isomorphism of D(A,)
onto H.

Usually, the situation is the following: Given an unbounded operator A with
domain D(A) in a Hilbert space H, one wishes to extend this operator to an
isomorphism of X' onto X' associating with it a sesquilinear form on X x X.

We do not dwell further on this question here, and refer for a deeper study to
Karo [81].

84. Analytic Semigroups

A linear operator A in a complex Banach space X is called sectorial if it is a
closed densely defined operator and there are constants ¢ € (0,7/2), M >0, and
a € R such that the sector

Saw={\€C : ¢ <larg\~a) <7, A #a)

contains no part of the spectrum of A4, and

B M
(A —A) 1||L(X) < m; A€ Sap-

Denoting by p(A) the resolvent set of A, we get for a sectorial operator S, 4 C
p(A). The angle of the section S, ¢ is 2 — 2¢ > 7. Note, the above definition
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is very general such that many elliptic boundary value problems define sectorial
operators.

A family {S(t)}+>0 of elements S(t) € L(X) forms an analytic semigroup in X
if

) S(0) = I, the identity;

(i) S(t+s)=2S(t)S(s), s>0,t>0, the semigroup property;
i)  S(t)x —wzast— 0" forall z € X;

) t — S(t)x is analyticon 0 <t < oo for all z € X' .

The infinitesimal generator G of this semigroup is defined by

Gz = lim l(S(t)a} — )

t—0+ ¢

and has a domain containing all 2 € A" for which the limit exists in X

Analytic semigroups are generated by sectorial operators. We have ([74], The-
orem 1.3.4)

Theorem A.4. A is a sectorial operator, iff —A is the infinitesimal generator
of an analytic semigroup {e~4t};>¢, where

e At = L (A + A)~teMdN .
2mi r
Here, T' is a contour to the right of the spectrum o(—A) with arg A\ — +6 as
|A| = oo, for some 6 € (w/2,7). The semigroup is differentiable for t >0 and
can be extended analytically into a domain A, = {z € C : |arg z| < g,z # 0}
containing the positive real axis. If e a(A) > a, we get for t>0

lle™ || gy < Ce™,

and J o
— At _ — At —at
||%€ leexy =1l — Ae” ]z < 7€

for some constant C'.

Multiplying the semigroup {e*At}tzg by e~“! with some appropriate positive w,

we get an uniformly bounded aanalytic semigroup generated by the operator —A
with A = A+ wl and 0 € p(A4). This translation does not affect the possibility
of extending the analytic semigroup into some sector A.. Moreover, ||S(z)]| is
uniformly bounded in every closed subsector A, = {z € C: |arg z| < &' < €}.

The property of —A to be the infinitesimal generator of a bounded analytic

semigroup is equivalent ([110], Theorem 2.5.2) to the existence of constants
0 € (0,7/2) and M >0 such that
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p(—/i)DEg:{AE(C:|arg)\|<g+6}u{0},
and

- M
N+ A) gy < R AEXs.

If X5 includes a whole neighborhood of zero, a sometimes stronger inequality
with My > M is valid ([43], Chap. XVIIL.6, Theorem 1)

- M
I + A) Y gexy < — AEZs.

T 1+ A

Setting for a>0

j R — /Oo tote=At gy
I'(a) Jo ’

which is a bounded linear one—to—one operator on X, fractional powers of the
operator A are defined by the inverse of A~¢,

A= (A"t a>0.
Additionally, we set A* = I for o = 0. Some simple properties of A are

(i

(ii

~

A% is a closed densely defined operator on X';
a > B> 0 implies D(A%) c D(4°);
(i1 AotB = 4248 = AP A® on D(A) where v = max(a, 8, a + );

(iv

)
)
)
) Ave=At = =4t jo o D(AY),t > 0.

§5. Vectorial Functions Defined on Real Intervals

Let V be a Banach space and Q C R? be a bounded open set. Functions
dependent on x € Q and ¢t € (0,7") will be treated as functions of ¢ with values
in V(Q) ([43], Chap. XVIII, §1). Then, L?(0,T;V) stands for the Lebesgue-
Bochner space of L2-summable functions on (0,7') which have values in V.
Equipped with the norm

T 1/2
loll o7y = ( / ||v<t>||%;dt)
0
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where dt is the Lebesgue measure on (0,7, the space L2(0,T;V) becomes a
Hilbert space whenever V is a Hilbert space.

We further define Sobolev spaces
HY(0,T;V) := {v | dJv e L*(0,T;V),j =0,...,q}

with the norm

L , 1/2
vl a0, 70y = </ ||5tjv(t)||$,dt> )
)3

q
j=0
If V is a Hilbert space, so is the space HY(0,T'; V). Here, all partial derivatives

Btj v have to be understood in the distributional sense. Clearly, H°(0,7;V) =
L%(0,T; V).

To describe continuity in time we introduce the space C°([0,T];V) consisting
of all functions v which are continuous in ¢ in the norm of V, that is, such that
llo(-, ¢+ 6t) —v(-,t)|]y — 0 as 6t — 0 for all ¢ € [0,T]. C°([0,T]; V) is a Banach
space equipped with the norm

llvllcoo,r7;v) = sup  |lv(@)[ly -
0<t<T

The preceding definition can be generalized to functions which, together with
all time derivatives of orders <gq, are continuous in ¢ in the norm of V. We set

C1([0,T); V) :== {v | 8v e C°([0,T);V),j =0,...,q}

provided with the norm

q

V|| e — su ot .
vllcaqomy) = D oS, 10/ v(®)[|v

=0

We also use the shorthand notation L?(V), H/(V), and C}(V) for the above
spaces.

Let us recall one important fact.

Theorem A.5. The space H(0,T;V), q > 1, is continuously embedded in
caH([0, T]; V).

Proof. For ¢=1, the embedding follows directly from Theorem 3.1 [92], setting
X=Y=V,m=1,a=0,and b =T. The general result is then obtained by
induction with respect to gq. d
We mention that there are stronger identifications available considering abso-
lutely continuous functions ([19], Theorem 2.2).
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Appendix B:

Consistency and Stability of Rosenbrock

§1.

Methods

Order Conditions

The order of consistency describes how rapidly the local error of an integration
method tends to zero for a decreasing step size. Formal Taylor expansion of
the local error leads to order conditions for the coefficients of the Rosenbrock

methods given in (II.18).

The procedure is conceptually simple, but needs

special care because the resulting expressions become quite lengthy for higher
order. The conditions for order p<4 are:

(B.1)

p=1 S bi=1,
p=2 Zik:l biBir, = %,
p=3 i bia? =1,

35 ki biBik B = -
p=4 i biad =1

s 2 __ 1
Zi,k,l:l biaikﬂklai =3
St DBk = 7y
ik, l,m=1 YibikklCkm — T3

Zik,hm:l biBir BriBim = 55 -

For higher order conditions we refer to [72].

§2. The Stability Function

The s-stage Rosenbrock method (IL.18) applied to the scalar equation y' = \y

yields after one step with 7>0

y1 = R(TA)yo

113

(B.2)
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with the so—called stability function
R(z) =1+ 20" (I — 2B)'1.
In general R(z) becomes a rational function of the form

P(z)

HE =1

where P is a polynomial of degree <s. If the method is of order p, we have

e — R(z) = C2"™ + O(2P*?)  for z = 0,

showing that R(z) is a rational approximation to e*. Properties of stability
functions have been extensively studied [105, 149].

We call an integration method A-stableif |R(z)| <1 for arbitrary z=7A\, Re(A) <
0. Then, the solution process in (B.2) is stable in the sense that the damping
property of the solution operator e’ is correctly reflected. Stiff components with
A << 0 will be damped out much faster if we additionally require R(c0)=0, the
condition of L—stability. Rosenbrock methods with good stability properties can
be constructed for p<s without any difficulties.

§3. The Property ”Stiffly Accurate”

PROTHERO and ROBINSON [114] proposed to study the model problem

y' =Xy — () +¢'(t)

with the solution

y(t+7) = (y(t) — (1) + Yt + 7).

When solving stiff differential equations we are mainly interested in step sizes 7
which are much larger than |A|~!. Prothero and Robinson therefore suggested to
investigate the error behaviour of an integration method for the above equation
when simultaneously 7 — 0 and Re(A7) — —oo. In this case we observe y(¢ +
7) = ¥(t + 7). A Rosenbrock method handles this particular transition to
infinite stiffness and yields asymptotically exact results if the parameters satisfy

asi+7vi=b; (i=1,...,5) and as;=1. (B.3)

This result was shown by HAIRER and WANNER [72] who call such methods
stiffly accurate. There it is also argued that stiff accuracy is advantageous when
solving stiff differential-algebraic equations. It can be shown that (B.3) implies
R(00) =0 automatically.
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Although unbounded differential operators are strongly related to infinite stiff-
ness, the virtue of stiff accuracy for general nonlinear PDEs is not clear. An
interesting interpretation is given in [122] which can be adopted to our formu-
lation (I1.18) as follows. We easily derive with (B.3)

K?"ls = F(thrl: Kns) + Fu(tmun)(un+1 - Kns);
and assuming that the Jacobian is invertible, we get further
Un+1 = Fu(tnaun)_l(K;zs - F(tTH-la Kns)) + Kns'

This equation can be interpreted as the result of one modified Newton iteration
applied to

K;Ls _F(tay) = 07

with starting value K,s;. The authors argue now that if K, is a sufficiently
good starting guess and K . is close to a true derivative then the Rosenbrock
solution uy41 is an approximation of a collocation equation - a property which

seems desirable.
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Function Spaces

Q

X

Cck(Q, X)
Cc*(9Q)
CF(X)
LP(Q, X)
LP(Q)
LY(X)
H*(Q,X)
H* ()
Hi(X)

o+

Linear Operators

A
D(A)
o(A)
p(A)
Aa

Operator Spaces

X,y
L(X,))
£(x)
XI

Table of Notations

domain in R¢

Banach space

k—times continuously differentiable functions f: Q2 — A,
all derivatives have a bounded maximum norm
C*(Q, R)

C*([0,T], X)

Lebesgue—Bochner spaces, Appendix A
LP(Q,R)

L?(0,T;X)=L*((0,T),X)

Sobolev spaces, Appendix A

H(Q,R)

H*(0,T;X)=H*((0,T), X)

linear operator
domain of A
spectrum of A
resolvent set of A
fractional orders of A

topological vector spaces

bounded linear operators from X" to )
L(X,X)

dual space of X
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