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Abstract

Let the design of an experiment be represented by an s-dimensional vector w
of weights with non-negative components. Let the quality of w for the estimation
of the parameters of the statistical model be measured by the criterion of D-
optimality de�ned as the m-th root of the determinant of the information matrix
M(w) =

∑s
i=1 wiAiA

T
i , where Ai, i = 1, ..., s, are known matrices with m rows.

In the paper, we show that the criterion of D-optimality is second-order cone
representable. As a result, the method of second order cone programming can
be used to compute an approximate D-optimal design with any system of linear
constraints on the vector of weights. More importantly, the proposed characteri-
zation allows us to compute an exact D-optimal design, which is possible thanks
to high-quality branch-and-cut solvers specialized to solve mixed integer second
order cone problems.

We prove that some other widely used criteria are also second order cone
representable, for instance the criteria of A-, and G-optimality, as well as the
criteria of DK- and AK-optimality, which are extensions of D-, and A-optimality
used in the case when only a speci�c system of linear combinations of parameters
is of interest.

We present several numerical examples demonstrating the e�ciency and uni-
versality of the proposed method. We show that in many cases the mixed integer
second order cone programming approach allows us to �nd a provably optimal
exact design, while the standard heuristics systematically miss the optimum.

1 Introduction

Consider an optimal experimental design problem of the form

max
w∈W

Φ

(
s∑
i=1

wiAiA
T
i

)
, (1)

where Φ is a criterion mapping the space S+
m of m×m positive semide�nite matrices

over the set R+ := [0,∞). In (1), Ai ∈ Rm×li , i = 1, ..., s, are known matrices, and W
is a compact subset of Rs+ representing the set of all permissible designs.

The problem (1) arises in linear regression models with a design space X ≡ [s] :=
{1, ..., s}, independent trials, and a vector θ ∈ Rm of unknown parameters, provided
that the trial in the i-th design point results in an li-dimensional response yi satisfying
E(yi) = ATi θ, and Var(yi) = σ2I li , where Ik is the k×k−identity matrix. In this case,
the matrices AiA

T
i represent the information about the unknown parameters gained

from a single trial in the i-th design point.

When the criterion Φ satis�es certain properties, Problem (1) can be interpreted
as selecting the weights wi that yield the most accurate estimation of θ. In this paper,
we mainly focus on the D−optimal problem, where the criterion Φ is set to

ΦD : M → (detM)
1
m . (2)
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In the case of a Gaussian measurement error, this corresponds to the problem of min-
imizing the volume of the standard con�dence ellipsoid for the best linear unbiased
estimator (BLUE) θ̂ of θ. More generally, if an the experimenter is interested in the
estimation of the parameter subsystem ϑ = KTθ, where K is a m× k matrix (k ≤ m)
of full column rank (rank K = k), a relevant criterion is DK−optimality, which is
de�ned by

ΦD|K : M → (detKTM−K)
−1
k . (3)

Here M− denotes a generalized inverse of M , i.e. a matrix satisfying MM−M = M .
Although the generalized inverse is not unique in general, the de�nition of ΦD|K is con-
sistent. Indeed the matrix KTM−K does not depend on the choice of the generalized
inverseM− if the columns ofK are included in the range ofM , cf. Pukelsheim [Puk93].
The de�nition of ΦD|K is extended to the set of all positive semide�nite matrices, by
setting ΦD|K(M) = 0 whenever range K * range M .

Other optimality criteria, such as A, AK , G and I−optimality are also discussed
in Section 5. For more details on the subject, we refer the reader to the monographs
of Fedorov [Fed72], Pázman [Páz86] or Pukelsheim [Puk93].

In the standard form of the problem, W takes the form of the probability simplex

W∆ := {w ∈ Rs : w ≥ 0,

s∑
i=1

wi = 1},

and the design w is a weight vector indicating the percentage of trials in the individual
design point. This problem, called optimal approximate design problem in the liter-
ature, is in fact the relaxation of a complicated combinatorial problem: the optimal
exact design problem of size N , where W takes the form

WN := { n
N

: n ∈ Ns0 :

s∑
i=1

ni = N}.

Here, the experiment consists of N trials, and ni = Nwi indicates the number of trials
in the design point i (in the above de�nition, N0 denotes the set of all nonnegative
integers, i.e. 0 ∈ N0). Note that the constraint w ∈ W∆ is obtained from w ∈ WN by
relaxing the integer constraints on Nwi.

Many di�erent approaches have been proposed to solve Problems of type (1). How-
ever, most methods are specialized and work only if the feasibility set W is the proba-
bility simplex W∆ or the standard discrete simplex WN . In the former case, the tradi-
tional methods are the Fedorov-Wynn type vertex-direction algorithms [Fed72, Wyn70],
and the multiplicative algorithms [Tit76, STT78, Yu10]. In the latter case (exact op-
timal design, W = WN ), the classical methods are heuristics such as exchange algo-
rithms [Fed72, Mit74, AD92], rounding methods [PR92], and metaheuristics like simu-
lated annealing [Hai87] or genetic algorithms [HLCM+03]. For some small to medium
size models, branch-and-bound methods [Wel82] have been used to compute provably
optimal solutions.

In many practical situations however, more complicated constraints are imposed
on the design [CF95], and there is a need for more general algorithms. For example,
assume that the experimental region can be partitioned as X = X1 ∪ X2, and that
no more than 40% (resp. 60%) of the trials can be chosen in X1 (resp.X2), i.e. the
constraint w ∈ W∆ is replaced by

w ∈ W := {w ∈ Rs+ :
∑
i∈X1

wi ≤ 0.4,
∑
i∈X2

wi ≤ 0.6}.

This is an example of marginally constrained design, as introduced by Cook and
Thibodeau [CT80] (in general, marginally constrained designs rely on a partition
X = X1 ∪ . . . ∪ Xq of a two-dimensional design region X , where each Xi is a one-
dimensional slice of X ). Other examples of relevant design domains W de�ned by a
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set of linear inequalities are discussed in [VBW98]. For example, it is possible to con-
sider the case where a total budget is allocated, and the design points are associated to
possibly unequal costs c1, . . . , cs. It is also possible to consider decreasing costs when
trials of speci�c design points are grouped, or to avoid designs that are concentrated
on a small number of design points.

For some special linear constraints, the approximate D-optimal design problem can
be solved by modi�cations of the vertex-direction algorithms and the multiplicative
algorithms (see e.g. [CF95] and [MMTLF07]), but the convergence of these methods
is usually slow. Recently, modern mathematical programming algorithms [VBW98,
FL00, Har04, HJ08, Sag11, LP12, Pap12] have been gaining in popularity. The idea is to
reformulate the optimal design problem under a canonical form that specialized solvers
can handle, such as maxdet programs (MAXDET), semide�nite programs (SDP), or
second order cone programs (SOCP). The great advantage of these methods is that
using a mathematical programming reformulation of the problem, modern specialized
solvers can be used to compute the approximate optimal designs, usually much more
rapidly than the classical vertex exchange or multiplicative algorithms. Nevertheless,
inclusion of general linear constraints to the mathematical programming characteri-
zations is not completely straightforward. For instance, in a recent paper [Sag11], it
has been proved that the D-optimal design problem can be solved by SOCP, but, as
we show in Section 2, it is valid only for the classical approximate design problem,
where w varies in the probability simplex W∆. In other words, the solution of the
D-optimality SOCP of [Sag11], where the constraint w ∈ W∆ is replaced by w ∈ W
for some arbitrary set W, does not necessarily coincide with the design maximizing
ΦD
(
M(w)

)
over W.

The main result of this paper is proved in Section 4 and states that the determi-
nant criterion is SOC-representable. More precisely, it is possible to express that (t,w)
belongs to the hypograph of w → ΦD

(
M(w)

)
, i.e. tm ≤ detM(w), as a set of second

order cone inequalities. (The necessary background related to the concept of SOC-
representability will be introduced in Section 3). As a consequence, we obtain an alter-
native SOCP formulation for D-optimality, which remains valid for any weight domain
W. In particular, we can formulate a MISOCP to compute exact D−optimal designs.
In Section 5 we prove that other widely used criteria, such as A, G, or I−optimality
are also SOC-representable. The (MI)SOCPs of this paper are summarized in Table 1
(page 13).

Recently, much progress has been done in the development of solvers for second
order cone programming, when some of the variables are constrained in the integral
domain (MISOCP: Mixed Integer Second Order Cone Programming). Thus, the SOCP
formulation of D-optimality presented in this article allows us to use those specialized
codes to solve exact design problems. Compared to the raw branch-and-bound method
to compute exact designs proposed by Welch [Wel82], the MISOCP approach is not
only easier to implement, but it is also much more e�cient. The reason behind is
that specialized solvers such as CPLEX [CPL09] or MOSEK [AJJ+09] rely on branch-
and-cut algorithms with sophisticated branching heuristics, and add cut inequalities
during the solving process to separate non-integer solutions. Also, it may be nec-
essary to point out that most solvers handling the former MAXDET formulation of
D-optimality [VBW98] actually reformulate the problem using semide�nite program-
ming, and there is currently no reliable solver to handle SDPs with integer variables.

We demonstrate the universality of the proposed approach in Section 6, with illus-
trative examples taken from many application areas of the theory of optimal experi-
mental designs. The key aspects of the MISOCP approach will be emphasized:

1. The possibility to handle any system of linear constraints on the weights.

2. The possibility to compute exact-optimal designs with a proof of optimality.

3. For applications where the computing time must remain short, the MISOCP
approach can �nd quickly a near exact-optimal design, and it gives a lower bound
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on its e�ciency (moreover this bound is usually much better than the standard
bound obtained from the approximate optimal design).

In particular, our algorithm can compute constrained exact optimal designs, a feature
out of reach of the standard computing methods, although some authors have proposed
heuristics to handle some special cases such as cost constraints [TV04, WSB10]. A
notable exception is the recent DQ-optimality approach of Harman and Filova [HF13],
a heuristic based on Integer Quadratic Programming (IQP) able to handle the general
case of linearly constrained exact designs. Our numerical results show that

(i) the SOCP approach is numerically more stable than the MAXDET programming
approach for the case of approximate (i.e., continuous) optimal designs;

(ii) the MISOCP method can �nd a provably optimal design for many models where
the KL-exchange algorithm [AD92] or the DQ-optimality IQP [HF13] misses the
optimum;

(iii) the MISOCP approach �nds exact optimal designs much faster than the raw
branch-and-bound approach originally proposed by Welch [Wel82];

(iv) we can compute exact optimal designs with complicated constraints on the weights
representing concrete restrictions that apply to design the experiment.

2 Former SOCP formulation of D-optimality

We �rst recall the result of [Sag11] about D-optimality, rewritten with the notation of

the present article. Note that ‖M‖F :=
√

traceMMT denotes the Frobenius norm of
the matrix M , which also corresponds to the Euclidean norm of the vectorization of
M : ‖M‖F = ‖ vec(M)‖.

Proposition 2.1 (Former SOCP for D-optimality [Sag11]). Let (Z1, . . . , Zs, L,w) be
optimal for the following SOCP:

max
Zi∈Rli×m

L∈Rm×m

w∈Rs
+

(
m∏
k=1

Lk,k

) 1
m

s. t.

s∑
i=1

AiZi = L

L is lower triangular (4)

‖Zi‖F ≤
√
m wi ∀i ∈ [s],

w ∈ W∆.

Then ΦD
(
M(w)

)
= det 1/mM(w) =

((∏
Lk,k

)1/m)2

and w ∈ W∆ is optimal for

the standard approximate D−optimal design problem.

If we want to solve a D−optimal design problem over another design region W,
it is very tempting to replace the last constraint in Problem (4) by w ∈ W. How-
ever, we show with a small example that this approach does not work. Consider
for example the following experimental design problem with three regression vectors

in a two-dimensional space: A1 = [1, 0]T , A2 = [− 1
2 ,
√

3
2 ]T , A3 = [− 1

2 ,−
√

3
2 ]T . For

symmetry reasons it is clear that the approximate D−optimal design (over W∆) is
w1 = w2 = w3 = 1

3 , and this is the vector w returned by Problem (4) indeed. De�ne

now W := {w ∈ R3
+ :

∑3
i=1 wi = 1, w1 ≥ w2 + 0.25}. The optimal design over W

is w∗ = [0.4583, 0.2083, 0.3333], but solving Problem (4) with the additional
constraint w1 ≥ w2 + 0.25 yields the design w = [0.4482,0.1982,0.3536], which is
suboptimal.
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We point out that a similar behaviour occurs for the problem of c−optimality,
where the optimality criterion is Φc : M → 1/cTM−1c. The SOCP for c−optimality
(Theorem 3.3 in [Sag11]), which has a geometric interpretation related to Elfving's
theorem, is only valid on the standard simplex domain W∆. However, an alternative
SOCP is provided in Theorem 4.3 of the same paper, in which an arbitrary polyhedral
domain W can be used (see also the generalization to AK−optimality in Section 5.1
and its MISOCP formulation in Table 1).

In this article we give an alternative SOCP formulation of the D−optimal problem,
which remains valid for any compact design region W. Moreover, our SOCP handles
the more general case of DK−optimality. To derive our result we use the notion of
SOC-representability, which we next present.

3 SOC-representability

In this section, we brie�y review some basic notions about second order cone repre-
sentability. A Second Order Cone Program (SOCP) is an optimization problem where
a linear function fTx must be maximized, among the vectors x belonging to a set S
de�ned by second order cone Inequalities:

S = {x ∈ Rn : ∀i = 1, . . . , Nc, ‖Aix+ bi‖ ≤ ciTx+ di}.

We now recall the de�nition of a second order cone representable set, as introduced
by Ben-Tal and Nemirovski [BTN87]:

De�nition 3.1 (SOC representability). A convex set S ⊆ Rn is said to be second
order cone representable, abbreviated SOC-representable, if S is the projection of a
set in a higher dimensional space which can be described by a set of second order
cone inequalities. In other words, S is SOC-representable if and only if there exists
Ai ∈ Rni×(n+m), bi ∈ Rni , ci ∈ Rn+m, di ∈ R (i = 1, . . . , Nc), such that

x ∈ S ⇐⇒ ∃y ∈ Rm : ∀i = 1, . . . , Nc,

∥∥∥∥Ai [ xy
]

+ bi

∥∥∥∥ ≤ ciT [ xy
]

+ di.

De�nition 3.2 (SOC representability of a function). A convex (resp. concave) func-
tion f : S ⊆ Rn 7→ R is said to be SOC-representable if and only if the epigraph of f ,
{(t,x) : f(x) ≤ t} (resp. the hypograph {(t,x) : t ≤ f(x)}), is SOC-representable.

It follows immediately from these two de�nitions that the problem of maximiz-
ing a concave SOC-representable function (or minimizing a convex one) over a SOC-
representable set can be cast as a SOCP. It is also easy to verify that sets de�ned by
linear equalities (i.e., polyhedrons) are SOC-representable, that intersections of SOC-
representable sets are SOC-representable and that the (pointwise) maximum of convex
SOC-representable functions is still convex and SOC-representable.

We next give two useful lemmas, which show that the geometric mean of m non-
negative variables is SOC-representable.

Lemma 3.3 (rotated second order cone inequalities). The set

S = {x ∈ Rn, t ∈ R, u ∈ R : ‖x‖2 ≤ tu, t ≥ 0, u ≥ 0} ⊆ Rn+2

is SOC-representable. In fact, it is easy to see that

S = {x ∈ Rn, t ∈ R, u ∈ R :

∥∥∥∥ 2x
t− u

∥∥∥∥ ≤ t+ u}.

Lemma 3.4 (SOC-representability of a geometric mean [BTN87]). Let n ≥ 1 be an

integer. The function f mapping x ∈ Rn+ to
∏n
i=1 x

1/n
i is SOC-representable.
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For a construction of the SOC representation of f , see [LVBL98] or [AG03]. We
give below an example in the case n = 5: for all x ∈ R5

+, we have:

t5 ≤ x1x2x3x4x5 ⇐⇒t8 ≤ x1x2x3x4x5t
3

⇐⇒∃u ∈ R5
+ :

 u2
1 ≤ x1x2, u2

4 ≤ u1u2,
u2

2 ≤ x3x4, u2
5 ≤ u3t,

u2
3 ≤ x5t, t2 ≤ u4u5,

and each of these inequalities can be transformed to a standard second order cone
inequality by Lemma 3.3.

4 SOC-representability of the D-criterion

We shall �rst concentrate on the case of D−optimality. The more general result, which
concerns DK−optimality (see (3)), requires an additional intermediate result which is
proved in appendix. We start our proof by a lemma which gives a SOCP �avour to
the Cholesky decomposition of a Grammian matrix:

Lemma 4.1. Let H be a m × n matrix (m ≤ n) of full rank (rankH = m). Let
f1, . . . , fm be increasing functions, mapping (0,+∞) onto R. If (Q,L) is a solution of
the optimization problem

max
Q∈Rn×m

L∈Rm×m

m∑
k=1

fk(Lk,k) (5)

s. t. HQ = L

L is lower triangular

‖Qek‖ ≤ 1 (k = 1, . . . ,m),

where ek is the kth unit vector of Rm, then HT = QLT is the QR decomposition of
HT and LLT is the Cholesky factorization of HHT .

Proof. We �rst note that Problem (5) is separable. Let q1, . . . , qm be the columns of
the matrix Q, and h1

T , . . . ,hm
T denote the rows of H. Problem (5) may be rewritten

as a sum of independent problems:

m∑
k=1

max
qk∈Rn

fk(hk
Tqk) (6)

s. t. hi
Tqk = 0, (i = 1, . . . , k − 1)

‖qk‖ ≤ 1

For each k ∈ [m], we denote by Hk the matrix formed by the rows h1
T , . . . ,hk−1

T

(and we set H1 to be the n−dimensional row vector of all zeros), so that

qk ∈ KerHk.

De�ne uk and vk as the orthogonal projections of hk over KerHk and range HT
k

respectively, so that
hk

Tqk = (uk + vk)Tqk = uk
Tqk.

Note that uk 6= 0, thanks to our assumption that the rows of H are linearly indepen-
dent. Now, we have from Cauchy Schwarz that uk

Tqk ≤ ‖uk‖, because qk lies in the
unit ball of Rn, and the upper bound is uniquely attained for qk = ‖uk‖−1uk, such
that hk

Tqk = ‖uk‖ > 0.
Since fk is increasing, this shows that the maximum of Problem (6) is uniquely

attained at qk = ‖uk‖−1uk, where uk is the orthogonal projection of hk over KerHk.
Clearly, this solution process is nothing but the Gram-Schmidt orthogonalization of
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the matrix HT (with columns h1, . . . ,hm), which is well known to provide a QR
decomposition of the original matrix.

Hence, if (Q,L) is the solution of Problem (5), then QTQ = Im and there exists
an upper triangular matrix R such that HT = QR. Besides, we have LT = QTHT =
QTQR = R, which shows that LT coincides with the right factor of the QR decompo-
sition, i.e., L is the Cholesky factor of HHT .

The determinant of a triangular matrix can be simply obtained by multiplying its
diagonal elements. In the next proposition, we show that Grammian determinants can
be computed by SOCP (up to a positive exponent). This proposition is generalized

in appendix, where it is shown that expressions of the form det
(
KT (HHT )−K

)−1
,

where the matrix K has full column rank, can be computed as the optimal value of a
SOCP (up to a positive exponent).

Proposition 4.2. Let H be a m × n matrix (m ≤ n), and let L be optimal for the
following problem:

max
Q∈Rn×m

L∈Rm×m

(
m∏
k=1

Lk,k

)1/m

(7)

s. t. HQ = L

L is lower triangular

‖Qek‖ ≤ 1 (k = 1, . . . ,m)

Then, we have:

detHHT =

(
m∏
k=1

Lk,k

)2

.

Proof. First note that the set of all feasible solutions of Problem (7) is nonempty
(consider Q = 0, L = 0) and compact, so that this optimization problem has some
solutions indeed. If H is of full rank, we apply the result of Lemma 4.1 with fk = log
for each k ∈ [m]. If L is optimal for Problem (7), then L is the Cholesky factor of
HHT , so that log detHHT = 2 log detL = 2 log

∏m
k=1 Lk,k.

For the case where H is rank de�cient, there exists a row hj
T of H that can be

expressed as a linear combination of the previous rows: hj =
∑j−1
k=1 αkhk. Denote the

jth column of Q by qj , so that the constraints �HQ = L, L lower triangular � imply

Lj,j = hj
Tqj =

j−1∑
k=1

αkhk
Tqj =

m−1∑
k=1

αk Lk,j︸︷︷︸
=0

= 0.

Hence, for any feasible (Q,L), the value of the product in the objective function is 0,
and the equality of the proposition holds (detHHT = 0).

By Lemma 3.4, geometric means are SOC-representable. Hence Proposition 4.2
yields a SOCP to compute the determinant (up to a positive exponent) of any
positive de�nite matrix M for which a decomposition of the form M = HHT is
known. Now let w ∈ W be a design. We could apply Proposition 4.2 to the matrix
H = [

√
w1A1, . . . ,

√
wsAs] in order to express the determinant criterion ΦD

(
M(w)

)
as

the optimal value of a second order cone program. (Or more generally, apply Propo-
sition A.1 of the appendix to express ΦD|K

(
M(w)

)
as the optimal value of a SOCP.)

This is what we do in the next proposition. Besides, we make a change of variables
which transforms the optimization problem into a SOCP where w may play the role
of a variable.

Theorem 4.3. Let K be a m × k matrix (k ≤ m) of full column rank. For all non-
negative weight vectors w ∈ Rs+, denote by OPT (w) the optimal value of the following
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optimization problem, where the optimization variables are tij ∈ R+ (∀i ∈ [s],∀j ∈ [k]),
Zi ∈ Rli×k (∀i ∈ [s]), and J ∈ Rk×k.

max
Zi,tij ,J

 k∏
j=1

Jj,j

1/k

(8a)

s. t.

s∑
i=1

AiZi = KJ (8b)

J is lower triangular (8c)

‖Ziej‖2 ≤ tijwi (i ∈ [s], j ∈ [k]) (8d)
s∑
i=1

tij ≤ Jj,j (j ∈ [k]) (8e)

Then, we have

ΦD|K
(
M(w)

)
=
(

detKTM(w)−K
)−1/k

= OPT (w).

Proof. Let w be an arbitrary nonnegative vector of Rs, and de�ne
H := [

√
w1A1, . . . ,

√
wsAs]. We are going to show that every feasible solution

of Problem (8) yields a feasible solution for Problem (12) in which Jj,j = L2
j,j for all

j ∈ [k], and vice versa. Hence the optimal value of Problem (8) is the square of the
optimal value of Problem (12), from which the conclusion follows:

OPT (w) =

 k∏
j=1

Jj,j

1/k

=

 k∏
j=1

Lj,j

2/k

=
(

detKT (HHT )−K
)−1/k

=
(

detKT
(∑

i

wiAiA
T
i

)−
K
)−1/k

= ΦD|K
(
M(w)

)
.

Consider a feasible solution (Zi, tij , J) of Problem (8). We denote by zij the the
jth column of Zi: zij := Ziej . We now make the following change of variable: denote
by Qi the matrix whose jth column is qij , where

qij =

{ zij
√
wi

√
Jj,j

if wi > 0 and Jj,j > 0;

0 otherwise,

and de�ne Q as the vertical concatenation of the Qi: Q = [QT1 , . . . , Q
T
s ]T . Let j be

an index in [k]. We �rst handle the case Jj,j = 0, where every qij = 0, so that
‖Qej‖2 =

∑
i ‖qij‖2 = 0 ≤ 1. Otherwise (Jj,j > 0), Constraint (8d) together with the

nonnegativity of tij implies ‖qij‖2 ≤ tij
Jj,j

, and by Constraint (8e) we must have

‖Qej‖2 =
∑
i

‖qij‖2 ≤
∑
i

tij
Jj,j
≤ 1.

Observe that constraints (8d)-(8e) also imply that zij = 0 whenever wi = 0 or
Jj,j = 0, so that for all i ∈ [s], j ∈ [k], we can write zij =

√
wi
√
Jj,jqij . Now, we

de�ne the matrix L columnwise as follows:

∀j ∈ [k], Lej :=

{
Jej√
Jj,j

if Jj,j > 0;

0 otherwise.

We can now prove that HQ = KL, where H has been set to [
√
w1A1, . . . ,

√
wsAs],

which we do columnwise. If Jj,j = 0, then we know that Qej = 0, so the jth columns
of HQ and KL are zero. If Jj,j > 0, then we have

KLej =
KJej√
Jj,j

=

∑
iAizij√
Jj,j

=
∑
i

√
wiAiqij = HQej .
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Hence, the proposed change of variables transforms a feasible solution (Z, tij , J) of
Problem (8) into a feasible pair (Q,L) for Problem (12), with the property Jj,j = L2

j,j

for all j ∈ [k].
Conversely, let (Q,L) be feasible for Problem (12), where H has been set to

[
√
w1A1, . . . ,

√
wsAs]. For i ∈ [s], de�ne Zi as the matrix of size li × k whose jth

column is zij =
√
wiLj,jqij , and J as the matrix whose jth column is Jej = Lj,jLej .

We have
∑
iAiZi = KJ , which can be veri�ed columnwise:

KJej = Lj,jKLej = Lj,jHQej = Lj,j
∑
i

√
wiAiqij =

∑
i

Aizij =
∑
i

AiZiej .

De�ne further tij = L2
j,j‖qij‖2, so that Constraints (8d) and (8e) hold. This shows

that (Zi, tij , L) is feasible, with Jj,j = L2
j,j for all j ∈ [k], and the proof is complete.

Corollary 4.4 (SOC-representability of ΦD and ΦD|K). The function

w → ΦD
(
M(w)

)
is SOC-representable. For any m × k matrix K of rank k,

w → ΦD|K
(
M(w)

)
is SOC-representable.

Proof. Problem (8) can be reformulated as a SOCP, since by Lemmas 3.4 and 3.3 the
geometric mean in (8a) is SOC-representable, as well as inequalities of the form (8d).
Hence the optimal value of (8), w → OPT (w), is SOC-representable, and we know
from Theorem 4.3 that OPT (w) = ΦD|K

(
M(w)

)
. In particular, the case K = Im

yields a SOC-representation of w → ΦD
(
M(w)

)
.

Corollary 4.5 ((MI)SOCP formulation of the D−optimal design problem). If the set
W is SOC-representable (in particular, if W is de�ned by a set of linear inequalities),
then the constrained D-optimal (or more generally DK−optimal) design problem (1)
can be cast as a SOCP. If the set W is the intersection of a SOC-representable set with
the integer lattice Zs, then the D (or DK−) optimal design problem can be cast as a
MISOCP.

The (MI)SOCP formulations of Problem (1) for DK−optimality (Φ = ΦD|K), as
well as for the other criteria presented in next section, are summarized in Table 1.

5 Other optimality criteria

5.1 A_K-optimality

Another widely used criterion in optimal design is A−optimality, which is de�ned
through

ΦA : M →
(

trace M−1
)−1

.

More generally, it is possible to use the criterion of AK−optimality if the experimenter
is interested in the estimation of the parameter subsystem KTθ:

ΦA|K : M →
(

traceKTM−K
)−1

.

Here M− denotes a generalized inverse of M , see the discussion following Eq. (3) in
the introduction. As for ΦD|K , the criterion ΦA|K is de�ned over the set of matrices
whose range does not include the columns of K:

range K * rangeM =⇒ ΦA|K(M) = 0,

and for consistency we adopt the convention trace KTM−K := +∞ whenever the
range inclusion condition is not satis�ed. Note that ΦA|K coincides with ΦA if K = Im
and ΦA|K reduces to the criterion of c−optimality when K = c is a column vector.

The function w → traceKTM(w)−K was shown to be SOC-representable
in [Sag11]. This fact has not been stated in those terms in the latter article, but
can be obtained by following the �rst steps of the proof of Theorem 4.3 of [Sag11]. We
give below a short proof of this result for completeness.
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Proposition 5.1. Let K be a (m× k)−matrix, and let w ∈ Rs+ be a vector of design
weights. Then,

trace KTM(w)−K = min
µ∈Rs

+,Yi∈Rli×k

∑
i∈[s]

µi

s. t.
∑
i

AiYi = K

‖Yi‖2F ≤ wiµi.

Proof. We �rst handle the case where the columns of K are included in the range of
M(w), so that trace KTM(w)−K < ∞. A well known consequence of the Gauss-
Markov theorem is that the variance of the best linear unbiased estimator of KTθ is
proportional to KTM(w)−K. More precisely, if I ⊆ [s] denotes the subset of indices
i such that wi > 0, we have:

KTM(w)−K = min
(Yi)i∈I

�
∑
i∈I

Y Ti Yi
wi

s. t.
∑
i∈I

AiYi = K,

where the variables Yi (i ∈ I) are of size li×k, and the minimum is taken with respect to
the Löwner ordering of (k×k)−symmetric matrices (see e.g. Pukelsheim [Puk93]). The
equality of the lemma is then simply obtained by taking the trace, and by introducing
auxiliary variables µ ∈ Rs+ and Yi ∈ Rli×k for all i ∈ [s] \ I, that satisfy

∀i ∈ [s],

{
µi ≥ trace Y T

i Yi

wi
= 1

wi
‖Yi‖2F if wi > 0;

µi = 0 otherwise,

and Yi = 0 ∈ Rli×k for i /∈ I.
Assume now that a column of K does not lie in the range of the singular in-

formation matrix M(w), which is also the range of the matrix [Ai1 , . . . , Aiq ], where
I = {i ∈ [s] : wi > 0} = {i1, i2, . . . , iq}. Then, the equation

∑
i∈I AiYi = K has no so-

lution (Yi1 , . . . , Yiq ), and so the SOCP of the proposition has no feasible solution, which
implies that his optimal value is +∞.

Corollary 5.2. Let K be a m × k matrix. The convex function f : w →
trace KTM(w)−K, which maps Rs+ onto R ∪ {+∞}, is SOC-representable.

The reformulation of Problem (1) for the criterion Φ = ΦA|K as a (MI)SOCP is
indicated in Table 1.

Remark 5.3 (The case of c−optimality). The case of c−optimality arises as a special
case of both AK and DK−optimality when the matrix K = c 6= 0 is a column vector
(k = 1). In this situation, the reader can verify that the two SOCP formulations (for
ΦA|c and ΦD|c− in Table 1) are equivalent, which can be veri�ed by the change of

variables: Yi = J−1
1,1Zi, µi = J−2

1,1 ti1 (note that here the matrix J is of size 1, i.e. a
scalar).

We next show how Proposition 5.1 can be used to obtain a SOC-representation of
several other criteria, namely for G and I−optimality.

5.2 G-optimality

A criterion closely related to D−optimality is the criterion of G−optimality,

ΦG : M → −max
i∈[s]

traceATi M
−Ai.

In the common case of single-response experiments for linear models, the matrices
Ai are column vectors, and the scalar ATi M(w)−Ai represents the variance of the
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prediction ŷi = ATi θ̂. Hence G−optimality seeks at minimizing the maximum variance
of the predicted values ŷ1, . . . , ŷs.

The G and D−optimality criteria are related to each other by the celebrated equiv-
alence theorem of Kiefer and Wolfowitz [KW60], which has been generalized to the
case of multivariate regression (li > 1) by Fedorov in 1972. We give below a version of
this theorem for the case of a �nite design space X ≡ [s]:

Theorem 5.4 (Equivalence Theorem [Fed72]). Assume that the matrix A =
[A1, . . . , As] ∈ Rm×l contains m independent vectors among its columns. Then the
following statements are equivalent:

(i) The design w maximizes ΦD
(
M(w)

)
over W∆.

(ii) The design w maximizes ΦG
(
M(w)

)
over W∆.

(iii) For all i ∈ [s], traceATi M(w)−Ai ≤ m.

Moreover, if the design w∗ ∈ W∆ is D−optimal, then the bound of (iii) is attained at
the support points of w∗:

w∗i > 0 =⇒ traceATi M(w∗)−Ai = m.

In other words, the concepts of D−optimality and G−optimality coincide when
the weight domain W is the probability simplex W∆. However, exact G−optimal
designs do not necessarily coincide with their D−optimal counterpart. In a recent
article [RJBM10], the Brent's minimization algorithm has been proposed to compute
near exact G-optimal factorial designs. But in general, we do not know any standard
algorithm for the computation of G−optimal designs over arbitrary weight domainsW
that are de�ned by a set of linear inequalities.

We know from Corollary 5.2 that the convex functions fi : w → trace ATi M(w)−Ai
are SOC-representable, and hence their maximum is also convex and SOC-
representable. A (MI)SOCP formulation of Problem (1) for the criterion Φ = ΦG
is indicated in Table 1. For the case where the weight domain W is the probability
simplexW∆, it gives a new alternative SOCP formulation forD−optimality. Note how-
ever that in this situation, the SOCP formulation (4) for D−optimality from [Sag11]
is usually more compact (i.e., it involves less variables and less constraints) than the
G−optimality SOCP of Table 1.

5.3 I-optimality

Another widely used criterion is the one of I− optimality (or V−optimality). Here,
the criterion is the average of the variances of the predicted values ŷ1, . . . , ŷs:

ΦI : M → −1

s

∑
i∈[s]

traceATi M
−Ai.

In fact, this criterion coincides with the ΦA|K criterion, by setting K to any matrix

satisfying KKT = 1
s

∑s
i=1AiA

T
i (see e.g. �9.8 in [Puk93]). Hence ΦI−optimal designs

can be computed by SOCP. Note that there is also a weighted version of I−optimality,
which can be reduced to an AK−optimal design problem in the same manner.

6 Experimental Results

In this section we will present numerical results for several examples taken from various
application areas of the theory of optimal designs. With these examples we aim to
demonstrate the universality of the (MI)SOCP technique for the computation of exact
or approximate D− (and A−) optimal designs.

Our computations were worked out on a PC with 4 cores at 3GHz. We have
used MOSEK [AJJ+09] to solve the approximate optimal design problems, and
CPLEX [CPL09] for the exact optimal design problems (with integer constraints). The
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solvers were interfaced through the Python package PICOS [Sag12], which allows the
users to pass (MI)SOCP models such as those of Table 1 to di�erent solvers in a pain-
less fashion. We refer the reader to the example section of the PICOS documentation
for a practical implementation of the (MI)SOCPs for optimal design problems.

It is common to compare several designs against each other by using the metric of
D−e�ciency. The latter is de�ned as

effD(w) =
ΦD
(
M(w)

)
ΦD
(
M(w∗)

) =

(
detM(w)

detM(w∗)

)1/m

,

where w∗ is a reference design. Unless stated otherwise, we always give D−e�ciencies
relatively to the optimal design, i.e. w∗ is a solution of Problem (1).

Constrained designs for the quadratic model with two factors Consider the
quadratic regression model on a (18× 3)-grid in the plane:

y(x) =θ1 + θ2x1 + θ3x2 + θ4x
2
1 + θ5x

2
2 + θ6x1x2 + ε(x) (9)

x = [x1, x2]T ∈ X = {94.9, 95.1, 95.2, . . . , 96.6, 96.7} × {0, 10, 20}.

This model was used in [MMTLF07] for the sintering of uranium pellets, and it
served as an example for constrained DQ-optimality in [HF13]. The explanatory vari-
ables represent the �initial density� (x1) and the �percentage of additive U3O8� (x2).
The nature of the experiment requires marginal constraints on the variable x1. More
precisely, the numbers of trials under the 18 levels of the variable x1 are restricted to
1, 3, 14, 59, 52, 29, 25, 32, 36, 29, 36, 38, 12, 10, 8, 2, 3, 3, which amounts to the
total of N = 392 trials. If we denote the levels of the factor x1 by L1, . . . , L18, and the
required marginal sums by a1, . . . , a18, the constraints have the form

w ∈ W := {w ∈ NX0 : ∀j ∈ 1, . . . , 18,
∑

x2∈{0,10,20}

w(Lj , x2) = aj}.

We �rst say a word about the computation of an approximate D-optimal design
for Model (9), i.e. when the integer constraint on w(x1, x2) is relaxed. Martín-
Martín et. al. [MMTLF07] have adapted the multiplicative algorithm to compute
marginally constrained approximate optimal designs. Their algorithm �nds an op-
timal design in 4.8 seconds (it is written 0.08 minute in the article). In comparison,
MOSEK solved the SOCP of Table 1 in 0.04 second. The SOCP approach has also
been compared to the widespread MAXDET programming approach [VBW98]. In a
�rst attempt, we have tried to solve the MAXDET SDP with SeDuMi [Stu99] inter-
faced through YALMIP [Lö04], by using the natural observation matrices A(x1, x2) =
[1, x1, x2, x

2
1, x

2
2, x1x2]T . The solver ran into numerical problems and was not able to

�nd a solution. However, it is well known that the D−optimal design problem is in-
variant to linear transformations of the parameter, hence we can shift the regression
domain X to the regular 18 × 3 grid X ′ over [−1, 1] × [−1, 1]. This has the e�ect to
scale the D−criterion ΦD by a constant multiplicative factor, so the D−optimal design
remains the same. The transformed problem (over X ′) has better numerical properties,
and SeDuMi was able to �nd a solution in 0.3s. A similar behaviour was observed with
the CVXOPT solver [DV06], interfaced through PICOS: CVXOPT failed to solve the
original problem over X , but found a solution of the transformed problem after 0.14s.
To our mind, this example shows that the SOCP approach is not only faster than
the MAXDET approach for the computation of approximate optimal designs, but also
numerically more stable.

Concerning the exact design problem, we could solve the MISOCP of Table 1 in
1.41s. In [HF13] another illustrative example with an additional cost constraints is
considered. Here it is assumed that 1% of the additive costs one unit, and a total
budget of 1965 price units is allowed:
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max
w∈W

ΦD|K
(
M(w)

)
= max

w,Zi,tij ,J

k∏
j=1

(Jj,j)
1
k

s. t.
∑
i∈[s]

AiZi = KJ

J is lower triangular

‖Ziej‖2 ≤ tijwi (i ∈ [s], j ∈ [k])
s∑
i=1

tij ≤ Jj,j (j ∈ [k])

tij ≥ 0 (i ∈ [s], j ∈ [k])

w ∈ W

(
max
w∈W

ΦA|K
(
M(w)

))−1

= min
w,Yi,µi

∑
i∈[s]

µi

s. t.
∑
i∈[s]

AiYi = K

‖Yi‖2F ≤ µiwi (i ∈ [s])

µi ≥ 0 (i ∈ [s])

w ∈ W

−
(

max
w∈W

ΦG
(
M(w)

))
= min

w,Hj
i ,u

j
i ,ρ

ρ

s. t.
∑
j∈[s]

AjH
j
i = Ai (i ∈ [s])

‖Hj
i ‖

2
F ≤ wju

j
i (i ∈ [s], j ∈ [s])

uji ≥ 0 (i ∈ [s], j ∈ [s])∑
j∈[s]

uji ≤ ρ (i ∈ [s])

w ∈ W.

Table 1: SOCP formulations of the AK ,DK ,and G− optimal design problems over an
arbitrary weight region W. In the above, K represents a given m × k matrix of full
column rank. The particular case k = 1 (where c = K is a column vector) gives
SOCP formulations for the c−optimal design problem, and the case K = Im yields
the standard A and D−optimality problems. In these SOCPs, the variables Zi and Yi
(i ∈ [s]) are of size li × k, the variables Hj

i (i ∈ [s], j ∈ [s]) are of size lj × li, J is of

size k × k, the weight vector is w ∈ W ⊆ Rs+, and the variables tij (i ∈ [s], j ∈ [k]), uji
(i ∈ [s], j ∈ [s]), µi (i ∈ [s]) and ρ are scalar.
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Figure 1: Exact and approximate optimal designs for the design problem with both marginal

and cost constraints (cf. Eq. (10)). The areas of the gray discs are proportional to the weights

of the continuous optimum (approximate D−optimal design in (a) and (b), approximate

A−optimal design in (c)), while the integers near the discs indicate the exact designs, i.e.

the number of times that each individual trial should be performed: (a) DQ-optimal design

wDQ computed in [HF13] (effD(wDQ) = 96.75%); (b) D−optimal design wD computed by

MISOCP (effD(wD) = 100%); (c) A−optimal design wA computed by MISOCP (effD(wA) =

98.24%).

w ∈ W :=
{
w ∈ NX0 :

∀j ∈ {1, . . . , 18},
∑
x2∈{0,10,20} w(Lj , x2) = aj ,∑18

j=1 10 w(Lj , 10) + 20 w(Lj , 20) ≤ 1965.

}
(10)

The authors of [HF13] have used the DQ-optimality method to compute an e�cient
design. Their design wDQ is plotted on Figure 1(a) and has a D−e�ciency of 96.68%
relatively to the continuous optimum. We were able to compute an exact optimal
design by using the MISOCP approach (Figure 1(b)). This took 1.55s with CPLEX.
The exact optimal design achieves almost the same criterion value as the continuous
optimum, and hence the D−e�ciency of the DQ-optimal design relatively to the true
optimum is just a bit higher than 96.68%: effD(wDQ) = 96.75%. To illustrate the
universality of the MISOCP method, we have also computed an exact A−optimal
design for this problem. The solution is depicted on Figure 1(c) and was found after
10.84s with CPLEX. We point out that the exact A−optimal design has a D−e�ciency
of 98.24%.

Two-block designs An important category of models studied in the experimental
design literature is the class of block designs. Here the e�ect of t treatments should
be compared, but their e�ects can only be measured inside a number b of blocks, each
of whom induces a block e�ect on the measurements. The optimal design problem
consists in choosing which treatments should be tested together in each block. We
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refer the reader to Bailey and Cameron [BC09] for a comprehensive review on the
combinatorics of block designs.

In the case where the blocks are of size two, i.e. the treatments can be
tested pairwise against each other, a design can be represented by a vector w =
[w1,2, w1,3, . . . , w1,t, . . . , wt−1,t] of size s =

(
t
2

)
. For i < j, wi,j indicates the num-

ber of blocks where treatments i and j are tested simultaneously. The observation
matrix associated with the block (i, j) is the column vector of dimension m = (t− 1):

Ai,j = P (ei − ej),

where ei denotes the i
th unit vector in the canonical basis of Rt and P is the matrix of

projection that transforms a t−dimensional vector v to the vector obtained by keeping
the �rst (t− 1) coordinates of v.

The problem of D-optimality has a nice graph theoretic interpretation: let G(w) be
the graph with t vertices and an edge of multiplicity wi,j for every pair of nodes (i, j). (If
wi,j = 0, then there is no edge from i to j). This graph is called the concurrence graph
of the design. It is not di�cult to see that M(w) is the submatrix of the Laplacian of
G(w), obtained by removing its last row and last column. So by Kirchho�'s theorem
the cofactor detM(w) coincides with the number of spanning trees of G(w). In other
words, the exact D−optimal designs of size N coincide with the graphs with t nodes
and N vertices that have a maximum number of spanning trees.

We have computed some 2-block designs for di�erent values of t and N , with three
di�erent algorithms: The MISOCP approach proposed in this paper, the KL-exchange
algorithm of Atkinson and Donev [AD92], and the DQ-optimality integer quadratic
program of Harman and Filova [HF13]. Results are reported in Table 2. For every
algorithm we have indicated the number of spanning trees in the concurrence graph
of the obtained design, as well as its D−e�ciency. Note that the D-e�ciency is often
very high, even when the number of spanning trees is far from the optimum, because
of the exponent 1

m in the criterion ΦD (2) which shifts the ratio toward 1. We next
explain the settings used by each of these algorithms for the computation of the results
in Table 2.

We used CPLEX to solve the MISOCPs. To achieve a faster convergence, linear
equalities were added in the SOCP formulation to restrain the search on the spaceWeq

of equireplicate designs. The latter are designs where the numbers of times that each
treatment is tested (the replication numbers) are as similar as possible. In other words,
the designs w ∈ Weq are those designs whose concurrence graph is almost regular, i.e.
the di�erence of degrees between any two nodes is at most 1. The equireplicatedness of
designs is a natural property wished by many practitioners, and it has been conjectured
that every optimal 2-block-designs is equireplicate for t−1 ≤ N ≤

(
t
2

)
. The conjecture

is known to hold for t ≤ 11 [CE05]. In order to demonstrate the �exibility of the
MISOCP approach, we have also computed designs of N = 15 blocks on t = 10
treatments by imposing other kind of constraints on the replication numbers. The
concurrence graphs of these constrained optimal designs are displayed on Figure 2.

For the KL-exchange algorithm we have used the procedure described in [AD92]:
an initial design with N (2) blocks is �rst chosen at random, where N (2) itself is ran-
domly taken in the interval 0 ≤ N (2) ≤ bm/2c. Then, this design is completed to form
a design with N blocks, by using a greedy, forward sequential procedure. Finally, the
KL-exchange procedure takes place per se: design points are replaced by other candi-
date points in a greedy manner until no improvement occurs. The authors of [AD92]
suggest to repeat the above procedure several times, and to keep the best design ob-
tained after NR runs. Two parameters (K and L) are used to specify the size of the
pools of candidate points for addition and deletion from the current design. For our
experiments we have indicated the best design after NR = 20 runs of the KL-exchange
algorithm, with K and L chosen at random in their admissible range for each run of
the algorithm. In the table we have also displayed the frequency at which the global
optimum was found, out of NR = 1000 runs of the exchange algorithm. This table
shows that the KL-exchange algorithm is able to �nd a very e�cient design for all the
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considered values of t and N . However, there are many examples where the exchange
algorithm systematically misses the optimum, and cases where the probability to �nd
the optimum in one run is very low.

The Integer Quadratic Programs (IQP) for DQ-optimality were also solved with
CPLEX. The authors of [HF13] mention the case of block designs as a pathological
example, where bad designs can be returned. This happened here for t = 8 treatments
and N = 12 blocks, where a disconnected design (no spanning tree, i.e. the information
matrix is singular) is DQ-optimal.

MISOCP KL-exchange DQ-opt

(t,N) sp.tr.(1) effD
(2) tsol

(3) tproof
(4) sp.tr.(1) effD

(2) success(5) sp.tr.(1) effD
(2)

(8,12) 392 100.00% 0.76 4.68 392 100.00% 93.5% 0 0.00%
(8,14) 1280 100.00% 0.80 28.50 1272 99.91% 0.0% 1280 100.00%
(8,16) 4096 100.00% 0.55 2.23 3840 99.08% 0.0% 4096 100.00%
(9,11) 96 100.00% 4.88 156.57 96 100.00% 5.5% 72 96.47%
(9,13) 560 100.00% 1.23 77.36 553 99.84% 1.6% 320 93.24%
(9,14) 1200 100.00% 7.71 33.55 1168 99.66% 0.8% 1047 98.31%
(9,15) 2223 100.00% 1.33 360.49 2176 99.73% 0.9% 2007 98.73%
(9,16) 4032 100.00% 48.25 390.15 3968 99.80% 0.0% 2871 95.84%
(10,12) 128 100.00% 23.11 1857.60 128 100.00% 11.6% 57 91.40%
(10,15) 2000 100.00% 3.52 745.35 1881 99.32% 0.0% 1815 98.93%
(10,20) 40960 100.00% 31.44 2545.57 39040 99.47% 0.0% 36900 98.85%

(1) Number of spanning trees in the concurrence graph of the design; for the KL exchange algorithm,
the value is based on the best design found in NR = 20 independent runs.

(2) D−e�ciency of the design (relatively to the exact optimal design of sizeN); for the KL exchange
algorithm, the value is based on the best design found in NR = 20 independent runs.

(3) CPU time (sec.) until CPLEX found the optimal solution

(4) CPU time (sec.) until CPLEX closed the gap (proof of optimality)

(5) Frequency of success of the KL-exchange algorithm, calculated on 1000 runs

Table 2: Comparison of three algorithms for the computation of exact two-blocks
designs, with N blocks on t treatments.

(a) (b) (c) (d)

Figure 2: Concurrence graphs of the D−optimal designs of N = 15 blocks on t = 10
treatments, among the class of 2-block designs that (a) are equireplicate; (b) have half
of the treatments replicated 2 times, and the other half replicated 4 times; (c) have
one treatment replicated at least 6 times; (d) have two treatments replicated at least
6 times.

We have also compared the running time of the MISOCP approach proposed in
this paper with that of the original branch and bound approach of Welch [Wel82]. The
algorithm proposed by Welch is, to the best of our knowledge, the only other method
which has been proposed in the literature to compute provably exact optimal designs
(if we except the brute force enumeration techniques that have been used in certain
simple cases). In this algorithm, continuous relaxations of the design problem with
bounds on the weights must be solved at each node of a binary search tree. This is
done by a coordinate exchange algorithm. In addition, the algorithm of Welch uses
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Figure 3: Evolution of the lower and upper bounds with time for two instances of
optimal block design, for the branch and bound and MISOCP approached

another upper bound based on the Hadamard inequality for positive de�nite matri-
ces, and it is also possible to take into account the spectral bound of Ko, Lee, and
Wayne [KLW98]. In our experiments, the use of this spectral bound did not seem
to improve our computation times. Moreover, we point out that it would be possible
to use both the Hadamard and the spectral bounds in conjunction with the proposed
MISOCP formulation, by using solver callbacks which allow the user to interact with
the branch-and-cut process.

The MISOCP approach also relies on a branch-and-bound procedure, but additional
cut inequalities are automatically added by the solver to separate non-integer solutions.
Another important di�erence between the two approaches resides in the branching de-
cisions: high-quality integer programming solvers implement sophisticated heuristics to
choose the next variable to branch on, which can considerably reduce the computation
time.

The graphics of Figure 3 show the evolution of the best lower and upper bounds
with the CPU time in seconds, for t = 7, N = 12 (left) and t = 9, N = 14 (right). For
the latter case we have used a log scale for the time, and we have included the bounds
for the MISOCP with additional constraints forcing the design to be equireplicate.
The y-axis is scaled relatively to the optimum ΦD

(
M(w∗)

)
, so that at a given point

in time, the ratio between the lower and the upper bounds can be interpreted as a
guarantee of D−e�ciency for the best design found so far. For both instances, the
MISOCP is much faster (by two orders of magnitude) to �nd the optimal solution: for
(t,N) = (7, 12) the lower bounds reach the optimum after 1.26s (MISOCP) vs. 357s
(B&B), and for (t,N) = (9, 14) after 10.44s (MISOCP) vs. 841s (B&B). The MISOCP
was also much quicker to provide a proof of optimality: for (t,N) = (7, 12), the lower
and upper bounds met after 53s (MISOCP) vs. 734s (B&B), and for (t,N) = (9, 14)
the optimality was proved after 414s by the MISOCP while the branch and bound
algorithm of Welch still had a gap of 0.2% after 1500s. Note that the addition of
constraints to force the design to be equireplicate drastically reduces the computation
time (optimality was proved in the class of equireplicate designs after 33s).

For completeness, we have also tried to use the MAXDET programming approach
in conjunction with the branch and bound algorithm implemented in YALMIP [Lö04].
For the case of t = 7 treatments and N = 12 blocks, it took more than 2 hours to close
the gap (vs. 53s for the MISOCP).
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Figure 4: Concurrence Graphs of the D−, A− and G− optimal designs for t = 7
treatments and N = 14 blocks.

Block designs with other optimality criteria Another meaningful criterion for
block designs is A−optimality. For a block design w ∈ Ns0, the quantity Ri,j :=
Ai,jM(w)−Ai,j is proportional to the variance of the best estimator (BLUE) for the
di�erence of values of treatments i and j. The A−optimal design is known to minimize
the average pairwise variance s−1

∑
i 6=j Ri,j of the estimators of di�erences in treatment

e�ects (see e.g. [BC09]). In other words, in block designs the concept of A−optimality
coincides with that of I−optimality (see � 5.3).

The A−optimal also has a nice graph theoretic interpretation: consider the con-
currence graph G(w) as an electric circuit whose each edge represents a unit resistor.
Then, the quantity Ri,j is the e�ective resistance between the poles i and j of the cir-
cuit. An A−optimal design hence connects the vertices so as to minimize the average
pairwise resistance of the electrical network. Similarly, a G−optimal design maximizes
the smallest e�ective resistance between 2 nodes if the network.

We have solved the MISOCPs of Table 1, to �nd the D, A, and G−optimal designs
for t = 7 treatments and N = 14 blocks. The concurrence graphs of these designs
are displayed on Figure 4. Note that these three designs are distinct (the concurrence
graphs are not isomorphic), and the concurrence graph of the A−optimal design is not
regular. These designs were found after a CPU time of respectively 0.79s, 1.37s and
4.02s for the D,A, and G−optimality criteria. It took a much longer time to close the
MISOCP gap, and hence obtain a proof of optimality, especially for the G−criterion
(respective CPU times: 70.0s, 73.8s, and 13300s).

Block designs with larger blocks Of course, it is also possible to consider blocks
of size k ≥ 2. If the blocks contain each k distinct elements, then the graph theoretic
interpretation presented above remains valid, but the concurrence graphs have to be
constructed in a di�erent way. In the case of two-block designs, a block (i1, i2) was
associated with an edge between the nodes i1 and i2. The counterpart for larger blocks
consists in associating the block (i1, i2, . . . , ik) with the complete subgraph joining the
nodes i1, . . . , ik. The observation matrix A(i1,i2,...,ik) can thus be chosen as any matrix
A satisfying

AAT = L
[−1,−1]
(i1,i2,...,ik),

where L
[−1,−1]
(i1,i2,...,ik) is the (t − 1) × (t − 1)−submatrix obtained by removing the last

row and the last column of the Laplacian of the complete subgraph with vertices
i1, . . . , ik. Note that the Laplacian L(i1,i2,...,ik) has rank k − 1, so it is possible to
choose A(i1,i2,...,ik) of size (t − 1) × (k − 1). We have used our MISOCP approach to
compute an exact D−optimal design with N = 5 blocks of k = 4 treatments, when the
total number of treatments is t = 10. The optimum has been found in 16s, and a proof
of optimality was provided after 182s. The optimal design has a concurrence graph
with 2.048.000 spanning trees and can be represented in the following table (with the
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block in columns):
0 1 4 0 1
2 3 6 5 2
3 5 8 7 7
4 6 9 8 9

In comparison, the best design returned by the exchange algorithm (best design out
of NR = 100 runs) has a concurrence graph with 1.720.320 spanning trees, and the
design we found with the DQ-optimality IQP has only 184.320 spanning trees.

Locally D−optimal design in a study of chemical kinetics Another classical
�eld of application of the theory of optimal experimental designs is the study of chem-
ical kinetics. The goal is to select the points in time at which a chemical reaction
should be observed, in order to estimate the kinetic parameters θ ∈ Rm of the reac-
tion (rates, orders,...). The measurements at time t are of the form yt = ηt(θ) + εt,
where ηt(θ) = [η1

t , . . . , η
k
t ]T is the vector of the concentrations of k reactants at time

t. The kinetic models are usually given as a set of di�erential equations, which can
be solved numerically to �nd the concentrations ηt(θ) over time. Unlike the linear
model described in the introduction of this paper, in chemical kinetics the expected
measurements E[yt] = ηt(θ) at time t depend nonlinearly on the vector θ of unknown
parameters of the reaction. So a classical approach is to search for a locally optimal
design using a prior estimate θ0, i.e. a design which would be optimum is the true
value of the parameters was θ0. To do this, the observation equations are linearized
around θ0, so in practice we replace the observation matrix At of each individual trial
at time t by its sensitivity at θ0, which is de�ned as:

Ft :=
∂ηt(θ)

∂θ

∣∣∣∣
θ=θ0

=


∂η1t
∂θ1

· · · ∂ηkt
∂θ1

...
. . .

...
∂η1t
∂θm

· · · ∂ηkt
∂θm


∣∣∣∣∣∣∣∣
θ=θ0

∈ Rm×k.

A classical example is presented in [AD92]: the study of two consecutive reactions

A
θ1−→ B

θ2−→ C.

The chemical reactions are assumed to be of order θ3 and θ4 respectively, so the con-
centrations of the reactants are determined by the di�erential equations

d[A]

dt
=− θ1[A]θ3

d[B]

dt
=θ1[A]θ3 − θ2[B]θ4 (11)

d[C]

dt
=θ2[B]θ4 ,

together with the initial condition ([A], [B], [C])|t=0 = (1, 0, 0). These equations can be
di�erentiated with respect to θ1, . . . , θ4, which gives another set of di�erential equations

that determines the elements
∂ηjt
∂θi

of the sensitivity matrices.
We now assume that measurements can be performed at each

t ∈ X = {0.2, 0.4, . . . , 19.8, 20}, and that the observed quantities are the concen-
trations of the reactants A and C, i.e. k = 2 and ηt

T = ([A](t), [C](t)). We have
solved numerically the di�erential equations governing the entries of (Ft)t∈X for the
prior θ0 := [1, 0.5, 1, 2]T . These sensitivities are plotted in Figure 5.

We have used the MISOCP method to compute the exact D−optimal design of
size N = 5 for this problem (for the prior θ0). The optimum consists in taking 1
measurement at t = 0.8, 3 measurements at t = 2.8, and 1 measurement at t =
16.6. In comparison, the exchange algorithm (using the same settings as described
for the block designs, with NR = 100) found a design with 1 measurement for each
t ∈ {0.8, 3.4, 17.4}, and 2 measurements at t = 2.6. This design is of course very close
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Figure 5: Sensitivities of the measurements (entries of Ft) plotted against time for the
prior θ0 = [1, 0.5, 1, 2]T .

to the optimum (its D−e�ciency is 98.42%), but we point out that the true optimum
could not be found by the exchange algorithm, even with a very large number of tries.
We have run the exchange procedure NR = 5000 times which took 100s and returned
a design of D−e�ciency 99.42%, while the MISOCP found a provable optimal design
after 25s.

We have plotted these designs on Figure 6 together with the concentrations of the
reactants over time when we assume θ = θ0. On the �gure, we have also plotted
other designs which can be of interest for the practitioners. For example, it might be
natural to search designs where at most 1 measurement is taken at a given point in
time. The exchange algorithm can also be adapted to the case of binary designs (by
rejecting candidate points that are already in the support of the design during the
exchange procedure). It returned a design of D−e�ciency 98.97%. The last case we
have considered is the following, assume that the experimenter must wait at least one
second after a measurement before performing another measurement. This constraint
can be modelled as a set of inequalities that can be added in the MISOCP formulation:

{w0.2 + w0.4 + w0.6 + w0.8 + w1.0 ≤ 1, w0.4 + w0.6 + w0.8 + w1.0 + w1.2 ≤ 1,

. . . , w19.2 + w19.4 + w19.6 + w19.8 + w20.0 ≤ 1}.

This model was solved in 42s with CPLEX, and the corresponding optimal design is
depicted on the last row of Figure 6. We do not know any other algorithm which can
handle this kind of exact design problem with several linear constraints.
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A Appendix

We present here a generalization of Proposition 4.2, which will be useful to prove
Theorem 4.3 in the case of DK−optimality. Let K be a m × k matrix of full column
rank. Recall that the de�nition of ΦD|K involves a generalized inverse (see (3)); we
refer to our discussion after Eq. (3) for properties of generalized inverses, and we recall
that ΦD|K(M) = 0 if some column of K does not lie in the range of M .

Proposition A.1. Let H be a m × n matrix (m ≤ n), K be a m × k matrix of full
column rank, and let L be optimal for the following problem:

max
Q∈Rn×k

L∈Rk×k

 k∏
j=1

Lj,j

1/k

(12)

s. t. HQ = KL

L is lower triangular

‖Qej‖ ≤ 1 (j = 1, . . . , k)

Then, we have:

det
(
KT (HHT )−K

)−1
=

(
m∏
k=1

Lk,k

)2

. (13)

Proof. We �rst handle the singular case, where rangeK * rangeHHT . Here the

matrix KT (HHT )−K is not de�ned, but by convention det
(
KT (HHT )−K

)−1
=

ΦD|K(HHT )k = 0. Note that Q = 0, L = 0 is a feasible solution to Problem (12), so
the optimal value of this problem is at least 0. We then show by contradiction that in
every feasible solution, at least one diagonal element of L must be zero, so (13) holds.
Otherwise, the triangular matrix L would be invertible, so that range K = range KL,
and the equality HQ = KL implies range K ⊆ range H = rangeHHT .

So we focus henceforth on the regular case, where rangeK ⊆ rangeH and the
matrix KT (HHT )−K is invertible. We know that the set of feasible solutions of
Problem (12) is nonempty (consider Q = 0, L = 0), and the full rank assumption
on K guarantees that this set is compact. Hence there exists an optimal solution for
Problem (12), and in what follows Q and L denote a pair of optimal variables. We start
with a simple observation which allows us to concentrate on the case where K = K0 :=
[0, Ik]T , i.e. K is the m× k matrix whose (m− k) �rst rows are zeros, and the last k
rows form an identity block. We call (P0) the proposition obtained by �xing K = K0

in Proposition A.1. Assume that (P0) holds, and let K be an arbitrary m×k matrix of
full column rank. Denote by U a matrix obtained by appending (m−k) column vectors
u1, . . . ,um−k to the left of K, in such a way that U = [u1, . . . ,um−k,K] is invertible
(this can be done since K has full column rank), and observe that UK0 = K. Since U
is invertible, we have HQ = KL ⇔ U−1HQ = K0L, so replacing K by K0 and H by
H ′ := U−1H leaves the solutions of Problem (12) unchanged. By our assumption that
(P0) holds, we obtain:(

m∏
k=1

Lk,k

)2

= det
(
KT

0 (H ′H ′T )−K0

)−1
= det

(
KT

0 U
T (HHT )−UK0

)−1

= det
(
KT (HHT )−K

)−1
.

This shows that Proposition A.1 holds if (P0) does, and so we assume without loss
of generality that K = [0, Ik]T . If we partition the matrix M = HHT as

M =

(
M11 M12

MT
12 M22

)
,

where the blocks M11 and M22 are of respective size (m − k,m − k) and (k, k), the
Schur complement lemma gives (KT (HHT )−K)−1 = M22 −MT

12M
−
11M12 (see �3.11
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in [Puk93]). De�ne L′ := KL = [0, LT ]T , and observe similarly as in the proof
of Proposition 4.1 that Problem (12) can be solved independently for each pair of
columns (qj = Qej , lj = L′ej), for j = 1 . . . , k. This process is nothing but the
k last steps of the Gram-Schmidt orthogonalization of the rows of H. In partic-
ular, one can �nd (m − k) column vectors v1,v2, . . . ,vm−k such that the matrix
L̃ = [v1,v2, . . . ,vm−k, L

′] is a Cholesky factor of M (i.e., L̃ is lower triangular and
M = L̃L̃T ). Recall that the Cholesky decomposition of M is uniquely de�ned if M is
positive de�nite, i.e. if the m rows of H are mutually independent. However, if at some
point of the orthogonalization process, the jth row of H belong to the space spanned
by the row vectors h1

T , . . . ,hj−1
T , then vj can be any vector of the form vj = Hq′j ,

where q′j lies in the nullspace of the matrix formed by the rows h1
T , . . . ,hj−1

T . In

this particular case, we assume q′j = 0, vj = 0. Decompose L̃ as

L̃ =

(
L̃11 0

L̃T12 L̃22

)
,

so that L = L̃22. Denote by I the set of indices such that (L̃11)i,i = 0. According to

our previous discussion, I also coincides with the set of columns full of zeros in L̃11

and L̃T12. So we have range L̃12 ⊆ {u : ∀i ∈ I, ui = 0} = range L̃T11. This implies the
existence of a matrix X such that L̃T11X = L̃12. The equationM = L̃L̃T can be written
blockwise, which yields L̃11L̃

T
11 = M11, L̃11L̃12 = M12, and L̃

T
12L̃12 +LLT = M22. The

two former equations imply M11X = M12, and the latter can be rewritten as:

LLT = M22 − L̃T12L̃12 = M22 −XT L̃11L̃
T
11X

= M22 −XTM11X

= M22 −XTM11M
−
11M11X

= M22 −MT
12M

−
11M12

= (KT (HHT )−K)−1.

So we can conclude by taking the determinant:

det (KT (HHT )−K)−1 = det LLT = (det L)2.
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