
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

RUDOLF BECK

Graph-Based Algebraic Multigrid
for Lagrange-Type Finite Elements

on Simplicial Meshes

Preprint SC 99-22 (July 1999)

Graph-Based Algebraic Multigrid

for Lagrange-Type Finite Elements

on Simplicial Meshes

Rudolf Beck

Abstract

We present an algebraic multigrid preconditioner which uses only
the graphs of system matrices. Some elementary coarsening rules
are stated, from which an advancing front algorithm for the selec-
tion of coarse grid nodes is derived. This technique can be applied
to linear Lagrange-type finite element discretizations; for higher-
order elements an extension of the multigrid algorithm is provided.
Both two- and three-dimensional second order elliptic problems can
be handled. Numerical experiments show that the resulting conver-
gence acceleration is comparable to classical geometric multigrid.

Key words: Algebraic multigrid, mesh coarsening, preconditioning

AMS(MOS) subject classifications: 65N55, 65F10

1 Introduction

During the past decades multigrid methods have come up as efficient tools for the
numerical solution of partial differential equations. They mainly rely on sequences
of nested grids endowed with appropriate transfer or interpolation operators. The
grids are often obtained by the successive refinement of an initial mesh. As long
as the system matrix belonging to the latter one can be factorized, e.g. by a
direct sparse matrix solver, multigrid methods may be vastly superior to any
other solution technique.

However, in many situations the initial mesh may be quite large due to the com-
plicated structure of the domain to be discretized. So it is desirable to construct
grid families by taking the opposite direction, i.e. coarsening the initial mesh in
subsequent steps until a basic grid with a small number of unknowns is obtained.
As such procedures mainly rely on the matrix of the linear equation system, the
name algebraic multigrid has been assigned to them.

Meanwhile a considerable amount of research has been done in this field [5, 6] and
a large variety of numerical problems has been tackled. The resulting algorithms
are often very sophisticated and based on quite different approaches, like matrix-
weighted interpolation methods [7, 9, 14], incomplete LU-factorization [1, 2], or
aggregation [3, 10, 11]. In most schemes the values of the matrix entries are taken
into account for mesh coarsening and grid transfer.

In our approach we simply use the matrix graphs for coarsening. In the context
of linear nodal finite elements it is quite obvious that the graph defined by the
system matrix of a problem resembles the geometric structure of the respective
finite element discretization. The diagonal entries of the system matrix are the
nodes of the graph, representing the vertices of the mesh; off-diagonal matrix
entries contribute the edges.

The basic idea of our coarsening algorithm is to select a favourably distributed
subset of the grid (or matrix) nodes, which are to become the nodes of the coarse
grid. A simple, quasi-linear interpolation will be employed for the grid transfer.
The scheme works both in two and three space dimensions. On regular grids
with homogeneous materials the algebraic preconditioner operates in a way very
similar to classical geometric multigrid.

The extension to applications where several degrees of freedom are located at each
mesh vertex is quite straightforward if the different species are approximated by
the same shape functions. However, it is evident that the proposed algorithm
cannot cope efficiently with strongly anisotropic media, as no matrix information
with regard to directed coupling strength is exploited.

2

2 Creation of Nested Finite Element Spaces

Suppose that we have a grid, say on level l, and a coarser one on level l−1. If the
associated finite element spaces are nested, i.e. V l−� ⊂ V l, then we can set up an
interpolation or prolongation operator P l which leaves any function ul−� ∈ V l−�

invariant after the transfer P l : V l−� → V l. In matrix-vector notation we write

ul
i = P l

ij u
l−�

j (1)

with the subscripts i and j denoting the coefficients of the vectors.

Equivalently we may say that each finite element basis function ϕ l−�

k of the coarse
space is defined by a linear combination of fine grid basis functions:

ϕl−�

k =
(
P l
km

)
T ϕl

m . (2)

The superscript T denotes the transpose. On claiming invariance for any linear or
bilinear form after a coarse-to-fine transfer of vectors, some basic algebra reveals
that the coefficients rlm of a linear form defined in V l (i.e. of a right-hand-side
vector in algebraic notation) are restricted to V l−� by

rl−�

k =
(
P l
km

)
T rlm . (3)

The coefficients of bilinear forms are related by the so-called Galerkin product

Al−�

ij =
(
P l
ik

)
T Al

km P l
mj . (4)

In the context of classical multigrid the operator P T is called the canonical re-
striction [8].

Thus in principle a nested, purely algebraic coarsening scheme can be devised
by defining suitable coarse grid functions via eq. (2) and applying this procedure
recursively until a space of sufficiently low dimension is created, where an exact
solution can be obtained at low numerical cost. By utilizing eq. (1), (3), and
(4) a multigrid algorithm working on a sequence of nested spaces is obtained.
However, the basic question remains: how can we construct transfer operators P l

that provide a good numerical performance?

3 The Coarsening Algorithm for Linear Ele-

ments

In a first step we will present a scheme for linear nodal elements. The case of
higher-order elements will be discussed in the following section.

3

Like in a classical multigrid algorithm, we rely on the concept of smoothing (which
will be done in our case by Gauss-Seidel relaxation). The motivation for our
coarsening algorithm stems from the following demands:

(a) The number of unknowns should be reduced substantially in every coarsen-
ing step.

(b) The coarse grid matrices should preserve the sparsity pattern of the fine grid
matrix, that is, coarse grid basis functions should retain a local support and
a restricted overlap with neighbouring ones.

(c) If we assume that we had an exact coarse grid solution, then, after the grid
transfer, a relaxation sweep on the finer grid should efficiently reduce the
high-frequency components of the error.

(d) Coarse grid solutions should remain smooth after a coarse-to-fine grid trans-
fer.

It is obvious that (a) and (b) are essential requirements for keeping the number
of entries small in coarse grid matrices. Otherwise each smoothing step might
become unbearably costly on coarse grids. With requirements (c) and (d) we
try to guarantee an efficient action of a smoother, which typically tackles only
high-frequency components of the error. Furthermore, (d) implicitly claims that
the smoothness of basis functions should increase on coarsening, thus yielding
equation systems with smaller condition numbers.

Guided by the above demands, we have devised the following coarsening strategy:

On any given grid, the nodes will be divided into two disjoint sets: the master
nodes, which are to become the nodes of the coarse grid, and the slave nodes,
which will be dropped. There are three rules for the selection of master nodes and
the definition of the coarse-to-fine transfer operator P :

(1) No master node may be directly connected to another master node (two
nodes i and j are connected, if there exists a matrix entry aij).

(2) There should be as many master nodes as possible.

(3) The values of all master nodes are transferred with weight 1. The value
for a slave node s is interpolated from the ns master nodes it is connected
to, where each master node contributes with weight �

ns
(examples are given

below).

Remark: Of course, all nodes not declared to be masters will be slave nodes. An
exception appears on the finest grid, where the nodes on Dirichlet boundaries are
not taken into consideration.

4

Rules (1) and (2) are aimed at satisfying the requirements (a) to (c). The master
nodes are dispersed in a quasi-uniform manner on the grid, thus trying to imitate
geometric coarsening (at least on regular meshes). Each slave node is coupled to at
least one master node, which is essential with regard to (c). With rule (3) we try
to maintain the smoothness claimed in requirement (d); in particular on regions
with constant solution the transfer is exact. Thus the kernel of the gradient is
preserved.

We do not aim at an algorithm that satisfies rule (2) exactly; this might become
a too costly procedure. Instead, we will be content with a scheme that achieves
a nearly optimal distribution of the master nodes. So we present an “advancing
front” algorithm, which proceeds by examining the immediate neighbours of the
nodes at the present front:

The coarsening algorithm for selecting master and slave nodes on a grid:

We denote by N the set of all nodes of the grid, i.e. of the matrix graph. Dirichlet
nodes are not taken into account. M is the set of master nodes and S the set of
slave nodes. Nodes neither in M nor in S form the set of remaining nodes R.

(1) Pick one node i of the grid, which will become the first master node:
M = { i }. Set S = { } and R = N \ { i }.

(2) Pick all those nodes of R which are coupled to a node in M or S.
These nodes form a temporary set F called the active front:
F = {f�, . . . , fn}, R← R \F .

(3) Subsequently determine the status for the nodes fi ∈ F :

– if fi is connected to any node in M , move it to the set of slave nodes:
S ← S ∪ {fi} , F ← F \ {fi} .

– otherwise fi is to become a master node:
M ←M ∪ {fi} , F ← F \ {fi} .

(4) Repeat steps (2) and (3) until R is empty.

Two examples are shown in figure 1. For the regular grid on the left hand side the
algorithm has produced a master node distribution which is equivalent to regular
geometric coarsening. Here the interpolation weights for all slave nodes are �

�
.

If we retain the numbering of the master nodes (as shown in figure 1) on the
coarse grid, the prolongation matrices for our examples read

5

7

9

9

876

5

43

1 2
4

5

6

3

1

8

master node

2

slave node

Figure 1: Distribution of master and slave nodes on a regular two-dimensional grid

(left) and an unstructured one. For practical reasons, the lowest numbers have been

assigned to the master nodes, which will be retained on the coarse grid (observe that in

principle the numbering is arbitrary).

Preg =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
�

�

�

�
0 0

�

�
0 �

�
0

0 �

�

�

�
0

0 �

�
0 �

�

0 0 �

�

�

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; Punstruct =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
�

�

�

�
0

1 0 0
�

�

�

�

�

�

0 0 1

0 �

�

�

�

0 �

�

�

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:

The extension to systems of equations, where several degrees of freedom (hence-
forth called species) are located at each node, is straightforward. In this case only
one species is chosen for the selection of master and slave nodes; all entries of the
matrix which connect it to another species are neglected. The resulting transfer
operator is then applied to all species in the same manner. This technique keeps
the storage requirements for the transfer operators small, too.

We remark that for systems it may be advisable to employ Block-Gauss-Seidel
smoothing, where each block is formed by all the species residing at a particular
grid vertex.

6

4 Algebraic Multigrid

Now we are able to formulate a recursive algebraic multigrid preconditioner for
linear elements. It is constructed in a symmetric manner, using a V-cycle with
varying numbers of smoothing steps on the different levels. Numerical experiments
show that increasing the number of smoothing steps nl on coarser levels l may
improve the performance. On the fine grid, we smooth just once and increase nl

by one on every subsequent coarser grid, i.e. if L denotes the finest level, nl is
given by nl = L− l + 1.

We stop coarsening if the number of unknowns is below 500. The coarsest level
is called level 1; on this level the system matrix is factorized by sparse LU-
decomposition. All coarse grid matrices are computed by the Galerkin product (4).

AMG(Al, xl, rl) : V-cycle for an approximate solution of Alxl = rl

(linear elements)

(1) Pre-smoothing: relax nl times with forward Gauss-Seidel on Alxl = rl

(2) Restrict new residual: rl−� ← (
P l

)
T (rl − Alxl)

(3) If l − 1 = 1: solve A�x� = r� by forward-backward substitution

else : xl−� ← 0, call AMG(Al−�, xl−�, rl−�)

(4) Prolongate coarse grid solution: xl ← xl + P l xl−�

(5) Post-smoothing: relax nl times with backward Gauss-Seidel on Alxl = rl

Extension to elements of higher order:

In this case the fine grid matrix becomes denser and the associated graph more in-
tricate. Appropriate transfer operators now should interpolate with higher-order
polynomials, otherwise local information may be lost. As this appears to be a dif-
ficult task, we simply propose an initial restriction to the space of linear elements,
where the above procedures can be applied without any alteration. At least for
quadratic elements, such a procedure should not suffer much deterioration.

If hierarchical elements are employed, the additional overhead becomes minimal.
Here the adequate transfer operation between linear and higher-order space is
mere injection; i.e. for (1), (3), and (4) only the vector and matrix entries belong-
ing to the linear space have to be copied.

In the following we use the superscripts H for the entities of the higher-order
space and L for the space of linear elements, which both “live” on the finest grid.
The associated transfer operator is denoted by PH : V L → V H . The complete
preconditioner now reads:

7

AMG H (AH , xH , rH) : V-cycle for AHxH = rH (higher-order elements)

(1) Pre-smoothing: relax nH times with forward Gauss-Seidel on AHxH = rH

(2) Restrict new residual to linear space: rL ← (
PH

)
T (rH −AHxH)

(3) xL ← 0, call AMG(AL, xL, rL)

(4) Prolongate linear solution: xH ← xH + PH xL

(5) Post-smoothing: relax nH times with backward Gauss-Seidel on AHxH = rH

The number of smoothing steps nH should be chosen with regard to the order of
the space. In all our numerical experiments with quadratic elements nH = 1 gave
the best results.

5 Numerical Examples

In this section we present some numerical examples for problems in two and
three space dimensions. The initial triangulations of the domains are refined ei-
ther uniformly or adaptively in order to demonstrate the performance of the
algebraic multigrid preconditioners both on regular and unstructured grids. We
use a conjugate gradient algorithm for the basic solver, which is endowed with
three different preconditioners:

– SGS : single-level symmetric Gauss-Seidel relaxation

– MG : geometric multigrid
(symmetric V-cycle with one pre- and one post-smoothing step)

– AMG: algebraic multigrid (AMG and AMG H, respectively)

In all computations the guess for the initial solution is u = 0. The iteration is
terminated if the euclidian norm of the residual has dropped by ten orders of
magnitude, i.e.

| r |
| r� | < 10−�� .

In the first two columns of our tables below we list the refinement levels of the grids
and the corresponding numbers of nodes (level 1 is assigned to the initial grids).
Furthermore, the total iteration counts and the processor times are given. For the
AMG-preconditioners also the numbers of levels created by algebraic coarsening
and the respective setup times are listed in brackets. In the setup phases most
time is spent in the Galerkin procedures required for computing the coarse grid
matrices.

8

In exp. 1 and exp. 4 calculations with hierarchical quadratic shape functions
are included. Here the extended version AMG H is employed, the smoothing
parameter nH is set to 1. The very like restriction to the linear space is used
for the geometric multigrid preconditioner, too.

Exp. 1: Heat conduction on a domain with large jumps in the
material coefficients

We consider the domain Ω = [0, 1]�, where we solve the equation

∇ (
κ(x)∇u) = 1

with homogeneous Dirichlet boundary conditions. We split the domain into two
disjoint sub-regions Ω� and Ω�; Ω� is defined by Ω� = [0.25, 0.75]� \ [0.375, 0.625]� .
The conductivity κ is given by

κ(x) =

{
1−� on Ω�

1.0 on Ω�

,

thus Ω� forms a rectangular ring with very low conductivity.

We solve the problem thrice: in the first run, grids with different mesh spacings are
created by uniform refinement. Next we use adaptive refinement; the initial and
an adaptively refined grid are shown in figure 2. Finally, elements with quadratic
shape functions are employed. The results are listed in the tables 1 to 3.

Figure 2: Initial and adaptively refined grid of exp. 1.

9

Level Nodes #Iter CPU [sec]

SGS MG AMG (Levels) SGS MG AMG (Setup)

5 4161 155 13 16 (3) 1.0 0.2 0.3 (0.1)
6 16513 391 14 18 (4) 13.6 1.2 1.7 (0.3)
7 65793 781 14 21 (5) 130 5.2 8.8 (1.2)
8 262657 1558 15 24 (6) 1040 26.9 42.8 (4.8)

Table 1: Iteration counts and CPU-times for exp. 1 on quasi-uniform triangulations.

Level Nodes #Iter CPU [sec]

SGS MG AMG (Levels) SGS MG AMG (Setup)

6 1925 101 10 19 (2) 0.3 0.1 0.1 (0.1)
8 7595 174 11 18 (3) 2.5 0.8 0.7 (0.3)
10 29686 318 11 22 (4) 23 4.5 4.3 (0.8)
12 116153 628 12 25 (5) 190 24 21 (2.8)

Table 2: Results for exp. 1 on triangulations created by local mesh refinement.

Level Nodes #Iter CPU [sec]

SGS MG AMG (Levels) SGS MG AMG H (Setup)

5 2081 62 28 20 (2) 0.3 0.3 0.2 (0.03)
7 8797 108 31 22 (3) 2.7 1.9 1.1 (0.07)
9 36609 186 29 22 (4) 23 9 5.2 (0.25)
11 149633 364 29 22 (4) 189 43 23 (1.1)

Table 3: Exp. 1 with quadratic elements (triangulations created by local mesh refine-

ment).

10

As to be expected, the solver with plain SGS-preconditioning deteriorates in
all test cases. The geometric multigrid preconditioner remains practically sta-
ble, whereas AMG exhibits a slight increase of iteration counts in the first two
runs.

As table 2 reveals, the algebraic scheme matches the geometric multigrid in the
adaptive case with regard to cpu-time, although it requires more iterations. This
is due to the fact that only few coarse grid levels are created, whereas MG has to
cope with a substantially higher number of geometric levels. The applied technique
of local smoothing cannot alleviate this drawback of MG.

This behaviour is even more apparent for hierarchical quadratic elements (table 3):
the algebraic multigrid preconditioner is clearly more efficient. Looking at the
iteration counts, we may conclude that the restriction to the linear space affects
the convergence behaviour of MG worse than AMG. We have no explanation for
this effect. Note that the setup time for AMG is practically negligible here, as
there are substantially fewer numbers of unknowns in the linear spaces where the
algebraic coarsening is carried out.

Exp. 2: Skin effect at high frequency

In our second experiment we solve the stationary skin-effect equation, which mod-
els the penetration of magnetic fields in a conductor at high frequencies. The
problem is formulated in terms of the complex magnetic vector potential A. We
consider the two-dimensional case, where only the z-component of A has to be
taken into account [12]:

∇Az(
1

μ
∇Az) − i 2πνσ Az = jz .

Here μ denotes the magnetic permeability, i the imaginary unit, ν the frequency,
and jz an impressed current density. We use the domain of the first experiment.
The region Ω� defines the conducting material, where we assume an electric con-
ductivity σ = 10� and to which we assign a current density jz = 1. The remaining
area is filled by some dielectric material; on the total domain Ω the permeability
μ is set to 1. The applied frequency is ν = 1. Contrary to the first experiment, we
now encounter a situation with a jump of material coefficients in the mass term.

For the given parameters, the penetration depth is very small compared to the
thickness of the conductor (region Ω�). As the grids are constructed adaptively in
our computations, we obtain triangulations with strongly local refinement along
the outer conductor edges. Plots of a refined mesh and the contours of Az are
shown in figure 3.

11

Figure 3: Adaptively refined grid of Exp. 2 (left) and contour lines of the vector poten-

tial Az.

Level Nodes #Iter CPU [sec]

SGS MG AMG (Levels) SGS MG AMG (Setup)

6 1125 47 8 12 (2) 0.22 0.14 0.12 (0.18)
8 7233 128 10 19 (3) 4.5 1.5 1.7 (0.37)
10 37345 279 11 18 (4) 60 9.4 9.7 (1.1)
12 166674 612 11 23 (5) 590 55 59 (4.2)

Table 4: Iteration counts and CPU-times for exp. 2 (adaptively refined triangulations).

Looking at the results of table 4, we encounter a situation similar to the one
documented in table 2 of the previous experiment. Although AMG needs more
iterations, its overall performance is comparable to MG. The explanation given
above applies here as well.

Exp 3: Helmholtz equation

In this experiment we consider the stationary scalar wave equation

Δu+ k� u = f . (5)

Here k = �π
c
ν is the wave number, c denotes the phase velocity, and ν the fre-

quency.

12

It is well-known that the arising indefinite equation systems are also a challenge
for classical multigrid methods. As modes with negative eigenvalues cannot be
tackled by smoothing iterations, it is essential to resolve them on the coarsest
grid [4]. If this condition cannot be fulfilled, a smoother which only works with
the elliptic part of the equation (the Laplacian in eq. (5)) may be employed which
is able to cope with the positive spectral modes [13].

We solve (5) on the unit square with homogeneous Dirichlet boundary conditions.
The values for the above coefficients are c = 1 and f = 1 on the whole domain; the
frequency ν is set to 3. Plots of the initial grid and the solution are displayed in
figure 4. By uniform refinement we produce a sequence of regular grids; adaptive
refinement does not make much sense for this problem.

In a first run we factorize the system matrices on the coarsest grids both for
geometric and algebraic multigrid. These coarse grids comprise approximately
500 nodes (observe that on regular meshes algebraic coarsening is very similar
to the geometric case). As the results in table 5 reveal, the negative modes are
resolved quite well. Both for MG and AMG the convergence rates are stable; the
plain SGS scheme deteriorates with each additional refinement level.

Figure 4: Exp. 3: Grid and solution for the Helmholtz equation.

In order to simulate a situation where the coarse grids do not resolve the negative
eigenmodes (or are too large for factorization), we carried out a second run. Now
all preconditioners rely only the elliptic part of equation (5). Table 6 shows the

13

Level Nodes #Iter CPU [sec]

SGS MG AMG (Levels) SGS MG AMG (Setup)

2 2113 218 19 26 (2) 0.7 0.16 0.18 (0.1)
3 8321 405 21 31 (3) 5.9 0.75 1.27 (0.2)
4 33025 752 22 31 (4) 57 3.9 5.9 (0.6)
5 131585 1385 20 31 (5) 460 15 27 (2.3)

Table 5: Iteration counts and CPU-times for exp. 3 (Helmholtz equation). The coarse

grid matrices are factorized (MG and AMG).

Level Nodes #Iter CPU [sec]

SGS MG AMG (Levels) SGS MG AMG (Setup)

2 2113 226 100 108 (2) 0.75 0.86 0.88 (0.1)
3 8321 407 104 109 (3) 6.2 4.4 4.5 (0.2)
4 33025 752 106 107 (4) 59 20 21 (0.6)
5 131585 1409 106 106 (5) 465 86 90 (2.3)

Table 6: Exp. 3 revisited. Here only the elliptic part of the system matrix is employed

for smoothing.

effects: SGS is nearly unaffected, whereas both multigrid preconditioners yield
substantially worse convergence rates. However, they remain fairly stable and are
still superior to SGS for large node numbers.

Exp. 4: Three-dimensional region with a crack

In this example we solve Laplace’s equation Δu = 0 on a domain with a crack.
Dirichlet boundary conditions are prescribed at the upper and lower fronts above
the crack as indicated in figure 5. The remaining boundaries are subject to ho-
mogeneous Neumann conditions. The angle of nearly 360◦ along the crack is
accountable for a solution with singular behaviour.

Like in our first experiment we solve the problem both with uniform and adaptive
mesh refinement. A third run employs hierarchical quadratic elements. The results
are shown in the tables 7 to 9.

For the sequence of regularly refined grids, the results are comparable to those
of exp. 1. However, as it is typical for the three-dimensional case, substantially
more unknowns must be encountered until multigrid preconditioners show up
considerably faster than single-level smoothers.

14

u = 1

u = 2

Figure 5: 3D-region with crack (Exp. 4): structure with applied boundary conditions
(left) and cross-section of an adaptively refined grid.

Level Nodes #Iter CPU [sec]

SGS MG AMG (Levels) SGS MG AMG (Setup)

5 9537 80 14 15 (3) 2.3 0.84 1.1 (0.5)
6 70785 150 15 19 (4) 40 8.0 12.6 (4.1)
7 545025 298 15 22 (5) 943 91 172 (37)

Table 7: Exp. 4 on uniform triangulations (3D-domain with a crack).

Level Nodes #Iter CPU [sec]

SGS MG AMG (Levels) SGS MG AMG (Setup)

7 9100 71 15 17 (3) 2.0 1.5 1.1 (0.5)
8 27311 102 16 17 (3) 10 6.0 4.0 (2.1)
9 82522 137 16 19 (4) 44 21 15 (4.8)
10 246172 193 17 20 (4) 195 77 51 (16)

Table 8: Exp. 4 on adaptively created triangulations (3D-domain with a crack).

15

Level Nodes #Iter CPU [sec]

SGS MG AMG (Levels) SGS MG AMG H (Setup)

5 6857 45 26 26 (2) 1.6 1.7 1.7 (0.1)
6 30397 65 25 26 (3) 12.2 8.7 8.6 (0.3)
7 154360 106 26 26 (3) 111 52 49 (1.9)
8 763870 174 25 26 (4) 951 266 260 (8.5)

Table 9: Exp. 4 with hierarchical quadratic elements (adaptively created triangulations

are used).

A difference with regard to exp. 1 can be observed in the adaptive cases: for
linear and quadratic elements MG and AMG now exhibit similar convergence
rates. Without presenting detailed results, we remark that there is no significant
change if jumps in the material coefficients are introduced. Thus we assume that
the singular solution along the crack is responsible for the specific behaviour of
MG and AMG in this experiment.

References

[1] R.E. Bank and C. Wagner. Multilevel ILU decomposition. Numer. Math.,
82, pp. 543-576, 1999.

[2] R.E. Bank and J. Xu. The hierarchical basis multigrid method and incom-
plete LU decomposition. In D. Keyes and J. Xu, editors, Seventh Interna-
tional Symposium on Domain Decomposition Methods for Partial Differential
Equations, pp. 163-173, AMS, Providence, Rhode Island, 1994.

[3] D. Braess. Towards algebraic multigrid for elliptic problems of second order.
Computing, 55, pp. 379-393, 1995.

[4] J.H. Bramble, D.Y. Kwak, and J.E. Pasciak. Uniform convergence of multi-
grid V-cycle iterations for indefinite and nonsymmetric problems. SIAM J.
Numer. Anal., 31(6, pp. 1746-1763), 1994.

[5] A. Brandt. Algebraic multigrid theory: the symmetric case. Appl. Math.
Comput., 19, pp. 23-56, 1986.

[6] A. Brandt, S.F. McCormick, and J.W. Ruge. Algebraic multigrid (AMG) for
sparse matrix equations. In D.J. Evans, editor, Sparsity and its applications,
pp. 257-284, Cambridge University Press, Cambridge, 1985.

16

[7] Qianshun Chang, Yau Shu Wong, and Hanging Fu. On the algebraic multi-
grid method. J. Comp. Phys., 125, pp. 279-292, 1996.

[8] Wolfgang Hackbusch. Iterative Solution of Large Sparse Linear Systems of
Equations. Springer, Berlin, 1993.

[9] J.W. Ruge and K. Stüben. Algebraic multigrid. In S.F. McCormick, editor,
Multigrid Methods, Vol.4, SIAM, Philadelphia, 1987.

[10] P. Vanĕk, M. Brezina, and J. Mandel. Convergence of algebraic multigrid
based on smoothed aggregation. Technical report, Center for Computational
Mathematics, University of Colorado, Denver, 1998.

[11] P. Vanĕk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed
aggregation for second and fourth order elliptic problems. Computing, 56,
pp. 179-196, 1996.

[12] P. Waldow and I. Wolff. The skin-effect at high frequencies. IEEE Trans.
Microw. Theory Tech., 33, pp. 1076-1982, 1985.

[13] H. Yserentant. Preconditioning indefinite discretization matrices. Num.
Math., 54, pp. 719-734, 1988.

[14] de Zeeuw. Matrix-dependent prolongations and restrictions in a black-box
multigrid solver. J. Comp. Appl. Math, 33, pp. 1-27, 1990.

17

